汽车振动分析期末复习题(车辆工程专业用)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 圆筒质量m 。质量惯性矩o J ,在平面上在弹簧k 的限制下作纯滚动,如下图所示,求

其固有频率。

2. 下图示的弹簧质量系统,两个弹簧的连接处有一激振力t P t P ωsin )(0=的作用,求质量

m 稳态响应的幅值。

3. 建立如下图所示系统的运动微分方程并求稳态响应。

4. 如下图所示等截面悬臂梁,梁长度为L ,弹性模量为E ,横截面对中性轴的惯性矩为I ,梁材料密度为ρ。在梁的a 位置作用有集中载荷)(t F 。已知梁的初始条件为零。求解梁的响应。(假定已知第i 阶固有频率为i ω,相应的模态函数为)(x i φ,∞=~1i )

)(t

2x x m &&11x k

(t P 22x k t A

ωsin 1=

x m && )x -

5. 两个均匀刚性杆如图所示,具有相同长度但不同质量,使用影响系数法求系统运动方程。

6. 如下图所示量自由度系统。(1)求系统固有频率和模态矩阵,并画出各阶主振型图形;(2)当系统存在初始条件⎥

=

2

1

)0(

)0(

x

x

x

和⎥

=

)0(

)0(

2

1

x

x

&

&

时,试采用模态叠加法求解系统响应。

7. 如下图所示等截面梁,长度为l,弹性模量为E,横截面对中性轴的惯性矩为I,梁材料密度为ρ。集中质量m,卷簧刚度1k,直线弹簧刚度2k。写出系统的动能和势能表达式,系统质量阵和刚度阵表达式。

8 物块M质量为m1。滑轮A与滚子B的半径相等,可看作质量

均为m2、半径均为r的匀质圆盘。斜面和弹簧的轴线均与水平

面夹角为,弹簧的刚度系数为k。又m1 g>m2 g sin滚

子B作纯滚动。试用能量法求:(1)系统的微分方程;(2)系

统的振动周期。

y

x

l

c

x

2

k

b

x

1

k

a

x

m

9 在右图示系统中,质量为m 1、半径为R 的匀质圆盘,可沿水平面作纯滚动。质量不计的水平直杆AB 用铰链A 、B 分别与圆盘A 、匀质直杆BC 连接。杆BC 长为L ,质量为m 2,在B 连接一刚度系数为k 的水平弹簧。在图示的系统平衡位置时,弹簧具有原长。试用能量法求:(1)系统的微振动的运动微分方程;(2)系统的微振动周期。

10 在右图示振动系统中,已知:物块的质量为m ,两弹簧的刚度系数分别为k 1、k 2 ,有关尺寸L 、b 已知,不计杆重。试求:

(1) 建立物块自由振动微分方程;

(2)求初始条件0000==x x &、下系统的振动运动方程。

11在右图示振动系统中,已知:二物体的质量分别为1m 和2m ,弹簧的刚度系数分别为1k 、

2k 、3k 、4k 、5k ,物块的运动阻力不计。试

求:(1)采用影响系数法写出系统的动力学方程;(2)假设m m m ==21,k k k ==21,

k k k k 3

1

543===,求出振动系统的固有频率

和相应的振型;(3)假定系统存在初始条件⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡42)0()0(21x x ,⎥⎦

⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡26)0()0(21x x &&,采用模态叠加法求系统响应。

12 在右图示振动系统中,已知:匀质杆AB ,质量m = 3 kg ,长为L = 2m ,弹簧的刚度系数k 1 = 2 N/m ,k 2 = 1 N/m 。设杆AB 铅垂时为系统的平衡位置,杆的线位移,角位移均极微小。在质心C 点作用有一水平力F = sin t 。以质心水平位移x 和转角θ为广义坐标。试求: (1) 系统的动力学方程和固有频率;

(2)问的值等于多少时,才能使系统的强迫振动为转动而无平动?并求该强迫振动方程。

13 在图示振动系统中,已知:重物C的质量m1,匀质

杆AB的质量m2,长为L,匀质轮O的质量m3,弹簧的

刚度系数k。当AB杆处于水平时为系统的静平衡位置。

试采用能量法求系统微振时的固有频率。

14 质量为m1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A连在质量为m2的物块B 上;轮心C与刚度系数为k的水平弹簧相连;不计滑轮A,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。

15 在右图示振动系统中,重物质量为m,外壳质量为2m,每个弹簧的刚度系数均为k。设外壳只能沿铅垂方向运动。采用影响系数方法:(1)以x1和x2为广义坐标,建立系统的微分方程;(2)求系统的固有频率。

16 在右图示振动系统中,物体A、B的质量均为m,弹簧的

刚度系数均为k,刚杆AD的质量忽略不计,杆水平时为系

统的平衡位置。采用影响系数方法,试求:(1)以x1和x2

为广义坐标,求系统作微振动的微分方程;(2)系统的固有

频率方程。

17在右图示振动系统中,已知:物体的质量

m1、m2及弹簧的刚度系数为k1、k2、k3、k4。(1)

采用影响系数方法建立系统的振动微分方程;

(2)若k1= k3=k4= k0,又k2=2 k0,求系统固

有频率;(3)取k0 =1,m1=8/9,m2 =1,系统x

x1 x2

相关文档
最新文档