(精心整理)初三中考复习二次函数最值问题

(精心整理)初三中考复习二次函数最值问题
(精心整理)初三中考复习二次函数最值问题

二次函数之最值问题

基本解题步骤:

1.审题.读懂问题.分析问题各个量之间的关系;

2.列数学表达式.用数学方法表示它们之间的关系.即写出变量与常量之间的二次函数关系式;

3.求值.利用二次函数关系式的顶点坐标公式24,24b ac b a a ??

-- ???

或配方法求得最值;

配方法:将二次函数2y ax bx c =++转化为2()y a x h k =-+的形式.顶点坐标为(),h k .对称轴为x h =.当0a >时.y 有最小值.即当x h =时.=y k 最小值;当0a <时.y 有最大值.即当x h =时.=y k 最大值.

4.检验.检验结果的合理性.(函数求最值需考虑实际问题的自变量的取值范围)

解题策略???→???→???→转化数学检验

解答

实际问题数学问题解问题答案

利润最值问题

例1、一玩具厂去年生产某种玩具.成本为10元/件.出厂价为12元/件.年销售量为2万件.今年计划通过适当增加成本来提高产品的档次.以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍.今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍.则预计今后年销售量将比去年年销售量增加x倍(本题中01

<≤).

x

(1)用含x的代数式表示:今年生产的这种玩具每件的成本为_______元.今年生产的这种玩具每件的出厂价为______元.

(2)求今年这种玩具每件的利润y元与x之间的函数关系式;

(3)设今年这种玩具的年销售利润为w万元.求当x为何值时.今年的年销售利润最大?最大年销售利润是多少万元?

注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.

解:(1)10+7x;12+6x;

(2)y=(12+6x)-(10+7x).

∴y=2-x (0<x≤11);

(3)∵w=2(1+x)?y

=2(1+x)(2-x)

=-2x2+2x+4.

∴w=-2(x-0.5)2+4.5

∵-2<0.0<x≤11.

∴w有最大值.

∴当x=0.5时.w最大=4.5(万元).

答:当x为0.5时.今年的年销售利润最大.最大年销售利润是4.5万元.

例2、新星电子科技公司积极应对2008年世界金融危机.及时调整投资方向.瞄准光伏产业.建成了太阳能光伏电池生产线.由于新产品开发初期成本高.且市场占有率不高等因素的影响.产品投产上市一年来.公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y (万元)与销售时间第x (月)之间的函数关系式(即前x 个月的利润总和y 与x 之间的关系)对应的点都在如下图所示的图象上.该图象从左至右.依次是线段OA 、曲线AB 和曲线BC.其中曲线AB 为抛物线的一部分.点A 为该抛物线的顶点.曲线BC 为另一抛物线252051230y x x =-+-的一部分.且点A.B.C 的横坐标分别为4.10.12.

(1)求该公司累积获得的利润y (万元)与时间第x (月)之间的函数关系式;

(2)直接写出第x 个月所获得S (万元)与时间x (月)之间的函数关系式(不需要写出计算过程); (3)前12个月中.第几个月该公司所获得的利润最多?最多利润是多少万元?

解:(1)设直线OA 的解析式为y=kx. ∵点O (0.0).A (4.-40)在该直线上. ∴-40=4k. 解

得k=-10. ∴y=-10x ;

∵点B 在抛物线y=-5x 2+205x-1230上. 设B (10.m ).则m=320. ∴点B 的坐标为(10.320). ∵点A 为抛物线的顶点.

∴设曲线AB 所在的抛物线的解析式为y=a (x-4)2-40. ∴320=a(10-4)2-40. 解得a=10.

即y=10(x-4)2-40=10x 2-80x+120.

月)

(2)利用第x个月的利润应该是前x个月的利润之和减去前x-1个月的利润之和:

(3)由(2)知当x=1.2.3.4时.s的值均为-10.

当x=5.6.7.8.9时.s=20x-90.

即当x=9时s有最大值90.

而在x=10.11.12时.s=-10x+210.

当x=10时.s有最大值110.

因此第10月公司所获利润最大.它是110万元.

试一试:

1、某水果批发商销售每箱进价为40元的的苹果.物价部门规定每箱售价不得高于55元.市场调查发现.若每箱以50元的价格销售.平均每天销售90箱.价格每提高1元.平均每天少销售3箱.

(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.

(2)求该批发商平均每天销售利润w(元)与销售价x(元/箱)之间的函数关系式.

(3)当每箱苹果的售价为多少元时.可以获得最大利润?最大利润是多少?

解:(1)设y=kx+b.

把已知(45.105).(50.90)代入得.

故平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式为:y=-3x+240;

(2)∵水果批发商销售每箱进价为40元的苹果.销售价x 元/箱.

∴该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式为: W=(x-40)(-3x+240)=-3x 2+360x-9600.

(3)W=-3x 2+360x-9600=-3(x-60)2+1200. ∵a=-3<0.∴抛物线开口向下.

又∵对称轴为x=60.∴当x <60.W 随x 的增大而增大. 由于50≤x≤55.∴当x=55时.W 的最大值为1125元.

∴当每箱苹果的销售价为55元时.可以获得最大利润.为1125元.

2、我市 某镇的一种特产由于运输原因.长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元.可获得利润()2

16041()100

P x =-

-+万元.当地政府拟在“十二·五”规划中加快开发该特产的销售.其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资.在实施规划5年的前两年中.每年都从100万元中拨出50万元用于修建一条公路.两年修成.通车前该特产只能在当地销售;公路通车后的3年中.该特产既在本地销售.也在外地销售.在外地销售的投资收益为:每投入x 万元.可获利润()()2

992941001001601005

Q x x =-

-+-+(万元)

. (1)若不进行开发.求5年所获利润的最大值是多少?

(2)若按规划实施.求5年所获利润(扣除修路后)的最大值是多少? (3)根据(1).(2).该方案是否具有实施价值?

解:(1)∵每投入x 万元.可获得利润

∴当x=60时.所获利润最大.最大值为41万元.

∴若不进行开发.5年所获利润的最大值是:41×5=205(万元);

(2)前两年:0≤x≤50.此时因为P 随x 的增大而增大. 所以x=50时.P 值最大.即这两年的获利最大为

后三年:设每年获利y.设当地投资额为a.则外地投资额为100-a.

∴当a=30时.y 最大且为1065.

∴这三年的获利最大为1065×3=3195(万元).

∴5年所获利润(扣除修路后)的最大值是:80+3195-50×2=3175(万元).

线段和(或三角形周长)最值问题

复习:如图.正方形ABCD 的边长为4.点P 在DC 边上且DP=1.点Q 是AC 上一动点.则DQ+PQ 的最小值为 .

例1、已知二次函数2y x bx c =++的图象过点()3,0A -和点()1,0B .且与y 轴交于点C .D 点在抛物线上且横坐标是2-.

(1)求抛物线的解析式;

(2)抛物线的对称轴上有一动点P.求出PA PD +的最小值.

例2、如图.在平面直角坐标系xOy中.直线

3

2

y x

=-+分别交x轴、y轴于C、A两点.将射线AM绕着点

A顺时针旋转45°得到射线AN.点D为AM上的动点.点B为AN上的动点.点C在∠MAN的内部.(1)求线段AC的长;

(2)当AM∥x轴.且四边形ABCD为梯形时.求△BCD的面积;

(3)求△BCD周长的最小值;

(4)当△BCD的周长取得最小值.且

52

BD=时.△BCD的面积为________.

例3、已知.如图.二次函数()2230y ax ax a a =+-≠图像的顶点为H.与x 轴交于A 、B 两点(B 在A 点右侧).点H.B 关于直线l :3

3y =

+ (1)求A 、B 两点坐标.并证明点A 在直线l 上; (2)求二次函数解析式;

(3)过点B 作直线BK ∥AH 交直线l 于K 点.M 、N 分别为直线AH 和直线l 上的两个动点.连接HN.NM.MK.求HN NM MK ++和的最小值.

试一试:

1、已知抛物线21y ax bx =++经过点()1,3A 和点()2,1B . (1)求此抛物线解析式;

(2)点C 、D 分别是x 轴和y 轴上的动点.求四边形ABCD 周长的最小值;

(3)过点B 作x 轴的垂线.垂足为E 点.点P 从抛物线的顶点出发.先沿抛物线的对称轴到达F 点.再沿FE

到达E 点.若P 点在对称轴上的运动速度是它在直线FE 倍.试确定点F 的位置.使得点P 按照上述要求到达E 点所用的时间最短.(要求:简述确定F 点位置的方法.但不要求证明)

二次函数中字母替换

例1、如图.已知A (a.m )、B (2a.n )是反比例函数)0(>=

k x k y 与一次函数b x y +-=3

4

图像上的两个不同的交点.分别过A 、B 两点作x 轴的垂线.垂足分别为C 、D 。连结OA 、OB.若已知21≤≤a .则求OAB S ?的取值范围。

例2、已知点(1,)A c 和点(3,)B d 是直线1y k x b =+和双曲线()2

20k y k x

=

>的交点 (1)过点A 做AM x ⊥轴.垂足为M ,连接BM ,若AM BM =.求点B 的坐标 (2)若点P 在线段AB 上.过点P 做PE x ⊥轴.垂直为E ,并交双曲线()220k y k x

=>于点N ,当PN

NE 取最大值时.有1

2

PN =

,求此时双曲线的解析式。

作业:

1、(2010眉山市26,12分)如图.Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上.O 为坐标原点.A 、B 两点的坐标分别为()3,0-、()0,4.抛物线2

23

y x bx c =++经过B 点.且顶点在直线52x =上. (1)求抛物线对应的函数关系式;

(2)若△DCE 是由△ABO 沿x 轴向右平移得到的.当四边形ABCD 是菱形时.试判断点C 和点D 是否在该抛物线上.并说明理由;

(3)若M 点是CD 所在直线下方该抛物线上的一个动点.过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t .MN 的长度为l .求l 与t 之间的函数关系式.并求l 取最大值时.点M 的坐标.

_y C

E

D

O

A

N B

M

x

y

解:(1)由题意.可设所求抛物线对应的函数关系式为225

()32

y x m =-+ …(1分) ∴225

4()32m =

?-+ ∴1

6

m =- ……………………………………………………………(3分)

∴所求函数关系式为:22251210

()432633

y x x x =--=-+ …………(4分)

(2)在Rt △ABO 中.OA =3.OB =4.

∴5AB =

∵四边形ABCD 是菱形

∴BC =CD =DA =AB =5 ……………………………………(5分) ∴C 、D 两点的坐标分别是(5.4)、(2.0). …………(6分)

当5x =时.2210

554433y =

?-?+= 当2x =时.2210

224033

y =?-?+=

∴点C 和点D 在所求抛物线上. …………………………(7分) (3)设直线CD 对应的函数关系式为y kx b =+.则

54

20k b k b +=??

+=?

解得:48,33k b ==-.

∴48

33

y x =- ………(9分) ∵MN ∥y 轴.M 点的横坐标为t . ∴N 点的横坐标也为t .

则2210433

M y t t =-+. 48

33N y t =-.……………………(10分)

∴22248210214202734()3333333322N M l y y t t t t t t ??

=-=---+=-+-

=--+ ???

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

初三数学二次函数的最值问题一(线段和周长最值)

二次函数的最值问题(一) 【课题】二次函数的最值问题 _____ 分校______年级讲师:_____ 授课时间:____年____月___日 【学习目标】 1、二次函数多与线段长度最值,多边形的周长,面积最值结合综合考查 2、掌握分类讨论思想,数形结合思想在二次函数中的应用 3、学生应具备基本的计算能力,待定系数法求解析式的步骤,利用参数发表示长度或面积的表达式。 【知识回顾】 1、表示图形面积的方法:直接代公式,分割法、补全法等。 2、常用到的公式:两点坐标距离公式,中点坐标公式。 3、线段最短问题涉及到的知识点是做对称 【新知点击】 考点一最大(小)值何处取得: (1)二次函数的一般式 c bx ax y ++=2(0≠a ) 化成顶点式 a b ac a b x a y 44)2(2 2-++=, 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当 a b x 2-=,a b ac y 442-=最小值; 当0

二次函数最值问题(含答案)

二次函数最值问题 一.选择题(共8小题) 1.如果多项式P=a2+4a+2014,则P的最小值是() A.2010 B.2011 C.2012 D.2013 2.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.6 3.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有() A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3 4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在 5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为() A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3 7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为() A.B.2 C.D. 8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()

A.7 B.7.5 C.8 D.9 二.填空题(共2小题) 9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是. 10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上, =6.当线段OM最长时,点M的坐标为. 点M在x轴负半轴上,S △ABM 三.解答题(共3小题) 11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1), ①当点F的坐标为(1,1)时,如图,求点P的坐标; ②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

(完整版)二次函数的最值问题

典型中考题(有关二次函数的最值) 屠园实验周前猛 一、选择题 1.已知二次函数y=a(x-1)2+b有最小值–1,则a与b之间的大小关( ) A. ab D不能确定 答案:C 2.当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,则实数m的值为() A、- 7 4 B、3或-3 C、2或-3D2或-3或- 7 4 答案:C ∵当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,∴二次函数在-2≤x≤l上可能的取值是x=-2或x=1或x=m. 当x=-2时,由y=-(x-m)2+m2+1解得m= - 7 4 , 2 765 y x 416 ?? =-++ ? ?? 此时,它 在-2≤x≤l的最大值是65 16 ,与题意不符. 当x=1时,由y=-(x-m)2+m2+1解得m=2 ,此时y=-(x-2)2+5 ,它在-2≤x≤l的最大值是4,与题意相符. 当x= m时,由4=-(x-m)2+m2+1解得m=3m=3y=-(x+3)2+4.它在-2≤x≤l的最大值是4,与题意相符;当3,y=-(x-3)2+4它在-2≤x≤l在x=1处取得,最大值小于4,与题意不符. 综上所述,实数m的值为2或-3. 故选C. 3.已知0≤x≤1 2 ,那么函数y=-2x2+8x-6的最大值是() A -10.5 B.2 C . -2.5 D. -6 答案:C

解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而 增大.又∵0≤x≤1 2 ,∴当x= 1 2 时,y取最大值,y最大=-2( 1 2 -2)2+2=-2.5.故选:C. 4、已知关于x的函数. 下列结论: ①存在函数,其图像经过(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当时,不是y随x的增大而增大就是y随x的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 真确的个数是() A,1个B、2个 C 3个D、4个 答案:B 分析:①将(1,0)点代入函数,解出k的值即可作出判断; ②首先考虑,函数为一次函数的情况,从而可判断为假; ③根据二次函数的增减性,即可作出判断; ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求 出顶点的纵坐标表达式,即可作出判断. 解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0, 解得:k=0.运用方程思想; ②假,反例:k=0时,只有两个交点.运用举反例的方法; ③假,如k=1, b5 -= 2a4 ,当x>1时,先减后增;运用举反例的方法; ④真,当k=0时,函数无最大、最小值; k≠0时,y最= 22 4ac-b24k+1 =- 4a8k , ∴当k>0时,有最小值,最小值为负; 当k<0时,有最大值,最大值为正.运用分类讨论思想. 二、填空题: 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一

若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值. 讲义参考答案

初三二次函数最值问题和给定范围最值(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. 二次函数中的最值问题重难点复习 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数2y ax bx c =++用配方法可化成:2 ()y a x h k =-+的形式 ()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是h x =. a b ac a b x a c bx ax y 44222 2-+??? ? ?+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. 二次函数常用来解决最值问题,这类问题实际上就是求函数的最大(小)值。一般而言,最大(小)值会在顶点处取得,达到最大(小)值时的x 即为顶点横坐标值,最大(小)值也就是顶点纵坐标值。 自变量x 取任意实数时的最值情况 (1)当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值; (2)当0a <时,函数在2b x a =-处取得最大值244ac b a -,无最小值. (3)二次函数最大值或最小值的求法. 第一步:确定a 的符号,0a >有最小值,0a <有最大值; 第二步:配方求顶点,顶点的纵坐标即为对应的最大值或最小值. 2.自变量x 在某一范围内的最值. 如:2y ax bx c =++在m x n ≤≤(其中m n <)的最值. 第一步:先通过配方,求出函数图象的对称轴:02b x x a ==- ; 第二步:讨论: [1]若0a >时求最小值(或0a <时求最大值),需分三种情况讨论:(以0a >时求最小值为例) ①对称轴小于m 即0x m <,即对称轴在m x n ≤≤的左侧,在x m =处取最小值2min y am bm c =++; ②对称轴0m x n ≤≤,即对称轴在m x n ≤≤的内部,在0x x =处取最小值2min 00y ax bx c =++; ③对称轴大于n 即0x n >,即对称轴在m x n ≤≤的右侧,在x n =处取最小值2min y an bn c =++. [2] 若0a >时求最大值(或0a <时求最小值),需分两种情况讨论:(以0a >时求最小值为例) ①对称轴02m n x +≤ ,即对称轴在m x n ≤≤的中点的左侧,在x n =处取最大值2max y an bn c =++; ②对称轴02 m n x +>,即对称轴在m x n ≤≤的中点的右侧,在x m =处取最大值2max y am bm c =++ 小结:对二次函数的区间最值结合函数图象总结如下:

初中数学二次函数的最值问题专题复习

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值2 44ac b a -,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 【例1】当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值.

中考数学题型专项训练:二次函数与最值问题(含答案)

二次函数与最值问题 1.如图,二次函数y=-x2+2(m-2)x+3的图象与x、y轴交于 A、B、C三点,其中A(3,0),抛物线的顶点为D. (Ⅰ)求m的值及顶点D的坐标; (Ⅱ)当a≤x≤b时,函数y的最小值为7 4 ,最大值为4,求a,b应 满足的条件; (Ⅲ)在y轴右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由. 解:(Ⅰ)把A(3,0)代入y=-x2+2(m-2)x+3, 得-9+6(m-2)+3=0, 解得m=3, 则二次函数为y=-x2+2x+3,

∵y=-x2+2x+3=-(x-1)2+4, ∴顶点D的坐标为(1,4); (Ⅱ)把y=7 4 代入y=-x2+2x+3中, 得7 4 =-x2+2x+3, 解得x1=-1 2,x2= 2 5 , 又∵函数y的最大值为4,顶点D的坐标为(1,4), 结合图象知-1 2 ≤a≤1. 当a=-1 2时,1≤b≤ 2 5 , 当-1 2<a≤1时,b= 2 5 ; (Ⅲ)存在点P,使得△PDC是等腰三角形, 当x=0时,y=3,

∴点C坐标为(0,3). 当△PDC是等腰三角形时,分三种情况: ①如解图①,当DC=DP时, 由抛物线的对称性知:点P与点C关于抛物线的对称轴x=1对称, ∴点P坐标为(2,3); ②如解图②,当PC=PD时,则线段CD的垂直平分线l与抛物线的交点即为所求的点P, 过点D作x轴的平行线交y轴于点H, 过点P作PM⊥y轴于点M,PN⊥DH的延长线于点N, ∵HD=HC=1,PC=PD, ∴HP是线段CD的垂直平分线. ∵HD=HC,HP⊥CD, ∴HP平分∠MHN,

二次函数的最值问题总结

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时, 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 二次函数求最值(一般范围类) 例1.当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 例2.当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 例3.当0x ≥时,求函数(2)y x x =--的取值范围.

解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值. 所以,当0x ≥时,函数的取值范围是1y ≥-. 例4.当1t x t ≤≤+时,求函数21522 y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522 y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t = --; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+?≤≤时: 当1x =时,2min 1511322 y = ?--=-; (3) 当对称轴在所给范围右侧.即110t t +? 在实际生活中,我们也会遇到一些与二次函数有关的问题: 二次函数求最值(经济类问题) 例1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.

二次函数中线段和、差最值问题

2、如图,△ ABC 的三个顶点坐标分别为 A (-2,0)、B (6, 0)、C (0, -2 3 ),抛物线 y=ax 2+bx+c (a ^0)经过A 、B 、C 三点。(1)求直线AC 的解析式;(2)求抛物线的解析式; (3)若抛 物线的顶点为D,在直线AC 上是否存一点P ,使得△ BDP 的周长最小,若存在,求出 P 点的 坐标;若不存在,请说明理由。 线交于u A 、 1 x 1与y 轴交于点A ,与x 轴交于点D ,抛物线 1 x 2 bx c 与直 轴交于B 、 C 两点,且B 点坐标为(1, 0)。⑴求该抛物线的解析式; 动,当△ PAE 是直角三角形时,求点P 的坐标P 。⑶在抛物线的对称轴上 AM - MC|的值最大,求出点M 的坐标。 4、如图8,对称轴为直线x=2的抛物线经过点A (-1 , 0), C ( 0, 5)两点,与x 轴另一交点为B ,已知M ( 0, 1), E (a , 0), F (a+1, 0),点P 是第一象限内的抛物线上的动点.(1) 求此抛物线的解析式.(2)当a=1时,求四边形MEFP 5积的 点的等腰三角形,求a 为何值时,四边形 二次函数中线段和、差最值问题 姓名: __________________ 1、如图,已知抛物线y=ax 2+bx+3与x 轴交于A 、B 两点,过点A 的直线I 与抛物线交于点 C ,其中A 点的坐标是(1, 0),C 点坐标是(4, 3). (1)求抛物线的解析式;(2)在(1) 中抛物线的对称轴上是否存在点 D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不 存在,请说明理由;并求出周长的最小值;(3)若点E 是(1)中抛物线上的一个动点,且位 于直线AC 的下方,试求△ ACE 的最大面积及E 点的坐标. y 3、、如图,已知直线 y ⑵动点 x 轴 找一点M , E 两点, 最大值,并求此时点P 的坐标.

中考二次函数面积最值问题(含答案)

二次函数最值问题 例1、小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这 条边上的高之和为40 cm ,这个三角形的面积S(单位:cm 2)随x(单位:cm)的变化而变化. (1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,这个三角形面积S 最大?最大面积是多少?21世纪教育网 解:(1)x 02x 21 2+-=S (2)∵a=21 -<0 ∴S 有最大值 ∴022120 2a 2b x =-?-=-=) ( ∴ S 的最大值为2002002202 1 2=?+?-=S ∴当x 为20cm 时,三角形面积最大,最大面积是200cm 2。 2.如图,矩形ABCD 的两边长AB =18cm ,AD =4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2). (1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值. 解:(1)∵S △PBQ =2 1 PB ·BQ, PB=AB -AP=18-2x ,BQ=x , ∴y=2 1 (18-2x )x ,即y=-x 2+9x (0

二次函数的最大值和最小值问题

二次函数的最大值和最小值问题

————————————————————————————————作者: ————————————————————————————————日期:

二次函数的最大值和最小值问题 高一数学组主讲人---------蒋建平 本节课的教学目标: 重点:掌握闭区间上的二次函数的最值问题 难点:理解并会处理含参数的二次函数的最值问题 核心: 区间与对称轴的相对位置 思想: 数形结合、分类讨论 一、复习引入 1、二次函数相关的知识点回顾。 (1)二次函数的顶点式: (2)二次函数的对称轴: (3)二次函数的顶点坐标: 2、函数的最大值和最小值的概念 设函数)(x f 在0x 处的函数值是)(0x f ,如果不等式)()(0x f x f ≥对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0min x f y = 如果不等式)()(0x f x f ≤对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0max x f y = 二、新课讲解:二次函数最大值最小值问题探究 类型一:无限制条件的最大值与最小值问题 例1、(1)求二次函数322 ++-=x x y 的最大值 . (2)求二次函数x x y 422-=的最小值 . 本题小结:求无条件限制时二次函数最值的步骤 1、配方,求二次函数的顶点坐标。 2、根据二次函数的开口方向确定是函数的最大值还是最小值。 3、求出最值。

类型二:轴定区间定的最大值与最小值问题 例2、(1)求函数])1,3[(,232-∈-+=x x x y 的最大值 ,最小值 . (2)求函数])3,1[(232∈-+=x x x y 的最大值 ,最小值 . (3)求函数])2,5[(232 --∈-+=x x x y 的最大值 与最小值 . 本题小结:求轴定区间定时二次函数最值的步骤 1、配方,求二次函数的顶点坐标或求对称轴,画简图。 2、判断顶点的横坐标(对称轴)是否在闭区间内。 3、计算闭区间端点的值,并比较大小。 类型三:轴动区间定的最大值与最小值问题 例3、求函数)(32R a ax x y ∈++=在]1,1[-上的最大值。

中考数学-二次函数的最值问题

中考数学 二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值244ac b a -,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 【例1】当22x -≤≤时,求函数223y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时, max 5y =.

【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时, max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值. 所以,当0x ≥时,函数的取值范围是1y ≥-. 【例4】当1t x t ≤≤+时,求函数21522 y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要

初三中考复习二次函数最值问题

二次函数之最值问题 基本解题步骤: 1.审题.读懂问题. 分析问题各个量之间的关系; 2.列数学表达式.用数学方法表示它们之间的关系. 即写出变量与常量之间的二次函数关系式; 3.求值.利用二次函数关系式的顶点坐标公式 b , 4a c b2或配方法求得最值; 2a4a 配方法:将二次函数 2 bx c 转化为 y a( x 2 h, k . 对称轴为y ax h ) k 的形式 . 顶点坐标为 x h .当 a 0 时 . y有最小值 . 即当 x h 时 . y最小值 =k;当 a0 时 . y有最大值 . 即当 x h 时 . y最大值 =k .4.检验.检验结果的合理性.(函数求最值需考虑实际问题的自变量的取值范围) 解题策略实际问题转化数学问题数学解检验问题答案 解答 利润最值问题:此类问题一般先是运用“总利润 =总售价 - 总成本”或 “总利润 =每件商品的利润销售数量”建立利润与价格之间的函数关系式. 再例 1 求出这个函数关系式的顶点坐标. 顶点的纵坐标即为最大利润.特殊地 . 这里要例 2 考虑实际问题中自变量的取值范围. 数形结合求最值. 线段和或差(或三角形周长)最值问题:此类问题一般是利用轴对称的性质和关两点之间线段最短确定最短距离. 这个距离一般用勾股定理或两点之间距离公 键式求解.特殊地 . 也可以利用平移和轴对称的知识求解固定线段长问题. 在 最短距离和找法:以动点所在的直线为对称轴. 作一个已知点的对称点. 连结另例 3如 何 一个已知点和对称点的线段. 与对称轴交于一点. 这一点即为所求点.线段长即例 4将 实为最短距离和.例 5际 问口诀:“大”同“小”异求最值. 题 “大”同:求差的最大值 . 把点移动到直线的同侧. 转 化 “小”异:求和的最小值 . 把点移动到直线的两侧.(几何最值较多) 为 数线段长最值问题:根据两点间距离公式x1 x2把线段长用二次函数关系式表示 学 出来求最值.例 6问 题 几何面积最值问题:此类问题一般是先运用三角形相似. 对应线段成比例等性质例 7 或者用“割补法”或者利用平行线得到三角形同底等高进行面积转化写出图形例 8 的面积 y 与边长 x 之间的二次函数关系. 其顶点的纵坐标即为面积最值. 动点产生的最值问题:数形结合求解. 把路程和转化成时间和. 当三点共线时有例 9 最值.例 10

2021年九年级数学中考复习专题之二次函数考察:最值问题综合(三)

2021年九年级数学中考复习专题之二次函数考察: 最值问题综合(三) 1.已知二次函数y =ax 2+2x +c (a ≠0)的图象与x 轴的交于A 、B (1,0)两点,与y 轴交于点C (0,﹣3), (1)求二次函数的表达式及A 点坐标; (2)D 是二次函数图象上位于第三象限内的点,求点D 到直线AC 的距离取得最大值时点 D 的坐标; (3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N ,使以M 、N 、B 、 O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程). 2.如图,已知抛物线y =a (x +2)(x ﹣4)(a 为常数,且a >0)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线y =﹣x +与抛物线的另一交点 为D ,且点D 的横坐标为﹣5. (1)求抛物线的函数表达式; (2)该二次函数图象上有一点P (x ,y )使得S △BCD =S △ABP ,求点P 的坐标; (3)设F 为线段BD 上一点(不含端点),连接AF ,求2AF +DF 的最小值.

3.如图,在平面直角坐标系xOy中,二次函数y=﹣x2+bx+c的图象经过点A(4,0),C(0,2). (1)求抛物线的表达式; (2)如图1,点E是第一象限的抛物线上的一个动点.当△ACE面积最大时,请求出点E 的坐标; (3)如图2,在抛物线上是否存在一点P,使∠CAP=45°?若存在,求点P的坐标;若不存在,请说明理由. 4.已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,3).顶点为点D. (1)求抛物线的解析式; (2)若过点C的直线交线段AB于点E,且S △ACE :S △CEB =3:5,求直线CE的解析式; (3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标; (4)已知点H(0,),G(2,0),在抛物线对称轴上找一点F,使HF+AF的值最小.此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.

如何求解二次函数中的面积最值问题(教师版)

如何求解二次函数中的面积最值问题(教师版) 从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考. 如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由; (3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由. 解答(1)抛物线解析式为 y=-x2-2x+3; (2)Q(-1,2); 下面着重探讨求第(3)小题中面积最大值的几种方法. 一、补形、割形法 几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形.方法一 如图3,设P点(x,-x2-2x+3)(-3

方法二 如图4,设P 点(x ,-x 2-2x +3)(-3

2020二次函数的最值问题(典型中考题)(含答案)

2020二次函数的最值问题(典型中考题)(含答案) 一、选择题 1.已知二次函数y=a(x-1)2+b有最小值–1,则a与b之间的大小关( ) A. ab D不能确定 答案:C 2.当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,则实数m的值为() A、- 7 4 B、3或-3 C、2或-3D2或-3或- 7 4 答案:C ∵当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,∴二次函数在-2≤x≤l上可能的取值是x=-2或x=1或x=m. 当x=-2时,由 y=-(x-m)2+m2+1解得m= - 7 4 , 2 765 y x 416 ?? =-++ ? ?? 此时 , 它在-2≤x≤l的最大值是65 16 ,与题意不符. 当x=1时,由y=-(x-m)2+m2+1 解得m=2 ,此时y=-(x-2)2+5 ,它在-2≤x≤l的最大值是4,与题意相符. 当x= m时,由 4=-(x-m)2+m2+1解得 m=3m=-3y=-(x+3)2+4 .它在-2≤x≤l的最大值是4,与题意相符;当3 ,y=-(x-3)2+4它在-2≤x≤l在x=1处取得,最大值小于4,与题意不符. 综上所述,实数m的值为2或-3 . 故选C. 3.已知0≤x≤1 2 ,那么函数y=-2x2+8x-6的最大值是() A -10.5 B.2 C . -2.5 D. -6 答案:C 解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大

而增大.又∵0≤x≤1 2 ,∴当x= 1 2 时,y取最大值,y最大=-2( 1 2 -2)2+2=-2.5.故选:C. 4、已知关于x的函数. 下列结论: ①存在函数,其图像经过(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当时,不是y随x的增大而增大就是y随x的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 真确的个数是() A,1个B、2个 C 3个D、4个 答案:B 分析:①将(1,0)点代入函数,解出k的值即可作出判断; ②首先考虑,函数为一次函数的情况,从而可判断为假; ③根据二次函数的增减性,即可作出判断; ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求 出顶点的纵坐标表达式,即可作出判断. 解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0, 解得:k=0.运用方程思想; ②假,反例:k=0时,只有两个交点.运用举反例的方法; ③假,如k=1, b5 -= 2a4 ,当x>1时,先减后增;运用举反例的方法; ④真,当k=0时,函数无最大、最小值; k≠0时,y最= 22 4ac-b24k+1 =- 4a8k , ∴当k>0时,有最小值,最小值为负; 当k<0时,有最大值,最大值为正.运用分类讨论思想. 二、填空题: 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

(完整版)有关二次函数的利润最值问题

有关二次函数的利润最值问题 1.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元. ①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元? ②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元. 2.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件. (1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润. 3.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)设每月的销售利润为W,请直接写出W与x的函数关系式; (3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?

4.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20. (1)试确定函数关系式y=a(x﹣h)2+k; (2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润; (3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元? 5.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元. (1)求y与x的函数关系式,并直接写出自变量x的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

九年级二次函数的最值问题 二(面积最值)

二次函数的最值问题(二) 【课题】二次函数的最值问题【课型】1对1 _____ 分校______年级讲师:_____ 授课时间:____年____月___日 【学习目标】 1、二次函数多与线段长度最值,多边形的周长,面积最值结合综合考查 2、掌握分类讨论思想,数形结合思想在二次函数中的应用 3、学生应具备基本的计算能力,待定系数法求解析式的步骤,利用参数发表示长度或面积的表达式。 【知识回顾】 1、表示图形面积的方法:直接代公式,分割法、补全法等。 2、常用到的公式:两点坐标距离公式,中点坐标公式。 3、线段最短问题涉及到的知识点是做对称 【新知点击】 考点1.三角形面积问题 【典型例题1】如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.

【对点演练1】已知:抛物线()2 0y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,. (1)求这条抛物线的函数表达式. (2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由. 考点 2.四边形面积问题 【典型例题2】如图抛物线y=(x+1)2+k 与x 轴交于A 、B 两点,与y 轴交于点C (0,-3) (1)求抛物线的对称轴及k 的值; (2)抛物线的对称轴上存在一点P ,使得PA+PC 的值最小,求此时点P 的坐标; (3)点M 是抛物线上的一动点,且在第三象限.当M 点运动到何处时,四边形AMCB 的面积最大?求出四边形AMCB 的最大面积及此时点M 的坐标. A C x y B O

相关文档
最新文档