三相异步电动机Y-△降压启动控制

三相异步电动机Y-△降压启动控制
三相异步电动机Y-△降压启动控制

控制系统综合应用实训报告书

专业:电气工程及其自动化

班级:电气3班

姓名:

学号: 201104170125

指导教师:李杨清张立明李祥德

自动控制与机械工程学院

2014年12月

第一部分电气线路安装调试技能训练

技能训练题目一: 三相异步电动机Y-△降压启动控制

一.课题分析

星—三角降压启动时常用的方法之一。凡是正常运行时三相定子绕组为三角形联结的三相笼型异步电动机,都可采用星—三角降压启动。启动时,先将定子绕组按星型联结,接入

/1,因此能减少启动三相交流电源。此时,由于电动机每相绕组电压只为正常工作电压的3

电流,待电动机转速接近额定转速时,再将电动机定子绕组改成三角形联结,各相绕组承受额定工作电压,电动机进入正常运转。这种启动方法简便、经济,不仅适用于轻载启动,也适用于重负载下的启动。

在该电路中,电动机起动过程的星---三角转换是靠时间继电器自动完成的。合上三相电源开关QA,按下起动按钮SB2,KM1、KT、KM3线圈同时通电并自锁,KM1主触点闭合,接通电动机三相电源,KM3的主触点闭合,将电动机的尾端连接,电动机接成星形连接,开始减压起动。时间继电器KT延时时间设定为电动机起动过程时间(一般为6~8s),当电动机转速接近额定转速时,时间继电器整定时间到,KT动作,其对应的常闭触点断开,常开触点闭合,前者使KM3线圈断电释放,KM3的辅助常闭触点闭合,为KM2的线圈通电做好准备,后者使KM2线圈通电吸合,电动机由星形联结改成三角形联结,进入正常运行。而KM2常闭触点断开,,使时间继电器KT在电动机星形联结/三角形联结起动完成后断电,电路中实现了KM2与KM3的电气互锁。

二.实训电气原理图

如图1.1.1为三相异步电动机Y-△降压启动控制的原理图:

其工作原理如下:

当QF闭合,主电路及控制电路均接通。按下SB2,电流由FU4进入,分两路:一路经FR、SB1、KM1线圈,从FU5流出,当KM1线圈得电时,常开触点闭合,电路自保持,另一路经FR、SB1、KM1、KM2、KT线圈或KM3线圈,从FU5流出。KM3线圈得电后,其常开触点闭合。此时,电路处于星型联结,降压启动状态中。KT延时时间到,KT延时断开常闭触点断开,KM3线圈失电,主电路KM3断开。KT延迟闭合触点闭合,电路由FU4流出,经FR、SB1、KM1、KT、KM3、KM2线圈,从FU5流出。当KM2得电,其常开触点闭合,电动就进入三角形稳定运行状态。

为了保护电动机及其附属原件,在主电路及控制电路都设有保护原件。

熔断器:当电路正常工作时,流过熔断器的电流小于或者等于它的额定电流,由于其熔体发热温度尚未达到熔体的熔点,所以不会熔断,电路接通。当流过熔断器的电流达到额定电流的1.3~2倍时,熔体缓慢熔断;当电流达到额定电流的8~10倍时,熔体迅速熔断,切断电路,从而达到对电路进行过电流保护的作用。熔体熔断后,熔断器必须更换。

热继电器:电路正常工作时,热继电器内热原件产生的热量仅能使双金属片产生较小弯曲,而不能移动。当过载时,流过热原件的电流增大,使双金属片产生较大弯曲推动导板使继电器触电动作,断开电路,从而达到对电路进行过载保护的作用。热继电器动作后,经过一段时间的冷却,主双金属片恢复原状,导板也退回原处,可重复使用。

如图1.1.1 三相异步电动机Y-△降压启动控制原理图三.设计电气安装接线图

图1.1.2 本人完成的安装线路实物图

如图1.1.3为三相笼型异步电动机可星—三角降压启动电路电气安装接线图。三相交流电源通过L1、L2、L3三个点接入,经过主电路及控制电路,由U、V、W分别接入电动机的三相绕组的一端,考虑到电动机需要在两种运行方式(星型和三角形)之间切换,所以电动机三相绕组的另一端需接入星—三角切换开关。按钮盒中SB2为启动按钮,SB1常闭用作停止按钮,因控制电路可自动进行星—三角运行方式的切换故不需要设置运行方式的切换按钮。

图1.1.3 星——三角降压启动控制电气安装接线图

四.设备清单

1熔断器5个(FU1、FU2、FU3、FU4、FU5):用于对电路进行过流保护;

2交流接触器(KM1、KM2、KM3):控制其触点的通断,从而控制电路通断;

3低压断路器1个(QF):作为总开关,用于控制电路的接通与断开;

4热继电器1个(FR):用于对电路进行过载保护;

5时间继电器1个(KT):用于在启动时控制星—三角切换的时间:

6按钮盒1个(SB1、SB2):启动和停止的开关信号;

7导线若干:连接电路;

8接线槽1个:用于接电源线,电机线,以及按钮盒。

五.故障现象及故障分析

1故障现象

(1)按下启动按钮电机无法启动,交流接触器无动作;

(2)按下启动按钮,交流接触器KM1动作,但是电机不运行,其他接触器无动作;(3)按下启动按钮,电机实现星——三角启动,但启动后电机噪声较大,运行不稳定。

2 故障分析

(1)熔断器断开;

(2)接触器触点被严重氧化,无法接通;

(3)接线出现接错相,无法构成三角形连接。

技能训练题目二: 三相异步电动机的可逆控制

一.课题分析

接触器控制的三相异步电动机可逆双重连锁控制电路的实质上是两个方向相反的单向运行电路的组合。反转电路只需要将电动机三相当中的任意两相接线方法对调,其他保持不变,就可实现电动机的反转。为了避免正反向同时工作引起电源相间短路,必须在这两个运行电路中加设互锁装置,保证同时只能有一个电路工作。按照电动机正反转操作顺序的不同,分“正—停——反”和“正—反—停”两种控制电路。

而实际运用中则要求直接实现从正转到反转转换的控制(即“正—反—停”控制电路),因为此控制方法电路简单,易于实现,成本较低廉。通常来说,使用此种控制方式要求电机功率相对比较小,且负荷较低,能够迅速实现电动机的反转,否则电动机可能会因为过热而损坏。

在本课题设计的控制电路中,采用复合按钮来控制电动机的正、反转。正转启动按钮SB2的常开触点串接于正转接触器KM1的线圈回路,用于接通KM1的线圈,而SB2的常闭触点则串接于反转接触器KM2线圈回路中,工作时首先断开KM2的线圈,以保证KM2不得电,同时KM1得电。反转启动按钮SB3的接法与SB2类似,常开触点串接于KM2的线圈回路,常闭触点串接于KM1的线圈回路中,从而保证按下SB3使KM1不得电,KM2能可靠得电,实现电动机的反转。

根据设计的要求以及电气的一些基本常识,为防止两个接触器同时得电而导致电源短路,需采用双重互锁来保证其不短路,即利用两个接触器的常闭触点KM1、KM2分别串接在对方的工作线圈电路中,构成相互制约的关系,称为联锁,实现联锁作用的常闭辅助触点称为联锁触点。由复合按钮SB2、SB3常闭触点实现的互锁称为机械互锁。

二.实训电气原理图

其电气原理图如图1.2.1所示,本电路中采用了两个接触器KM1和KM2,分别进行正转和反转的控制。为了避免接触器KM1、KM2同时得电吸合造成三相电源短路,在KM1线圈支路中串接有KM2辅助常闭触头,保证了线路工作时KM1、KM2不会同时得电,电路能够可靠工作。采用了复合按钮SB2为正转按钮,复合按钮SB3为反转按钮,停止按钮SB1。采用按钮SB2与SB3组成机械互锁环节,以求线路能够方便操作。

图1.2.1 三相异步电动机的可逆控制电气原理图

三.设计电气安装接线图

电气安装图如图1.2.2为三相异步电动机可逆双重连锁控制电路电气安装接线图。三相交流电源通过L1、L2、L3三个点接入,经过主电路及控制电路,由U、V、W分别接入电动机的三相。按钮盒SB2为电动机正转按钮,SB3为反转按钮,SB1时电动机停止按钮。

连接后的实物图如图1.2.3所示。

图1.2.2 三相异步电动机的可逆控制的电气安装图如

图1.2.3 本人完成的安装线路实物图

四.设备清单

1 低压断路器1个(QF):作为总开关,用于控制电路的接通与断开;

2熔断器5个(FU1、FU2、FU3、FU4、FU5):用于对电路进行过流保护;

3交流接触器(KM1、KM2):控制其触点的通断,从而控制电路通断;

4热继电器1个(FR):用于对电路进行过载保护;

5按钮盒1个(SB1、SB2、SB3):电动机正转、反转和停止的开关信号;

6导线若干:连接电路;

7接线槽1个:用于接电源线,电机线,以及按钮盒。

五.故障现象及故障分析

1故障现象

(1)通电后,熔丝烧断或断路器断开缺一相电源

(2)电动机无任何反应控制电路接线有错误

2 故障分析

(1) 运用万用表逐一检查电源回路中是否有一相断线。电源线路短路或接地,查出故障予

以排除。定子绕组接地或相间短路,查出短路和接地点,予以修复。熔丝截面过小,按要求更换正确熔丝。

(2)查出错误,改正接线。电源未通路,检查电源回路开关、熔丝、接线盒处是否有断点,予以修复。

技能训练题目三:三相鼠笼式异步电动机的直接起动、点动控制

一.课题分析

三相鼠笼式电动机的转动原理是,在通电的情况下在电动机的内部产生一种磁场,而电动机的转子要切割磁感线而产生运动,从而把电能转化为机械能。去掉KM辅助触点,可以除去自锁功能,实现电机的点动

二.实训电气原理图

图1.3.1是异步电动机直接启动的控制电路图

图1.3.1 异步电动机直接启动的控制电路图

三.设计电气安装接线图

图1.3.2 完成的安装线路实物图

四.设备清单

1 低压断路器1个(QF):作为总开关,用于控制电路的接通与断开;

2熔断器5个(FU1、FU2、FU3、FU4、FU5):用于对电路进行过流保护;

3交流接触器(KM1、KM2):控制其触点的通断,从而控制电路通断;

4热继电器1个(FR):用于对电路进行过载保护;

5按钮盒1个(SB1、SB2、SB3):电动机正转、反转和停止的开关信号;

6导线若干:连接电路;

7接线槽1个:用于接电源线,电机线,以及按钮盒。

五.故障现象及故障分析

1故障现象

(1)通电后,熔丝烧断或断路器断开缺一相电源

(2)电动机无任何反应控制电路接线有错误

2 故障分析

(1) 运用万用表逐一检查电源回路中是否有一相断线。电源线路短路或接地,查出故障予

以排除。定子绕组接地或相间短路,查出短路和接地点,予以修复。熔丝截面过小,按要求更换正确熔丝。

(2)查出错误,改正接线。电源未通路,检查电源回路开关、熔丝、接线盒处是否有断点,予以修复。

电气线路安装调试技能训练小结

一电气原理图的绘制要求

(1) 为了区别主电路与控制电路,在绘线路图时主电路(电机、电器及连接线等),用粗线表示,而控制电路(电器及连接线等)用细线表示。通常习惯将主电路放在线路图的左边(或上部),而将控制电路放在右边(或下部)。

(2) 动力电路、控制电路和信号电路应分别绘出:动力电路——电源电路绘水平线;受电的动力设备(如电动机等)及其它保护电器支路,应垂直电源电路画出。控制和信号电路——应垂直地绘于两条水平电源线之间,耗能元件(如线圈、电磁铁,信号灯等)应直接连接在接地或下方的水平电源线上,控制触头连接在上方水平线与耗能元件之间。

(3) 在原理图中各个电器并不按照它实际的布置情况绘在线路上,而是采用同一电器的各部件分别绘在它们完成作用的地方。

(4) 为区别控制线路中各电器的类型和作用,每个电器及它们的部件用一定的图形符号表示,且给每个电器有一个文字符号,属于同一个电器的各个部件(如接触器的线圈和触头)都用同一个文字符号表示。而作用相同的电器都用一定的数字序号表示。

(5) 因为各个电器在不同的工作阶段分别作不同的动作,触点时闭时开,而在原理图内只能表示一种情况,因此,规定所有电器的触点均表示正常位置,即各种电器在线圈没有通电或机械尚未动作时的位置。如对于接触器和电磁式继电器为电磁铁未吸合的位置,对于行程开关、按钮等则为未压合的位置。

(6) 为了查线方便。在原理图中两条以上导线的电气连接处要打一个圆点,且每个接点要标一个编号,编号的原则是:靠近左边电源线的用单数标注,靠近右边电源线的用双数标注,通常都是以电器的线圈或电阻作为单、双数的分界线,故电器的线圈或电阻应尽量放在各行的—边(左边或右边)。

(7) 对具有循环运动的机构,应给出工作循环图,万能转换开关和行程开关应绘出动作程序和动作位置。

(8) 原理图应标出下列数据或说明:

1)各电源电路的电压值,极性或频率及相数。

2)某些元器件的特性(如电阻,电容器的参数值等);

3)不常用的电器(如位置传感器,手动触头,电磁阀门或气动阀,定时器等)的操作方法和功能。

二电气接线图的绘制要求

(1)电源开关、熔断器、交流接触器、热继电器、时间继电器等画在配电板内部,电动机、按钮画在配电板外部。

(2)安装在配电板上的元件布置应根据配线合理,操作方便,确保电气间隙不能太小,重的元件放在下部,发热元件放在上部等原则进行,元件所占面积安实际尺寸以统一比例绘制。(3)安装接线图中各电气元件的图形符号和文字符号,应和原理图完全一致,并符合国家标准。

(4)各电气元件上凡是需要接线的部件端子都应绘出并予以编号,各接线端子的编号必须与原理图中的导线编号一致。

(5)电气配电板内电气元件之间的连线可以互相对接,配电板内接至板外的连线通过接线端子进行,配电板上有几个接至外电路的引线,端子板上就因有几个线的接点。

(6)因配电线路连线太多,因而规定走向相同的乡邻导线可以绘成一根线。

三电器安装、接线的工艺要求

(1)按图正确接线。电气连接接线牢固、良好,配线应成排成束地垂直或水平有规律地敷设,要求整齐、美观、清晰。横平竖直,层次分明。导线的长度合适,端头压接牢固,端子压紧。

(2)线槽内走线应符合:电源线和控制线尽量分开,线槽内导线均匀分布,理顺以避免交叉。线号对应,方向一致。横向每隔300mm 装一个线束固定点,竖向每隔400mm装一个线束固定点。不得任意歪斜交叉连接。

(3)接线要求左进右出,上进下出,进线时应该使线的连接部分外露20mm左右,且要求每个角应弯成90°,每个接线柱允许连接的接头一般不超过三个。

四实训线路发生的故障及排除办法

1故障现象

(1)按下启动按钮电机无法启动,交流接触器无动作;

(2)按下启动按钮,电机实现星——三角启动,但启动后电机噪声较大,运行不稳定;(3)按下正转按钮后,电动机正转,松开按钮后电动机停转,无法自保持。

2故障分析及排除

(1)出现按下启动按钮电机无法启动,交流接触器无动作的故障,经检查发现熔断器断开,解决办法是跟换熔断器后,用万用表检查确保接通;

(2)出现按下启动按钮,交流接触器KM1动作,但是电机不运行,其他接触器无动作的故障有两个原因,一是接触器触点被严重氧化,无法接通,二是电机线圈末端未连接,无法形成回路,第一种故障解决办法是使用平口螺丝刀将螺丝拧紧后,再次用万用表检查,确保接触良好,第二种故障解决办法是将电动机末端接为星型或三角型,使电路能构成回路;

(3)出现按下启动按钮,电机正常运行,但是无法实现反转现象,一是开关接线错误,二是KM2无法接通,第一种故障解决办法是打开开关盒,根据原理图检查接线,确保接线正确,第二种故障解决办法是使用平口螺丝刀将螺丝拧紧后,再次用万用表检查,确保接触良好;(4)出现按下启动按钮,电机实现星——三角启动,但启动后电机噪声较大,运行不稳定现象,是接线出现接错相,无法构成三角形连接,解决办法是修正接线,确保接线正确;(5)出现按下正转按钮后,电动机正转,松开按钮后电动机停转,无法自保持现象,检查后,由于漏接线导致KM1线圈未接通,无法得电,触点无法自保持,解决办法是补充接线后,用万用表检查确保接通。

第二部分 PLC控制系统设计实训

PLC控制课题一:交通信号灯的控制系统设计

设计要求及分析

(一)该单元设有启动和停止开关S1、S2,用以控制系统的“启动”与“停止”。S3

还可屏蔽交通灯的灯光(利用M8034,使PLC的外部输出接点皆为OFF)。

(二)交通灯显示方式。

当东西方向红灯亮时,南北方向绿灯亮,当绿灯亮到设定时间时,绿灯闪亮三次,闪亮周期为1秒,然后黄灯亮2秒。当南北方向黄灯熄灭后,东西方向绿灯亮,南北方向红灯亮………周而复始,不断循环。其时序图如下图所示。

一、设计主电路

二、设计PLC的I/O分配表

Y—△降压起动控制线路

Y—△降压起动控制线路 (1)线路设计思想 Y—△降压起动也称为星形—三角形降压起动,简称星三角降压起动。这一线路的设计思想仍是按时间原则控制起动过程。所不同的是,在起动时将电动机定子绕组接成星形,每相绕组承受的电压为电源的相电压(220V),减小了起动电流对电网的影响。而在其起动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压(380V),电动机进入正常运行。凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可采用 这种线路。 (2)典型线路介绍 定子绕组接成Y—△降压起动的自动控制线路如图4所示。 图4 Y—△降压起动控制线路 工作原理: 按下起动按钮SB2,接触器KM1线圈得电,电动机M接入电源。同时,时间继电器KT及接触器KM2线圈得电。 接触器KM2线圈得电,其常开主触点闭合,电动机M定子绕组在星形连接下运行。KM2的常闭辅助触点断开,保证了接触器KM3不得电。 时间继电器KT的常开触点延时闭合;常闭触点延时继开,切断KM2线圈电源,其主触点断开而常闭辅助触点闭合。

接触器KM3线圈得电,其主触点闭合,使电动机M由星形起动切换为三角形运行。 停车 按SB1 辅助电路断电各接触器释放` 电动机断电停车 线路在KM2与KM3之间设有辅助触点联锁,防止它们同时动作造成短路;此外,线路转入三角接运行后,KM3的常闭触点分断,切除时间继电器KT、接触器KM2,避免KT、KM2线圈长时间运行而空耗电能,并延长其寿命。 三相鼠笼式异步电动机采用Y—△降压起动的优点在于:定子绕组星形接法时,起动电压为直接采用三角形接法时的1/3,起动电流为三角形接法时的1/3,因而起动电流特性好,线路较简单,投资少。其缺点是起动转矩也相应下降为三角形接法的1/3,转矩特性差。所以该线路适用于轻载或空载起动的场合。另外应注意,Y—△联接时要注意其旋转方向的一致性。 容量较大的电动机。通常采用降压启动方式。降压启动的方式很多,有星三角启动,自耦降压启动,串联电抗器降压启动,延边三角形启动等。 本文介绍电动机的星三角(Y一△)启动方式。所谓Y一△启动,是指启动时电动机绕组接成星形,启动结束进入运行状态后,电动机绕组接成三角形。 在启动时。电机定子绕组因是星形接法,所以每相绕组所受的电压降低到运行电压的 1/、(约57.7%),启动电流为直接启动时的1/3,启动转矩也同时减小到直接启动的1/3。所以这种启动方式只能工作在空载或轻载启动的场合。例如,轴流风机启动时应将出风阀门打开,离心水泵应将出水阀门关闭,使设备处于轻载状态。 图1是电动机Y-△启动的一次电路图,U1-U2、V2-V2、Wl-W2是电动机M的三相绕组。如果将U2、V2和W2在接线盒内短接,则电动机被接成星形;如果将U1和W2、V1和U2、W1和V2分别短接,则电动机被接成三角形。实现电动机的Y-△启动的二次控制电路见图2。 现在分析Y-△启动电路的工作过程。按下启动按钮SB2,接触器KM3和时间继电器的线圈得电,KM3的主触点闭合,将电动机的三相绕组接成星形;KM3的辅助触点(常开)KM3-3同时闭合使接触器KM2动作,电动机进入星形启动状态,KM2的辅助触点KM2-1闭合,使电路维持在启动状态。待电动机转速达到一定程度时,时间继电器KT延时时间到。其延时触点(常闭)断开,接触器KM3线圈失电.主触点断开,辅助触点(常例)KM3-1闭台。接触器KMl得电工作.电动机进入三角运行状态。这里时间继电器的延时时间应通过试验调整在5~15秒之间。 按下停止按钮,或电动机出现异常过电流使热继电器FH动作时,电动机均会停止运行。电

电动机启动控制过程详解

三相异步电动机启动控制原理图 1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。在生产实际应用

中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2.三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时, 接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

自动自偶降压启动的控制线路图

自动自偶降压启动的控制线路图 (一次二次) 自偶降压一次线路的接法: 利用三相自耦变压器将降低的电压加到电机定子绕组上,使电机在低于额定电压下起动,以减小起动电流。等电机转

速成达到或接近额定转速时,通过操作机构甩开自耦变压器,使电机在额定电压下正常运行。为了满足不同的要求,自耦 变压器一般都设有0.65、0.80两组电压抽头。自偶降压一次线路的原理接线就一种接法,其控制手法有自动和手动两种方 法。 鼠笼式电动机自耦降压启动手动控制电路 自耦降压启动是利用自耦变压器降低电动机端电压的启动方法,自耦变压器一般由两组抽头可以得到不同的输出电压(一般为电源电压的80%和65%),启动时使自耦变压器中的一组抽头(例如:65%)接在电动机的回路中,当电动机的转速接近额定转速时,将自耦变压器切除,使电动机直接接在三相电源上进入运转状态。 1、合上空气开关QF接通电源. 2、按下启动按钮SB2,交流接触器KM3线圈回路通电,主触头闭合,自耦变压器接成星形。 KM1线圈通电其主触头闭合,由自耦变压器的65%抽头端将电源接入电动机,电动机在低电压下启动。 3、KM1常开辅助触点闭合接通中间继电器KA的线圈回路,KA通电并自锁KA的常开触点闭合为KM2线圈回路通电做准备。 4、当电动机转速接近额定转速时,松开按钮SB2,按下按钮SB3,KM1、KM3线圈断电将自耦变压器切除,KM2线圈得电并自锁,将电源直接接入电动机,电动机在全压下运行。 5、电动机运行中的过载保护由热继电器FR完成. 6、互锁环节; 接触器互锁: KM2常闭触点接入KM3、KM1线圈回路 KM1常闭触点接入KM2线圈回路 按纽互锁:按纽SB2常开触点接入KM3、KM1线圈回路 按纽SB2常闭触点接入KM2线圈回路 按纽SB3常开触点接入KM2线圈回路 按纽SB3常闭触点接入KM3、KM1线圈回路 鼠笼式电动机自耦降压启动手动控制电路接线示意图

《星三角降压启动控制线路》

《Y-△降压启动控制线路》教案 课时安排:理论2学时,实际操作10学时 课题内容:课题五三相异步电动机的降压启动控制线路——时间继电器自动控制Y-△降压启动控制线路 教学目的:1、掌握三相异步电动机的时间继电器自动控制Y-△降压启动控制线路的组成并能画出其控制线路图。 2、掌握时间继电器自动控制Y-△降压启动控制线路的工作原理。 3、掌握时间继电器的作用与使用方法。 4、掌握三相异步电动机的时间继电器自动控制Y-△降压启动控制线路的安装方法和自检方法。 教学重点:1、掌握电动机在Y-△接法时的接线盒内的接线图 2、掌握Y-△降压启动控制线路的原理 3、掌握电动机在Y接法和△接法时的主电路的接线方法 教学难点:电动机Y-△降压启动控制线路中交流接触器的接线及线路的检测方法 课的类型:新授课(含理论及技能操作) 教学过程设计 时间分配90分钟

(10分钟) (30分钟) 电动机定子绕组Y、△接法接线盒内部接线图 【任务二】电动机定子绕组Y、△接法时,其绕组上的电压和电流有什 么区别? 电动机启动时接成Y形,加在每相定子绕组上的启动电压只有△接 法的 1 3 ,启动电流为△接法的 1 3 ,启动转矩也只有△接法的 1 3 。所以 这种降压启动方法,只适用于轻载或空载下启动。 结论:凡是在正常运行时定子绕组作△形连接的异步电动机,均可 采用这种降压启动方法。 【任务三】时间继电器自动控制Y-△降压启动控制线路 接法时接线 盒内的接线 和出线 分析电路原 理,总结线 路优点

(20分钟) 时间继电器自动控制的Y-△降压启动线路原理图 该线路由三个接触器、一个热继电器、一个时间继电器和两个按钮 组成。接触器KM做引入电源用,接触器KM Y和KM△分别作Y形降压 启动用和△运行用,时间继电器KT用作控制Y形降压启动时间和完成 Y-△自动切换。SB1是启动按钮,SB2是停止按钮,FU1作主电路的短 路保护,FU2作控制电路的短路保护,KH作过载保护。 线路的工作原理如下: 降压启动:先合上电源开关QF。 示范:时间 继电器的结 构整定与时 间调整KM Y线圈得电 KM Y常开触头闭合KM线圈得电 KM自锁触头闭合自锁 KM主触头闭合 KM Y主触头闭合电动机M接成Y形降压启动 KM Y联锁触头分断对KM△联锁 KT线圈得电 当M转速上升到一定值时,KT延时结束 KT常闭触头分断KM Y线圈失电 KM Y常开触头分断 KM Y主触头分断,解除Y形连接 KM Y联锁触头闭合KM△线圈得电 KM△联锁触头分断 KM△主触头闭合 对KM Y联锁 KT线圈失电KT常闭触头瞬时闭合 电动机M接成△全压运行 按下SB1

自耦变压器降压启动电路图

自耦变压器降压启动电路图【改进版】 自耦变压器降压起动, 又称为补偿器降压起动, 可用抽头调节自耦变压器的变比以改变起动电流和启动转矩大小。传统自耦变压器起动大多数是用加时间继电器来控制。以下是根据某本中级电工培训指导书上自耦变压器降压起动控制线路所存在的弊病做了改进。改进后的控制线路投入使用以来, 运行稳定、可靠, 没有出现故障。 一、原动作原理 原电路的控制原理如图1 所示

自耦变压器降压启动电路图【改进版】 控制电路的本意是, 按下起动按钮SB2, 交流接触器1KM和2KM线圈得电, 触头1KM 和2KM闭合, 自耦变压器串入电动机降压起动; 同时时间继电器KT 线圈也得电, KT 的触头延时动作, KT 常闭触头延时先断开, 1KM、2KM和KT 线圈先后失电, 1KM和2KM主触头断开, 变压器脱离电动机电路, 而KT 常开触头后闭合,1KM常闭闭合, 3KM线圈在1KM 和2KM失电之后得电, 3KM主触头闭合, 电动机进入全压运行。再按下停止按钮使电动机停转。采用这种控制电路, 电动机的“ 起动- 自动延时- 运行”一次操作完成, 非常方便和安全。但是在正式运行时, 会产生这种现象: 在接线完全正确的情况下线路有时便可正常运行,

有时便不能正常运行, 即按下起动按钮SB2 之后, 电动机降压起动了, 当转到全压运行时,便停下来, 3KM线圈通不了电。 二、线路的弊病- 竞争冒险现象 分析其图1 控制线路的弊病是遇到了电磁元件之间的“ 触点竞争”问题, 即出现了竞争冒险现象, 造成整个电路工作的不可靠。电路运行过程中, 当KT延时到后, 其延时常闭触点总是由于机械运动原因先断开而延时常开触点后闭合, 当延时常闭触点先断开后, 1KM 线圈随即断电, 1KM1 常闭闭合为3KM 线圈通电做准备, 同时1KMr 常开断开, KT 线圈随即断电, 由于磁场不能突变为零和衔铁复位需要时间, 故有时候延时常开触点来得及闭合, 这时3KM线圈可通电, 3KM常开触点闭合自锁, 电动机转入全压运行。但有时候因受到某些干扰而失控, KT 延时常开触点来不及闭合, KT 的磁场已消失和衔铁已复位, 3KM线圈通不了电, 从而导致了前面所提到的故障问题。此线路造成竞争冒险即上述现象的主要原因是设计过程中只考虑了电磁系统与触点系统的逻辑联系, 而忽略了触点系统动作时间性和滞后性对系统的影响, 从而造成竞争冒险。 三、改进后的接线方法 经过分析, 主要是控制电路中辅助触点使用不合理造成线路设计的不完善, 针对此线 路存在的缺点对原控制电路部分进行改进, 其接线方法见图2。 四、改进后的工作原理 接通电源后, 按下起动按钮SB2, 交流接触器1KM、2KM线圈得电吸合, 1KM和2KM 主触头闭合, 自耦变压器串入电动机降压起动; 同时, 时间继电器KT 线圈也得电吸合, KT 瞬时常开触点闭合自锁。经一定时间延时后, KT 延时常开触头闭合, KT 延时常闭触头断开, 1KM线圈断电, 1KM1 常闭闭合, 3KM 线圈通电,3KM1 常开触头闭合自锁, 3KM1 常闭触头断开联锁, 使2KM及KT 线圈断电复位, 电动。

电动机降压启动接线方法

电动机降压启动接线方法 一.自耦减压启动 自耦减压启动是笼型感应电动机(又称异步电动机)的启动方法之一。它具有线路结构紧凑、不受电动机绕组接线方式限制的优点,还可按允许的启动电流和所需要的启动转矩选用不同的变压器电压抽头,故适用于容量较大的电动机。 图1 自耦减压启动 工作原理如图1所示:启动电动机时,将刀柄推向启动位置,此时三相交流电源通过自耦变压器与电动机相连接。待启动完毕后,把刀柄扳至运行位置切除自耦变压器,使电动机直接接到三相电源上,电动机正常运转。此时吸合线圈KV得电吸合,通过连锁机构保持刀柄在运行位置。停转时,按下SB按钮即可。 自耦变压器次级设有多个抽头,可输出不同的电压。一般自耦变压器次级电压是初级的40%、65%、80%等,可根据启动转矩需要选用。 二.手动控制Y-△降压启动

Y-△降压启动的特点是方法简便、经济。其启动电流是直接启动时的1/3,故只适用于电动机在空载或轻载情况下启动。 图2 手动控制Y-△降压启动 图2所示为QX1型手动Y-△启动器接线图。图中L1、L2和L3接三相电源,D1、D2、D3、D4、D5和D6接电动机。当手柄扳到“0”位时,八副触点都断开,电动机断电不运转;当手柄扳到“Y”位置时,1、2、5、6、8触点闭合,3、4、7触点断开,电动机定子绕组

接成Y形降压启动;当电动机转速上升到一定值时,将手柄扳到“△”位置,这时l、2、3、4、7、8触点接通,5、6触点断开,电动机定子绕组接成△形正常运行。 三.定子绕组串联电阻启动控制 电动机启动时,在电动机定子绕组中串联电阻,由于电阻上产生电压降,加在电动机绕组上的电压低于电源电压,待启动后,再将电阻短接,使电动机在额定电压下运行,达到安全启动的目的。 定子绕组串联电阻启动控制线路如图3所示。当启动电动机时,按下按钮SB1,接触器KM1线圈得电吸合,使电动机串入电阻降压启动。这时时间继电器KT线圈也得电,KT常开触点经过延时后闭合,使KM2线圈得电吸合。KM2主触点闭合短接启动电阻,使电动机在全电压下运行。停机时,按下停机按钮SB2即可。 四.手动串联电阻启动控制 当三相交流电动机标牌上标有额定电压为220/380V(△/Y)的接线方法时,不能用Y-△方法做降压启动,可用这种串联电阻或电抗器方法启动。

Y△降压起动电气原理图及讲解

Y—△降压起动也称为星形—三角形降压起动,简称星三角降压起动。这一线路的设计思想仍是按时间原则控制起动过程。所不同的是,在起动时将电动机定子绕组接成星形,每相绕组承受的电压为电源的相电压(220V),减小了起动电流对电网的影响。而在其起动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压(380V),电动机进入正常运行。凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可采用这种线路。 2.典型线路介绍 定子绕组接成Y—△降压起动的自动控制线路如图所示。 图Y—△降压起动控制线路 工作原理: 按下起动按钮SB2,接触器KM1线圈得电,电动机M接入电源。同时,时间继电器KT及接触器KM2线圈得电。 接触器KM2线圈得电,其常开主触点闭合,电动机M定子绕组在星形连接下运行。KM2的常闭辅助触点断开,保证了接触器KM3不得电。 时间继电器KT的常开触点延时闭合;常闭触点延时继开,切断KM2线圈电源,其主触点断开而常闭辅助触点闭合。 接触器KM3线圈得电,其主触点闭合,使电动机M由星形起动切换为三角形运行。 停车

按SB1 辅助电路断电各接触器释放` 电动机断电停车 线路在KM2与KM3之间设有辅助触点联锁,防止它们同时动作造成短路;此外,线路转入三角接运行后,KM3的常闭触点分断,切除时间继电器KT、接触器KM2,避免KT、KM2线圈长时间运行而空耗电能,并延长其寿命。 三相鼠笼式异步电动机采用Y—△降压起动的优点在于:定子绕组星形接法时,起动电压为直接采用三角形接法时的1/3,起动电流为三角形接法时的1/3,因而起动电流特性好,线路较简单,投资少。其缺点是起动转矩也相应下降为三角形接法的1/3,转矩特性差。所以该线路适用于轻载或空载起动的场合。另外应注意,Y—△联接时要注意其旋转方向的一致性。

三相异步电动机两种降压起动控制线路

实验六三相异步电动机正反转及Y—△降压起动控制线路 一、实验目的 1.进一步掌握三相异步电动机的正反转控制线路的接线方法。 2.进一步掌握三相异步电动机的Y—△降压起动控制线路的接线方法。 3.熟悉三相异步电动机的正反转及Y—△降压起动控制线路的工作原理。 4.熟悉三相异步电动机的正反转及Y—△降压起动控制线路的接线方法。 二、实验原理 1. 三相异步电动机的正反转及Y—△降压起动控制线路如图一所示。 2. 正转Y—△降压起动控制过程如下:

三相闸刀开关QS合闸通电后,指示灯D1亮启,表明控制线路处于“准备好”的状态,按起动按钮SB2后且在转换为△形接法(正常运行)之前,该指示灯保持亮启状态,以表明控制线路处于Y降压起动状态。当转入△形正常运行状态后,D1指示灯熄灭,同时指示灯D2亮启,表明已进入正常运行状态,之后,只要不按停止按钮SB1,指示灯D2将一直保持亮启状态。 3. 反转Y—△降压起动控制过程如下: 指示灯D1和D2的亮灭情况与正转降压起动控制过程类似。 三、实验仪器设备 四、实验内容与步骤 1.将交流接触器、热继电器、时间继电器、按钮开关在控制板上进行布置。 2.按照图一进行布线联接。 3.全部联接完成后应进行仔细检查核对,直至正确无误。经指导教师确认接线正确后,方可合闸刀 通电。 4.按起动按钮SB2,Y形降压起动,指示灯D1亮启,经延时若干秒后,电动机转换为△形正常运转, 指示灯D1熄灭、D2亮启,此时电动机正向运转,按动停止按钮SB1,电动机停止运转。 5.按起动按钮SB3,Y形降压起动,指示灯D1亮启,经延时若干秒后,电动机转换为△形正常运转, 指示灯D1熄灭、D2亮启,此时电动机反向运转,按动停止按钮SB1,电动机停止运转。 五、实验注意事项 1.通电前应熟悉线路的操作顺序。 2.运行时应注意观察电动机、各电器元件和线路各部分工作是否正常。若发现异常情况,必须立即 切断电源开关。 六、实验报告内容 1.简述三相异步电动机正反转及Y—△降压起动控制线路的工作原理。 2.总结接线、调试过程与体会。

电动机降压启动

电动机自耦降压启动(自动控制电路) 电动机自耦降压起动(自动控制)电路原理图 上图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故。 控制过程如下: 1、合上空气开关QF接通三相电源。 2、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压抽头(例如65%)将三相电压的65%接入电动。 3、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。 4、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时 KM2线圈断电,

其主触头断开,切断自耦变压器电源。KA的常闭触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。 5、KM1的常开触点断开也使时间继电器KT线圈断电,其延时闭合触点释放,也保证了在电动机启动任务完成后,使时间继电器KT可处于断电状态。 6、欲停车时,可按SB1则控制回路全部断电,电动机切除电源而停转。 7、电动机的过载保护由热继电器FR完成。 电动机自耦降压起动(自动控制)电路接线示意图安装与调试 1、电动机自耦降压电路,适用于任何接法的三相鼠笼式异步电动机。 2、自耦变压器的功率应于电动机的功率一致,如果小于电动机的功率,自耦变压器会因起动电流大发热损坏绝缘烧毁绕组。 3、对照原理图核对接线,要逐相的检查核对线号。防止接错线和漏接线。

三相电机降压启动

3.2 学习指导 3.2.1 三相笼型异步电动机降压启动控制 三相笼型异步电动机采用全压启动,控制电路简单,但当电动机容量较大,不允许采 用全压直接启动时,应采用降压启动。 所谓降压启动是利用启动设备将电压适当降低后加到电动机的定子绕组上进行启动, 待电动机启动运转后,再使电压恢复到额定值正常运行。 降压启动适用于空载或轻载下启动。 三相笼型异步电动机常用的降压启动方法有: 定子绕组串电阻或者电抗器降压启动、Y- Δ降压起动、自耦变压器降压启动、延边三角形降压启动等。下面讨论几种常用的降压启动 控制电路。 1.定子绕组串电阻降压启动 电动机启动时在定子绕组中串接电阻,使定子绕组的电压降低,限制了启动电流。在电 动机转速接近额定转速时,再将串接电阻短接,使电动机在额定电压下正常运转。 线路工作原理如下: 合上电源开关 QS。

2.Y-Δ降压起动 对于正常运行时定子绕组接成三角形的三相笼形电动机,可采用 Y-Δ降压启动方法达 到限制启动电流的目的。 在启动时,先将电动机的定子绕组接成星形,使电动机每相绕组承受的电压为电源的相 电压;当转速上升到接近额定转速时,再将定子绕组的接线方式改接成三角形,电动机就进 入全电压正常运行状态。 线路工作原理如下: 合上电源开关 QS。 3.自耦变压器降压启动

降压原理: 起动时电动机定子绕组接自耦变压器的次级,运行时电动机定子绕组接三相 交流电源,并将自耦变压器从电网切除。 主电路:起动时,KM1 主触点闭合,自耦变压器投入起动;运行时,KM2 主触点闭合, 电动机接三相交流电源,KM1主触点断开,自耦变压器被切除。 控制电路:起动过程分析 按动 SB2->KM1 线圈通电自锁->电动机 M 自耦补偿起动; ->KT 线圈通电延时-->KA 线圈通电自锁->KM1、KT 线圈断电-->KM2 线圈通电-> 电动机 M 全压运行。 4.延边三角形降压起动 (1)延边绕组示意图 说明:绕组连接 67、48、59构成延边三角形接法,绕组连接 16、24、35 为△接法。 (2)延边三角形降压起动控制电路

电动机Y—△降压启动的控制图

图 1 异步电动机Y/△降压起动控制电路 它是根据起动过程中的时间变化,利用时间继电器来控制Y/ △的换接的。由(a)图知,工作时,首先合上刀开关QS,当接触器KM 1 及KM 3 接通时,电动机Y形起动。当接触器KM 1 及KM 2 接通时,电动机△形运行。图(b)为控制电路,其工作过程分析如下: 线路中KM 2 和KM 3 的常闭触点构成电气互锁,保证电动机绕组只能接成一种形式,即Y形或△形,以防止同时连接成Y形及△形而造成电源短路。 二、硬件配置 本模块所需的硬件及输入/输出端口分配如图2所示。由图可见:本模块除可编程控制器之外,还增添了部分器件,其中,SB 1 为停止按钮,SB 2 为起动按钮,FR为热继电器的常开触点,KM 1 为主电源接触器,

KM 2 为△形运行接触器,KM 3 为Y形起动接触器。 图 2 输入/输出接线图 三、软件设计 本模块的软件设计除应用前述的部分基本指令及软元件之外,还新增软元件辅助继电器M100及定时器T 0 ,新增主控触点指令MC、MCR。可编程控制的梯形图及指令表如图3所示。 工作过程分析如下:按下启动按钮SB 2 时,输入继电器X0的常开触点闭合,并通过主控触点(M100常开触点)自锁,输出继电器Y1接通,接触器KM 3 得电吸合,接着Y0接通,接触器KM1得电吸合,电动机在Y形接线方式下起动;同时定时器T 0 开始计时,延时8秒后T 0 动作,使Y1断开,Y1断开后,KM 3 失电,互锁解除,使输出继电器Y2接通,接触器KM2得电,电动机在△形接线方式下运行。

图 3 Y/ △起动控制的梯形图及指令表 若要使电动机停止,按下SB 1 按钮或过载保护(FR)动作,不论电动机是起动或运行情况下都可使主控接点断开,电动机停止运行。

星三角降压启动电路图原理-电机星三角降压启动电路

星三角降压启动电路图-Y—△降压起动控制线路在以前变频器、软启动器等电子设备价格比较贵,技术比较落后的时候是一个最常用的的电工电路,随着科技的发展,这种启动方式有逐步被淘汰的趋势,但是该启动电路中应用的基本电路中的互锁、自锁、延时继电器,电机的绕组接法等对于刚刚接触电路的朋友是一个很好的教材,下面就根据星三角降压启动电路图给大家介绍一下星三角降压启动电路的工作过程以及电流电压关系。精品文档,超值下载 1、首先介绍一下图纸中各个元器件的符号 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 2、下面介绍一下工作过程 合上QS,按下St,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,KMY和KM△互锁避免KM△误动作; KM-1闭合,自锁启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。 电动机的三角形运转状态,必须要按下SP停止按钮,才能使全部接触器线圈失电跳开,才能停止运转。 3、星三角降压启动中的电压电流关系

三相电动机星三角降压启动控制电路图解

三相电动机星三角降压启动控制电路图解

————————————————————————————————作者:————————————————————————————————日期:

三相电动机星三角降压启动控制电路图解 文章目录 ?接触器控制星三角降压启动 ?时间继电器自动星三角降压启动 星三角(星形-三角形)降压启动是指电动机启动时,把定子绕组接成星形,以降低启动电压,限制启动电流;等电动机启动后,再把定子绕组改接成三角形,使电动机全压运行。凡事在正常运行时定子绕组作三角形连接的异步电动机,均可采用这种星三角降压启动方式。 接触器控制星三角降压启动 如右图所示是用按钮和接触器控制的星三角降压启动的控制电路。该线路使用了三个接触器、一个热继电器和三个按钮。接触器KM作引入电源用,接触器KMy和KM△分别作星形启动用和三角形运行用,SB1是启动按钮,

SB2是星~三角转换按钮,SB3是停止按钮,熔断器FU1作为主电路的短路保护,熔断器FU2作为控制电路的短路保护,FR作过载保护。电路的工作原理如下:先合上电源开关SQ: 电动机星形(Y)连接降压启动:按下SB1→接触器KM和KMy线圈通电→KM自锁触头闭合自锁、KMy互锁触头分断对KM△的互锁、KM主触头闭合、KMy主触头闭合→电动机M接成星形(Y)降压启动。 电动机三角形(△)连接全压运行:当电动机转速上升到接近额定值时,按下SB2→SB2动合触头闭合、SB2动断触头先分断→接触器KMy线圈断电→KMy互锁触头恢复闭合、KMy主触头分断→KM△线圈通电→KM△互锁触头分断对KMy互锁、KM△自锁触头闭合自锁、KM△主触头闭合→电动机M接成三角形全压运行。 停止时按下SB3按钮即可。 时间继电器自动星三角降压启动 下图所示为时间继电器自动控制星三角降压启动电路图。该线路由三个接触器、一个热继电器、一个时间继电器和两个按钮组成。时间继电器KT作控制星形降压启动时间和完成星三角自动切换用,其他电器的作用和上个线路中相同。

Y-△降压起动控制电路设计

Y-△降压起动控制电路设计

目录 一设计要求 (2) 二小组成员任务分工 (3) 三电气原理图及工作原理 (4) 四电路保护措施 (6) 五元器件的选择 (7) 六电器元件布置图 (12) 七电气安装接线图 (13) 八设计心得 (14)

一设计要求 1.1概述 在实际生产中,我们有很多容量较大的电动机的启动电流很大,Y-△需要降压启动。 其原理有 1.当负载对电动机启动力矩无严格要求又要限制电动机启动电流、电机满足380V/Δ接线条件、电机正常运行时定子绕组接成三角形时才能采用星三角启动方法。 2.该方法是:在电机启动时将电机接成星型接线,当电机启动成功后再将电机改接成三角型接线。 3.星三角启动属降压启动,它是以牺牲功率为代价换取降低启动电流来实现的。 1.2设计要求 (1)按下启动按钮SB1,电动机定子绕组按星形连接,电动机降压启动。 (2)5s后,启动过程完成,电动机定子绕组自动转换到三角形连接,电动机稳定运行。 (3)按下停止按钮SB3,电机停止运动。 (4)保护措施:具有必要的欠压、过压、短路、过载保护。

二小组成员任务分工 三电气原理图及工作原理 3.1电气原理图 3.2工作原理 电路工作原理如图1-6Y所示 合上电源刀开关QS,按下SB2,KM1线圈得电,KM1辅助动合触点闭合,自锁,KM1主触点闭合,KM3线圈得电,KM3主触点闭合,电动机M定子绕组接成Y形降压起动,KM3辅助动断触点分断,对KM2互锁,KT线圈得电,经过一段时间, KT延时动合触点闭合→①

KT延时动断触点断开→② ②KM3线圏失电→KM3主触点断开 ①KM2线圈失电,KM3主触点闭合,电动机M定子绕组△接法全压运行,KM2辅助动合触点闭合,自锁,KM2辅助动断触点分断,KT线圈失电,所有触点瞬时复位, 且对KM3互锁。 停止时,按下SB2即可实现。 这种启动方法的优点是设备简单、经济,启动电流小;缺点是启动转矩小,且启动电压不能按实际需要调节,故只适用于空载或轻载启动的场合,并且只适用于正常运行时定子绕组按三角形连接的异步电动机。

三相异步电动机Y-△降压起动地控制设计

《电气控制与PLC应用》课程设计说明书 设计题目:三相异步电动机Y-△换接起动控制设计 专业及班级:XXX 指导教师:XXX 学生:XXX 学号:XXXX 设计时间:XXXXXXXX 目录

一、设计题目 (1) 二、控制要求 (1) 三、设计容 (1) 1、设计原理 (1) 2、I/O配置接线图 (2) 3、工作过程 (3) 4、程序设计梯形图 (4) 5、程序设计指令图 (4) 6、元件介绍 (4) 总结 (8) 参考文献 (9)

一、设计题目 利用三菱可编程控制器实现三相异步电动机Y-△降压起动的控制设计。 二、控制要求 接触器1KM~3KM的作用分别是控制电源、Y形起动、△运行。 ①按下起动按钮SB2后,电动机M先作Y起动,10s钟后自动转换为△运行。 ②若任何情况下外部按下停止按钮SB1或热继电器FR动作时,都会导致电动机停止。 三、设计容 1、设计原理 容量较大的电动机。通常采用降压启动方式。降压启动的方式很多,有星三角启动,自耦降压启动,串联电抗器降压启动,延边三角形启动等。 本文介绍电动机的星三角(Y一△)启动方式。所谓Y一△启动,是指启动时电动机绕组接成星形,启动结束进入运行状态后,电动机绕组接成三角形。 在启动时。电机定子绕组因是星形接法,所以每相绕组所受的电压降低到运行电压的57.7%,启动电流为直接启动时的1/3,启动转矩也同时减小到直接启动的1/3。所以这种启动方式只能工作在空载或轻载启动的场合。 电动机Y-△启动的电路图,U1-U2、V2-V2、Wl-W2是电动机M的三相绕组。如果将U2、V2和W2在接线盒短接则电动机被接成星形;如果将U1和W2、V1和U2、W1和V2分别短接,则电动机被接成三角形。实现电动机的Y-△启动控制电路见图1。

电动机Y-△降压启动的PLC控制

1. 引言 现代工业使用的许多设备中,都采用电力拖动,并通过电器控制方式来自动 控制。传统的控制电路是把有触点的接触器、继电器、按钮、开关等电器元件用导线按一定方式连接起来组成控制电路。 对于较大容量的异步电机因起点电流较大,一般都采用降压启动方式来启动。因为降压电压可以减少起动电流,防止电动机的电枢过热,并减少对电路电压的影响。降压启动的方式有多种,如:定子串电阻降压启动、星型--三角形换接、自耦变压器及沿边三角形等。本次课题是以星型三角形降压启动方式为例。 2. 星型--三角形降压启动控制电路选型 型号: N FX 2-6MR 3. 星型--三角形降压启动控制主电路图

4. 星型--三角形降压启动控制电路控制图 5.星型--三角形降压启动控制电路接线图

工作流程:按下启动按钮SB1→Y0得电→KM1得电→常开Y0闭合→Y1得电→KM2得电→电机启动(Y形)→T0得电(5s后常闭T0断开,常开T0闭合)→KM2失电→Y2得电→KM3得电→电机呈三角形启动 I/O地址分配表 地址设备名称设备符号 设备用途 X0 热继电器保护开关FR 过载保护 X1 启动按钮SB1 当接通时电机开始启动 X2 停止按钮SB2 当接通时电机停止工作 Y0 主交流接触器KM1 通断电机主电路电源 Y1 三角形连接交流接触器KM2 导通时电机星形连接 Y2 星形连接交流接触器KM3 导通时电机三角形连接 6.星型--三角形降压启动控制电路梯形图 工作原理:启动时按下启动按钮X1,Y0线圈得电自锁,KM1线圈得电,常开Y0

触点闭合,Y1线圈得电,KM2线圈得电电动机M接为Y形起动。定时器T0得电计时,5秒后常闭接点T0断开,常开接点T0闭合,KM2线圈失电,Y2线圈得电,KM3线圈得电,电动机接为三角形全压起动。 7.星型--三角形降压启动控制电路指令表

电动机的启动选择

1、一台18千瓦的三相异步电动机须选配多大交流接触器?,应该怎么选? 答:算一下该电机的工作电流,功率因素按0.9,电流=18000/1.73*380*0.9=30.4安培,按1.5倍选取45安的接触器就可以了,如果配热过载保护器按工作电流的1.2倍选. 2、15kw水泵星三角启动运行电流变大是什么原因? 15kw水泵星三角启动运行电流变大是什么原因,运行时电流20A左右吧,热继调大后热机很热,如热继调小水泵就过载报警。不知为啥,15KW水泵角型运行时电流时17A吗?急,特急,忘各位大侠帮帮忙。谢谢 答:正常运行时是三角形,功率计算公式:P=1.732*U*I*cosφ,功率因数cosφ取0.8,那么: I=15000/(1.732*380*0.8)=28.5A 所以,按照额定负载功率运转,电流是28.5A,你现在是20A左右,还没有达到额定功率,正常情况下,发热量不会很大啊!所以你所说的“热”不能以个人感觉,应该测一下温度,一般情况下,60度以下是没有问题的。 追问 星三角启动后,角型的运行电流时20A,正常吗?是不是有点大。再次谢谢你了。回答 15KW的电机,20A电流当然不大了,通过计算就知道了。“热继电器太热,不太正常”是什么意思?是电机太热还是热继电器太热? 所以,你需要做一些检查: 1、电机是否有相间短路? 2、缺相? 3、绝缘? 4、热继电器问题? 20A的电流是很正常! 3、18.5kw的电动机用多大交流接触器 18.5KW的电动机要用多大的交流接触器与型号 答:18.5kw的电动机一般采用降压启动,可以用40A——60A的交流接触器,如果是直接启动就要用100A的交流接触器 4、18.5KW电动机直接启动需要多大的接触器。用60A的有什么坏错,谢谢 18.5KW电动机建议用降压启动。星三角或软启动等都可以。60A的可以用。 5、请问;星三角启动18.5KW电动机的额定启动电流和额定工作电流是多少?需安

PLC控制三相异步电动机Y-△降压启动的多种方案

P L C控制三相异步电动机Y-△降压启动的多种方案(总5 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

[导读]三相异步电动机启动时将三相定子绕组接成星形,以降低定子绕组电压,达到减小启动电流的目的。 周淑英(东莞技师学院广东东莞523112)摘要:PLC控制启动效 率高、响应快、接线少、控制方便,PLC广泛应用到了工业自动控制中。PLC指令众多,灵活应用指令进行编程是从事点电气控制设计人员必须思考的问题, 现以三相异步电动机Y-△自动降压启动控制为例,说明PLC编程的多种方法。关键词:PLC 指令梯形图Y-△启动一、PLC的概述可编程控制器简称PC 或PLC,它是在电气控制技术和计算机技术基础上开发出来的,并逐渐发展成 为以微处理器为核心,把自动化技术、计算机技术、通信技术融为一体的新型 工业控制装置。目前,PLC已广泛应用于各种生产机械和生产过程的自动化控 制中,成为一种最普及、应用场合最多的工业控制装置,被公认为现代工业自 动化的三大支柱(PLC、机器人、CAD/CAM)之一。PLC不仅充分发挥了计算机 的优点,可以满足各种工业生产过程自动控制的要求,同时又兼顾了一般电气 操作人员的技术水平和习惯,采用梯形图或状态转移图等编程方式,使PLC的 使用始终保持大众化的优点。当生产流程需要改变时,可以现场改变程序,使 用方便灵活。工业自动控制系统中,电机Y-△降压启动都采用PLC进行控制。PLC控制启动具有效率高、响应快、接线少、控制方便等优点,但在设计PLC 控制线路及程序中必须兼顾考虑PLC及接触器的动作特点,否则实际运行中将 出现理论分析上不可能出现的问题,启动无法进行而烧毁元件。下面以一台三 相异步电动机Y-△自动降压启动控制为例,说明PLC控制的灵活性。二、设计要求三相异步电动机启动时将三相定子绕组接成星形,以降低定子绕组电压, 达到减小启动电流的目的;启动结束后再将三相定子绕组接成三角形,电动机 在额定电压下正常运行。要求:启动时三相异步电动机接成Y型,经过一段时 间自动转化为△型运行,要求Y型断开后△型才能启动,防止Y型未断△型启

相电动机星三角降压启动控制电路图解

相电动机星三角降压启动 控制电路图解 The Standardization Office was revised on the afternoon of December 13, 2020

三相电动机星三角降压启动控制电路图解 文章目录 星三角(星形-三角形)降压启动是指电动机启动时,把定子绕组接成星形,以降低启动电压,限制启动电流;等电动机启动后,再把定子绕组改接成三角形,使电动机全压运行。凡事在正常运行时定子绕组作三角形连接的异步电动机,均可采用这种方式。 接触器控制星三角降压启动 如右图所示是用按钮和控制的星三角降压启动的控制电路。该线路使用了三个接触器、一个热继电器和三个按钮。接触器KM作引入电源用,接触器KMy和KM△分别作星形启动用和三角形运行用,SB1是启动按钮,SB2是星~三角转换按钮,SB3是停止按钮,熔断器FU1作为主电路的短路保护,熔断器FU2

作为控制电路的短路保护,FR作过载保护。电路的工作原理如下:先合上电源开关SQ: 电动机星形(Y)连接降压启动:按下SB1→接触器KM和KMy线圈通电→KM自锁触头闭合自锁、KMy互锁触头分断对KM△的互锁、KM主触头闭合、KMy主触头闭合→电动机M接成星形(Y)降压启动。 电动机三角形(△)连接全压运行:当电动机转速上升到接近额定值时,按下SB2→SB2动合触头闭合、SB2动断触头先分断→接触器KMy 线圈断电→KMy互锁触头恢复闭合、KMy主触头分断→KM△线圈通电→KM△互锁触头分断对KMy互锁、KM△自锁触头闭合自锁、KM△主触头闭合→电动机M接成三角形全压运行。 停止时按下SB3按钮即可。 时间继电器自动星三角降压启动 下图所示为自动控制星三角降压启动电路图。该线路由三个接触器、一个热继电器、一个时间继电器和两个按钮组成。时间继电器KT作控制星形降压启动时间和完成星三角自动切换用,其他电器的作用和上个线路中相同。 线路的工作原理如下:先合上电源开关QS: 按下SB1→时间继电器KT线圈通电、KMy线圈通电→KMy互锁触头分断、KMy主触头闭合、KMy动合触头闭合→KM线圈通电→KMy常开触头分断、KM自锁触头闭合自锁、KM主触头闭合→电动机M接成星形降压启动,当M转速上升到一定数值,KT常闭触头分断→KMy线圈断电→

相关文档
最新文档