工频电场危害及防护措施范本

工频电场危害及防护措施范本
工频电场危害及防护措施范本

整体解决方案系列

工频电场危害及防护措施(标准、完整、实用、可修改)

编号:FS-QG-49085工频电场危害及防护措施Power frequency electric field hazards and protective measures

说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目

标管理科学化、制度化、规范化,特此制定

工频电场的危害

工频电磁场辐射对人体的危害是极低电磁场辐射的范畴,主要以电场辐射形式作用于人体。对生物体的作用主要是热效应和非热效应。对长期作业于工频电磁场辐射的维修、巡检等作业人群调查发现其神经衰弱症候群的发生率增加,心电图出现P-R时间延长、Q-T间期缩短以及外周血微核增高等改变。长时间接受较低强度射频辐射,可引起慢性辐射综合症的若干表现,一般为某些生理功能紊乱,也可有生化指标的变动。对神经系统的影响是反应最敏感和最常见的表现,神经衰弱综合征如头痛、头昏、疲劳、乏力、睡眠障碍和记忆力减退,此外长伴有手足多汗、脱发、易激动等症状;往往伴有胸闷、心悸、心前区不适和疼痛。

工频电场防护措施

在变电所设计中应选用电磁辐射水平低的设备。设备及配件的加工应精良,外形和尺寸合理,避免出现高电位梯度。

电气设备的布置应满足带电设备的安全防护距离要求,还应有必要的隔离防护措施和防止误操作措施,应设置防直接雷击和安全接地等措施。

为了加强系统运行可靠性,保障运行维护人员的安全,本变电站接地应采取下列措施:

1)满足接触电势要求,隔离开关、断路器等设备操作机构周围采用高电阻率的操作地坪。

2)变电站大门处设帽式均压带。

3)采取隔离措施,对外的通信设备加隔离变压器,进出变电站的管道采用绝缘段,进出变电站电缆的金属外护层,在站外2米处设绝缘接头盒,在内外适当地方分别接地等。

对于高电压电气设备的运行,亦采取严格的防护措施。屋内外配电装置按安全净距布置,配电装置用围栏与所前区隔开,以防外人进入,在电气外绝缘体最低部位距地面,装设固定遮栏;配电装置的各种通道的最小宽度也均符合安全要求。

在变电所设计中,对静电感应场强水平,应根据《220~500KV变电所设计技术规程》有关标准加以控制设计,在配电装置内设备附近的静电感应场强水平应符合国家卫生标准。

请输入您公司的名字

Foonshion Design Co., Ltd

各国工频电磁场限值的有关情况汇总

各国工频电磁场限值的有关情况汇总 据了解,到目前为止,国际上尚无工频电磁场暴露限值的IEC标准或其他国际标准,只有ICNIRP(国际非电离辐射防护委员会)向世界各国推荐了一个电场和磁场辐射限值的导则:《限制时变电场、磁场和电磁场暴露(300GHz以下)导则》,其中推荐以5000V/m作为居民区工频电场限值标准,100μT作为公众全天辐射时的磁感应强度限值标准。 目前我国所有相关的规范和技术标准中,涉及环境中工频电场强度、磁场强度限值的只有《500kV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T 24–1998),其原文是:“关于超高压送变电设施的工频电场、磁场强度限值目前尚无国家标准。为便于评价,根据我国有关单位的研究成果、送电线路设计规定和参考各国限值,推荐以4000V/m作为居民区工频电场评价标准,推荐应用国际辐射保护协会关于公众全天辐射时的工频限值100μT作为磁感应强度的评价标准。待相应国家标准发布后,以其规定限值为准。”很明显,该推荐限值就是以国际非电离辐射防护委员会的导则为基础的,并且电场强度的限值更严格。 世界上其他各国或学术组织关于工频电场和磁场的限值情况见下表: 另外需要说明的是: 欧洲议会1999年7月发布了一个一般公众电磁场暴露限值的推荐标准。这是一个供欧洲各国制定标准的框架,目前已有许多欧洲国家准备接受这一标准。这个标准建立在ICNIRP 导则基础之上,同样是以目前已经得到确认的效应作为基准。 美国没有统一的国家标准。一些学术组织制定了自己的标准,许多州也根据自己的情况制定了输电线路的工频电磁场标准。 日本并没有公众工频磁场暴露限值的明确标准,1993年,日本一个政府研究机构的报告

500kV电网工频过电压、谐振过电压及其保护规定

500kV电网工频过电压、谐振过电压及其保护规定 1工频过电压、谐振过电压与电网结构、容量、参数、运行方式以及各种安全、自动装置的特性有关。工频过电压、谐振过电压除增大绝缘承受电压外,还对选择过电压保护装置有重要影响,设计电网时应结合实际条件预测。 对工频过电压,应采取措施尽量加以降低。工频过电压水平应通过技术经济比较加以确定。 须采取措施防止产生谐振过电压;或用保护装置限制其幅值和持续时间。 2工频过电压的限制。电网中的工频过电压一般由线路空载、接地故障和甩负荷等引起。根据500kV电网的特点,有时须综合考虑这几种过电压。 通常可取正常送电状态下甩负荷和在线路受端有单相接地故障情况下甩负荷作为确定电网工频过电压的条件。 一般主要采用在线路上安装并联电抗器的措施限制工频过电压。在线路上架设良导体避雷线降低工频过电压时,宜通过技术经济比较加以确定。电网的工频过电压水平一般不超过下列数值:线路断路器的变电所侧1.3Uxg; 线路断路器的线路侧1.4Uxg. 注:`U_(xg)`为电网最高相电压有效值,kV. 3谐振过电压的防止和限制。电网中的谐振过电压一般由发电机自励磁、线路非全相运行状态以及二次谐波谐振等引起。

1)电网中发电机自励磁过电压。当发电机经变压器与空载线路相连,在发电机全电压合闸、逐步升压起动或因甩负荷而导致发电机带空载长线路时,如发电机容量较小,可能产生发电机自励磁过电压,应验算发生这一情况的可能性。 经验算,如有发生有励磁的可能,而又无法通过改变运行方式加以避免时,可采用在线路上安装并联电抗器的措施予以防止。 2)线路非全相运行状态产生的谐振过电压。空载线路上接有并联电抗器,且其零序电抗小于线路零序容抗时,如发生非全相运行状态(分相操动的断路器故障或采用单相重合闸时),由于线间电容的影响,断开相上可能发生谐振过电压。 上述条件下由于并联电抗器铁芯的磁饱和特性,有时在断路器操作产生的过渡过程激发下,可能发生以工频基波为主的铁磁谐振过电压。 在并联电抗器的中性点与大地之间串接一小电抗器,一般可有效地防止这种过电压。该小电抗器的电抗值宜按补偿并联电抗器所接线路的相间电容选择,同时应考虑以下因素: a.并联电抗器、中性点小电抗器的电抗及线路容抗的实际值与设计值的变异范围; b.限制潜供电流的要求; c.连接小电抗器的并联电抗器中性点绝缘水平。 最终确定小电抗器的电抗值时,应校验对非全相谐振过电压的解谐效果。

作业场所工频电场卫生标准

《作业场所工频电场卫生标准》 1 主题内容与适用范围 本标准规定了作业场所工频电场的最高容许量及其测试方法。 本标准适用于交流输电系统中接触电场的电力作业人员及带电作业人员。 2 卫生要求 作业场所工频电场8h最高容许量为5kV/m。 2.1 因工作需要必须进入超过最高容许量的地点或延长接触时间时,应采取有效防护措施。 2.2 带电作业人员应该处在“全封闭式”的屏蔽装置中操作,或应穿包括面部的屏蔽服。 3 测试方法 本标准的测试方法,详见附录A(补充件) 4 监督执行 各级卫生防疫机构负责监督本标准的执行。 附录A 工频电场测试方法 (补充件) A1 本法系采用高灵敏度球型(球直径为12cm)偶极子场强仪进行测试 测试时:应包括作业场所地面场强的分布,及根据作业方式,经常的工作操作地点,进行有代表性的选点测试。 A2 场强仪主要性能 测量范围:0.003~100kV/m。 其他类型场强仪的测量范围应保证1/10~1/100的5kV/m的最低限量。 A3 原理 球型偶极子场强仪由二个导电半球组成,上下半球在电气上通过一个包括放大器及显示部分等组成的测量装置相连接。当它置于均匀电场中且球面的分离平面与电场相垂直时,通过二半球的电流I为: I=5πε0·ω·r2·E·β……………………(A1) 式中:ε0——真空的介电系数; ω——角频率; r——偶极子半径; E——电场强度; β——与电场不均匀性有关的系数。 β=1—7/12(r/h)2+11/24(r/h) 4+……………………(A2) 式中:h——测点与电荷间的距离。 A4 校准 场强仪在直径3m,极间距离1m的平行平板电极产生的均匀电场中校准定标。 A5 测量方法 地面场强,是测定距离地面高1.5m的电场强度,测量地点应比较平坦,且无多余的物体。对不能移开的物体应记录其尺寸及其与线路的相对位置,并应补充其测量离物体不同距离处的场强。 变电站内进行测量时应遵守高压设备附近工作的安全规程。 环境条件:温度0~40℃,相对湿度<60%。

过电压实验

工频过电压仿真实验 一预习要求 1 熟悉正序、负序、零序的概念 2 熟悉空载长线电容效应的原理 3 熟悉长线方程,及传递系数的计算 4 熟悉接地系数的概念及计算 二实验目的 1.掌握测量输电线路工频参数的方法 2.了解造成工频电压升高的原因 3.了解限制工频电压升高的措施 三实验内容 1利用长线的开路试验及短路试验求线路的正序及零序参数 2空载线路电容效应引起的工频电压升高 2.1在无穷大电源条件下测量线路末端电压,计算传递系数; 2.2在有限大电源条件下测量线路末端电压,计算传递系数; 3利用补偿电抗器限制工频电压升高 3.1 在线路末端加补偿电抗器,计算电压传递系数; 3.2 在线路首端加补偿电抗器,计算电压传递系数; 3.3 在线路中间加补偿电抗器,计算电压传递系数; 4 末端单相接地,测量健全相电压,计算接地系数 四实验步骤 1 线路参数测量 (a)线路末端开路试验 (b)线路末端短路试验 图1线路参数测量仿真试验电路图 1.1. 在ATP-EMTP中搭建试验电路。 本试验进行稳态计算,所以ATP菜单栏ATP—>Settings中Tmax应设置为“0”。需要求解的试验线路由已给定的LCC元件模拟。 2.2. 测量线路的首端入口阻抗。 线路首端加正序电压(电流)源,末端开路(图1-a),测量线路首端相电压幅值U1k与电流幅值I1k,并求解末端开路时的正序首端入口阻抗Z Rk1; 线路首端加正序电压(电流)源,末端短路(图1-b),测量线路首端相电压幅值U1d与电流幅值I1d,并求解末端开路时的正序首端入口阻抗Z Rd1;

线路首端加零序电压(电流)源,末端开路(图1-a),测量线路首端相电压幅值U0k与电流幅值I0k,并求解末端开路时的正序首端入口阻抗Z Rk0; 线路首端加零序电压(电流)源,末端短路(图1-b),测量线路首端相电压幅值U0d与电流幅值I0d,并求解末端开路时的正序首端入口阻抗Z Rd0; 1.3. 求解线路正序和零序参数L1、C1、L0、C0(课下完成) 由Z Rk1、Z Rd1、Z Rk0、Z Rd0计算线路正序和零序参数L1、C1、L0、C0。 2空载线路电容效应引起的工频电压升高 (a)无限大电源 (b)有限大电源 图2工频电压升高仿真试验电路图 2.1. 在ATP-EMTP中搭建试验电路。 本试验进行稳态计算,Tmax=0。 2.2. 测量电压传递系数 750kV系统下 对无限大电源,线路长度100km,线路末端开路(图2-a),测量线路单相末端电压U l1,求线路末端对首端(电源)的电压传递系数K1。 对有限大电源(电源阻抗838.2mH),线路长度100km,线路末端开路(图2-b),测量线路单相末端电压U l2,求出线路末端对电源的电压传递系数K2。 对有限大电源(电源阻抗838.2mH),线路长度为230km,线路末端开路(图2-b),测量线路单相末端电压U l3,求出线路末端对电源的电压传递系数K3。 2.3. 由公式计算该系统在无限大电源和有限大电源的电压传递系数,并与以上测量值比较(课下完成)。 3补偿电抗器限制工频过电压

第5章工频过电压计算

目录 5.1 空载长线路的电容效应3 5.1.1 空载长线路的沿线电压分布3 5.1.2 并联电抗器的补偿作用5 5.2线路甩负荷引起的工频过电压7 5.3单相接地故障引起的工频过电压9 5.4自动电压调节器和调速器的影响12 5.5限制工频过电压的其他可能措施13 5.6工频过电压的EMTP仿真14

工频过电压是电力系统中的一种电磁暂态现象,属于电力系统部过电压,是暂时过电压的一种。 电力系统部过电压是指由于电力系统故障或开关操作而引起电网中电磁能量的转化,从而造成瞬时或持续时间较长的高于电网额定允许电压并对电气装置可能造成威胁的电压升高。部过电压分为暂时过电压和操作过电压两大类。 在暂态过渡过程结束以后出现持续时间大于0.1s(5个工频周波)至数秒甚至数小时的持续性过电压称为暂时过电压。由于现代超、特高压电力系统的保护日趋完善,在超、特高压电网出现的暂时过电压持续时间很少超过数秒以上。 暂时过电压又分为工频过电压和谐振过电压。电力系统在正常或故障运行时可能出现幅值超过最大工作相电压,频率为工频或者接近工频的电压升高,称为工频过电压。工频过电压产生的原因包括空载长线路的电容效应、不对称接地故障引起的正常相电压升高、负荷突变等,工频过电压的大小与系统结构、容量、参数及运行方式有关。一般而言,工频过电压的幅值不高,但持续时间较长,对220kV电压等级以下、线路不太长的系统的正常绝缘的电气设备是没有危险的。但工频过电压在超(特)高压、远距离传输系统绝缘水平的确定却起着决定性的作用,因为:①工频过电压的大小直接影响操作过电压的幅值;②工频过电压是决定避雷器额定电压的重要依据,进而影响系统的过电压保护水平;③工频过电压可能危及设备及系统的安全运行。 我国超高压电力系统的工频过电压水平规定为:线路断路器的变电站侧不大于 1.3. p.u(. p.u为电网最高运行相电压峰值);线路断路器的线路侧不大于1.4. p.u以p.u。特高压工程工频过电压限值参考取值为:工频过电压限制在1.3.下,在个别情况下线路侧可短时(持续时间不大于0.3s)允许在1.4. p.u以下。 电力系统中由于出现串、并联谐振而产生的过电压称为谐振过电压。电力系统中的电感,包括线性电感、非线性电感(如高压电抗器和变压器的励磁电抗)和周期性变化的电感,当系统发生故障或操作时,这些电感可能与其串联或并联的电容(如线路电容和串、并联补偿电容)产生谐振从而分别引发线性谐振、铁磁谐振和参数谐振。目前,人们采取改变回路参数、破坏谐振条件、接入阻尼电阻

变电站类型其工频电磁场水平解读

变电站有哪些类型,都是什么样子的,其工频电磁场水平怎样? 1.变电站类型 按照建筑形式和电气设备布置方式,分为户内、半户内、户外变电站。 2.户内变电站介绍 户内变电站主变、110kV配电装置均为户内布置。设备采用GIS(SF6气体绝缘全封闭组合电器)型式,GIS具有体积小、技术性能优良的特点。为了减少建筑面积和控制建筑高度,满足城市规划的要求,并与周边环境相协调,利于城市景观的美化,可以考虑采用GIS设备。 安慧110kV户内变电站实景图 户内变电站效果图 3.半户内变电站介绍 半户内变电站主变压器为户外布置,110kV配电装置为户内布置。半户内布置方式就是除主变压器以外的全部配电装置集中布置在一幢主厂房不同楼层的电气布置方式。该种布置方式结合了全户内布置变电所节约占地面积,与周围环境协调美观,设备运行条件好和户外布置变电所工程造价低廉的优点。

半户内变电站实景图 4.户外变电站介绍 户外变电站主变、110kV配电装置均为户外布置。设备占地面积较大。一般适合于建设在城市中心区以外的土地资源比较宽松的地方。 户外变电站实景图 户外变电站实景图 5.变电站工频电磁场的影响 各类型变电站对周边影响的范围都十分有限。因为不论何种类型的变电站,厂界处的工频电磁场水平已经很低。且工频电磁场有随距离增加而迅速衰减的规律,使得变电站对周边居民住宅处的工频电磁场水平趋于当地环境背景值。

高压架空输电线路和高压电缆有什么区别,工频电磁场水平如何? 目前采用的送电线路有两种,一种是最常见的架空线路,它一般使用无绝缘的裸导线,通过立于地面的杆塔作为支持物,将导线用绝缘子悬架于杆塔上;另一种是电力电缆线路,它采用特殊加工制造而成的电缆线,埋设于地下或敷设在电缆隧道中。 送电线路的输送容量及传送距离均与电压有关。线路电压越高输送距离越远。线路及系统的电压需根据其输送的距离和容量来确定。 1. 架空输电线路架空输电线路由线路杆塔、导线、绝缘子等构成,架设在地面之上。 架空输电线路 导线由导电良好的金属制成,有足够粗的截面(以保持适当的通流密度)和较大曲率半径(以减小电晕放电)。超高压输电则多采用分裂导线。架空地线(又称避雷线)设置于输电导线的上方,用于保护线路免遭雷击。重要的输电线路通常用两根架空地线。绝缘子串由单个悬式(或棒式)绝缘子串接而成,需满足绝缘强度和机械强度的要求。每串绝缘子个数由输电电压等级决定。杆塔多由钢材或钢筋混凝土制成,是架空输电线路的主要支撑结构。架空线路架设及维修比较方便,成本也较低。架空输电线路在设计时要考虑它受到的气温变化、强风暴侵袭、雷闪、雨淋、结冰、洪水、湿雾等各种自然条件的影响。架空输电线路所经路径还要有足够的地面宽度和净空走廊。 输电线路在综合考虑技术、经济等各项因素后所确定的最大输送功率,称为该线路的输送容量。输送容量大体与输电电压的平方成正比。因此,提高输电电压是实现大容量或远距离输电的主要技术手段,也是输电技术发展水平的主要标志。目前国内外(包括欧美发达国家)普遍采用架空线路做为输送电能的最主要方式。 2. 电力电缆线路 电力电缆一般由导线、绝缘层和保护层组成有单芯、双芯和三芯电缆。 地下电缆线路多用于架空线路架设困难的地区,如城市或特殊跨越地段的输电。目前采用电缆方式送电,主要是从城市景观和线路安全角度考虑。但电缆线路故障查找时间和维修时间非常长,给电网运行的可靠性和用户的正常用电带来严重的影响。所以在电网建设中,用电缆线路全部替代架空线路还是无法实现的

第5章 工频过电压计算汇总

第5章工频过电压计算 目录 5.1 空载长线路的电容效应 (4) 5.1.1 空载长线路的沿线电压分布 (4) 5.1.2 并联电抗器的补偿作用 (6) 5.2线路甩负荷引起的工频过电压 (9) 5.3单相接地故障引起的工频过电压 (11) 5.4自动电压调节器和调速器的影响 (15) 5.5限制工频过电压的其他可能措施 (15) 5.6工频过电压的EMTP仿真 (16)

第5章工频过电压计算 工频过电压是电力系统中的一种电磁暂态现象,属于电力系统内部过电压,是暂时过电压的一种。

电力系统内部过电压是指由于电力系统故障或开关操作而引起电网中电磁能量的转化,从而造成瞬时或持续时间较长的高于电网额定允许电压并对电气装置可能造成威胁的电压升高。内部过电压分为暂时过电压和操作过电压两大类。 在暂态过渡过程结束以后出现持续时间大于0.1s(5个工频周波)至数秒甚至数小时的持续性过电压称为暂时过电压。由于现代超、特高压电力系统的保护日趋完善,在超、特高压电网出现的暂时过电压持续时间很少超过数秒以上。 暂时过电压又分为工频过电压和谐振过电压。电力系统在正常或故障运行时可能出现幅值超过最大工作相电压,频率为工频或者接近工频的电压升高,称为工频过电压。工频过电压产生的原因包括空载长线路的电容效应、不对称接地故障引起的正常相电压升高、负荷突变等,工频过电压的大小与系统结构、容量、参数及运行方式有关。一般而言,工频过电压的幅值不高,但持续时间较长,对220kV电压等级以下、线路不太长的系统的正常绝缘的电气设备是没有危险的。但工频过电压在超(特)高压、远距离传输系统绝缘水平的确定却起着决定性的作用,因为:①工频过电压的大小直接影响操作过电压的幅值;②工频过电压是决定避雷器额定电压的重要依据,进而影响系统的过电压保护水平;③工频过电压可能危及设备及系统的安全运行。 我国超高压电力系统的工频过电压水平规定为:线路断路器的变电站侧不大于 1.3. p.u为电网最高运行相电压峰值);线路断路器的线路侧不大于p.u(. 1.4. p.u以p.u。特高压工程工频过电压限值参考取值为:工频过电压限制在1.3.下,在个别情况下线路侧可短时(持续时间不大于0.3s)允许在1.4. p.u以下。 电力系统中由于出现串、并联谐振而产生的过电压称为谐振过电压。电力系统中的电感,包括线性电感、非线性电感(如高压电抗器和变压器的励磁电抗)和

工作场所物理因素测量 第3部分:工频电场

工作场所物理因素测量 第3部分:工频电场 Measurement of Physical Agents in Workplace Part 3: Power Frequency Electric Field GBZ/T 189.3-2007中华人民共和国卫生部 2007-04-12 发布 2007-11-01 实施 前言 本部分是在GB16203-1996《作业场所工频电场卫生标准》有关测量方法部分的基础上修订的。 与 GB16203-1996有关测量方法部分相比主要修改如下: ——纳入工作场所物理因素测量系列; ——规范了使用范围、测量方法,增加了注意事项。 本部分为工作场所物理因素测量系列标准之一。 本部分由卫生部职业卫生标准专业委员会提出。 本部分由中华人民共和国卫生部批准。 本部分起草单位:北京大学公共卫生学院、奥德力技术公司。 本部分起草人:王生、何丽华、黄方经、苏敏。 工作场所物理因素测量

第3部分:工频电场 1 范围 本部分规定了工作场所工频电场的测量方法。 本部分适用于交流输电系统工作及操作地点工频电场的测量。 2 测量仪器 采用高灵敏度球型(球直径为12cm)偶极子场强仪进行测试,场强仪测量范围:0.003 kV/m~100kV/m。 其他类型场强仪的的最低检测限应低于0.05kV/m。 3 测量对象的选择 3.1 相同型号、相同防护的工频设备选择有代表性的设备及其接触人员进行测 量。 3.2 不同型号或相同型号不同防护的工频设备及其接触人员应分别测量。 4 测量方法 场强仪在直径3m,极间距离1m的平行平板电极产生的均匀电场中校准定标。测量时应包括作业场所地面场强的分布,工作方式、工作地点,进行有代表性的选点测量。 地面场强是测定距地面高1.5m的电场强度,测量地点应比较平坦,且无多余的物体。对不能移开的物体应记录其尺寸及其与线路的相对位置,并应补充测量离物体不同距离处的场强。 变电站内进行测量时应遵守高压设备附近工作的安全规程。 环境条件:温度0℃~40℃,相对湿度<60%。 5 测量记录 测量记录应该包括以下内容:测量日期、测量时间、气象条件(温度、相对湿度)、测量地点(单位、厂矿名称、车间和具体测量位置)、设备型号和参数、测量仪器型号、测量数据、测量人员等。 6 注意事项 在进行现场测量时,测量人员应注意个体防护。

(实验)空载长线路电容效应引起的工频过电压

空载长线路电容效应引起的工频过电压 一、实验目的 (1)了解空载长线路电容效应引起工频电压升高的原因 (2)掌握Probe Volt (节点电压测量仪)的设置和PlotXY 的使用方法 (3)掌握空载长线路的电容效应引起工频电压升高的仿真分析方法。 (4)了解并联电抗器对线路电容的补偿作用。 二、实验原理 (1)空载长线路的电容效应引起工频电压升高的原因 输电线路具有分布参数的特性,但在输送距离较短的情况下,工程上可用集中参数的电感L 、电阻r 和电容C 1、C 2所组成的π型电路来等值,如图1(a )所示。一般线路等值的容抗远大于线路等值的感抗,则在线路空载(02=?I )的情况下,在输电线路首端电压? 1U 的作用下,可列出如下电路回路方程为 ? ??????++=++=22221C L C L r I jX I r U U U U U 以?2U 为参考向量,可画出图1(b )所示的相量图。由相量图分析可知,空载线路末端电压?2U 高于线路首端电压?1U ,这就是所谓空载线路的电容效应而引起的系统工频电压升高。 (a ) (b ) 图1 输电线路集中参数PI 型等值电路及其相量图 (a )等值电路;(b )相量图 若忽略r 的作用,则有 ) 221C L C L X X I j U U U -(? ???=+= L U U U +=12 即由于电感与电容上压降反相,且线路的容抗远大于感抗,使L U U >2,而造成线路末端的电压高于首端的电压。 随着输电线路电压等级的提高,输送距离变长。分析长线路的电容效应时,需要采用分布参数电路。(原理同前面相似,由于计算繁琐,此不再赘述) (2)并联电抗器的补偿作用 为了限制空载长线路的工频电压升高,在超、特高压系统中,通常采用并联电抗器的措施。这是因为其电感能补偿线路的对地电容,减小流经线路的电容电流,削弱了线路的电容效应。 并联电抗器可以接在长线路的末端,也可接在线路的首端和输电线的中部。随着安置地

第5章--工频过电压计算

第5章--工频过电压计算

————————————————————————————————作者:————————————————————————————————日期:

第5章工频过电压计算 目录 5.1 空载长线路的电容效应 (6) 5.1.1 空载长线路的沿线电压分布 (6) 5.1.2 并联电抗器的补偿作用 (8) 5.2线路甩负荷引起的工频过电压 (11) 5.3单相接地故障引起的工频过电压 (13) 5.4自动电压调节器和调速器的影响 (16) 5.5限制工频过电压的其他可能措施 (17) 5.6工频过电压的EMTP仿真 (18)

第5章工频过电压计算 工频过电压是电力系统中的一种电磁暂态现象,属于电力系统内部过电压,是暂时过电压的一种。 电力系统内部过电压是指由于电力系统故障或开关操作而引起电网中电磁能量的转化,从而造成瞬时或持续时间较长的高于电网额定允许电压并对电气装置可能造成威胁的电压升高。内部过电压分为暂时过电压和操作过电压两大类。 在暂态过渡过程结束以后出现持续时间大于0.1s(5个工频周波)至数秒甚至数小时的持续性过电压称为暂时过电压。由于现代超、特高压电力系统的保护日

趋完善,在超、特高压电网出现的暂时过电压持续时间很少超过数秒以上。 暂时过电压又分为工频过电压和谐振过电压。电力系统在正常或故障运行时可能出现幅值超过最大工作相电压,频率为工频或者接近工频的电压升高,称为工频过电压。工频过电压产生的原因包括空载长线路的电容效应、不对称接地故障引起的正常相电压升高、负荷突变等,工频过电压的大小与系统结构、容量、参数及运行方式有关。一般而言,工频过电压的幅值不高,但持续时间较长,对220kV电压等级以下、线路不太长的系统的正常绝缘的电气设备是没有危险的。但工频过电压在超(特)高压、远距离传输系统绝缘水平的确定却起着决定性的作用,因为:①工频过电压的大小直接影响操作过电压的幅值;②工频过电压是决定避雷器额定电压的重要依据,进而影响系统的过电压保护水平;③工频过电压可能危及设备及系统的安全运行。 我国超高压电力系统的工频过电压水平规定为:线路断路器的变电站侧不大于 1.3. p.u为电网最高运行相电压峰值);线路断路器的线路侧不大于p.u(. 1.4. p.u以p.u。特高压工程工频过电压限值参考取值为:工频过电压限制在1.3.下,在个别情况下线路侧可短时(持续时间不大于0.3s)允许在1.4. p.u以下。 电力系统中由于出现串、并联谐振而产生的过电压称为谐振过电压。电力系统中的电感,包括线性电感、非线性电感(如高压电抗器和变压器的励磁电抗)和周期性变化的电感,当系统发生故障或操作时,这些电感可能与其串联或并联的电容(如线路电容和串、并联补偿电容)产生谐振从而分别引发线性谐振、铁磁谐振和参数谐振。目前,人们采取改变回路参数、破坏谐振条件、接入阻尼电阻等多项措施,使谐振过电压得到有效限制。 高压输电系统的电磁暂态和过电压的计算可用EMTP进行仿真计算研究。

RJ-5工频电场(近区)场强仪

RJ-5工频电场(近区)场强仪操作规程 1仪器用途与使用范围 1.1仪器用途:工作场所(具有电磁辐射作业场所)的电场强度的测量。 1.2使用范围:测量高压输变电系统、配电室、感应炉、地铁、电动机车、医疗设备、烘干设备、计算机等具有电磁辐射作业场所的电场强度;适用测量连续波。 2编制依据 2.1《RJ-5工频电场(近区)场强仪使用说明书》。 22 GBZ/T 189.3 —2007工作场所物理因素测量工频电场 3工作原理 3.1工作原理:测量引入到被测电场的一个孤立导体的两部分之间的工频感应电流和感应电荷,检波后经斩波,调制,放大,解调,最后由数字电压表显示被测的电场强度值。 4技术特性 4.1使用环境条件 4.1.1 工作温度:-10 C -40 C 4.1.2工作相对湿度:80%以下 4.2主要技术参数 4.2.1使用频率范围:30Hz-2000Hz 4.2.2 量程:1V/m-20000 V/m , 4.2.3 误差:土20% 4.2.4电源:6F22 —9V叠层电池、8.4V充电电池。 5操作步骤 5.1操作前准备 5.1.1检查电源:开机后检查主机【ALARM】欠电压警示灯,若警示灯亮起,则主机供电电池不足应及时充电。5.1.2开机后检查表头视窗左上角,若显示BAT则表头供电电池不足应及时更换9v电池。 5.2操作方法 5.2.1开机预热15分钟以确保所测数值的正确和稳定。 5.2.2测量:按下主机开机电源【POWER】键(由于瞬间电压的问题有时需要连续开两次开关键方可正常工作)。确认仪器开始正常工作。 5.2.3手持仪器手柄把手处,将仪器正对被测物体,手臂尽量伸直,调整探头方向,找出场强显示最大点, 读取数据的最大值,此时仪器所显示的读数即为被测物的电场场强值。 5.2.3测量完毕关闭电源。 6期间核查

工频电场答案

工频电场试题 姓名分数 一、填空题(每题3分,共45分) 1、关于超高压送变电设施的工频电场、磁场强度限度值目前尚无国家标准。为便于评价,根据我国有关单位的研究成果,送电线路设计规定和参考各国限值,推荐暂以 4 kV/m作为居民区工频电场评价标准。 2、关于超高压送变电设施的工频电场,磁场强度限度值目前尚无国家标准。为便于评价,推荐应用国际非电离辐射保护协会关于对公众全天辐射的工频限值 0.1 mT作为磁感应强度的评价标准。 3、工频电场监测的因子为工频电场和工频磁场。 4、监测时的环境条件应符合仪器的使用环境条件,建议在无雨、无雾、无雪的天气条件下进行。监测时环境湿度应在80%以下,避免监测仪器支架泄漏电流等影响。 5、监测仪器的探头应架设在地面(或立足平面)上方1.5m高度处。也可根据需要在其它高度监测,并在监测报告中注明。监测工频电场时,监测人员与监测仪器探头的距离不应小于2.5m。监测仪器探头与固定物体的距离不小于1m。 6、地下输电电缆线路断面监测路径是以地下输电电缆线路中心正上方的地面为起点,沿垂直于线路方向进行,监测点间距为1m,顺序测至电缆管廊两侧边缘各外延5m处为止。对于以电缆管廊中心对称排列的地下输电电缆,只需在管廊一侧的断面方向上布置监测点。 二、判断题(每题3分,共18分) 1、工频电场和磁场的监测应使用专用的探头或工频电场、磁场监测仪器。工频电场监测仪器和工频磁场监测仪器必须是单独的探头(错误)。 2、工频电场和磁场监测仪器的探头可以为一维或三维(对)。 3、探头通过光纤与主机连接时,光纤长度不应小于2.5m,监测仪应用电池供电(对)。 4、工频电场监测仪器探头支架应采用不易受潮的非导电材质(对)。 5、监测点应选择在没有其它电力线路、通信线路、广播线路的空地上有树木也可以监测(错误)。 6、高压输变电线路下进行电场强度测量时,观察者必须离探头足够远,以避免使探头处的电场有明显的畸变。 ( 对 ) 三、选择题(每题3分,共15分) 1.500kV超高压送电工程电磁辐射环境影响对变电所址的评价范围为:以变电所址为中心的半径 m 范围内区域为工频电场、磁场的评价范围。( ) A.50 B.100 C.500 D.2000 答案:C 2.500kV超高压送电工程电磁辐射环境影响对送电走廊的评价范围为:以送电走廊两 侧 m带状区范围内工频电场、磁场的评价范围。( )

什么是内部过电压内部过电压的分类

什么是内部过电压?内部过电压的分类? 电力交流4群:458622441 什么是内部过电压 电气设备和电力线路在运行中有时要改变运行方式,也就是要进行停送电操作。如切、合变压器;切、和电力线路;切、和电容器;切、合电动机等。此外,运行中的电气设备和电力线路也可能发生事故,例如短路跳闸、断线、接地等。无论是由于停送电操作,或者电气事故,都会引起电力系统运行状态的局部变化,即从一种状态变为另一种状态,也就是出现过渡过程。在电路的过度过程中会引起电场能量和磁场能量的转换,这时可能出现很高的电压,形成过电压,这种过电压称为内部过电压。 产生内部过电压的原因很多,所引起的过电压大小不同。有时几种因素交叉重叠在一起,引起的过电压数值很高。一般认为,对地内部过电压可达相电压的3~4倍;相间内部过电压则为对地内部过电压的1.3~1.4倍。根据现场运行经验,有时内部过电压高达相间电压的5~6倍。内部过电压是由电力系统内部电、磁场能量的传递或转换引起的,因此与电力系统的电感、电容参数有关。电阻消耗能量,从而能抑制过电压。由此可见,内部过电压与电力系统内部结构、各项参数、运行状态、停送电操作和是否发生接地、断线等事故有

关,十分复杂。不同原因引起的内部过电压,其电压数值大小、波形、频率、延续时间长短也并不完全相同,预防措施也有区别。内部过电压分类为了便于研究,现行国家技术标准把内部过电压分为工频过电压、谐振过电压和操作过电压,其中工频过电压和谐振过电压又称作暂时过电压。所谓暂时过电压,并不是过电压延续时间短,而是时间长,要求供电系统运行部门采取措施使其尽快消除,使过电压只能暂时存在,不可长时间存在。实际上,在内、外各种过电压中,过电压波长最短的是雷电过电压,主放电只有50~100us,雷 电冲击波波长以微秒计。内部过电压的延续时间都要比雷电过电压长,工频过电压可达几小时,谐振过电压几分钟,操作过电压以毫秒计,时间较短,但比雷电冲击波长了千倍。雷电冲击波时间短,因此可以用避雷器有效地将雷电侵入波对地放电,避免对被保护设备造成过电压击穿损坏。对于内部过电压,由于延续时间长,避雷器无法短时间内将其对地泄放殆尽,而且避雷器本身阀片电阻的热容量也不允许长时间通过大电流。在10KV中性点不接地系统,有时会因单相接地故障激发电压互感器铁磁谐振过电压,引起群发性避雷器爆炸。

工频电磁场相关资料

工频电磁场简介 工频电磁场(power frequency electromagnetic field)是由50~60Hz动力电系统产生的电磁场,工频是指其工作频率,它是由各种电压等级的输电线及各种用电器所产生的一种频率为50Hz(美国、加拿大等为60Hz)的极低频电磁场,其波长达6000km。工频电磁场为感应场,该区域内的电场与磁场无固定关系,且分别与人体耦合,在人体中产生感应电流。 工频电磁场主要来源 工频电磁场的主要来源是高压输电线及电力设备。如高压输电线路、高压变电站、电气化铁道、大容量的工频电力设备等。升压变压器、高压传输线周围有较强的电场,大功率电器及其电源线附近有较强的磁场。 表1 不同高压电力线结构的最大电场强度值 高压系统电压/kV 中距线下电场强度/(kV/m) 123 1~2 245 2~3 420 5~6 800 10~12 1200 15~17 表2 不同电力设施所产生的工频电磁场强度和人体可接受的强度值 对象名称或参数电场强度/ (V/m)磁场强度/(A/m) 500kV及750kV户外配电装置103~5×104 10~100

380kV架空输电线路103~104 1~40 330kV架空输电线路103~5×103 10~100 110kV架空输电线路102~3×103 0.1~2.0 6~35kV架空线路10~5×102 0.1~2 6kV母线桥103 40~100 6kV户内配电装置—200 住宅、楼房1~100 0.01~0.5 家用电器5~500 0.1~300 人体可接受的极限104~2×104 3×103~3× 104 心脏肌肉收缩节律破坏5×107 106 — 空气间隙绝缘强度5×105~3× 106 按器官细胞受激条件得出的安全场强计算值和试 2×104 4×103 验值 按DINVDE的场强标准7×103 320 按GOCT的场强标准5×103 — 我国输配电系统的分类 我国输配电系统的电压等级的组成:特高压:1000千伏。超高压:750千伏、500千伏、330千伏。高压:220千伏、110千伏、35千伏。中压:10千伏。低压:380/220伏。 工频电磁场的危害 工频电磁场辐射对人体的危害是极低电磁场辐射的范畴,主要以电场辐射形式作用于人体。对生物体的作用主要是热效应和非热效应。对长期作业于工频电磁场辐射的维修、巡检等作业人群调查发现其神经衰弱症候群的发生率增加,心电

工频过电压仿真测量

实验六 工频过电压仿真测量 预习要求 1.熟悉三相线路正序、负序、零序的概念及有关计算。 2.熟悉长线路电容效应的原理及长线方程、传递系数的概念和有关计算。 3.熟悉单相接地系数的概念及有关计算。 4.初步了解ATP-EMTP 软件。 一.实验目的 1.加深理解空载长线路工频电压升高的原因及其改善措施。 2.掌握使用开路试验和短路试验测量输电线路参数的方法。 3.学习了解ATP 软件及其基本使用方法。 二.实验内容 1.仿真长线的开路试验和短路试验,求取给定线路的正序、负序、零序参数,包括1L '、 2L '、0L '和1C '、2C '、0C '。 2.仿真测定空载长线路电容效应过电压: 1)在无限大电源条件下仿真测定给定线路的传递系数。 2)在有限大电源条件下仿真测定给定线路的传递系数和电压升高倍数。 3)在有限大电源条件下仿真测定给定线路首端、末端和其它位置分别补偿电抗器情况 下的传递系数和电压升高倍数。 3.仿真测定给定线路末端单相接地系数。 4.将仿真测量的结果与依据线路参数计算的结果进行比较和分析。 三、实验说明 1. A TP-EMTP 仿真软件 EMTP (Electro-Magnetic Transient Program )是一种主要应用于电力系统电磁暂态分析的计算程序,也可以理解为一种模型算法,即针对电力系统中各种复杂电磁暂态现象的模拟,提供基础的器件模型,用户可根据实际问题合理选用,从而实现对于实际系统的仿真计算。EMTP 程序中使用的许多模型或模块,都经过了实际线路的实验验证,因而这种方法是当前电力系统暂态分析研究中广泛采用的一种方法。基于EMTP 思想发展出的程序很多,除本实验所用的ATP 外,还有pscad/emtdc, Netomac, PSIM, Microtran ,DCG/EPRI EMTP ,EMTP/RV 等。 本实验使用A TP-EMTP 软件,模拟一套单机系统,如图6-1所示,包括三相电源、三相线路、以及三相补偿电抗器,要求模拟完成(仿真计算)该系统本实验内容中指定的测量。 模拟系统电压等级采用750kV ,电源等值电抗S X (包括'd X 、σX 、m X )取值838.2mH ,线路长度取230km ,补偿电抗器P X 取值5207.2mH ,系统的其它参数取值见附录6-1。

化学危害因素简介——工频电场

3.4 工频电场 3.4.1 物理特性 工频指国家规定的电力系统正常工作的交流电频率,中国标准为50Hz,其他国家也有采用60 Hz的极低频电场。电磁场能量从带电载体向外辐射较微弱,而其中高压母线的工频辐射是高压变电所内工频辐射的主要来源。在生产条件下高压作业人员在进行高压电力运行、检修、维护和巡视带电的高压电器设备时受到高压电场的影响,在高压输电路附近的居民也会受到高压电场的影响。 3.4.2 侵入途径 机体体表入侵。 3.4.3生物学效应 当机体处于高压交流电电场时,可使机体的正负电荷发生迁移运动,产生10-200μA的位移电流,可引起复杂的特别是影响细胞膜的物理化学效应,致使细胞膜的精细功能受到损伤。如神经组织暴露在4Kv/m的电场中,其动作电位幅值有明显而持续的增加。在生物介质中位移电流造成的离子迁移大约几十分之一纳米(nm),但可能引起细胞复杂的物理化学现象的暂时性改变。 3.4.4 临床表现 (1)神经系统 有头昏、头痛、睡眠障碍、疲倦、性欲减退等。脑电图波频率幅值下降,脑血流图波偏低。大鼠在15Kv/m的电场的作用下,神经活动以抑制为主,非条件反射潜伏时间延长。 (2)血液循环系统 有白细胞总数、嗜中性白细胞、网织细胞增加,淋巴细胞减少。心电图检查可见心率加快、P-R间期延长和QRS波增宽。国内报道显示仅出现心律徐缓。 (3)对微量元素如铁、铜、锌、镍等的代谢和分布产生一定的影响。如大鼠在12-15Kv/m电场作用下,铁离子排出量明显增加,而在肺、血液中的含量明显降低。铜离子排出量减少,在脾、脑、心肌和血液

中的含量增加。 (4)生化检查肝糖原减少,血糖增加,血浆铜蓝蛋白增加,甘油三酯及胆固醇未见改变。实验动物脑组织中胆碱酯酶活性有下降趋势,但全血胆碱酯酶活性明显增高。 (5)生殖功能:强电场长期作用对大鼠生殖功能有不良影响,但未见其他报道。在场强为10Kv/m、50Kv/m、200Kv/m作用下,未见致突变作用。 3.4.5处理原则 (1)远离工频源 上述改变均属功能性并具有可逆性。出现神经衰弱综合症和血液、心血管方面变化者,可给予一般对症治疗。 (2)主要防护措施 采用金属网屏蔽。工作场所的高压设备可采用屏蔽线、屏蔽网环、遮板等、应有良好的接地措施。作业人员必须穿合格的以金属丝织成的屏蔽服,并戴防护手套、防护帽等。应定期进行健康检查,有明显的神经衰弱和血液、心血管病变者不宜参加该类工作。 3.4.6国家职业卫生标准 工作场所50Hz的工频电场职业接触限值为5Kv/m。

第5章工频过电压计算

第5章工频过电压计算 目录 空载长线路的电容效应 (3) 空载长线路的沿线电压分布 (3) 并联电抗器的补偿作用 (5) 线路甩负荷引起的工频过电压 (7) 单相接地故障引起的工频过电压 (9) 自动电压调节器和调速器的影响 (12) 限制工频过电压的其他可能措施 (13) 工频过电压的EMTP仿真 (14)

第5章工频过电压计算 工频过电压是电力系统中的一种电磁暂态现象,属于电力系统内部过电压,是暂时过电压的一种。 电力系统内部过电压是指由于电力系统故障或开关操作而引起电网中电磁能量的转化,从而造成瞬时或持续时间较长的高于电网额定允许电压并对电气装置可能造成威胁的电压升高。内部过电压分为暂时过电压和操作过电压两大类。 在暂态过渡过程结束以后出现持续时间大于(5个工频周波)至数秒甚至数小时的持续性过电压称为暂时过电压。由于现代超、特高压电力系统的保护日趋完善,在超、特高压电网出现的暂时过电压持续时间很少超过数秒以上。 暂时过电压又分为工频过电压和谐振过电压。电力系统在正常或故障运行时

可能出现幅值超过最大工作相电压,频率为工频或者接近工频的电压升高,称为工频过电压。工频过电压产生的原因包括空载长线路的电容效应、不对称接地故障引起的正常相电压升高、负荷突变等,工频过电压的大小与系统结构、容量、参数及运行方式有关。一般而言,工频过电压的幅值不高,但持续时间较长,对220kV 电压等级以下、线路不太长的系统的正常绝缘的电气设备是没有危险的。但工频过电压在超(特)高压、远距离传输系统绝缘水平的确定却起着决定性的作用,因为:①工频过电压的大小直接影响操作过电压的幅值;②工频过电压是决定避雷器额定电压的重要依据,进而影响系统的过电压保护水平;③工频过电压可能危及设备及系统的安全运行。 我国超高压电力系统的工频过电压水平规定为:线路断路器的变电站侧不大于.p.u (.p.u 为电网最高运行相电压峰值);线路断路器的线路侧不大于.p.u 。特高压工程工频过电压限值参考取值为:工频过电压限制在.p.u 以下,在个别情况下线路侧可短时(持续时间不大于允许在.p.u 以下。 电力系统中由于出现串、并联谐振而产生的过电压称为谐振过电压。电力系统中的电感,包括线性电感、非线性电感(如高压电抗器和变压器的励磁电抗)和周期性变化的电感,当系统发生故障或操作时,这些电感可能与其串联或并联的电容(如线路电容和串、并联补偿电容)产生谐振从而分别引发线性谐振、铁磁谐振和参数谐振。目前,人们采取改变回路参数、破坏谐振条件、接入阻尼电阻等多项措施,使谐振过电压得到有效限制。 高压输电系统的电磁暂态和过电压的计算可用EMTP 进行仿真计算研究。 空载长线路的电容效应 5.1.1 空载长线路的沿线电压分布 对于长输电线路,当末端空载时,线路的入口阻抗为容性。当计及电源内阻抗(感性)的影响时,电容效应不仅使线路末端电压高于首端,而且使线路首、末端电压高于电源电动势,这就是空载长线路的工频过电压产生的原因之一。 长度为l 的空载无损线路如图5-1所示,E 为电源电动势;1U 、2 U 分别为线路首末端电压;S X 为电源感抗;00C /C L Z =为线路的波阻抗;00C L ωβ=为

、电力系统过电压分几类

28、电力系统过电压分几类?其产生原因及特点是什么? 答:电力系统过电压主要分以下几种类型:大气过电压、工频过电压、操作过电压、谐振过电压。 产生的原因及特点是: 大气过电压:由直击雷引起,特点是持续时间短暂,冲击性强,与雷击活动强度有直接关系,与设备电压等级无关。因此,220KV以下系统的绝缘水平往往由防止大气过电压决定。 工频过电压:由长线路的电容效应及电网运行方式的突然改变引起,特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用。 操作过电压:由电网内开关操作引起,特点是具有随机性,但最不利情况下过电压倍数较高。因此30KV及以上超高压系统的绝缘水平往往由防止操作过电压决定。 谐振过电压:由系统电容及电感回路组成谐振回路时引起,特点是过电压倍数高、持续时间长。 试述电力系统谐波对电网产生的影响? 答:谐波对电网的影响主要有: 谐波对旋转设备和变压器的主要危害是引起附加损耗和发热增加,此外谐波还会引起旋转设备和变压器振动并发出噪声,长时间的振动会造成金属疲劳和机械损坏。 谐波对线路的主要危害是引起附加损耗。 谐波可引起系统的电感、电容发生谐振,使谐波放大。当谐波引起系统谐振时,谐波电压升高,谐波电流增大,引起继电保护及安全自动装置误动,损坏系统设备(如电力电容器、电缆、电动机等),引发系统事故,威胁电力系统的安全运行。 谐波可干扰通信设备,增加电力系统的功率损耗(如线损),使无功补偿设备不能正常运行等,给系统和用户带来危害。 限制电网谐波的主要措施有:增加换流装置的脉动数;加装交流滤波器、有源电力滤波器;加强谐波管理。 7、何谓潜供电流?它对重合闸有何影响?如何防止? 答:当故障线路故障相自两侧切除后,非故障相与断开相之间存在的电容耦合和电感耦合,继续向故障相提供的电流称为潜供电流。 由于潜供电流存在,对故障点灭弧产生影响,使短路时弧光通道去游离受到严重阻碍,而自动重合闸只有在故障点电弧熄灭且绝缘强度恢复以后才有可能重合成功。潜供电流值较大时,故障点熄弧时间较长,将使重合闸重合失败。 为了减小潜供电流,提高重合闸重合成功率,一方面可采取减小潜供电流的措施:如对500kV中长线路高压并联电抗器中性点加小电抗、短时在线路两侧投入快速单相接地开关等措施;另一方面可采用实测熄弧时间来整定重合闸时间。 9、什么叫电力系统理论线损和管理线损? 答:理论线损是在输送和分配电能过程中无法避免的损失,是由当时电力网的负荷情况和供电设备的参数决定的,这部分损失可以通过理论计算得出。管理线损是电力网实际运行中的其他损失和各种不明损失。例如由于用户电能表有误差,使电能表的读数偏小;对用户电能表的读数漏抄、错算,带电设备绝缘不良而漏电,以及无电能表用电和窃电等所损失的电量。 10、什么叫自然功率? 答:运行中的输电线路既能产生无功功率(由于分布电容)又消耗无功功率(由于串联阻抗)。当线路中输送某一数值的有功功率时,线路上的这两种无功功率恰好能相互平衡,这个有

相关文档
最新文档