透射电镜论文

透射电镜论文
透射电镜论文

现代扫描电镜的发展及其在材料科学中的应用

摘要: 介绍了扫描电子显微镜的工作原理和特点,特别是近几年发展起来的环境扫描电镜(ES-EM)及其附带分析部件如能谱仪、EBSD装置等的原理、特点和功能,并结合钢铁材料研究展望了其应用前景。

关键词: 环境扫描电镜;能谱仪;EBSD装置 1 扫描电镜原理

扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小(直径一般为1~5nm)的电子束(相应束流为10-11~10-12A)。在末级透镜上方扫描线圈的作用下,使电子束在试样表面做光栅扫描(行扫+帧扫)。扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。扫描电镜的主要特征如下:

(1)能够直接观察大尺寸试样的原始表面; (2)试样在样品室中的自由度非常大; (3)观察的视场大;

(4)图像景深大,立体感强;

(5)对厚块试样可得到高分辨率图像; (6)辐照对试样表面的污染小;

(7)能够进行动态观察(如动态拉伸、压缩、弯曲、升降温等); (8)能获得与形貌相对应的多方面信息;

(9)在不牺牲扫描电镜特性的情况下扩充附加功能,如微区成分及晶体学分析。 2 近代扫描电镜的发展

扫描电镜的设计思想早在1935年便已提出,1942年在实验室制成第一台扫描电镜,但因受各种技术条件的限制,进展一直很慢。1965年,在各项基础技术有了很大进展的前提下才在英国诞生了第一台实用化的商品仪器。此后,荷兰、美国、西德也相继研制出各种型号的扫描电镜,日本二战后在美国的支持下生产出扫描电镜,中国则在20世纪70年代生产出自己的扫描电镜。前期近20年,扫描电镜主要是在提高分辨率方面取得了较大进展,80年代末期,各厂家的扫描电镜的二次电子像分辨率均已达到4.5nm。在提高分辨率方面各厂家主要采取了如下措施:

(1)降低透镜球像差系数,以获得小束斑;

(2)增强照明源即提高电子枪亮度(如采用LaB6或场发射电子枪); (3)提高真空度和检测系统的接收效率;

(4)尽可能减小外界振动干扰。目前,采用钨灯丝电子枪扫描电镜的分辨率最高可以达到3.5 nm;采用场发射电子枪扫描电镜的分辨率可达1 nm。到20世纪90年代中期,各厂家又相继采用计算机技术,实现了计算机控制和信息处理。 2.1 场发射扫描电镜

采用场致发射电子枪代替普通钨灯丝电子枪,这项技术从1968年就已开始应用,由于该电子枪的亮度(即发射电子的能力)大为提高,因而可得到很高的二次电子像分辨率。采用场发射电子枪需要很高的真空度,在高真空度下由于电子束的散射更小,其分辨率进一步得到提高。近几年来,各厂家采用多级真空系统(机械泵+分子泵+离子泵),真空度可达10-7Pa。同时,采用磁悬浮技术,噪音振动大为降低,灯丝寿命也有增加。束流稳定度在12 h内<0.8 %。

2.2 分析型扫描电镜及其附件

所谓分析型扫描电镜即是指将扫描电镜配备多种附加仪器,以便对被测试样进行多种信息的分析,其附件一般有如下几种。 2.2.1 能谱仪附件

能谱仪(即X射线能量色散谱仪,简称EDS)通常是指X射线能谱仪。自能谱仪在20世纪70 年代末和80年代初期普遍推广以来,首先是在扫描电镜和电子探针分析仪器上得到应用,其优点是可以分析微小区域(几个微米)的成分,并且可以不用标样。能谱仪收集谱线时一次即可得到可测的全部元素,因而分析速度快,另外,在扫描电镜所观察的微观领域中,一般并不要求所测成分具有很高的精确度,所以,扫描电镜配备能谱仪得到了广大用户的认可,并且其无标样分析的精确度能胜任常规研究工作。目前,最先进的采用超导材料生产的能谱仪,分辨率达到了5~15 eV,已超过了25 eV分辨率的波谱仪,这是目前能谱仪发展的最高水平。 2.2.2 EBSD 附件

早在20世纪70年代中期,有些材料工作者在扫描电镜上发现了背散射电子的衍射现象,由于这些衍射花样与所测单晶体的晶体结构有关,便将其用作材料的结构研究。直到90年代中期,有些厂家针对背散射电子衍射作用制作了专门的探测器并引进计算机技术,形成了背散射电子衍射分析技术,这就是我们通常说的EBSD(电子背散射衍射)。EBSD主要可做单晶体的物相分析,同时提供花样质量、置信度指数、彩色晶粒图,可做单晶体的空间位向测定、两颗单晶体之间夹角的测定、可做特选取向图、共格晶界图、特殊晶界图,同时提供不同晶界类型的绝对数量和相对比例,即多晶粒夹角的统计分析、晶粒取向的统计分析以及它们的彩色图和直方统计图,还可做晶粒尺寸分布图,将多颗单晶的空间取向投影到极图或反极图上可做二维织构分析,也可做三维织构即ODF分析。 2.2.3 波谱仪附件

波谱仪(即X射线波长色散谱仪,简称WDS)本是随着电子探针的发明而诞生的,它是电子探针的核心部件,用作成分分析。成分分析的原理可用K= (d/R)L公式表示。K是电子束激发试样时产生的X射线波长,跟元素有关;d是分光晶体的面间距,为已知数;R是波谱仪聚焦园的半径,为已知数;L是X射线发射源与分光晶体之间的距离。对于不同的L则有不同的X射线波长,根据X射线波长就可得知是什么元素。因此,波谱仪是通过机械装置的运动改变距离L来实现成分分析。

3 现代扫描电镜的发展

近代扫描电镜的发展主要是在二次电子像分辨率上取得了较大的进展。但对不导电或导电性能不太好的样品还需喷金后才能达到理想的图像分辨率。随着材料科学的发展特别是半导体工业的需求,要尽量保持试样的原始表面,在不做任何处理的条件下进行分析。早在20世纪80年代中期,便有厂家根据新材料(主要是半导体材料)发展的需要,提出了导电性不好的材料不经过任何处理也能够进行观察分析的设想,到90年代初期,这一设想就已有了实验雏形,90年代末期,已变成比较成熟的技术。 3.1 低电压扫描电镜

在扫描电镜中,低电压是指电子束流加速电压在1 kV左右。此时,对未经导电处理的非导体试样其充电效应可以减小,电子对试样的辐照损伤小,且二次电子的信息产额高,成像信息对表面状态更加敏感,边缘效应更加显著,能够适应半导体和非导体分析工作的需要。但随着加速电压的降低,物镜的球像差效应增加,使得图像的分辨率不能达到很高,这就是低电压工作模式的局限性。

3.2 低真空扫描电镜

低真空为是为了解决不导电试样分析的另一种工作模式。其关键技术是采用了一级压差光栏,实现了两级真空。发射电子束的电子室和使电子束聚焦的镜筒必须置于清洁的高真空状态,

一般用1个机械泵和扩散泵来满足之。而样品室不一定要太高的真空,可用另一个机械泵来实现样品室的低真空状态。当聚焦的电子束进入低真空样品室后,与残余的空气分子碰撞并将其电离,这些离化带有正电的气体分子在一个附加电场的作用下向充电的样品表面运动,与样品表面充电的电子中和,这样就消除了非导体表面的充电现象。 3.3 环境扫描电镜(ESEM) 上述低真空扫描电镜样品室最高低真空压力为400 Pa,现在有厂家使用专利技术,可使样品室的低真空压力达到 2 600Pa,也就是样品室可容纳分子更多,在这种状态下,可配置水瓶向样品室输送水蒸气或输送混合气体,若跟高温或低温样品台联合使用则可模拟样品的周围环境,结合扫描电镜观察,可得到环境条件下试样的变化情况。环扫实现较高的低真空,其核心技术就是采用两级压差光栅和气体二次电子探测器,还有一些其它相关技术也相继得到完善。ESEM 的特点是:

(1)非导电材料不需喷镀导电膜,可直接观察,分析简便迅速,不破坏原始形貌;

(2)可保证样品在100 %湿度下观察,即可进行含油含水样品的观察,能够观察液体在样品表面的蒸发和凝结以及化学腐蚀行为;

(3)可进行样品热模拟及力学模拟的动态变化实验研究,也可以研究微注入液体与样品的相互作用等。因为这些过程中有大量气体释放,只能在环扫状态下进行观察。环境扫描电镜技术拓展了电子显微学的研究领域,是扫描电子显微镜领域的一次重大技术革命,是研究材料热模拟、力学模拟、氧化腐蚀等过程的有力工具,受到了国内广大科研工作者的广泛关注,具有广阔的应用前景。

4 高温样品台及动态拉伸装置的功能 4.1 高温样品台的功能

利用高温台在环境模式下对样品进行加热并采集二次电子信号可进行适时动态观察。而在普通高真空扫描电镜和低真空扫描电镜中,只能对极少数特殊样品在高温状态下进行观察,并要求在加热过程中不能产生气体、不能发出可见光和红外辐射,否则,会破坏电镜的真空,并且二次电子图像噪音严重,乃至根本无法成像。高温台配有专用陶瓷GSED(气体二次电子探头),可在环境模式下,在高达1500e温度下正常观察样品的二次电子像。加热温度范围从室温到1500e,升温速度每分钟1~300e。环境扫描电镜的专利探测器可保证在足够的成像电子采集时抑制热信号噪音,并对样品在高温加热时产生的光信号不敏感。而这些信号足以使其它型号扫描电镜中使用的普通二次电子探头和背散射电子探头无法正常工作。 4.2 动态拉伸装置的功能

最新的动态拉伸装置配有内部马达驱动器、旋转译码器、线性位移传感器,由计算机进行控制和数据采集,配合视频数据采集系统,可实现动态观察和记录。可从材料表面观察在动态拉伸条件下材料的滑移、塑性形变、起裂、裂纹扩展(路径和方向)直至断裂的全过程等。该装置还可附带3点弯曲和4点弯曲装置,具有弯曲功能,从而可以研究板材在弯曲状态下的形变、开裂直至断裂的情况。最大拉伸力为2000N,3点弯曲最大压力为660N。动态拉伸装置可配合多种扫描电镜工作。

5 扫描电镜在材料研究中的应用

扫描电镜结合上述各种附件,其应用范围很广,包括断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析等等,结合钢铁材料的研究粗略列举如下。

(1)机械零部件失效分析,可根据断口学原理判断断裂性质(如塑性断裂、脆性断裂、疲劳断裂、应力腐蚀断裂、氢脆断裂等),追溯断裂原因,调查断裂是跟原材料质量有关还是跟后续加工或

使用情况有关等等。

(2)钢铁产品质量和缺陷分析,如连铸坯裂纹、气泡、中心缩孔;板坯过烧导致的晶界氧化;轧制

过程造成的机械划伤、折叠、氧化铁皮压入;过酸洗导致的蚀坑;涂层剥落及其它缺陷等等。由于扫描电镜的分辨率和景深比电子探针的高,因而,可从新鲜断口上获得更为全面的信息,如晶界碳化物、中心疏松等。

(3)利用高温样品台,可以观察材料在加热过程中组织转变的过程,研究不同材料在热状态下转变的差异。在材料工艺性能研究方面,可以直接观察组织形态的动态变化,弥补了以前只能通过间接观察方法的不足。例如,耐火材料和铁氧体的烧结温度都在1000e以上,实验中可以观察材料的原位变化,待冷却下来后,结合能谱仪和EBSD,进而可以分析变化后的物相。 (4)利用拉伸样品台,可预先制造人工裂纹,研究在有预裂纹情况下材料对裂纹大小的敏感性以及裂纹的扩展速度,有益于材料断裂韧性的研究。例如,钢帘线因其在后续加工过程中要拉拔到0.2mm左右的直径,对夹杂物非常敏感,因此,其炼钢过程对夹杂物的控制要求特别严格。采用本仪器,可预先制作一个有夹杂物的钢帘线试样,在拉伸过程中观察夹杂物附近钢基的变化,直至开裂,然后对照钢帘线实物断口,讨论夹杂物类型、形态、尺寸、分布对断裂的影响。 (5)利用EBSD装置,对汽车板等小晶粒的织构产品,可在轧制并退火之后,统计各种取向晶粒的比例,研究轧制和退后工艺对织构的影响。又如焊接试样的熔合区为凝固状态的柱状晶,因其是定向生长,存在织构,可用EBSD得到各种取向晶粒的分布情况,并可进行统计,这对焊接材料、焊接工艺以及焊接性能的研究又扩展到了晶体学研究的层次。 6 结语

新一代环境扫描电镜与能谱仪和EBSD配合,可在得到较好的试样形貌像的前提下同时得到成分信息和晶体学的信息。最近几年实现了拉伸台与计算机的完美结合,有比较完善的材料动态拉伸扫描电镜,研究才有可能开展得更为深入。环境扫描电镜真空系统和探测器等相关技术的成熟使得高温样品台的应用更安全可靠。可以预期,高温样品台、动态拉伸台、能谱仪、EBSD和环境扫描电镜组合,必将在钢铁材料工艺研究和品种开发等方面发挥更大的作用。

参考文献:

[1] 陈世朴.金属电子显微分析[M].北京:机械工业出版社,1992. [2] 谈育煦.材料研究方法[M].北京:机械工业出版社,2004.5. [3] 陈光, 谢海根. 江西冶金[J], 2002, 22: 1

[4] 周玉 . 材料分析方法 [M]. 北京 : 机械工业出版社 ,2003 [5] 王凤莲, 李莹. 电子显微学报[J], 2004, 23(4): 511

[6] 卢寿慈, 翁达. 界面分选原理与应用[M]. 北京: 冶金工业出版社, 1991: 37 [7] 尚进,马骥,李荣玉等.液晶显示模组的机械试验与分析[J]. 液晶与显示,2008,12: 711. [8] 廖乾初,蓝芬兰. 扫描电镜分析技术与应用[M]. 机械工业出版社,1990.

[9] 谷志华.薄膜晶体管(TFT)阵列制造技术[M].复旦大学出版社,2007.404- 408 [10] 应根裕,胡文波,邱勇.平板显示技术[M].人民邮电出版社,2003.1- 10..

扫描电镜经典总结教案资料

扫描电镜经典总结

? 扫描电镜(SEM) ? 透射电镜(TEM)? 原子力显微镜(AFM)? X射线衍射(XRD) ? 元素分析(EA)显微分析技术——电子显微镜 一束电子射到试样上,电子与物质相互作用,当电子的运动方向被改变,称为散射。 透射电子直接透射电子,以及弹性或非弹性散射的透射电子用于透射 电镜(TEM)的成像和衍射 二次电子 入射电子与样品中原子的价电子发生非弹性散射作用而损 失的那部分能量(30~50eV)激发核外电子脱离原子,能量 大于材料逸出功的价电子可从样品表面逸出,成为真空中的 自由电子,此即二次电子。在电场的作用下它可呈曲线运动 进入检测器,使表面凹凸的各个部分都能清晰成像。 二次电子试样表面状态非常敏感,能有效显示试样表面的

微观形貌;二次电子的分辨率可达5~10nm,即为扫描电镜 的分辨率。 二次电子的强度主要与样品表面形貌相关。二次电子和背 景散射电子共同用于扫描电镜(SEM)的成像。 当探针很细,分辨高时,基本收集的是二次电子而背景电 子很少,称为二次电子成像(SEI)。 背景散射电子 入射电子穿达到离核很近的地方被反射,没有能量损失;既包括与原子核作用而形成的弹性背散射电子,又包括与样 品核外电子作用而形成的非弹性背散射电子,前者的份额远 大于后者。 背散射电子反映样品表面的不同取向、不同平均原子量的 区域差别,产额随原子序数的增加而增加;利用背散射电子 为成像信号,可分析形貌特征,也可显示原子序数衬度而进 行定性成分分析。 特征X射线入射电子和原子中的内层电子发生非弹性散射作用而损失一 部分能量(几百个eV),激发内层电子发生电离,形成离 子,该过程称为芯电子激发。除了二次电子外,失去内层电 子的原子处于不稳定的较高能量状态,将依一定的选择定则 向能量较低的量子态跃迁,跃迁过程中发射出反映样品中元 素组成信息的特征X射线,可用于材料的成分分析。

电镜专业词汇-章晓中

电镜词汇 说明:这些词汇按照各章节内容顺序总结,看词汇的同时也在把知识点复习 TEM_ Transmission Electron Microscope 透射电子显微镜 SEM_ Scanning Electron Microscope 扫描电子显微镜 EPMA_ Electron Probe Microanalyzer 电子探针显微分析 STEM_ Scanning Transmission Electron Microscope 扫描透射电子显微镜 EDS_ X-ray energy dispersive spectrometer X光能谱分析 CBED_ Convergent Beam Electron Diffraction 会聚束电子衍射 EELS_ Electron Energy Loss Spectrometry 电子能量损失能谱 EBSD_ Electron Backscattered Diffraction 电子背散射衍射 SPM_ Scanning Probe Microscope 扫描探针显微镜 STM_ Scanning Tunneling Microscope 扫描隧道显微镜 AFM_ Atomic Force Microscope 原子力显微镜 HREM_ High Resolution Electron Microscope 高分辨电子显微镜 NBD_ Nano-beam Electron diffraction 纳电子衍射 resolution分辨率 diffraction衍射 Rayleigh criterion瑞利判据 accelerating voltage 加速电压 aberration像差 spherical aberration球差 chromatic aberration色差 astigmatism像散 distortion畸变 short magnetic lens短磁透镜magnification放大率 Polepieces极靴 C s: spherical aberration coefficient球差系数α: s emi-angle半角 tungsten wire钨丝 FEG: Field Emission Gun场发射枪condenser lens会聚镜 specimen样品 Objective lens物镜 objective aperture物镜光阑 SAD_ selected area diffraction选取衍射SAD aperture选区光阑 Intermediate lens中间镜 Projector lens投影镜 screen光屏 diaphragm隔片(光阑外的部分) insert插入 pattern图案,花样 camera chamber照相室 CCD_ Charge-Coupled Devices电荷耦合器件IP_ Imaging plate成像板 vacuum真空 DP_ Diffusion Pump扩散泵 side-entry specimen holder侧入样品杆grid微栅 Single-tilt holder单倾台 alignment对中 Thin foil薄膜 cross section specimen界面样品prethinning预减薄 dimpler凹坑减薄仪 Tripod polisher三角抛光器 Twin-jet electropolishing apparatus 双喷电解抛光装置 Ion Milling离子减薄 slice薄片 Ultramicrotomy超薄切片法 Extraction Replication萃取复型 FIB_ Focused Ion Beam聚焦离子束(Ga)inert惰性 (in)elastic scattering(非)弹性散射Bragg’s Law布拉格定律 Reciprocal lattice倒易点阵 Ewald Sphere爱瓦德球 Systematic absence系统消光 Relrod倒易杆 camera constant相机常数

扫描电子显微镜的早期历史和发展趋势

扫描电子显微镜的早期历史和发展趋势 扫描电子显微镜(SEM)的基本原理在20世纪30年代到40年代初由Knoll, 德国的von Ardenne和美国的Zworykin,Hillier等人确立。扫描电镜的研究在英国剑桥大学电机工程学系Charles Oatley博士学位的一系列项目中复苏。在剑桥大学的McMullan和Smith的早期研究之后,SEM的第一次产业应用在加拿大纸浆和造纸研究所实现。不久之后,在美国的Westinghouse,SEM被应用于集成电路,并在英国和日本实现了扫描电镜的商业化。截至目前,SEM及其他显微和微分析技术在世界范围内发展,并被应用于越来越多的领域。 关键词:扫描电子显微镜(SEM),成像技术,表面形貌,成分衬度,电子通道花样(ECP),电子背散射花样(EBSP)。 Oatley描述了SEM早期历史和直至其第一次商业化的发展状况。第一台商业SEM在英国和日本制造。SEM的历史也被许多作者描述过。商用SEM性能的提高和操作的简便已经很出色并有望继续进步。 Knoll用仪器得到了四个非常重要的实验结果Fig.1:(i)他从固态多晶样品中得到了样品的吸收电流像Fig.2.(ii) 这张照片显示的晶粒间取向依赖衬度是由电子穿隧效应的对比差异引起的。(iii)他测量了不同材料的二次电子(SE)加背散射电子(BSE)系数是入射电子能量E0的函数,并且证明当SE+BSE系数为1时,有第二个交叉点,此时E0约为 1.5keV。样品的充电最小化并且保持稳定。(iv)根据一个早期关于定量电压衬度的译文,测量了束电子对非导电颗粒充电后颗粒的电势。 Figure 3 是由von Ardenne提出的产生二次电子的电子散射模型,模型表明初始束展宽;大角度散射;扩散;BSE逃逸以及每个阶段的二次电子激发。他提出了两种高分辨率SE图像。第一种(现在称为SE-I图像的详细讨论见Peters)E0等于数十电子伏,此时电子的穿透深度(几个微米)比二次电子的逃逸深度大很多倍(几个纳米)。SE-I激发是在束电子入射点的一个局部的区域内发散,这个范围比BSE小。他提出SE-I能提供一个高分辨率的SE图像(特殊情况除外)。他的第二个观点(现在称为低压SEM)是将E0减小到1keV,此时穿透深度达到束电子直径。 Zworykin给出了最早的二次电子图像。这些工作者也建立了一台密封的场发射(FE)SEM,并且为X射线微区分析和电子能量损失能谱仪(EELS)奠定了基础。当时人们热衷于似乎会更加成功的透射电镜(TEM),他们在SEM方面的工作没有继续。

材料测试技术复习知识点

判断题: 滤波片的K吸收限应大于或小于Kα和Kβ。(×) 满足布拉格方程时,各晶面的散射线相互干涉加强形成衍射线。(√) 当物平面与物镜后焦平面重合时,可看到形貌像。(×) 原子序数Z越大的原子,其对入射电子的散射的弹性散射部分越小。(×) TG曲线上基本不变的部分叫基线。(√) 有λ0的X射线光子的能量最大。(√) 衍射指数可以表示方位相同但晶面间距不同的一组晶面。() 调节中间镜的焦距,使其物平面与物镜的像平面重合,叫衍射方式操作。(×) 蒙脱石脱层间水后,晶格破坏,晶面间距增加。(对) 当高速电子的能量全部转换为x射线光子能量时产生λ0,此时强度最大,能量最高。(×) 弦中点法是按衍射峰的若干弦的中点连线进行外推,与衍射峰曲线相交的点。(×) 减弱中间镜的电流,增大其物距,使其物平面与物镜的后焦平面重合,叫衍射方式操作。(√) SEM一般是采用二次电子成像,这种工作方式叫发射方式。(√) 基线是ΔΤ=0的直线。(×) 连续X射谱中,随V增大,短波极限值增大。(×) 凡是符合布拉格方程的晶面族都能产生衍射线。(×) 色差是由于能量非单一性引起的。(√) 当中间镜的物平面与物镜背焦平面重合时,可看到形貌像。(×) 非晶质体重结晶时DTA曲线上产生放热峰。(√) 填空题: 请按波长由短到长的顺序对X射线,可见光,红外线,紫外线进行排练:X射线<紫外线<可见光<红外线。 X射线本质上是一种电磁波。 波可以绕过障碍物继续传播,这种现象叫做波的衍射。 相对于波长而言,障碍物的尺寸越大,衍射现象越不明显。 系统消光包括点阵消光和结构消光。 X射线衍射分析时,晶胞的形状和尺寸与衍射线的分布规律有关;原子的种类及其在晶胞中的位置与衍射线的强度有关。X射线衍射分析时,衍射线的低角度线和高角度线中比较重要的是低角度线,强线和弱线更重要的是强线。 在扫描电镜中,可以利用会聚透镜和电磁透镜两种透镜对电子进行会聚。 在波谱仪和能谱仪中,能同时测量所有元素的是能谱仪,定量分析准确度高的是波谱仪。 扫描电镜的二次电子像和背散射电子像中,分辨率较高的是二次电子像,形成原序数衬度的是背散射电子像。 吸收限的应用主要是:合理的选用滤波片材料害人辐射源的波长(即选阳极靶材料)以便获得优质的花样衍射。

电子显微镜的发展及现状

电子显微镜的发展及现状 20130125001 李智鹏 2014/10/8

电子显微镜的发展及现状 摘要:本文综述了电子显微镜的发展,电子显微镜的主要分类,它们在生活当中的应用以及国内显微镜的现状。 关键词:电子显微镜发展应用现状 1、引言 显微镜技术的发展,是其他科学技术发展的先导,在17世纪60年代出现的光学显微镜,引发了一场广泛的科技进步, 促进了细胞学和细菌学的发展。使人类的观测范围进入微观世界,导致了一大批新的领域进入人类的研究范围,促进了许多学科的创立和发展。 三百年来,光学显微镜巳经发展到了十分完善的地步。而我们知道,分辨率极限的量级为入/a带,对于光学显微镜,最短可见光波长约为400。人,最大数值孔径约1。4,故只能获得亚微米量极的分辨率。于是,人们开始寻找较短波长的光源,X射线波长为几个埃,Y射线波长更短,但它们都很难直接聚焦,所以不能直接用于显微镜。[1] 20世纪30年代出现的电子显微镜技术,更进一步拓宽了人类的观测领域,同样导致了大批新学科、新技术的出现.可以说,现代科学技术的研究工作,已很大程度依赖于电子显微镜技术的使用,尤其是在纳米技术、材料技术、生命科学技术等研究方面,没有电子显微镜技术的帮助,它们几乎是无法进行的.随着科学技术的不断进步,电子显微镜技术的应用越来越广泛,同时电子显微镜技术本身也在不断快速发展.从最初的电子显微镜开始,已经逐步发展出扫描电子显微镜、扫描隧道电子显微镜、原子力电子显微镜、扫描离子电导显微镜、扫描探针电子显微镜等.这些先进的仪器现已广泛地应用于物理学、化学、材料科学和生命科学领域的研究和检测工作中.在纺织科技研究工作和纺织材料及纺织品检测过程中也得到了广泛的应用[2]。本文仅对电子显微镜技术在出土古代纺织品检测方面的应用作一初步探讨。电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展[3]。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖[4]。 2、电子显微镜的发展过程 20世纪30年代,德国科学家诺尔(M. knoll)和卢斯卡(E. Ruska)在电子光学的基础上,研制出了世界上第一台透射式电子显微镜(Transmission ElectronMicroscope,TEM,简称透射电镜),成功地得到了用电子束拍摄的铜网像,尽管放大倍数只有12倍,但它为以后电镜的发展和应用奠定了基础.此后经过科学家们半个多世纪的努力和改进,透射电镜的分辨本领现已达到了0. 1nm~0. 2nm,几乎能分辨所有的原子.此后又相继出现了能直接观察样品表面立体结构的扫描电子显微镜(Scanning ElectronMicroscope, SEM,简称扫描电镜),其分辨率为3nm~6nm和能进行活体观察的超高压电镜,实现了人们直接观察生物大分子结构和重金属原子图像的愿望[5]。 2.1扫描式电子显微镜扫描式电子显微镜中的电子束,在样品表面上动态地扫描,以 一定速度,逐点逐行地扫描样品的表面.样品逐点地发出带有形态、结构和化学组分信息的二次电子,这些电子由检测器接收处理,最后在屏幕上显示形态画面.图像为间接成像,其加速电压为1kV~30kV. 2.2扫描隧道显微镜(ScanningTunnelingMicroscope,STM)G.Binnig和H.Rohrer在 1981年研制成功扫描隧道显微镜,并因此获得1986年诺贝尔物理奖.扫描隧道显微镜(STM)是利用导体针尖与样品之间的隧道电流,并用精密压电晶体控制导体针尖沿样品表面扫描,从而能以原子尺度记录样品表面形貌的新型仪器.其分辨率已达到1nm~2nm,

组胚学知识点

组胚学知识点 第1章组织学绪论 本章重点:组织学的基本概念和基本组织的内容,各种显微镜的不同用途,组织学观察标本的基本制作方法,常规(HE)染色法,特殊染色技术的基本概念。 组织学的概念: 组织学:研究机体微细结构及其相关功能的科学。 组织构成:细胞群和细胞外基质构成。 细胞外基质:由细胞分泌形成 四大基本组织:上皮组织、结缔组织、肌组织和神经组织。 光镜技术:(光学显微镜分辨率0.2um) 石蜡切片术:取材和固定、脱水和包埋、切片(5 ~10 μm 厚)和染色、封片染色方法: 苏木精- 伊红染色法(HE染色法):苏木精为碱性染料,使染色质和核糖体着紫蓝色;伊红为酸性染料,使胞质和细胞外基质着红色。 镀银染色法 嗜酸性,嗜碱性 电镜技术:(电子显微镜分辨率0.2nm) 透射电镜术 扫描电镜术:用于观察组织细胞表面结构,具有真实的立体感,无需制备切片 组织化学术: 一般组织化学术(糖类: PAS(过碘酸希夫)反应,显示多糖和糖蛋白,呈紫红色) 免疫组织化学术 原位杂交术 第2章上皮组织 本章重点:上皮组织的一般特点,上皮组织的特殊结构。 特点:细胞多、排列紧、间质少;无血管;有极性(游离面、基底面和侧面);有基膜;功能多样化。 分类:被覆上皮-分布于体表,体内管、腔、囊的内表面 腺上皮-构成腺体

被覆上皮:被覆上皮的类型和主要分布 上皮类型主要分布 单层 上皮单层扁平上皮 内皮:心、血管、淋巴管 间皮:心包膜、胸膜、腹膜 其它:肺泡、肾小囊 单层立方上皮甲状腺滤泡、肾小管等 单层柱状上皮胃、肠、胆囊、子宫等 假复层纤毛柱状上皮呼吸管道 复层 上皮复层扁平上皮 角化:皮肤表皮 未角化:口腔、食管和阴道 复层柱状上皮 眼睑结膜、男性尿道等 变移上皮肾盏、肾盂、输尿管、膀胱 变移上皮特点:细胞为多层,细胞形状和层数因器官功能状态不同而异 细胞表面的特化结构: 1、游离面: a、微绒毛:细胞膜、胞质、纵行微丝组成。微丝下端可附着于终末网。直径0.1um,使细胞表面积显著增大,有利于细胞的吸收功能。(光镜下可见小肠上皮细胞的纹状缘、肾小管的刷状緣) b、纤毛:长5~10 μm ,直径约0.2 μm ,光镜下可见,具有节律性定向摆动功能。内部结构:周围9 组二联微管,中央2条单微管(9 + 2);动力蛋白臂,分解ATP后附着相邻微管,产生位移或滑动。 2、侧面: a紧密连接:又称闭锁小带,位于细胞侧面顶端,有屏障作用可阻挡物质穿过细胞间隙。 b中间连接:又称粘着小带,位于紧密连接下方,有粘着作用,保持细胞形状,传递细胞收缩力。 c桥粒:呈斑状连接,牢固的机械性连接作用,使上皮耐受摩擦(皮肤、食管)。d缝隙连接:又称通讯连接,细胞膜中有许多分布规律的连接小体(由6个连接蛋白分子围成,中央有直径2nm的管腔)。 以上四种细胞连接,只要有两个或两个以上紧邻存在,则称连接复合体。 3、基底面: a、基膜:由上皮基底面与深部结缔组织共同形成的薄膜,由基板(分为透明层和致密层,由Ⅳ型胶原蛋白、层粘连蛋白、硫酸肝素蛋白多糖构成,上皮细胞分泌)和网板(分为网状纤维和基质, 结缔组织的成纤维细胞产生)构成。 功能:支持和固着; 半透膜, 利于物质交换; 引导上皮细胞移动并影响细胞分化b、质膜内褶:上皮细胞基底面胞膜垂直折向胞质形成的皱褶,内含长杆状线粒体;主要见于肾小管。 功能:扩大细胞基底部的表面积,有利于物质转运。 C、半桥粒:位于上皮细胞基底面和基膜之间将上皮细胞固着在基膜上。

材料分析知识点总结

材料分析(不完全整理) 卜 1.名词解释 吸收限:um随λ的变化是不连续的,期间被尖锐的突变分开,突变对应的波长为K吸收限. 短波限:连续X射线谱在短波方向上有一个波长极限,称为短波限λ。它是由光子一次碰撞就耗尽能量所产生的X射线. 景深(Df):透镜物平面允许的轴向偏差定义为透镜的景深。或者说试样超越物平面所允许的厚度。 焦长(Dl):透镜像平面允许的轴向偏差定义为焦长(深),或者说观察屏或照相底版沿镜轴所允许的移动距离。 差热分析(DTA):在程序控制温度条件下,测量样品与参比物之间的温度差与温度关系的一种热分析方法。 热重分析:是指在程序温度控制下,测量物质的质量(m)与温度关系的一种技术。ICTA的命名是Thermogravimetry,我国的标准命名是“热重法”简称“TG”。明场成像:让投射束通过物镜光阑而把衍射束挡掉得到的图像衬度的方法叫做明场成像 暗场成像:将明场成像中物镜光阑的位置移动一下,使其光阑套住hkl斑点而把透射束挡掉就得到图像衬度的方法叫暗场成像 置信度:采用一种概率的陈述方法,也就是数理统计中的区间估计法,即估计值与总体参数在一定允许的误差范围以内,其相应的概率有多大,这个相应的概率称作置信度。 检出限:用于表示在适当置信度下,能检测出的待测元素的最小浓度或最小质量。像衬度:像衬度是图像上不同区域间明暗程度的差别。透射电镜的像衬度来源于样品对入射电子束的散射。 荧光X射线:由X射线激发所产生的特征X射线称为二次特征X射线或荧光X 射线。 *试分析下属工件选择一样恰当的的仪器分析方法 1.某结构件残余应力的测定--XRD(X射线衍射) 2.测定某件金属的熔点或比热容 --DTA(差热分析/DSC(差示扫描量热分析) 3.首饰中所含元素的无损检--EPMA(电子探针)/EDS(能谱仪)/WDS(波谱仪) 4.测定某种废水中的微量元素含量—AAS(原子吸收光谱)/AES(原子发射光谱) 5.测定纳米粉末的晶形及晶粒度的大小-- XRD(X射线衍射) 材料端口形貌观察—SEM(扫描电子显微镜)/TEM复型(透射电镜复型) 7.区别TiAl3、TI3AL-- XRD(X射线衍射) 8.分析材料的热稳定性—TG(热重分析) 9有机物材料的鉴别—FTIR(红外光谱分析) 1.晶粒度的测定用XRD 2.有机物FTIR 3.热重分析TG

(完整word版)扫描电镜的综述及发展..

扫描电镜的综述及发展 1 扫描电镜的原理 扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。 扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小(直径一般为1~5nm)的电子束(相应束流为10-11~10-12A)。在末级透镜上方扫描线圈的作用下,使电子束在试样表面做光栅扫描(行扫+帧扫)。入射电子与试样相互作用会产生二次电子、背散射电子、X射线等各种信息。这些信息的二维强度分布随着试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等等),将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图像[1]。如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储。 扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。机构组成 扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。 真空系统 真空系统主要包括真空泵和真空柱两部分。真空柱是一个密封的柱形容器。 真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。

材料现代分析方法知识点

材料现代分析方法知识点 1.什么是特征X射线? 当管压增至与阳极靶材对应的特定值U k时,在连续谱的某些特定波长位置上出现一系列陡峭的尖峰。该尖峰对应的波长λ与靶材的原子序数Z存在着严格的对应关系,尖峰可作为靶材的标志或特征,故称尖峰为特征峰或特征谱。 2.什么是电子探针的点分析、线分析、面分析? ①点分析:将电子束作用于样品上的某一点,波谱仪分析时改变分光晶体和探测器的位置,收集分析点的特征X射线,由特征X射线的波长判定分析点所含的元素;采用能谱仪工作时,几分钟内可获得分析点的全部元素所对应的特征X射线的谱线,从而确定该点所含有的元素及其相对含量。②线分析:将探针中的谱仪固定于某一位置,该位置对应于某一元素特征X射线的波长或能量,然后移动电子束,在样品表面沿着设定的直线扫描,便可获得该种元素在设定直线上的浓度分布曲线。改变谱仪位置则可获得另一种元素的浓度分布曲线。③面分析:将谱仪固定于某一元素特征X射线信号(波长或能量)位置上,通过扫描线圈使电子束在样品表面进行光栅扫描(面扫描),用检测到的特征X射线信号调制成荧光屏上的亮度,就可获得该元素在扫描面内的浓度分布图像。 3. XRD对样品有何要求? 粉末样品应干燥,粒度一般要求约10~80μm,应过200目筛子(约0.08mm),且避免颗粒不均匀。块状样品应将其处理成与窗孔大小一致,可扫描宽度宜大于5mm,小于30mm,至少保证一面平整。 4.电子探针分析原理? 电子探针是一中利用电子束作用样品后产生的特征X射线进行微区成分分析的仪器。其结构与扫描电竞基本相同,所不同的只是电子探针检测的是特征X射线,而不是二次电子或背散射电子。 5.结构因子的计算?P68 (1)简单点阵:简单点阵的晶胞仅有一个原子,坐标为(0,0,0),即X=Y=Z=0,设原子的散射因子为f,则(公式3-69) (2)底心点阵:底心点阵的晶胞有两个原子,坐标分别为(0,0,0),(1/2,1/2,0)各原子的散射因子为f,则(公式3-70) (3)体心点阵:体心点阵的晶胞有两个原子,坐标分别为(0,0,0),(1/2,1/2,1/2)各原子的散射因子为f,则(公式3-71) (4)面心点阵:面心点阵的晶胞有4个原子,坐标分别为(0,0,0),(1/2,1/2,0),(1/2,0,1/2),(0,1/2,1/2)各原子的散射因子为f,则(公式3-72) 6.X射线衍射与电子衍射的关系(比较)?P150 (1)电子波的波长短,远远小于X射线,同等衍射条件下,它的衍射半角很小,衍射束集中在前方额,而x射线的衍射半角可接近90度。 (2)电子衍射反射球半径大 (3)电子衍射散射强度高,物质对电子的散射比对x射线散射强约1000000倍 (4) 电子衍射不仅可以进行微区结构分析,还可以进行形貌观察,而x射线衍射却无法进行形貌分析 (5)薄晶样品的倒易点阵为沿厚度方向的倒易杆,大大增加了反射球与倒易杆相截的机会,即使偏离布拉格方

新一代电子显微镜的发展趋势及应用

新一代电子显微镜的发展趋势及应用 特点 微观结构专业组 新一代电子显微镜的发展趋势及应用特点 一、高性能场发射枪电子显微镜日趋普及和应用。 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。 常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于 1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率。 球差系数:常规的透射电镜的球差系数Cs约为mm级;现在的透射电镜的球差系数已降低到Cs<0.05mm.色差系数:常规的透射电镜的色差系数约为0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具. 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm 提高到0.12nm甚至于小于0.1nm.

利用单色器,能量分辨率将小于0.1eV.但单色器的束流只有不加单色器时的十分之一左右.因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。 聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。 在球差校正的同时,色差大约增大了30%左右.因此,校正球差的同时,也要同时考虑校正色差. 三、电子显微镜分析工作迈向计算机化和网络化。 在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。 不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变,电镜参数的调整等。以实现对电镜的遥控作用. 四、电子显微镜在纳米材料研究中的重要应用。由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之 2-3mm。所以,要分辩出每个原子的位置,需要0.1nm左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以 及其结构与性能之间关系的研究成为人们十分关注的研究热点。 利用电子显微镜,一般要在200KV

六年级科学下册知识点 - 显微镜的使用 教科版

显微镜的使用 显微镜放大原理 1、两个凸透镜组合而成的简易显微镜比单个所能放大的倍数大,显微镜使人类视野一下子拓宽了许多。 2、显微镜发明过程:荷兰人列文虎克把自己磨制的非常精密的两个镜片嵌在圆形金属管子的两头,中间还安上了可以调节两个镜片的距离的螺旋管,制成了世界上最早可以放大近300倍的金属结构的显微镜。 3、显微镜的放大倍数是用目镜的放大倍数乘物镜的倍数。 4、荷兰詹森父子制作的显微镜是世界上第一架真正的显微镜。 5、人们利用电子显微镜可以看到物质内部的精细结构,看到所有物质都是由一些肉眼看不见的极小极小的微粒组成的。 6、扫描隧道显微镜可实现对表面的纳米加工。 显微镜的使用操作 1、1663年,英国科学家罗伯特·胡克观察细胞。 2、不论植物和动物,其组织都是由细胞构成的 3、观察洋葱表皮细胞 (1)在显微镜下观察的物体必须薄而透明 (2)制作洋葱表皮装片 ①在一个干净的载玻片中间滴一滴水 ②用镊子把取下的洋葱表皮放到载玻片的水滴中央,注意标本要平展开,不能折叠 ③用盖玻片(另一个载玻片)倾斜着盖到标本上面,放盖玻片时,先放一端,再慢慢放下另一端,注意不要有气泡 ④在盖玻片的一侧滴一滴稀释的碘酒,用吸水纸从对侧吸引,直至整个标本染色为止 ⑤用吸水纸吸掉多余的水 4、正确使用显微镜的方法 安放—对光—上片—调焦—观察 显微镜结构,从上到下为:目镜、调节旋钮(粗细)、镜臂、物镜、载物台、反光镜、底座

5、使用注意事项: 反光镜有两面,强光用平面镜,弱光用凹面镜 所观察区域在哪个方位就往哪个方位移动 6、洋葱表皮是由细胞构成的,洋葱表皮细胞像长方形的格子,细胞内部有不同结构。(细胞壁、细胞膜、细胞核、液泡、细胞质) 显微镜的观察 人体口腔上皮细胞和人体血液细胞)形态也是不同的,即便是同一种器官的细胞(如叶表皮细胞和叶肉细胞),由于不同组织的形态功能不同,其细胞形态也不同。 2、生物体是由细胞构成的,细胞是生物体的基本结构单位,它们的形态功能是多种多样的。 3、所观察到生物组织的作用 德国科学家施莱登和施旺提出:动物植物都是由细胞组成的,即细胞学说。1858年,德国病理学家魏尔肖进一步提出:一切细胞都来源于已存在的细胞。至此形

扫描电镜的应用及发展

扫描电镜的新发展 陈散兴 扫描电镜的原理 扫描电镜( Scanning Electron Microscope, 简写为SEM) 是一个复杂的系统, 浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式, 随着扫描电镜的发展和应用的 拓展, 相继发展了宏观断口学和显微断口学。 扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集 成细小( 直径一般为1-5 nm)的电子束(相应束流为10- 11-10- 12A)。在末级透镜上方扫描线圈的作用下, 使电子束在试样表面做光栅扫描( 行扫+ 帧扫)。入射电子与试样相互作用会产生二次电子、背散射电子、X 射线等各种信息。这些信息的二维强度分布随试样表面的特征而变( 这些特征有表面形貌、成分、晶体取向、电磁特性等等) , 将各种探测器收集到的信息按顺序、成比率地转换成视频信号, 再传送到同步扫描的显像管并调制其亮度, 就可以得到一个反应试样表面状况 的扫描图像。如果将探测器接收到的信号进行数字化处理即转变成数字信号, 就可以由计算机做进一步的处理和存储。 扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察, 因而在设计上突出了景深效果, 一般用来分析断口以及未经人工处理的自然表面。扫描电镜的主要特征如下: ( 1) 能够直接观察大尺寸试样的原始表面;( 2) 试样在样品室中的自由度非 常大;( 3) 观察的视场大;( 4) 图像景深大, 立体感强;( 5) 对厚块试样可得到高分 辨率图像;( 6) 辐照对试样表面的污染小;( 7) 能够进行动态观察( 如动态拉伸、压缩、弯曲、升降温等) ;( 8) 能获得与形貌相对应的多方面信息;(9) 在不牺牲扫描电镜特性的情况下扩充附加功能, 如微区成分及晶体学分析。 近代扫描电镜的发展主要是在二次电子像分辨率上取得了较大的进展。但对不导电或导电性能不太好的样品还需喷金后才能达到理想的图像分辨率。随着材料科学的发展特别是半导体工业的需求, 要尽量保持试样的原始表面, 在不做 任何处理的条件下进行分析。早在20 世纪80 年代中期, 便有厂家根据新材料( 主要是半导体材料) 发展的需要, 提出了导电性不好的材料不经过任何处理 也能够进行观察分析的设想, 到90 年代初期, 这一设想就已有了实验雏形, 90 年代末期, 已变成比较成熟的技术。其工作方式便是现在已为大家所接受的低真空和低电压, 最近几年又出现了模拟环境工作方式的扫描电镜, 这就是现代扫 描电镜领域出现的新名词/ 环扫0, 即环境扫描电镜。

电镜知识点

46个电镜知识点 01光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。 02根据de Broglie波动理论,电子的波长仅与加速电压有关: λe=h / mv=h / (2qmV)1/2=12.2 / (V)1/2 (?) 在10 KV 的加速电压之下,电子的波长仅为0.12?,远低于可见光的4000 - 7000?,所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100?之间,电子与原子核的弹性散射(Elastic Scattering) 与非弹性散射(Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。03扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。04扫描式电子显微镜,其系统设计由上而下,由电子枪(Electron Gun) 发射电子束,经过一组磁透镜聚焦(Condenser Lens) 聚焦后,用遮蔽孔径(Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜(Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子(Secondary Electron) 或背向散射电子(Backscattered Electron) 成像。05电子枪的必要特性是亮度要高、电子能量散布(Energy Spread) 要小,目前常用的种类计有三种,钨

重庆大学扫描电镜理论考试题目汇总

重庆大学扫描电镜理论考试最新题目汇总

第一部分基本知识与安全 (一)、安全视频内容 人生安全,实验室设备安全 1.发生火灾使用灭火器的问题,发现小火,扑灭。火势较大,迅速离开,警告旁人,向有关部门报告。人生安全第一。 2.氮气瓶,防砸。不要离氮气瓶太近。 3.液氮罐。挥发液氮,密闭空间容易发生窒息。第一个进来要注意透气。长时间在实验室别把门关死。晚上别睡着了。。 4.注意电镜后面的电线,避免漏电。 5.电镜结构。。电子枪,镜筒,样品室,电气辅助系统,真空系统。 电子枪:通过加热至2700K,热电子激发,加速电场形成电子束。镜筒里聚光镜聚焦成很细的电子束,打在样品室中的样品上,探头收集信号,分析。 不要碰高压! 6.注意背散射电子探头和EBSD探头,不用的话一定记得退出去,避免碰撞。用完一定记得退回去。放样前一定检查是否已经退出,避免碰撞探头。 7.动样品台时注意别碰撞到探头和极靴。动的时候一定要打开CCD相机,一边观察一边移动样品台。特别是样品比较大时更要注意。同时放多个样品时,高度尽可能一致。磁性样品一定不能放进来,会吸到极靴上,影响电镜性能。粉末样品注意粘稳,避免被吸入极靴,堵塞光路。粉末样品飞入能谱探头很可能将窗口击破。 8.关闭高压之后,一定要等3分钟后再充氮气泄真空,钨灯丝2700K高温,灯丝热的时候气体容易氧化灯丝和镜筒等。。 9.抽真空一定要抽到10-3级别,再开高压。 10.氮气通过减压阀控制进气,缓慢的泄掉真空。很强的气流会损坏电镜内的部分,尤其是能谱探头的窗口(一个小薄膜)。减压阀调得比较小,不要去动,已经设置好了的。 11.拉开舱门的时候还是要观察着CCD相机中的图像,避免碰撞。出来的时候Z 在40左右,在一个较低的位置,或回到初始位置。 12.放样品时一定带手套,防止静电的伤害,保证电镜清洁。 13.不要将腐蚀性药瓶带入电镜室。 (二)、基本知识与安全题目 1. 如果实验室因电路打火,正确的处理方式是 先切断电源,再用干粉或气体灭火器灭火,不可直接泼水灭火,以防触电或电器爆炸伤人。如果火势太大,应迅速离开现场,告知周围做实验的人,并向有关部门报告以采取有效措施控制和扑救火灾。 2. 在装载样品以及实验中移动样品台时,有些什么注意事项

扫描电镜对比以及扫描电镜基础知识点-科邦实验室

扫描电镜对比以及扫描电镜基础知识点 扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。如图1所示,是扫描电子显微镜的外观图。

一、特点 制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。 二、基本结构 从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。

图2:扫描电子显微镜结构图(图片来源:西南石油大学能源材料实验教学中心)其中最重要的三个系统是电子光学系统、信号探测处理和显示系统以及真空系统。 1、电子光学系统 电子光学系统包括电子枪、电磁透镜、扫描线圈、样品室等,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成象。 电子枪:用于产生电子,主要分类如下:

电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。 扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。

样品室内除放置样品外,还安置信号探测器。 2、信号探测处理和显示系统 电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。 有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。 3、真空系统 真空系统主要包括真空泵和真空柱两部分。 真空柱是一个密封的柱形容器。真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨灯丝枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧及六硼化铈枪的扫描电镜,则需要机械泵加涡轮分子泵的组合。成象系统和电子束系统均内置在真空柱中。真空柱底端即为右图所示的样品室,用于放置样品。 需要真空的原因包括:一是电子束系统中的灯丝在普通大气中会迅速氧化而失效,所以需要抽真空。二是为了增大电子的平均自由程,从而使得用于成象的电子更多。 四、成像原理 扫描电子显微镜是利用材料表面微区的特征(如形貌、原子序数、化学成分、或晶体结构等)的差异,在电子束作用下通过试样不同区域产生不同的亮度差异,

扫描电镜经典总结

? 扫描电镜(SEM) ? 透射电镜(TEM)? 原子力显微镜(AFM)? X射线衍射(XRD)? 元素分析(EA)显微分析技术——电子显微镜 一束电子射到试样上,电子与物质相互作用,当电子的运动方向被改变,称为散射。 透射电子直接透射电子,以及弹性或非弹性散射的透射电子用于透射 电镜(TEM)的成像和衍射 二次电子 入射电子与样品中原子的价电子发生非弹性散射作用而损 失的那部分能量(30~50eV)激发核外电子脱离原子,能量 大于材料逸出功的价电子可从样品表面逸出,成为真空中的 自由电子,此即二次电子。在电场的作用下它可呈曲线运动 进入检测器,使表面凹凸的各个部分都能清晰成像。 二次电子试样表面状态非常敏感,能有效显示试样表面的 微观形貌;二次电子的分辨率可达5~10nm,即为扫描电镜

的分辨率。 二次电子的强度主要与样品表面形貌相关。二次电子和背 景散射电子共同用于扫描电镜(SEM)的成像。 当探针很细,分辨高时,基本收集的是二次电子而背景电 子很少,称为二次电子成像(SEI)。 背景散射电子 入射电子穿达到离核很近的地方被反射,没有能量损失; 既包括与原子核作用而形成的弹性背散射电子,又包括与样 品核外电子作用而形成的非弹性背散射电子,前者的份额远 大于后者。 背散射电子反映样品表面的不同取向、不同平均原子量的 区域差别,产额随原子序数的增加而增加;利用背散射电子 为成像信号,可分析形貌特征,也可显示原子序数衬度而进 行定性成分分析。 特征X射线入射电子和原子中的层电子发生非弹性散射作用而损失一 部分能量(几百个eV),激发层电子发生电离,形成离 子,该过程称为芯电子激发。除了二次电子外,失去层电 子的原子处于不稳定的较高能量状态,将依一定的选择定则 向能量较低的量子态跃迁,跃迁过程中发射出反映样品中元 素组成信息的特征X射线,可用于材料的成分分析。 俄歇(Auger)电子如果入射电子把外层电子打进层,原子被激发了.为释放能量而电离出次外层电子,叫俄歇电子。主要用于轻元素和超轻元素(除H和He)的分析,称为俄歇电子能谱仪。

(完整版)扫描电子显微镜的发展及展望

扫描电子显微镜的发展及展望 1、分析扫描电镜和X射线能谱仪 目前,使用最广的常规钨丝阴极扫描电镜的分辨本领已达 3.5nm左右,加速电压范围为0.2—30kV。扫描电镜配备X射线能谱仪EDS后发展成分析扫描电镜,不仅比X射线波谱仪WDS分析速度快、灵敏度高、也可进行定性和无标样定量分析。EDS发展十分迅速,已成为仪器的一个重要组成部分,甚至与其融为一体。但是,EDS也存在不足之处,如能量分辨率低,一般为129—155eV,以及Si(Li)晶体需在低温下使用(液氮冷却)等。X射线波谱仪分辨率则高得多,通常为5—10eV,且可在室温下工作。1972年起EDAX公司发展了一种ECON系列无窗口探测器,可满足分析超轻元素时的一些特殊需求,但Si(Li)晶体易受污染。1987年Kevex 公司开发了能承受一个大气压力差的ATW超薄窗,避免了上述缺点,可以探测到B,C,N,O等超轻元素,为大量应用创造了条件。目前,美国Kevex公司的Quantifier,Noran公司的Extreme,Link公司的Ultracool,EDAX公司的Sapphire等Si(Li)探测器都属于这种单窗口超轻元素探测器,分辨率为129eV,133eV等,探测范围扩展到了5B—92U。为克服传统Si(Li)探测器需使用液氮冷却带来的不便,1989年Kevex公司推出了可不用液氮的Superdry探测器,Noran公司也生产了用温差电制冷的Freedom探测器(配有小型冷却循环水机),和压缩机制冷的Cryocooled探测器。这两种探测器必须昼夜24小时通电,适合于无液氮供应的单位。现在使用的大多还是改进的液氮冷却Si(Li)探测器,只需在实际工作时加入液氮冷却,平时不必维持液氮的供给。最近发展起来的高纯锗Ge探测器,不仅提高了分辨率,而且扩大了探测的能量范围(从25keV扩展到100keV),特别适用于透射电镜:如Link的GEM型的分辨率已优于115eV(MnKα)和65eV(FKα),Noran的Explorer Ge探测器,探测范围可达100keV等。1995年中国科学院上海原子核研究所研制成了Si(Li)探测器,能量分辨率为152eV。中国科学院北京科学仪器研制中心也生产了X射线能谱分析系统Finder-1000,硬件借鉴Noran公司的功能电路,配以该公司的探测器,采用Windows操作系统,开发了自己的图形化能谱分析系统程序。 2、X射线波谱仪和电子探针仪 现代SEM大多配置了EDS探测器以进行成分分析。当需低含量、精确定量以及超轻元素分析时,则可再增加1到4道X射线波谱仪WDS。Microspec公司的全聚焦WDX-400,WDX-

相关文档
最新文档