电力工程直流操作电源系统的原理、设计与设备选择

电力工程直流操作电源系统的原理、设计与设备选择
电力工程直流操作电源系统的原理、设计与设备选择

电力工程直流操作电源系统的原理、设计与设备选择

许继电源XX

2005年8月20

1.直流操作电源的历史与发展

发电厂和变电站中,为控制、信号、保护和自动装置(统称为控制负荷),以及断路器电磁合闸、直流电动机、交流不停电电源、事故照明(统称为动力负荷)等供电的直流电源系统,通称为直流操作电源。

1.1直流操作电源的历史

根据构成方式的不同,在发电厂和变电站中应用的有以下几种直流操作电源:

1)电容储能式直流操作电源:是一种用交流厂(站)用电源经隔离整流后,取得直流电为控制负荷供电的电源系统。正常运行时,它给与保护电源并接的足够大容量的电容器组充电,使其处于荷电状态;当电站发生事故时,电容器组继续向继电保护装置和断路器跳闸回路供电,保证继电保护装置可靠动作,断路器可靠跳闸。这是一种简易的直流操作电源,一般只是在规模小、不很重要的电站使用。

2)复式整流式直流操作电源:是一种用交流厂(站)用电源、电压互感器和电流互感器经整流后,取得直流电为控制负荷供电的电源系统,在其设计上,要在各种故障情况下都能保证继电保护装置可靠动作、断路器可靠跳闸。这也是一种简易的直流操作电源,一般只是在规模小、不很重要的电站使用。

3)蓄电池组直流操作电源:由蓄电池组和充电装置构成。正常运行时,由充电装置为控制负荷供电,同时给蓄电池组充电,使其处于满容量荷电状态;当电站发生事故时,由蓄电池组继续向直流控制和动力负荷供电。这是一种在各种正常和事故情况下都能保证可靠供电的电源系统,广泛应用于各种类型的发电厂和变电站中。

以上电容储能式和复式整流式直流操作电源系统,在六、七十年代有较多的应用,八十年代以后,由于小型镉镍碱性蓄电池和阀控式铅酸蓄电池的应用,这种操作电源在发电厂和变电站中已不再采用。而蓄电池组直流操作电源系统,其应用历史悠久,且极为广泛。现代意义上的直流操作电源系统就是这种由蓄电池组和充电装置构成的直流不停电电源系统,通常简称为直流操作电源系统或直流系统。

1.2直流操作电源的设计技术发展

在1955年以前,国内发电厂和变电站的建设规模较小,其直流操作电源系统大多采用110V、单母线和不带端电池的蓄电池组(以前直流装置得蓄电池分为两组,一组是基本级,供正常负荷时用,一组为端电池,供事故时调节直流母线电压用的,比如基本电池用得过多,造成直流母线的电压下降过多时,通过调节装置将端电池投上去,维持直流母线的电压水平。现在《DL/T 5044-2004 电力工程直流系统设计技术规程〉中:4.1直流电源中规定: 4.1.6 铅酸蓄电池组不宜设置端电池(没有端电池就是无端电池了);镉镍碱性蓄电池组宜减少端电池得个数)。1956年以后,发电厂和变电站的建设规模增大。这是引进了当时苏联的设计技术,在所有新建和扩建的发电厂和变电站中,都采用了220V、带端电池的蓄电池组,并根据工程规模的大小,采用单母线或双母线接线。这个时间的设计,是充分利用了蓄电池的容量和具有较小的电压波动X围,但代价是采用了较复杂的接线。

1984年以后,随着欧美设计技术的引进,以及发电厂和变电站建设规模的不断增大,在直流操作电源系统的设计上,又开始普遍采用单母线接线和不带端电池的蓄电池组,对于

控制负荷则推行采用110V电压,而动力负荷则采用220V电压。这一期间设计的主导思想,则是以适当加大蓄电池的容量,允许电压有较大的波动X围为代价,达到简化接线、提高可靠性的目的。

六十年代以前,国内设计的发电厂采用主控制室方式。在容量较小的发电厂中,装设一组蓄电池组构成的直流操作电源系统;在较大容量的发电厂中,则装设由两组蓄电池构成的直流操作系统;其接线采用单母线或双母线,但对于容量较大的发电厂,则广泛采用双母线接线。

七十年代以后,单元制发电厂随着机组容量的增大而普及。在单元制发电厂中,直流操作电源系统按单元配置。七十年代到八十年代初期,一般是一个单元配置一套由一组蓄电池组构成的控制、动力混合供电的220V操作电源。从八十年代后期开始,对于300~600MW 大机组电厂,则每一单元配置两套直流操作电源:一套220V由一组蓄电池组构成,专供动力负荷;另一套110V由两组蓄电池组构成,专供控制负荷。同时,在一些辅助车间,如水泵房、输煤控制楼等处,开始应用由小容量的蓄电池组构成的操作电源系统。

对于220KV及以下电压等级的变电站,一般装设由一组蓄电池组构成的直流操作电源;对于容量较大和500KV以上的大型变电站,则装设由两组蓄电池组构成的直流操作电源;对于220KV的变电站,2002年国家电力公司要求全部装设两组蓄电池组。

这一发展过程表明,随着大机组、超高压工程的发展,人们更加关注的是直流操作电源的可靠性,并为此提高适当提高电池组的容量和增加数量,普遍采用单母线接线方式,提高了工程造价。

1.3直流操作电源的设备技术发展

在直流操作电源系统中,主要的设备有蓄电池组、充电装置、绝缘监测装置以及控制保护等设备。随着制造技术的发展,几十年来也发生了很大的变化。

蓄电池组型式,在七十年代以前发电厂和变电站中应用的都是开启式铅酸蓄电池,使用的容量逐渐增加,单组额定容量达到了1400~1600Ah。七十年代以后,开始应用半封闭的固定防酸式铅酸蓄电池,并逐步得到普遍采用。到八十年代中期以后,镉镍碱性蓄电池以其放电倍率高、耐过充和过放的优点,开始在变电站中得到应用,但由于价格较高,一般使用的都是额定容量在100Ah以内的,限制了其应用的X围。九十年代发展起来的阀控式铅酸蓄电池,以其全密封、少维护、不污染环境、可靠性较高、安装方便等一系列的优点,在九十年代中期以后等到普遍的采用。

回顾蓄电池的变化可知,蓄电池在向维护工作量小、无污染、安装方便、可靠性提高的方向发展。虽然提高蓄电池的寿命是一重要课题,但在提高寿命方面国内的技术进展不大,一般的阀控式铅酸蓄电池在5~10年之间,低的只有3~5年;目前国外的技术一般可以做到10~15年,高的达到18~20年。而且,国内市场的恶性竞争环境,使许多蓄电池制造厂不愿在设计寿命上投资,提高制造成本。需要说明是,蓄电池的使用寿命,在很大程度上要依靠正确的运行和维护。

对于充电装置,在七十年代以前,主要是用电动直流发电机组作充电器;七十年代开始应用整流装置,并逐渐取代了电动发电机组,得到普遍的应用。

八十年代以前,考虑到经济性和运行的稳定性,对充电和浮充电整流装置采用不同的容量设计。1984年以后,对充电和浮充电整流装置开始采用相同的容量设计,使之更有利于互为备用,并且这种作法被普遍接受。充电装置的配置方式是:一组蓄电池的直流操作电源系统配置两组充电装置,两组蓄电池的直流操作电源系统配置三组充电装置。1995年以后,随着高频开关型整流装置的普及,考虑到整流模块的N+1(2)冗余配置和较短的修复时间,大量采用一组蓄电池配置一组充电装置的方式。(核电的配置方式不一样)作为充电器的整流装置,多年来在不断的发展改进,七十年代是分立元件控制的晶闸管整流装置,可靠性和稳定性较差,技术指标偏低。八十年代发展为集成电路控制的晶闸管整流装置,可靠性和稳定性以及技术指标得到较大的提高,这一时期的晶闸管整流控制技术也日臻成熟,并具备简单的充电、浮充电和均衡充电自动转换控制功能。进入九十年代以后,随着微机控制技术的普及,集成电路控制型晶闸管整流装置逐渐被微机控制型晶闸管整流装置取代,使整流装置的稳流和稳压调节精度得到较大的提高,并且自动化水平的提高可以实现电源的“四遥”,为实现无人值班创造了条件。1996年以后,随着高电压、大功率开关器件和高频变换控制技术的成熟,高频开关整流装置以其模块化结构、N+1(2)并联冗余配置、维护简单快捷、技术指标和自动化程度高的优点,得到迅速的推广和普及。目前,这种高频开关型整流装置已成为市场的主角,未来几年不会有新的整流装置替代。

绝缘监测装置是直流操作电源系统不可缺少的组成部分,用于在线监测直流系统的正负极对地的绝缘水平。在八十年代以前,一直是采用苏联技术设计的、以电桥切换原理构成的绝缘检查装置,用继电器、电压表和切换开关构成,具有发现接地故障、测量直流正负极对地绝缘电阻和确定接地极的功能。八十年代,在此原理技术上,国内制造了用集成电路构成的绝缘监测装置,并把母线电压监视功能与之合并在一起,提高了装置的灵敏度和易操作性。上述的绝缘监测装置,在直流系统发生接地故障时,只能确定哪一极接地,而不能确定哪一条供电支路接地,在运行维护中查找接地点非常麻烦,并且存在监测死区。针对这种情况,国内在九十年代以后,采用微机控制技术,开发制造了具有支路巡检功能的绝缘监测装置。其不但能够准确的测量直流系统正负极的接地电阻,同时还可以确定接地支路的位置。当前这种具有支路巡检功能绝缘监测装置得到普遍的应用,技术的发展围绕支路巡检功能展开,早期全部采用低频叠加原理,目前以直流漏电流原理为主,两种原理各有优缺点。

蓄电池组、充电装置和直流馈电回路,多年来一直用熔断器作短路保护,用隔离开关作回路操作,直到现在仍在普遍使用。进入九十年代以来,随着技术的发展,这些老式的保护和操作设备逐渐被具有高分断能力和防护等级的新型设备替代。到1996年以后,开始用带热磁脱扣器的直流自动空气开关,兼作保护和操作设备,为直流屏的小型化设计创造了条件。目前,这种直流专用空气开关在直流系统中已普遍的应用,并开发出具有三段式选择性保护功能的直流空气开关产品。

2.高频开关直流操作电源系统的构成和原理

2.1直流系统的构成

高频开关直流操作电源系统是由交流配电单元、高频开关整流模块、蓄电池组、硅堆

1)交流正常工作状态:

系统的交流输入正常供电时,通过交流配电单元给各个整流模块供电。高频整流模块将交流电变换为直流电,经保护电器(熔断器或断路器)输出,一面给蓄电池组充电,一面经直流配电馈电单元给直流负载提供正常工作电源。

硅堆降压单元:根据蓄电池组输出电压的变化自动调节串入降压硅堆(串连二极管)的数量,使直流控制母线的电压稳定在规定的X围内。当提高蓄电池组的容量,减少单体串连的个数时,可以取消硅堆降压单元,达到简化系统接线、提高可靠性的目的。

绝缘监测装置:实时在线监测直流母线的正负极对地的绝缘水平,当接地电阻下降到设定的告警电阻值时,发出接地告警信号。对于带支路巡检功能的绝缘监测装置,还可以确定接地故障点是发生在哪一条馈电回路中。

电池巡检装置:实时在线监测蓄电池组的单体电压,当单体电池的电压超过设定的告警电压值时,发出单体电压异常信号。该装置为电站的运行维护人员随时了解蓄电池组的运行状况提供了方便,但对于每个用户来说并不是必需的。

充电监控单元:接受集中监控模块的控制指令,调节整流模块的输出电压实现对蓄电池组的恒压限流充电和均浮充自动转换,同时上传整流模块的故障信号。当集中监控模块

故障退去的情况下,该模块仍能按预先设定的浮充电压值继续对蓄电池组充电。

配电监控单元:采集系统中交流配电、整流装置、蓄电池组、直流母线和馈电回路的电压、电流运行参数,以及状态和告警接点信号,上传到集中监控模块进行运行参数显示和信号处理。

集中监控模块:采用集散方式对系统进行监测和控制。整流模块、蓄电池组、交直流配电单元的运行参数分别由充电监控电路和配电监控电路采集处理,然后通过RS485通信口把处理后的信息上传给监控模块,由监控模块统一处理后显示在液晶屏幕上。同时监控模块可通过人机对话操作方式对系统进行运行参数的设置和运行状态的控制,还可以通过RS485或RS232通信口接入电站监控系统,实现对电源系统的远程监控。另外,监控模块通过对采集数据的分析和判断,能自动完成对蓄电池组充电的均浮充转换和温度补偿控制,以保证电池的正常充电,最大限度地延长电池的使用寿命。

2)交流失电工作状态:

系统交流输入故障停电时,整流模块停止工作,由蓄电池不间断地给直流负载供电。

监控模块时实监测蓄电池的放电电压和电流,当蓄电池放电到设置的终止电压时,监控模块告警。同时监控模块时刻显示、处理配电监控电路上传的数据。

3)系统工作能量流向:

系统工作时的能量流向如图2-2所示。

图2-2 系统工作能量流向图

2.3整流模块的工作原理

高频开关整流模块的原理框图如图2-3所示:

图2-3整流模块原理框图

2.3.1主回路电路

高频开关整流模块的主回路电路包括EMI滤波、全桥整流、无源PFC、高频逆变、隔离变压器、高频整流和LC滤波,各部分的主要功能如下:

交流正常供电时

交流故障停电时蓄电池组

交流输入整流模块直流配电直流输出

1)输入EMI滤波:滤除交流电网中其他设备产生的尖峰电压干扰分量,给模块提供干净的交流输入电源;阻断整流模块产生的高频干扰反向传输污染电网。

2)交流全桥整流:利用三相整流桥直接将交流输入电压变换为脉动直流电。

3)无源PFC校正:采用无源的LC器件,将全桥整流所得的300Hz脉动直流电转换成平滑的直流电,在串连电抗器的电感量足够大的情况下,能起到很好的无源功

率因数校正的作用,使交流输入功率因数接近0.95。

4)高频逆变:采用MOSFET或IGBT开关器件,将输入直流电变换为脉冲宽度可调的高频交流脉冲波。

5)高频变压器:将高频交流脉冲波隔离、耦合输出,实现交流输入与直流输出的电气隔离和功率传输。由于采用了高频交流脉冲传输技术,因此变压器的体积较小、重量较轻。

6)输出高频整流:采用快恢复二极管,将高频交流脉冲波变换为高频脉动直流电。

7)输出LC滤波:采用无源的LC器件,将整流所得的高频脉动直流电转换成平滑的直流电输出。

2.3.2反馈调节电路

高频开关整流模块中的反馈调节电路采用直流输出电压和电流反馈的PID调节,达到高精度的稳压和稳流输出目的。其控制调节过程如下:

高频逆变采用全桥串联谐振软开关技术,其控制方式为“逐周波峰值电流检测模式”。直流输出的电压、电流反馈信号与给定的电压、电流值进行PID运算、调节,输出误差放大信号,该信号与PWM控制芯片产生的振荡三角波进行比较,实现驱动高频逆变电路开关管导通的控制脉冲的宽度可调,达到稳定输出电压、电流的目的。

2.3.3脉宽调制(PWM)控制

PWM(Pulse Width Modulation)控制是高频开关电源普遍采用一种技术,由控制电路

其中: D = Ton / Ts

= Ton / ( Ton + Toff )

D:占空比;Ts:开关管工作周期;Ton:开关管导通时间;Toff:开关管关断时间。

2.3.4软开关技术

对于高频整流模块,发展方向为高功率密度、高效率、小体积、高可靠性,同时要有很好的EMC措施。这就要求整流模块要工作在很高的频率,同时减小开关状态时的损耗和开关噪声。因此软开关技术成了高频整流模块领域所研究的主要方向之一。

我们所用的半导体开关功率器件,并不是理想的开关器件。在开关的过程中,半导体开关器件会呈现变阻抗的特性,同时开通和关断状态的转化时是有持续的时间存在(如图2-5中的硬开关模式波形)。因此开关器件在状态转化时,存在着电压和电流的重叠区,即开关损耗;同时存在电压和电流的振荡过程,产生大量的EMI噪声。

软开关技术所采用的方法一般是在半导体开关器件的两端通过辅助串联谐振或并联谐振回路使半导体开关器件在开关状态转换前,电压或电流谐振到零,再进行开关的转换过程。从而实现半导体开关器件在开关转换过程中,没有电压或电流的振荡过程,几乎没有电压和电流的有效重叠(如图2-5中的软开关模式波形),很大程度上减少了开关损耗和EMI噪声。

典型的软开关技术有零电压开关技术ZVS(Zero Voltage Switching:在开关管承受电压为零时控制开关管导通)和零电流开关技术ZCS(Zero Current Switching:在流过开关管的电流为零时控制开关管关断)。许继电源公司生产的ZZG10系列整流模块采用是这两种技术的结合。

硬开关模式:通态损耗小固定频率控制

开关损耗大EMI噪声大

软开关模式:通态损耗小固定频率控制

开关损耗小EMI噪声小

图2-6 软开关模式与硬开关模式的比较

2.3.5并机均流技术

采用“低压差无主自动均流技术”,实现多模块并机的输出电流自动平均分担。其工作

原理是每个模块内部都有输出电流采样电路,该电路以相同的比例放大倍数,将输出电流的采样信号转化为成比例的采样电压。多模块并机时,各模块的输出电流采样电压通过并机均流总线CS连接在一起,进行比较后取并联模块的最大的采样电压作为并机均流总线的基准电压Vbus。基准电压Vbus所对应的模块自然就是最大输出电流模块,我们称之为主模块,其他模块为从模块。每个模块(包括主模块和从模块)将自己的电流采样电压与基准电压Vbus比较,产生的误差放大信号调节其脉冲宽度改变模块的输出电压,使每个模块的输出电流采样电压趋向于相等,从而达到均流输出的目的。

2.3.6

技术。在高频开关整流模块中,常见的软启动有输入软启动和输出软启动之分。

1)输入软启动:在高频开关整流模块的输入整流滤波电路中,含有大容量的滤波电容,上电启动时会产生很大的冲击电流,容易造成输入部件(主要是输入整流桥)的损

坏和严重的电网干扰。为避免这些问题的发生,可采取在主回路的滤波电容前串入

一个和继电器触点并联的限流电阻电路,在上电的初始阶段继电器触点断开,经过

限流电阻给滤波电容充电直至接近到满电压值后,再控制继电器触点闭合,把限流

电阻短接旁路,完成启动输入主回路过程。

2)输出软启动:整流模块在上电初期由于反馈电压还没有建立起来时,PID调节环为开环状态,如果不采取措施,输出的控制信号为最大值,输出的有效脉宽为100%。

此时输入侧的浪涌电流很大,同时在输出侧产生很高的冲击电压。解决的方法是在

控制电路中,加入软启电路,软启电路的输出信号与反馈信号“线与”后作为产生

PWM脉冲的控制信号(低电压信号起控制作用)。模块上电开机后,软启控制信号

从零开始按一定的斜率上升,而反馈控制信号则从开机时的开环最大值,逐渐随电

压反馈信号的上升而下降。在模块启动的开始阶段,软启控制信号先起作用,使输

出的PWM驱动脉冲的脉宽从零缓慢展开,输出电压缓慢升高,电压反馈信号也缓

慢升高,而反馈控制信号缓慢下降;当反馈控制信号低于软启控制信号后,软启过

程完成,反馈控制信号起作用,进入正常的闭环调节状态,达到输出电压的稳定。

2.3.7输出限流和短路保护

高频开关整流模块一般具有直流输出限流和短路保护的功能:

输出限流保护:通过采样直流输出电流值,把其同设定的最大输出电流值(即限流值)进行比较。当模块的输出电流达到设定的限流值时,由电流反馈控制环电路控制整流模块进入限流工作状态。

输出短路保护:采用逐周波峰值电流检测的模式,检测主回路开关器件的各个周期的电流值,使其参与控制环的调节,实行逐周波限流,实现短路保护。

2.3.8工作频率的选择

整流模块的工作频率fs是指模块主回路开关器件的开关频率,也就是前面谈到的开关管工作周期Ts的倒数,即fs=1/Ts,它与主开关回路逆变输出(高频变压器原边)的脉冲电压波频率相等,是高频变压器二次整流脉冲电压波频率的一半。

提高开关频率,可以减小感性器件的体积,使整流模块的体积更小、功率密度更大,也可在一定程度上提高输出稳定精度。但在开关频率提高的同时,开关损耗会增大、效率可能降低;同时脉冲间“竞争冒险”的可能性加大,这在一定程度上会降低模块的可靠性,所以开关频率的选择并不是越高越好。

许继电源公司生产的ZZG10系列高频开关整流器在综合考虑各项指标后,将ZZG12系列模块的开关频率选定在50K,ZZG13系列模块的开关频率选定在25K。

图2-7 整流模块工作波形图

图中:

V GS----功率开关管工作波形;

V P-----高频变压器原边脉冲电压波形;

V S-----高频变压器副边全波整流脉冲电压波形。

2.4硅堆降压装置的工作原理

对于阀控式铅酸蓄电池组的个数选择大于104只(110V系统大于52只)的直流系统,由于在对蓄电池进行均衡充电时,与蓄电池组并联的直流母线电压超出控制直流负荷电压不大于+10%的要求,因此需要这样一个降压装置把直流母线的电压调节到控制直流负荷要求的X围内。硅堆降压就是这种调压装置,它可自动或手动调节母线电压,从而使控制直流母线的电压稳定在规定的X围内。

硅堆降压单元的原理框图如图2-8所示。

所谓的降压硅堆是由多个大功率硅整流二极管串联而成的,利用硅二极管PN结相对稳定的正向压降来作为调节电压,通过改变串入线路中二极管的数量来获得适当的电压降,达到调节母线电压的目的。采用硅二极管降压的优点是:大功率硅二极管的过载能力强、能短时耐受近20倍的冲击电流。可避免采用DC-DC变换器调压方式在输出过载或短路时,由于输出限流不能可靠地分断故障回路的保护电器,造成输出电压严重下降的事故。

如图所示,根据具体工程情况可将降压硅堆分为2~4节串联,在每节硅堆的两端并接控制继电器的常闭触点,如果控制继电器动作,其常闭触点断开,使该节硅堆串入线路中降压,直流输出电压降低;反过来,如果控制继电器的常闭触点闭合,使该节硅堆被短接旁路,直流输出电压升高。

调压控制电路通过检测蓄电池组输出或动力母线的电压,与设定的各级继电器的动作电压比较,放大后来驱动适当的继电器动作,使控制直流母线的电压保持在一定的X围内;在自动控制电路故障的时,还可以通过手动调节开关实现控制母线电压的手动调节。

硅堆监视电路与各级降压硅堆相并联,如果串入线路中的某个二极管出现PN结开路的情况,监视电路将自动使该PN结所在的这一节硅堆并联的继电器器闭锁,其常闭触点闭合,使得该节硅堆被短接旁路,实现控制母线不间断供电。

在降压硅堆回路串联有隔离开关QS1,同时并联有旁路开关QS2,实现在对降压硅堆或控制电路维护时控制母线不间断供电。

2.5绝缘监测装置的工作原理

发电厂和变电站内的直流操作电源系统,其直流供电网络分布到电站的各个一次和二次设备处,支路纵横交错,发生接地的概率很高。直流系统是正负极对浮空的,当系统出现一点接地(正负极直接接地或对地绝缘降低)时,虽能正常的工作,但当出现第二点接地时,则可能造成信号装置、控制回路和继电保护装置误动作,甚至造成直流正负极短路,从而引发严重的电力事故。因此直流系统对地应有良好的绝缘,必须对其进行实时的在线监测,当某一点出现接地故障时,立即发出告警信号,提醒运行人员查找并排除接地故障,从而杜绝直流系统接地可能引起的事故。

直流系统的绝缘检测由母线绝缘检测和支路绝缘检测两部分组成,分别说明如下:

2.5.1母线绝缘检测

图2-9 母线绝缘检测原理图

如图2-9所示,采用不平衡电桥测量电路,由微处理器控制开关S1和S2顺序导通,分别测得两组直流母线正负极对地的电压值数据,然后解方程求出直流母线正负极对地的绝缘电阻值。

根据欧姆定律在开关S1和S2分别闭合时得到方程式:

U+1*(R+2Rz)U-1*(R+Rf)

S1闭合,S2断开时:-----------------=--------------- (方程一)

R*Rz R*Rf

U+2*(R+Rz)U-2*(R+2Rf)

S2闭合,S1断开时:-----------------=----------------- (方程二)

R*Rz R*Rf

已知U+1、U-1、U+2、U-2和R,解方程可以分别求出直流母线正极对地的绝缘电阻Rz 和负极对地的绝缘电阻Rf的值。

这种母线绝缘检测技术可以准确地测量出直流系统正负极对地总的绝缘电阻,但不能确定直流系统各供电支路(直流馈电输出)的正负极对地的绝缘电阻值。因此,如果直流系统出现接地故障时,对接地故障点的查找只能采用逐路断开各馈电支路,顺着支路逐级查找仪确定接地故障点。这种方法即费时又费力,而且断开支路上的各种装置要暂时退出工作,存在引起电力事故的危险。

2.5.2支路绝缘监测

对直流系统各馈电支路正负极对地的绝缘电阻的检测,是在各馈电支路回路安装电流互感器,采用低频叠加或直流漏电流的原理,计算出馈电支路的正负极对地的绝缘电阻值。这两种原理各有自己的优缺点,分别说明如下:

1)低频叠加原理:由低频信号源产生的超低频信号由直流母线对地耦合到直流系统,采用无源交流微电流传感器,感应流过各馈电支路中接地电阻与接地电容的超低频

信号电流,其大小直接反映出支路接地电阻的变化。感应电流信号经过放大、相位

比较、滤波、A/D转换后,进行数据处理并计算出相应的接地电阻值,判断出直流

馈电支路的接地故障。这一技术的电流传感器不受一次侧电流和温度变化的影响,缺点是检测精度受分布电容和低频信号衰减的影响较大。当然可以采用信号相位比

较技术进行超前校正及跟踪,消除支路分布电容对接地电阻测量精度的影响,同时

克服母线上非同步交流信号的干扰,解决了因判断数据不全引发的支路误报和漏报

现象。

2)直流漏电流原理:采用磁调制有源直流微电流传感器,馈电支路正负极穿过传感器的正常负荷电流大小相等、方向相反,在传感器中的合成直流电磁场为零,其二次

输出也为零;当支路回路的正负极存在接地电阻时,就会感应产生漏电流,并且在

传感器中合成漏电流磁场,其二次输出就直接反映接地漏电流的大小,结合母线绝

缘检测不平衡电桥电路的对地电压测量数据,可以计算出支路对地的绝缘电阻值,从而判断出直流馈电支路的接地故障。这一技术无需在直流母线上叠加任何信号,对直流系统不会产生任何不良影响,检测精度不受直流系统对地分布电容的影响,且灵敏度高,巡检速度快。缺点是有源直流传感器设计制造复杂,对温度变化对其

精度有一定的影响,输出可能产生漂移,影响测量精度。需采取校正技术消除磁偏

和温度的影响

3.直流系统的设计原则

3.1系统电压

3.1.1直流系统标称电压按下列要求确定:

a)专供控制负荷的直流系统标称电压宜采用110V。

b)专供动力负荷的直流系统标称电压宜采用220V。

c)对控制负荷与动力负荷合并供电的直流系统标称电压宜采用220V。

3.1.2直流系统在正常浮充运行情况下,直流母线电压应为直流系统标称电压的105%。

注:浮充运行的具体电压值由工程确定的蓄电池类型和个数决定。

3.1.3直流系统在均衡充电运行情况下,其直流母线电压应满足如下要求:

a)专供控制负荷的直流系统,应不高于直流系统标称电压的110%。

b)专供动力负荷的直流系统,应不高于直流系统标称电压的112.5%。

c)对控制负荷与动力负荷合并供电的直流系统,应不高于直流系统标称电压的110%。

3.1.4直流系统在事故放电情况下,其蓄电池组出口端电压应满足如下要求:

a)专供控制负荷的直流系统,应不低于直流系统标称电压的85%。

b)专供动力负荷的直流系统,应不低于直流系统标称电压的87.5%。

c)对控制负荷与动力负荷合并供电的直流系统,应不低于直流系统标称电压的87.5%。

3.1.5对设置硅降压装置,控制负荷与动力负荷混合供电的直流系统:

a)正常浮充运行情况下,控制母线电压应不高于直流系统标称电压的105%,动力母

线电压应不高于直流系统标称电压的110%。

b)均衡充电运行情况下,控制母线电压应不高于直流系统标称电压的110%,动力母

线电压应不高于直流系统标称电压的115%。

c)事故放电运行情况下,其蓄电池组出口端电压应不低于直流系统标称电压的87.5%。

3.2蓄电池组

3.2.1蓄电池型式:

a)大型和中型发电厂、220kV及以上变电所和直流输电换流站采用防酸式铅酸蓄电池

或阀控式铅酸蓄电池。

b)小型发电厂、110kV及以下变电所采用阀控式铅酸蓄电池。

c)阀控式铅酸蓄电池的容量为100Ah以上时,宜选用单只电压为2V的产品;蓄电池

的容量为100Ah及以下时,可选用单只电压为6V或12V的产品。

3.2.2蓄电池组数:

a)设有主控制室的发电厂,当机组总容量为100MW及以上时,应装设2组蓄电池。

其它情况下可装设1组蓄电池。

b)容量为200MW以下机组的发电厂,当采用单元控制室的控制方式时,每台机组可

装设1组蓄电池(控制负荷与动力负荷合并供电)。

c)容量为200MW级机组的发电厂,且升高电压为220kV及以下时,每台机组可装设

1组蓄电池(控制负荷与动力负荷合并供电)或2组蓄电池(控制负荷与动力负荷分别供电)。

d)容量为300MW级机组的发电厂,每台机组宜装设3组蓄电池,其中2组对控制负

荷供电,另1组对动力负荷供电,或装设2组蓄电池(控制负荷与动力负荷合并供电)。

e)容量为600MW级机组的发电厂,每台机组应装设3组蓄电池,其中2组对控制负

荷供电,另1组对动力负荷供电。

f)小型供热发电厂、燃油发电厂、燃气发电厂和垃圾发电厂,根据需要可装设1组或

2组蓄电池。

g)当发电厂网络控制系统中包括有220kV及以上电气设备时,应独立装设不少于2组

蓄电池对控制负荷和动力负荷供电。当设有继电保护装置小室时,可将蓄电池组分散装设。其它情况的网络控制室可装设1组蓄电池。

h)220kV~750kV的变电所,应装设不少于2组蓄电池对控制负荷和动力负荷供电。

当设有继电保护装置小室时,可将蓄电池组分散装设。

i)直流输电换流站,站用蓄电池可装设2组,极用蓄电池每极可装设2组。

j)110kV及以下变电所宜装设1组蓄电池,对于重要的110kV变电所也可装设2组蓄电池。

k)控制和信号系统的直流电源电压为48V及以下时,宜采用DC/DC变换器,或独立装设2组蓄电池。

3.3充电装置

3.3.1充电装置型式:高频开关整流器。

3.3.2整流器组数:

a)1组蓄电池的直流系统,宜配置1组整流器,也可以配置2组相同容量的整流器。

b)2组蓄电池的直流系统,宜配置2组整流器,也可以配置3组相同容量的整流器。

3.4接线方式

3.4.1母线接线方式

a)1组蓄电池的直流系统,采用单母线接线或单母线分段接线方式。

b)2组蓄电池的直流系统,应采用二段单母线接线方式,蓄电池组分别接于不同母线

段上。二段直流母线之间设置联络开关电器,且满足在运行中二段直流母线切换时不中断供电的要求。两段直流母线切换过程中允许两组蓄电池短时并联运行。

3.4.2蓄电池组和充电装置均应经隔离和保护电器接入直流系统。

a)直流系统为单母线分段接线方式时,蓄电池组和充电装置的连接方式如下:

●1组蓄电池配置1组整流器时,二者应跨接在两段直流母线上。

●1组蓄电池配置2组整流器时,两组整流器应接入不同直流母线段,蓄电池组应跨

接在两段直流母线上。

b)直流系统为二段单母线接线方式时,蓄电池组和充电装置的连接方式如下:

●2组蓄电池配置2组整流器时,每组蓄电池及其整流器应分别接入不同直流母线段。

●2组蓄电池配置3组整流器时,每组蓄电池及其整流器应分别接入不同直流母线段,

第3组公用整流器应经切换电器可对2组蓄电池进行充电。

3.4.3设置硅降压装置,控制负荷与动力负荷混合供电的直流系统,其硅降压装置串接在

控制母线与动力母线之间。

3.4.4每组蓄电池均应设置专用的试验放电回路。试验放电设备应经隔离和保护电器直接

与蓄电池组出口回路并联。对于小型发电厂和各电压等级的变电站直流系统,试验放电装置宜采用微机控制的电阻型产品;对于大、中型发电厂直流系统,试验放电装置宜采用微机控制的有源逆变型产品。

3.5保护和监控

3.5.1保护

a)充电装置的交流输入回路装设交流断路器保护,并装设吸收浪涌电压的C级和D级

防雷器产品。

b)充电装置直流输出回路、蓄电池组出口回路和蓄电池组试验放电回路,装设熔断器

或直流断路器保护。

c)直流馈电回路装设直流断路器保护。

d)二次控制和信号电源回路均装设熔断器保护。

e)装设硅降压装置的直流系统具有防止硅元件开路的应急措施。

f)各级保护电器的配置,应根据直流系统的短路电流计算结果,保证具有可靠性、选

择性、灵敏性和速动性。

3.5.2测量

a)直流系统在直流屏柜上应装设以下测量表计:

●充电装置输出回路和蓄电池组出口回路的直流电流表。

●充电装置输出回路、蓄电池组出口回路和直流主母线的直流电压表。

b)直流屏柜上的测量表计宜采用四位半精度的数字式表计。

c)直流主母线应装设绝缘监测装置,以在线监视直流系统对地的绝缘状况。

d)蓄电池组可选择装设电压巡检装置,以在线监视电池组单体的电压水平。

3.5.3信号

a)充电装置的交流输入回路装设电源监视模块,当交流电源失压或缺相时,应发出报

警信号到微机监控单元。

b)充电装置的交流输入回路装设防雷器监视模块,当防雷器失效时,应发出报警信号

到微机监控单元。

c)充电装置的整流模块在交流输入电压过高或过低、直流输出过压或过流及温度过高

保护时,应发出报警信号到微机监控单元。

d)充电装置直流输出回路和蓄电池组出口回路的熔断器熔断或断路器跳闸时,应发出

报警信号到微机监控单元。

e)直流馈电回路的断路器保护跳闸时,应发出报警信号到微机监控单元。

f)对直流绝缘监测装置,当直流母线对地的绝缘电阻过低时,应发出报警信号到微机

监控单元。

g)对装设硅降压装置的系统,当降压硅堆故障时,应发出报警信号到微机监控单元。

h)对装设电池巡检装置的系统,当单体电池电压过高或过低及蓄电池开路或短路时,

应发出报警信号到微机监控单元。

3.5.4自动化要求

a)直流系统宜按每组蓄电池组设置一套微机监控装置。

b)直流系统微机监控装置应具有下列基本功能:

●参数显示:实时显示各个下级设备的各种信息,包括采集数据、设置数据等。通过

键盘和LCD,可以随时查看整个电源系统的运行状态和参数,包括直流母线电压、绝缘电阻;蓄电池组均∕浮充状态、充电电压和电流及环境温度;充电装置直流输出电压和电流。

●信号报警:直流系统中各设备产生的报警信号应上传到监控单元,监控装置可实时

地显示当前的告警内容。监控装置也能根据所采集的数据自行判断,并产生相应的报警信息。所有的这些报警信息应具有对应的继电器触点输出(无源干结点)。

●电池管理:自动控制调节蓄电池的充电电压和电流,以蓄电池的充电电流、充电时

间为依据,完成电池状态检测和容量计算,并根据检测结果进行均∕浮充转换控制;

如果系统配置有温度传感器,其均∕浮充电压可自动补偿调节。

●后台通信:通过RS232、RS485或其他通信接口型式,与电站综合自动化系统或后

台监控计算机连接,将电源系统的信息上传,实现对电源系统的远程监控。

c)直流系统就地和远方监控的I/O内容参见附表一。

3.6直流负荷统计

3.6.1直流负荷按下列规定统计

a)1组蓄电池的直流系统,控制负荷和动力负荷按全部负荷统计。

b)2组蓄电池的直流系统,对于控制负荷每组按全部负荷统计;对于动力负荷宜平均

分配到两组蓄电池,其中直流事故照明负荷,每组应按全部负荷的60%(变电所和有保安电源的发电厂可按100%)统计;事故后恢复供电的断路器合闸冲击负荷按随机负荷考虑。

c)两各直流系统间为紧急备用而设有联络线时,各系统的蓄电池组仍按各自所连接的

负荷考虑,不因互连而增加负荷数量的统计。

d)直流系统标称电压为48V及以下的蓄电池组,每组均按全部负荷统计。

3.6.2事故停电时间按下列规定计算

a)与电力系统连接的发电厂,厂用交流电源事故停电时间按1h计算。

b)不与电力系统连接的孤立发电厂,厂用交流电源事故停电时间按2h计算。

c)直流输电换流站,全站交流电源事故停电时间按2h计算。

d)有人值班的变电所,全所交流电源事故停电时间按1h计算。

e)无人值班的变电所,全所交流电源事故停电时间按2h计算。

3.6.3直流负荷统计的负荷系数和计算时间

参见DL/T5044-2004《电力工程直流系统设计技术规程》。

4.直流系统的设备选择

4.1蓄电池组

4.1.1蓄电池的个数选择

a)不设置硅降压装置的系统,蓄电池的个数按单体电池正常的浮充电压值和直流母线

电压为1.05倍直流系统标称电压值来确定:

N=1.05Un/Uf

分别校验均衡充电时NUj≤1.1Un,事故放电末期NUm≥0.85Un或0.87Un。

b)设置有硅降压装置的系统,蓄电池的个数按单体电池正常的浮充电压值和直流母线

电压为1.10倍直流系统标称电压值来确定:

N=1.10Un/Uf

分别校验均衡充电时NUj≤1.15Un,事故放电末期NUm≥0.875Un。

式中:N----蓄电池个数;

Un---直流系统标称电压;

Uf---单只蓄电池浮充电压;

Uj---单只蓄电池均衡充电电压;

Um---单只蓄电池放电末期电压。

c)不同型式铅酸蓄电池的数量选择参见附表二。

4.1.2蓄电池浮充电压

单体蓄电池的浮充电压应根据生产厂家的推荐值选取,一般可按下列数据:

a)一般防酸式铅酸蓄电池的单体浮充电压值取2.15V~2.17V(对于GFD型铅酸蓄电

池取2.17V~2.23V)。

b)阀控式铅酸蓄电池的单体浮充电压值取2.23V~2.27V。

4.1.3蓄电池均衡充电电压

单体蓄电池的均衡充电电压应根据直流系统中直流母线允许的最高电压值和蓄电池的个数来确定,一般可按下列数据:

a)一般防酸式铅酸蓄电池的单体均衡充电电压值取2.30V(对于GFD型铅酸蓄电池取

2.33V)。

b)阀控式铅酸蓄电池的单体均衡充电电压值取2.33V或2.35V。

4.1.4蓄电池放电终止电压

单体蓄电池的放电终止电压值应根据直流系统中蓄电池组出口端电压允许的最低电压值和蓄电池的个数来确定。一般可按下列数据:

a)系统不设置硅降压装置、采用单只2V的蓄电池,其放电终止电压值为:

●对于防酸式铅酸蓄电池,控制负荷专用蓄电池取 1.75V;动力负荷专用或动力负荷

与控制负荷合并供电的蓄电池取1.80V。

●对于阀控式铅酸蓄电池,控制负荷专用蓄电池取1.80V或1.83V;动力负荷专用或

动力负荷与控制负荷合并供电的蓄电池组1.85V或1.87V。

b)系统设置硅降压装置、采用单只2V、6V或12V的阀控式铅酸蓄电池组,其单体放

电终止电压取1.80V。

4.1.5蓄电池容量选择计算

计算方法参见DL/T5044-2004《电力工程直流系统设计技术规程》附录B.2。

4.2充电装置

4.2.1高频充电装置的基本技术性能要求

a)交流电源:三相三线制;

额定频率50Hz,工作电压380V±15%。

b)稳压精度:≤±0.5%。

c)稳流精度:≤±1%。

d)纹波系数:≤0.5%。

e)均流不平衡度:≤±3%(50%~100%负载);

≤±5%(10%~50%负载)。

f)满载效率:≥92%。

g)功率因数:≥0.92。

h)音响噪声:≤55dB。

i)机械结构:模块式可带电插拔维护。

4.2.2充电装置额定输出电流选择

充电装置的额定输出电流选择应满足下列条件:

a)有初充电要求的蓄电池,满足初充电时输出电流为1.0 I10~1.25I10选择:

Ir=1.0 I10~1.25I10(A)

b)满足蓄电池浮充电时,输出电流为蓄电池自放电电流与经常负荷电流之和:

Ir=0.01I10+I jc(A)

c)满足蓄电池均衡充电时,输出电流为蓄电池限流充电电流与经常负荷电流之和:

Ir=(1.0 I10~1.25I10)+I jc(A)

注:当蓄电池脱开直流母线进行均衡充电时,可不计入经常负荷电流。

式中:Ir---充电装置输出额定电流;

I10---铅酸蓄电池10h放电率放电电流;

I jc---直流系统的经常负荷电流。

4.2.3充电装置输出电压调节X围选择

充电装置的输出电压调节X围选择应满足蓄电池放电末期和初充电末期电压的要求,具体参数见下表。

4.2.4高频开关整流模块个数选择

a)1组蓄电池配置1组充电装置或2组同容量的充电装置,及2组蓄电池配置2组或3

组相同容量的充电装置,其整流模块选择计算方法如下:

N=〔(1.0 I10~1.25I10)+I jc〕/I me+1

式中:N----高频开关整流模块个数;

I10---铅酸蓄电池10h放电率放电电流;

I jc---直流系统的经常负荷电流;

I me---单个整流模块的额定电流。

b)2组蓄电池配置2小1大不同容量的充电装置,其整流模块选择计算方法如下:

N1=(0.01I10+I jc)/I me+1

N2=〔(1.0 I10~1.25I10)+I jc〕/I me+1

式中:N1---小容量充电装置高频开关整流模块个数;

N2---大容量充电装置高频开关整流模块个数;

I10---铅酸蓄电池10h放电率放电电流;

I jc---直流系统的经常负荷电流;

I me---单个整流模块的额定电流。

c)2组蓄电池配置2大1小不同容量的充电装置,其整流模块选择计算方法如下:

N1=〔(1.0 I10~1.25I10)+I jc〕/I me+1

N2=I10/I me+1

式中:N1---大容量充电装置高频开关整流模块个数;

N2---小容量充电装置高频开关整流模块个数;

I10---铅酸蓄电池10h放电率放电电流;

I jc---直流系统的经常负荷电流;

I me---单个整流模块的额定电流。

4.3绝缘监测装置

开关稳压电源(E题)

开关稳压电源(E题) 摘要 本系统以Boost升压斩波电路为核心,以MSP430单片机为主控制器和PWM信号发生器,根据反馈信号对PWM信号做出调整,进行可靠的闭环控制,从而实现稳压输出。系统输出直流电压30V~36V 可调,可以通过键盘设定和步进调整,最大输出电流达到2A,电压调整率和负载调整率低,DC-DC变换器的效率达到93.97%。能对输入电压、输出电压和输出电流进行测量和显示。 系统特色:1)输出电压反馈采用“同步采样”方式,能有效避免电压尖峰对信号检测的影响。2)采用多种有效措施降低系统的电磁干扰(EMI),增强电磁兼容性(EMC)。3)具有完善、可靠的保护功能,如:过流保护、反接保护、欠压保护、过温保护、防开机“浪涌”电流保护等,保证了系统的可靠性。 1方案论证 1.1DC-DC主回路拓扑 方案一间接直流变流电路:结构如图1-1所示,可以实现输出端与输入端的隔离,适合于输入电压与输出电压之比远小于或远大于1的情形,但由于采用多次变换,电路中的损耗较大,效率较低,而且结构较为复杂。 方案二 Boost升压斩波电路:拓扑结构如图1-2所示。开关的开通和关断受外部PWM信号控制,电感L将交替地存储和释放能量,电感L储能后使电压泵升,而电容C可将输出电压保持住,输出电压与输入电压的关系为UO=(ton+toff),通过改变PWM控制信号的占空比可以相应实现输出电压的变化。该电路采取直接直流变流的方式实现升压,电路结构较为简单,损耗较小,效率较高。 E L C U O R L VD 图1-1 间接直流变流电路 图1-2 Boost升压斩波电路拓扑结构

综合比较,我们选择方案二。 1.2 控制方法及实现方案 方案一 利用PWM 专用芯片产生PWM 控制信号。此法较易实现,工作较稳定,但不易实现输出电压的键盘设定和步进调整。 方案二 利用单片机产生PWM 控制信号。让单片机根据反馈信号对PWM 信号做出相应调整以实现稳压输出。这种方案实现起来较为灵活,可以通过调试针对本身系统做出配套的优化。但是系统调试比较复杂。 在这里我们选择方案二。 1.3 系统总体框图 1) B oost 升压斩波电路中开关管的选取:电力晶体管(GTR )耐压高、工作频率较低、开关损耗大;电力场效应管(Power MOSFET )开关损耗小、工作频率较高。从工作频率和降低损耗的角度考虑,选择电力场效应管作为开关管。 2) 选择合适的开关工作频率:为降低开关损耗,应尽量降低工作频率;为避免产生噪声,工作频率不应在音频内。综合考虑后,我们把开关频率设定为20kHz 。 3) B oost 升压电路中二极管的选取:开关电源对于二极管的开关速度要求较高,可从快速恢复二极管和肖特基二极管中加以选择。与快速恢复二极管相比,肖特基二极管具有正向压降很小、恢复时间更短的优点,但反向耐压较低,多用于低压场合。考虑到降低损耗和低压应用的实际,选择肖特基二极管。 4) 控制电路及保护电路的措施:控制电路采取超低功耗单片机MSP430,其工作电流仅280μA ;显示采取低功耗LCD ;控制及保护电路的电源采取了降低功耗的方式,具体实现见附录图2,单片机由低功耗稳压芯片HT7133单独供电。 2 电路设计与参数计算 2.1 Boost 升压电路器件的选择及参数计算 B oost 升压电路

直流稳压电源电路的设计实验报告

直流稳压电源电路的设计实验报告 一、实验目的 1、了解直流稳压电源的工作原理。 2、设计直流稳压电路,要求输入电压:220V市电,50Hz,用单变压器设计并制作能够输出一组固定+15V输出直流电压和一组+1.2V~+12V连续可调的直流稳压电源电路,两组输出电流分别I O≥500mA。 3、了解掌握Proteus软件的基本操作与应用。 二、实验线路及原理 1、实验原理 (1)直流稳压电源 直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电的装置,它需要变压、整流、滤波、稳压四个环节才能完成。一般由电源变压器、整流滤波电路及稳压电路所组成,基本框图如下: 图2-1 直流稳压电源的原理框图和波形变换 其中: 1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定,变压器副边与原边的功率比为P2/P1=n,式中n是变压器的效率。 2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。 3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。滤波电路滤除较大的波纹成分,输出波纹较小的直流电压U1。 4)稳压电路:其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。 (2)整流电路 常采用二极管单相全波整流电路,电路如图2-2所示。在u2的正半周内,二极管D1、D2导通,D3、D4截止;u2的负半周内,D3、D4导通,D1、D2截止。正负半周内部都有电流流过的负载电阻RL,且方向是一致的。电路的输出波形如图2-3所示。 t

项目二 5V稳压电源电路原理图的绘制

教案(首页) 编号:YJSD/JWC-17-10 编制:徐建琴审核:张德芳批准:史岳雷课题序号 2 授课班级电子10 授课课时 2 授课形式新授课 授课章节 名称 项目二 5V稳压电源电路原理图的绘制/任务一、任务二使用教具无 教学目的1、会新建和保存项目文件和原理图文件 2、理解项目与文件的关系 3、了解“5V稳压电源电路”电路工作原理和电路结构 教学重点新建和保存项目文件和原理图文件、电路的工作原理和结构 教学难点“5V稳压电源电路”电路工作原理 更新、补 充、删减 内容 无 课外作业P78 2.1 教学后记学生听讲认真,跃跃欲试,但知识的整理能力还有待提高 授课主要内容或板书设计 项目二 5V稳压电源电路原理图的绘制 任务一新建项目文件,创建电路原理图文件 1、启动 Protel DXP 2004 2、新建PCB项目文件 3、保存PCB项目文件 4、新建原理图文件 5、保存原理图文件 任务二认识“5V稳压电源电路” 1、电源变压器 2、整流电路 3、滤波电路 4、稳压电路 5、其余元件的作用

课堂教学安排 教学过程主要教学内容及步骤 学习任务目标1、能力目标:1)会新建和保存项目文件和原理图文件 2)能理解项目与文件的关系 2、知识目标:1)掌握新建和保存项目文件和原理图文件的操作步骤 2)了解“5V稳压电源电路”电路工作原理和电路结构3、情感目标:培养学生学习兴趣,使之利用计算机技能基础,掌握好Protel DXP工程和文件的新建、保存、打开的操作。 教学指导 教师引导示范,让学生熟悉操作方法;通过对项目电路的剖析,让学生初步了解“5V稳压电源电路”,为后续项目的实施打下基础。 学习活动 任务一新建项目文件,创建电路原理图文件 操作步骤: 步骤一启动 Protel DXP 2004 方法1:双击Windows桌面的快捷方式图标。 方法2:单击【开始】菜单→【所有程序】→【Altium】→【DXP 2004】。步骤二新建PCB项目文件 方法1:选择菜单命令【文件】→【创建】→【项目】→【PCB项目】。方法2:单击主界面左下角【Project】标签,调出【Project】面板,单击【项目】按钮→在弹出的快捷菜单中选择【追加新项目】→【PCB 项目】。 步骤三保存PCB项目文件 建立PCB项目文件后,一般要将项目文件保存为自己需要的文件名,并保存到指定的文件夹中。 方法1:选择菜单命令【文件】→【保存项目】或【另存项目为】 方法2:在【Project】面板的默认项目名称“PCB_Project1.PRJPCB”上单击鼠标右键,在弹出的快捷菜单中选择【保存项目】或【另存项目为】。步骤四新建原理图文件 方法1:选择菜单命令【文件】→【创建】→【原理图】。

厦门双极柔性直流输电工程系统设计

研究背景 基于模块化多电平换流器(Modular Multilevel Converter,MMC)的柔性直流系统由于谐波畸变小且开关损耗低,是高电压大容量直流输电的重要发展方向。目前,世界X围内基于MMC的柔性直流工程发展迅猛;国内已有5项MMC工程投运,同时还有多项高压乃至特高压MMC工程处于规划之中,并可能成为我国未来大区域电网互联的重要手段。与交流输变电工程不同,柔性直流工程需要根据送受端交流系统条件、输电距离、投资和占地等条件开展定制化的系统设计。 (来源:电力系统自动化ID:AEPS-1977) ±320kV/1000MWXX柔性直流输电工程(以下简称XX工程)是世界X围内第一个采用双极接线的柔性直流工程,也是额定直流电压和输送容量均达到世界之最的柔性直流工程,两端换流站鸟瞰示意图如图1所示。与以往对称单极柔性直流工程相比,首次采用的双极接线和大传输容量对工程的系统设计提出了新的要求。本文对双极高压大容量柔性直流工程的系统设计展开研究,研究结论在XX工程得到成功应用,验证了设计方案和技术参数的正确性。 (a) 彭厝换流站 (b) 湖边换流站 图1 XX工程换流站鸟瞰示意图 1 主接线及运行方式 当高压大容量柔性直流工程采用对称单极接线,存在如下问题: 1)与同容量双极柔性系统相比,可靠性较低。 2)换流单元采用三台单相双绕组变压器,导致变压器容量大,运输困难。 3)换流站设备的绝缘水平要求较高。考虑到上述因素,XX工程采用双极带金属回线的主接线,主接线设计如图2所示。

图2 双极柔性直流换流站接线示意图 根据主接线设计特点和转换开关配置方案,XX工程存在以下3种运行方式: 方式1:双极带金属回线单端接地运行(见图3(a))。其中,接地点仅起钳制电位的作用,不提供直流电流通路。双极不平衡电流通过金属回线返回。 方式2:单极带金属回线单端接地运行(见图3(b))。接地点的作用同方式1,且单极极线电流通过金属回线返回。 方式3:双极不带金属回线双端接地运行(见图3(c))。双极不平衡电流通过大地回路返回。该方式为运行方式转换过程中出现的临时方式,且必须保证直流系统处于双极对称状态。

可调直流稳压电源的设计说明

可调直流稳压电源设计报告 任微明(学号:20101106133 ) (物理与电子信息学院10 级科技班,内蒙古呼和浩特010022 ) 指导教师: 高焕生 摘要:主要采用变压器、整流、滤波、稳压的流程思路将输入220V 交流电转换成 电压3~12V 的直流电源。其中,稳压电路采用三端固定稳压器LM317 达到稳压效果,因此系统可根据实际需要对其设计进行适当的修改。本系统设计方便简单、易学易改、成本低廉、功能实用。 关键字:变压器;整流;滤波;稳压 1 设计内容及要求 1.1 设计目的 1、学习小功率直流稳压电源的设计与调试方法。 2、掌握小功率直流稳压电源有关参数的测试方法。 3、通过集成直流稳压电源的设计、安装和调试,要求学会: (1)选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源; (2)掌握直流稳压电路的调试及主要技术指标的测试方法。 (3)通过电路的设计可以加深对该课程知识的理解以及对知识的综合运用。 1.2 设计内容 设计一波形直流稳压电源,满足:当输入电压在220V ± 10%时,输出直流电压为3~12V

1.3设计要求 (1) 电源变压器做理论设计; (2) 合理选择集成稳压器; (3) 完成全电路理论设计、计算机辅助分析与仿真、安装调试、绘制电路图,PCB 板; (4) 撰写设计报告、调试总结报告。 2设计方法与步骤 2.1设计方法 单元电路设计、PCB板设计、电路的组装与调试。 2.2设计步骤 (1 )功能和性能指标分析:对题目的各项要求进行分析,整理出系统和具体电路设计所需的更具体、更详细的功能要求和技术性指标数据,以求得设计的原始依据。 (2 )画出总体电路图,要求按相关规定,布局合理,图面清晰,便于对图的理解和阅读,为组装、调试和维修时做好准备。 (3)按总电路图安装电路,调试并改进。 3电路的设计 图3整体电路图 3.1电源变压器 过整流电路将交流变为脉动的直流电压。由于此脉动的直流压含有较的纹波,必须通过滤

可调直流稳压电源课程设计

电子技术课程设计) —可调直流稳压电源 专业班级: $ 姓名: 学号:

? 目录 一、设计目的 (3) 二、设计任务及要求 (3) 三、实验设备及元器件 (3) ~ 四、设计步骤 (4) 1、电路图设计方法 (4) 2、设计的电路图 (5) 五、总体设计思路 (5) 1、直流稳压电源设计思路 (5) 2、直流稳压电源原理 (6) (1)直流稳压电源 (6) (2)整流电路 (6) · (3)滤波电路——电容滤波电路 (7) (4)稳压电路 (9) 3、设计的电路原理图 (10) 4、设计方法简介 (10) 六、课程设计报告总结 (12) 七、参考文献 (12) (

。 引言 直流稳压电源一般由电源变压器,整流电路,滤波电路及稳压电路所组成。变压器把交流电压变为所需要的低压交流电,整流器把交流电变为直流电,经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电,并实现电压可在1-25V可调。 关键词:直流,稳压,变压。 一、设计目的 1、学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2、学会直流稳压电源的设计方法和性能指标测试方法。 3、培养实践技能,提高分析和解决实际问题的能力。 : 二、设计任务及要求 1、设计一个连续可调的直流稳压电源,主要技术指标要求: ①输入(AC):U=220V,f=50HZ; U:1v--25v; ②输出直流电压 2 I≤1A; ③输出电流: 2、设计电路结构,选择电路元件,计算确定元件参数,画出实用原理电路图。 3、自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量。 4、在仿真软件multisim上画出电路图,仿真和调试,并测试其主要性能参数。

详解大功率可调稳压电源电路图

详解大功率可调稳压电源电路图 无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从 3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。 如图1所示大功率可调稳压电源电路图 大功率可调稳压电源电路图 图1 大功率可调稳压电源电路图 其工作原理分两部分,第一部分是一路固定的5V1.5A稳压电源电路。第二部分是另一路由3至15V连续可调的高精度大电流稳压电路。第一路的电路非常简单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805不用作任何调整就可在输出端产生固定的 5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。第二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,所以使电路简化,成本降低,而稳压性能却很高。图中电阻R4,稳压管TL431,电位器R3组成一个连续可调得恒压源,为BG2基极提供基准电压,稳压管TL431的稳压值连续可调,这个稳压值决定了稳压电源的最大输出电压,如果你想把可调电压范围扩大,可以改变R4和R3的电阻值,当然变压器的次级电压也要提高。变压器的功率可根据输出电流灵活掌握,次级电压15V左右。桥式整流用的整流管QL用15-20A硅桥,结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利散热。调整管用的是大电流

NPN型金属壳硅管,由于它的发热量很大,如果机箱允许,尽量购买大的散热片,扩大散热面积,如果不需要大电流,也可以换用功率小一点的硅管,这样可以做的体积小一些。滤波用50V4700uF电解电容C5和C7分别用三只并联,使大电流输出更稳定,另外这个电容要买体积相对大一点的,那些体积较小的同样标注50V4700uF尽量不用,当遇到电压波动频繁,或长时间不用,容易失效。最后再说一下电源变压器,如果没有能力自己绕制,有买不到现成的,可以买一块现成的200W以上的开关电源代替变压器,这样稳压性能还可进一步提高,制作成本却差不太多,其它电子元件无特殊要求,安装完成后不用太大调整就可正常工作。

+-12V直流稳压电源设计

12V直流稳压电源设计 一、摘要 直流稳压电源是一种当电网电压波动或温度、负载改变时,能保持输出直流电压基本不变的电源。其电源电路包括电源变压器、整流电路、滤波电路和稳压电路四个环节。设计中要用的元件有变压器、稳压器、整流二极管、电解电容等。实测结果表明,该装置实现了题目要求的全部功能,实现了题目的基本要求。 关键词:直流、整流、稳压、滤波、电源 二、设计目的 1.学会选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源。 2.掌握直流稳压电源的调试及主要技术指标的测试方法。 3.培养实践技能,提高分析和解决实际问题的能力。 三、设计任务 设计一个直流稳压线性电源,输入220V,50Hz的正弦交流信号,输出±12V对称稳压直流电。 四、遇到问题 因为是模拟电路所以误差会比较大,电路的准确性往往取决于整个电路的线路连接及器件,一旦某条线路出现问题则整个电路无法正常工作,或者某个器件因为电压过大而烧坏则此电路失败。要注意输入电压的器件如稳压管,一旦输入过大电压那么它绝对会烧坏,只

能换新的来替代。 五、原理电路和程序设计电路原理方框图 1.直流稳压电源的基本原理 下面将就直流稳压电源各部分的作用作简单陈述。 (1)是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。 (2)整流滤波电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。 (3)稳压电路:稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。 六、电路图和各部分波形图

可调直流稳压电源的设计完整版

可调直流稳压电源的设计 直流稳压电源的设计 设计要求 基本要求:短路保护,电压可调。若用集成电路制作,要求具有扩流电路。 基本指标:输出电压调节范围:0-6V,或0-8V,或0-9V,或0—12V; 最大输出电流:在0.3A-1.5A区间选一个值来设计; 输出电阻Ro:小于1欧姆。 其他:纹波系数越小越好(5%Vo),电网电压允许波动范围 + -10%。 设计步骤 1.电路图设计 (1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出直流稳压电源方框图。 (2)系统分析:根据系统功能,选择各模块所用电路形式。 (3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。 (4)总电路图:连接各模块电路。 2. 设计思想 (1)电网供电电压交流220V(有效值)频率为50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。 (2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。 (3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。 (4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响 。 的稳定直流电压输出,供给负载R L 电路设计

(一)直流稳压电源的基本组成 直流稳压电源是将频率为50Hz 、有效值为220V 的单相交流电压转换为幅值稳定、输出电流为几十安以下的直流电源,其基本组成如图(1)所示: 图(1) 直流稳压电源的方框图 直流稳压电源的输入为220V 的电网电压,一般情况下,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电压进行处理。变压器副边电压有效值决定于后面电路的需要。 变压器副边电压通过整流电路从交流电压转换为直流电压,即正弦波电压转换为单一方向的脉动电压,半波整流电路和全波整流电路的输出波形如图所示。可以看出,他们均含有较大的交流分量,会影响负载电路的正常工作。 为了减小电压的脉动,需通过低通滤波电路滤波,使输出电压平滑。理想情况下,应将交流分量全部滤掉,使滤波电路的输出电压仅为直流电压。然而,由于滤波电路为无源电路,所以接入负载后势必影响其滤波效果。对于稳定性要求不高的电子电路,整流、滤波后的直流电压可以作为供电电源。 交流电压通过整流、滤波后虽然变为交流分量较小的直流电压,但是当电网电压波动或者负载变化时,其平均值也将随之变化。稳压电路的功能是使输出直流电压基本不受电网电压波动和负载电阻变化的影响,从而获得足够高的稳定性。 (二)各电路的选择 1.电源变压器 电源变压器T 的作用是将电网220V 的交流电压变换成整流滤波电路所需要的交流电压U i 。实际上,理想变压器满足I 1/I 2=U 2/U 1=N 2/N 1=1/n ,因此有P 1=P 2=U 1I 1=U 2I 2。变压器副边与原边的功率比为P 2/ P 1=η,式中η是变压器的效率。根据输出电压的范围,可以令变压器副边电压为22V ,即变压系数为0.1。 2.整流电路 T 负 载

开关稳压电源和线性稳压电源

开关稳压电源和线性稳压电源 根据调整管的工作状态,我们常把稳压电源分成两类:线性稳压电源和开关稳压电源。 线性稳压电源,是指调整管工作在线性状态下的稳压电源。而在开关电源中则不一样,开关管(在开关电源中,我们一般把调整管叫做开关管)是工作在开、关两种状态下的:开——电阻很小;关——电阻很大。 开关电源是一种比较新型的电源。它具有效率高,重量轻,可升、降压,输出功率大等优点。但是由于电路工作在开关状态,所以噪声比较大。通过下图,我们来简单的说说降压型开关电源的工作原理。如图所示,电路由开关K(实际电路中为三极管或者场效应管),续流二极管D,储能电感L,滤波电容C等构成。当开关闭合时,电源通过开关K、电感L给负载供电,并将部分电能储存在电感L以及电容C中。由于电感L的自感,在开关接通后,电流增大得比较缓慢,即输出不能立刻达到电源电压值。一定时间后,开关断开,由于电感L的自感作用(可以比较形象的认为电感中的电流有惯性作用),将保持电路中的电流不变,即从左往右继续流。这电流流过负载,从地线返回,流到续流二极管D的正极,经过二极管D,返回电感L的左端,从而形成了一个回路。通过控制开关闭合跟断开的时间(即PWM——脉冲宽度调制),就可以控制输出电压。如果通过检测输出电压来控制开、关的时间,以保持输出电压不变,这就实现了稳压的目的。 在开关闭合期间,电感存储能量;在开关断开期间,电感释放能量,所以电感L叫做储能电感。二极管D在开关断开期间,负责给电感L提供电流通路,所以二极管D叫做续流二极管。 在实际的开关电源中,开关K由三极管或场效应管代替。当开关断开时,电流很小;当开关闭合时,电压很小,所以发热功率U×I就会很小。这就是开关电源效率高的原因。 看过完两个关于电源的FAQ后,大家可能对电源的效率计算还不了解。在后面的FAQ中,我们将专门给大家介绍。 常见的用于开关电源的芯片有:TL494,LM2575,LM2673,34063,51414等等。

5v直流稳压电源设计资料

新疆工程学院 实训报告 实训科目电子技术实训 系部机械系 专业 班级 姓名 实训地点教室及电子实验室指导教师李积芳 完成日期 新疆工程学院教务处

新疆工程学院 电气与信息工程系电子实训任务书

新疆工程学院电子实训成绩表 (注意:旷课一票否决)目录

摘要 第一章引言 (3) 1.1硬件电路设计要求电路设计 (4) 1.11元件选取电源变压器 (6) 1.12整流二极管的选择滤波电容的C的确定 (6) 第二章网站导航概述 总结 (8) 致谢 参考文献 (9)

内容摘要 直流稳压电源一般由电源变压器,整流滤波电路及稳压电路所组成。变压器把市电交流电压变为所需要的低压交流电。整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电,并实现±5V电压稳定输出。 关键词:±5V,变压器,整流,滤波,稳压器

引言 关于稳压电源的分类,首先就应该清楚电源的输出是什么,是输出直流电还是输出交流电。第二个层次的分类可以根据调整管的工作状态来分类。第三个层次的分类就是根据稳压电路与负载的连接方式来分类。再往下面细分由于各种不同的电路特性相差太大,就不好一概而论,应该根据每一个具体类别的特性进行分类区分了。当然这里所谈的分类只是根据直流稳压电源的特点给出一个大致的分类思路,图1是根据上面的思路划分的稳压电源种类。 图1 稳压电源分类 根据调整管的工作状态,我们常把直流稳压电源分成两类:线性稳压电源和开关稳压电源[1]。线性稳压直流电源的特点是:输出电压比输入电压低;反应速度

变电站直流系统分析与设计毕业论文

变电站直流系统分析与 设计毕业论文 目录 前言 (1) 3第一节变电站直流电源技术分析 (3) 第二节蓄电池技术分析 (5) 第二章确定直流系统的接线和工作电压 (9) 第一节直流系统的接线 (9) 第二节确定系统工作电压 (14) 第三章计算与选择 (16) 第一节计算并选择蓄电池容量 (16) 第二节直流充电模块的选择 (22) 第三节 UPS不停电电源的选择 (24) 第四节通信电源的分析与设计 (26) 第五节直流系统中各自动开关额定容量的选择 (28) 第四章结论 (31) 结束语 (32) 参考文献 (33)

前言 随着电力工业的迅速发展,为提高电网的供电质量,使电网安全、经济运行,并实现电力系统的自动化,从而对电力控制系统的关键设备控制电源的要求也越来越高。变电站的继电保护,自动装置,信号装置,事故照明和电气设备的远距离操作,一般采取直流电源,所以直流电源的输出质量及可靠性直接关系到变电站的安全运行和平稳供电。 在变电站中广泛采用的直流控制电源是由蓄电池组和充电装置等设备构成,是一种在正常和事故状态下都能保持可靠供电的直流不停电电源系统。交流控制电源通常是采用UPS不间断电源。通信电源是由模块化的通信专用DC-DC变换器,它是从站直流控制电源系统的蓄电池组取得直流电,经高频变换输出满足通信设备要求的48V控制电源。 从90年代开始的变电站综合自动化技术的推广应用,对直流系统提出了更高的技术要求。近年来直流系统的技术和设备发展迅速,阀控铅酸蓄电池、智能型高频开关充电装置等,具有安全可靠、技术先进和性能优越等特点,促进了直流系统的发展。 然而,在电力系统中,由于直流电源系统设计不合理、设备选型不

可调直流稳压电源(课程设计)

可调直流稳压电源 摘要: 随着科技的发展,电气、电子设备已经广泛的应用于日常、科研、学习等各个方面。电源作为电气、电子设备必不可少的能源供应部件,需求日益增加,而且对电源的功能、稳定性等各项指标也提出了更高的要求。对电源的研究和开发已经成为新技术、新设备开发的重要环节,在推动科技发展中起着重要作用。本设计主要用串联型稳压电路设计直流稳压电源,通过相关知识计算出各电路中各个器件的参数,使电路性能达到设计要求中的电压调整率,电流调整率,负载调整率,纹波电压等各项指标。 关键词:变压器,整流电路,滤波电路,稳压电路(LM317、LM337) 可调的直流稳压电源电路设计 目录 摘要 (1) 绪论 (2) 一.设计目的 (3) 二.设计任务及要求 (3) 三.直流稳压电源设计思路 ................................. 错误!未定义书签。四.设计原理 (4) 五.电路相关元件及电路指标简介 (5) 六.电路原件选择 (11) 七.在Proteus中设计的电路图及其仿真图 (14) 八.组合硬件电路的调试及改进 (16) 九.设计心得体会 (18)

十.参考文献 (20) 绪论 电源技术是一门实践性很强的工程技术,服务于各行各业。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。只有满足产品标准,才能够进入市场。随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。 电源可分为交流电源和直流电源,它是任何电子设备都不可缺少的组成部分。交流电源一般为220V、50Hz电源,但许多家用电器设备的内部电路都要采用直流电源作为供电能源,如收音机、电视机、带微处理器控制的家电设备等都离不开这种电源。直流电源又分为两类:一类是能直接供给直流电流或电压的,如电池、蓄电池、太阳能电池、硅光电池、生物电池等,本文不做具体介绍;另一类是将交流电变换成所需的稳定的直流电流或电压的,这类变换电路统称为直流稳压电源。现在所使用的大多数电子设备中,几乎都必须用到直流稳压电源来使其正常工作,而最常用的是能将交流电网电压转换为稳定直流电压的直流电源,可见直流稳压电源在电子设备中起着主要作用,为设备能够稳定工作提供保证。220V、50HZ的单向交流电源经电源变压器降压后,再经过整流滤波可获得低电压小功率直流电源。然而,由于电网电压可以有±10%变化。为此必须将整流滤波后的直流电压由稳压电路稳定后再提供给负载,使负载上直流电源电压受上述因素的影响程度达到最小。直流电源电压系统一般由四部分组成,它们分别是电源变压器、整流电路、滤波电路、稳压电路。 一、设计目的 1、学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。

可调直流稳压电源的工作原理

可调直流稳压电源的工 作原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

可调直流稳压电源设计 摘要 可调直流稳压电源是采用当前国际先进的高频调制技术,其工作原理是将开关电源的电压和电流展宽,实现了电压和电流的大范围调节,同时扩大了目前直流电源供应器的应用。直流稳压电源的控制芯片是采用目前比较成熟的进口元件,功率部件采用现国际上最新研制的大功率器件,可调直流稳压电源设计方案省去了传统直流电源因工频变压器而体积笨重。与传统电源相比高频直流电源就较具有体积小、重量轻、效率高等优点,同时也为大功率直流电源减小体积创造了条件,此电源又称高频可调式开关电源。可调直流稳压电源保护功能齐全,过压、过流点可连续设置并可预视,输出电压可通过触控开关控制。 关键词:开关稳压电源;开关变压器;高频直流电源 目录

1可调直流稳压电源 可调直流稳压电源的工作原理 参数稳压器在输入交流电压150V-260V时,输出稳压在220V效果效于和高于这个范围,其效率要下降。采用单片微机进行第一步控制,使310V以下和90V以上的输入电压,调整控制在190V—250V范围,再用参数稳压器进行稳压效果很好。 由市电输入的交流电压变化波动很大,经过过压吸收滤波电路将高频脉冲等干扰电压滤去后,送入直流开关稳压电源、交流取样电路和控制执行电路。 直流开关稳压电源的功率小,但能把60-320V的交流电压娈换成+5V,+12V,-12V 的直流电压。+5V电压供给单片微机使用,±12V电压供给控制电路的大功率开关模块使用。 单片微机把取样电路采集到的输入电压数据,分析判断并发出控制信号送到触发电路,控制调节输出电压。 控制执行电路由SSR过零开关大功率模块和带抽头的自耦变压器组成。SSR之间采用RC吸收电路吸收过电压和过电流,使SSR在开关时不会损坏。控制执行电路把 90-310V的输入电压控制在190V-240V范围,再送到参数稳压器进行精确稳压。 参数稳压器由电感和电容组成LC振荡器,振荡频率50HZ。无论市电怎么变化,其振荡频率不会改变,因此输出电压不会变化,稳压精度高。即使输入电压波形失真很大,经参数稳压器振荡输出后却是标准的正弦波,因此稳压电源有强的抗干扰能力和净化能力。

稳压电源电路图

压电源电路分为线性稳压电源,集成稳压电源,晶体管稳压电源,交流稳压电源 一:由7805,7905,7812组成的特殊的线性稳压电源 如图所示为一种特殊的电源电路。该电路虽然简单,但可以从两个相同的次级绕组中产生出三组直流电压:+5V、-5V和+12V。其特点是:D2、D3跨接在E2、E3这两组交流电源之间,起着全波整流的作用。 二。利用TL431作大功率可调稳压电源 精密电压基准ICTL431是T0—92封装如图1所示。其性能是输出压连续可调达36V,工作电流范围宽达0.1。100mA,动态电阻典型值为0.22欧,输出杂波低。图2是TL431的典型应用,其中③、②脚两端输出电压V=2.5(R2十R3)V/R3。如果改变R2的阻值大小,就可以改变输出基准电压大小。图3是利用它作电压基准和驱动外加场效应管K790作调整管构成的输出电流大(约6A)、电路简单、安全的稳压电源。 工作原理 如图3所示,220v电压经变压器B降压、D1-D4整流、C1滤波。此外D5、D6、C2、C3组成倍压电路(使得Vdc=60V),Rw、R3组成分压 电路,T1431、R1组成取样放大电路,9013、R2组成限流保护电路,场效应管K790作调整管(可直接并联使用)以及C5是输出滤波器电路等。稳

压过程是:当输出电压降低时,f点电位降低,经T1431内部放大使e点电压增高,经K790调整后,b点电位升高;反之,当输出电压增高时,f点电位升高,e点电位降低,经K790调整后,b点电位降低。从而使输出电压稳定。当输出电流大于6A 时,三极管9013处于截止,使输出电流被限制在6A以内,从而达到限流的目的。本电路除电阻R1选用2W、R2选用5W外,其它元件无特殊要求,其元件参数如图3所示。 三。具有过电流保护的晶体管稳压电路

基于的直流稳压电源设计

基于的直流稳压电源设 计 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

基于7805的直流稳压电源设计 目录 1.直流稳压器的发展-------------------------------------------------- ----------------- ------1 多端可调式集成稳压器--------------------------------------------------------------- --------1 三端固定式集成稳压器------------------------------------------ -----1 三端可调式集成稳压器------------------------------------------ -----1 跟踪集成稳压器------------------------------------------------- ----1 2. 芯片电路原理图、外形及使用要求----------------------------------------------1 3.稳压电路的质量指标---------------------------------------------------------2 稳压系数Sr-------------------------------------------------- ------2 负载调整特性SI---------------------------------------------- --- --2 输出电阻RO-------------------------------------------------- ------2 纹波抑制比SR------------------------------------------------ ------3 4. 设计题目及要求-------------------------------------------------------------4 5. 元器件选型-----------------------------------------------------------------4 确定稳压器型号,输入电压和输入电流--------------------------- - ----4 桥式整流二极管参数要求--------------------------------------- -----4 滤波电容---------------------------------------------------- ------4 电源变压器容量--------------------------------------------- - ------4

直流稳压电源电路设计76283

题目 直流稳压电源电路设计 一、设计任务与要求 1.用桥式整流电容滤波集成稳压块电路设计固定的正负直流电源(±12V ); 2.输出可调直流电压,范围1.5∽15V ; 3.输出电流I O m ≥1500mA ;(要有电流扩展功能) 4. 稳压系数Sr ≤0.05;具有过流保护功能。 二、方案设计与论证 稳压电源由电源变压器、整流电路、滤波电路和稳压电路四部分组成,如下图1所示,其整流与稳压过程的电压输出波形如图2所示。 图1 稳压电源的组成框图 图2 整流与稳压过程波形图 电网电压U1 电源 变压器U2 整流电路U3 滤波电路Ui 稳压电路Uo 负载RL

电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL。 方案一、单相半波整流电路 半波单相整流电路简单,电路及其电压输出波形分别如图3、图4所示,使用元件少,它只对交流电的一半波形整流,其输出波形只利用了交流电的一半波 形则整流效率不高,且输出波形脉动大,其值为2 2 / 2 1.57 2 2 / U S U π π ==≈;直流成 分小; o U=2 2U π ≈0.45 2 U,变压器利用率低。 图3 单相半波整流电路图4 单相半波整流电路电压输出波形

方案二、单相全波整流电路 使用的整流器件是半波电路的两倍,整流电压脉动较小,是半波的一半,无滤波电路时的输出电压o U =0.92U ,变压器的利用率比半波电路的高,整流器件所承受的反向电压要求较高。 方案三、单相桥式整流电路 单相桥式整流电路使用的整流器件较多,但其实现了全波整流电路,它将2 u 的负半周也利用起来,所以在变压器副边电压有效值相同的情况下,输出电压的平均值是半波整流电路的两倍,且如果负载也相同的情况下,输出电流的平均值也是半波整流电路的两倍,且其与半波整流电路相比,在相同的变压器副边电压下,对二极管的参数要求一样,还具有输出电压高、变压器利用率高、脉动小等优点。 我的选择:综合三种方案的优缺点决定用方案三 三、单元电路设计与参数计算 整流电路采用单相桥式整流电路,电路如图5所示, 图5 单相桥式整流电路

—5v稳压电源与0~30v可调稳压电源

5V稳压电源与0~30v可调稳压电源 姓名专业班级:学号:指导教师: 2011年11月日~2011年11月日 摘要: 5V稳压电源与0~30v可调稳压电源:输入220v交流电后5V稳压电源可输出5v直流电压, 0~30v可调稳压电源可输出0~30v可调直流电压,为需要供电的元器件提供直流电压。采用桥式整流电路,电容滤波,和集成稳压块稳压,本电源可输出稳定直流电压,在后续的学习实验中有很大用途。 关键词:交流,直流,整流,稳压 1.设计任务: 输入220v交流电后可输出5v直流电压,为需要供电的元器件提供直流电压。输入220v交流电后可输出0~30v中任一直流电压,为需要供电的元器件提供直流电压。 1.1 方案论证见图1-1及1-2: 图1-1

图1-2 1.2 工作原理: 5V稳压电源:输入220v交流电后可输出5v直流电压,为需要供电的元器件提供直流电压。市电进入电源,首先要经过变压器由高压变为低压,滤除高频杂波和同相干扰信号,改变电压。然后再经过由 4 个二极管组成的桥式电路整流,和大容量的滤波电容滤波后,再经过集成稳压块7805以及电位器后,输出的的电压,才算真正完成所需要的较为纯净的低压直流电压。 各模块功能: ①电源变压器:降低电压。 ②整流电路:由4只二极管组成的桥式整流电路。 ③滤波:用2200UF25V的电解电容1只和一个104的瓷片电容,接在整流电路 的后面最基本的将交流转换为直流的电路,在所有需要将交流电转换为直流电的电路中,设置滤波电容会使电子电路的工作性能更加稳定,同时也降低了交变脉动波纹对电子电路的干扰。安装在整流电路两端用以降低交流脉动波纹系数提升,高效平滑直流输出的一种储能器件,我们把这种器件称其为滤波电容。滤波电容具有电极性,我们又称其为电解电容。电解电容的一端为正极,另一端为负极,正极端连接在整流输出电路的正端,负极连接在电路的负端。滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑,稳定。 ④7805的集成稳压块:一只固定式三端稳压器(7805)78XX系列集成稳压器的 典型应用电路5v电源的制作,三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V。从正面看引脚从左向右按①②③顺序标注,接入电路时①脚电压高于②脚,③脚为输出位。如对于78**正压系列,①脚高电位,②脚接地,; 此外,还应注意,散热片总是和接地脚相连。这样在78**系列中,散热片和 ②脚连接。 0~30v可调稳压电源:输入220v交流电后可输出0~30v直流电压,为需要供电的元器件提供直流电压。市电进入电源,首先要经过变压器由高压变为低压,滤除高频杂波和同相干扰信号,改变电压。然后再经过由 4 个二极管组成的桥式

2002版电力工程直流系统典型设计

中国建设报/2006年/6月/19日/第006版 建设市场 2002版电力工程直流系统典型设计 河南省电力勘测设计院白忠敏郭西平陈萍杨珂张先俊 立项背景与主题思想 直流电源系统用于发电厂、变电所正常工况下继电保护和安全自动装置、测量仪表和电能计量装置的工作电源以及事故状态下事故保安设施的保安电源。上世纪90年代以前,直流系统长期处于设备落后、自动化水平低、系统可靠性差的被动局面,特别是直流系统设计、计算的技术水平低,方案比较、设备选型不能合理满足国家和行业标准的要求,从而严重影响系统的正常运行和事故状态下的安全可靠性。 为加快电力建设速度,提高设计质量,在中国电力规划设计总院的统一部署和组织领导下,我院成立了“电力工程直流系统典型设计”课题小组,承担本项目的开发任务,课题目的是实现直流系统设计计算机化,做到直流设计正确、快捷、高效、经济。 该项目的指导思想是:应用计算机技术,使发电厂、变电站直流系统设计、计算、制图正确、快捷,设备选型先进、合理、经济,设计方案优化,设备布置合理,而且作到各设计阶段方案设计、电气计算、互提资料和图纸绘制等工作统一协调,提供满足要求的工程计算书和可供选择的多种设计方案,从而加快设计进度,有效提高设计效率。 编制过程 本项目从1999年3月开始,经过两个多月的需求调研,广泛听取电力设计部门意见和要求,于2000年10月完成了直流系统典型设计。同时,为配合典型设计绘图和直流系统设备选型计算,开发了《直流系统设计软件》。并于2000年9月21日通过了中国电力规划设计总院对我院直流系统设计软件的鉴定。鉴定委员会认为:该软件数学模型正确,结构合理,计算结果正确,一体化程度高,具有较强的商业化特点,在电力设计行业处于领先水平,可以在工程设计中推广应用。希望进一步完善功能,扩大应用范围。 之后,根据鉴定委员会专家的意见对直流软件进行修改、完善,并充实、增加直流系统典型设计内容。2002年初在西南院、山西院、河南院对直流系统典型设计和直流软件同时试用,根据使用单位在使用过程中发现的问题,在2002年6月和10月召开的专家会议上再一次对典型设计讨论、评议。根据专家意见对典型设计作最后修订、完善,形成典型设计的最终版本《2002版直流系统典型设计》,于2003年7月完成全部系统编制、开发,经审查批准,正式出版发行。 主要内容和应用1、典型设计的主要内容 2002版电力工程直流系统典型设计包括以下三个部分: 1)直流系统典型设计 典型设计采用安全可靠、简单清晰的接线方案,技术先进、品种齐全、灵活快捷。包括7类原则接线方案,21种设备配置方案,适用于220伏、110伏、48伏电压等级的各种容量系列的发电工程和各种电压等级的变、配电工程。 按照不同的接线方案,派生出相应的电源屏屏面布置图、充电装置屏屏面布置图、馈线屏屏面布置图、单元接线图以及相关的端子排图等。 典型设计共分直流系统接线、直流电源进线柜、直流馈线柜、直流充电整流柜、蓄电池屏(架)、直流辅助接线、变电工程直流系统典型设计、发电工程直流系统典型设计、典型设计参考资料九个分册。 2)典型设计查询系统

相关文档
最新文档