高中物理重要二级结论全

合集下载

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2•两个力的合力:卩! F 2 F F 1 F 2 方向与大力相同3•拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点, 且每一个力必和其它两力间夹角之正弦成正比,即F 1F 2F 3sin sin sin4.两个分力F i 和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或 合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5•物体沿倾角为a 的斜面匀速下滑时的最小值卩=ta a 6•“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7•绳上的张力一定沿着绳子指向绳子收缩的方向。

&支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力 9.已知合力不变,其中一分力 F i 大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ):①1T 内、2T 内、3T 内••…位移比:S i : S 2:② 1T 末、2T 末、3T 末••…速度比:V 1: V 2: V 3=1 : 2: 3 ③ 第一个T 内、第二个T 内、第三个T 内••的位移之比:S i : S n : S m = 1 : 3: 5④ 厶 S=aT 2S n -S n-k = k aT 2 a= △ S/T a = ( S n -S n-k ) /k T 2位移等分(S 0):① 1S 0 处、2 S 0 处、3 S 0处••速度比:V 1: V 2: V 3:--V n =1:2:3 : nF i 已知方向N 不一定等于重力G S 3=1F 2的最小值F 2②经过1S o时、2 S o时、3 S o时••时间比:1: 2:3 : n)③经过第一个1S 0、第二个 2 S 。

高中物理重要二级结论全

高中物理重要二级结论全

精心整理物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

γsin3F=9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

用“三角形”或“平行四边形”法则二、运动学1时间等分(T):①1T内、2T内、3T内······位移比:S1:S2:S3=12:22:32F2②1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2S n -S n-k =kaT 2 a=ΔS/T 2 a=(S n -S n-k )/kT 2位移等分(S 0):①1S 0处、2S 0处、3S 0处···速度比:V 1:V 2:V 3:···V n =②经过1S 0时、2S 0时、3S 0时···时间比:t 0as v t2=o 002at t v s +=9.匀加速直线运动位移公式:S=At+Bt 2式中a=2B (m/s 2)V 0=A (m/s ) 10.追赶、相遇问题 )::3:2:1n Λn ::3:2:1Λ匀减速追匀速:恰能追上或恰好追不上V 匀=V 匀减V 0=0的匀加速追匀速:V 匀=V 匀加时,两物体的间距最大S max =同时同地出发两物体相遇:位移相等,时间相等。

A 与B 相距△S ,A追上B :S A =S B +△S ,相向运动相遇时:S A =SB +△S 。

11.小船过河:345.α光滑,相对静止弹力为零相对静止光滑,弹力为零7要通过最高点,小球最小下滑高度为2.5R 。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

六、静电场:
1.粒子沿中心线垂直电场线飞入匀强电场,飞出时速度的反向延长线通过电场中心。 2.
a bc
+q
E
-q
Eb=0;Ea>Eb;Ec>Ed;方向如图示;abc 比较 b 点电势最低, 由 b 到∞,场强先增大,后减小,电势减小。
+4q
a -q
bc E
Eb=0,a,c 两点场强方向如图所示
a bc
SⅠ:SⅡ:SⅢ=1:3:5
④ΔS=aT2
Sn-Sn-k= k aT2 a=ΔS/T2
a =( Sn-Sn-k)/k T2
位移等分(S0): ① 1S0 处、2 S0 处、3 S0 处···速度比:
V1:V2:V3:···Vn=1 : 2 : 3 : : n
第1页(共 14 页)
② 经过 1S0 时、2 S0 时、3 S0 时···时间比: 1 : 2 : 3 : : n )
要通过最高点,小球最小下滑高度为 2.5R 。 H
3)竖直轨道圆运动的两种基本模型
R
绳端系小球,从水平位置无初速度释放下摆到最低点:
T=3mg,a=2g,与绳长无关。
“杆”最高点 vmin=0,v 临 = gR ,
v > v 临,杆对小球为拉力
v = v 临,杆对小球的作用力为零
v < v 临,杆对小球为支持力 4)重力加速度, 某星球表面处(即距球心 R):g=GM/R2
S
S
动摩擦因数处处相同,克服摩擦力做功 W = µmg S
四、动量
1.反弹:△p = m(v1+v2)
2.弹开:速度,动能都与质量成反比。
3.一维弹性碰撞: V1'= [(m1—m2)V1 + 2 m2V2]/(m1 + m2) V2'= [(m2—m1)V2 + 2 m1V1]/(m1 + m2)

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时, μ= tanα 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2S n -S n-k = k aT 2a=ΔS/T 2a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n = ② 经过1S 0时、2 S 0时、3 S 0时···时间比:③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比)1(::)23(:)12(:1::::321----=n n t t t t n )::3:2:1n n::3:2:1 F已知方向 F 2的最小值F 2的最小值F 2的最小值F 22.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时, μ= tanα 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2S n -S n-k = k aT 2a=ΔS/T 2a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比:)::3:2:1n n::3:2:1 F已知方向 F 2的最小值F 2的最小值F 2的最小值F 2③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

高中物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2F已知方向F 2的最小值 F 2的最小值F 2的最小值F 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比: ③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合5.物体沿倾角为α的斜面匀速下滑时, μ= tan α6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T 内··位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末··速度比:V 1:V 2:V 3=1:2:3F已知方向 F 2的最小值 F 2的最小值F 2的最小值F 2③ 第一个T 内、第二个T 内、第三个T 内··的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处··速度比:V 1:V 2:V 3:·V n =② 经过1S 0时、2 S 0时、3 S 0时··时间比:③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0·时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理主要二级结论之杨若古兰创作一、静力学1.几个力平衡,则任一力是与其他所无力的合力平衡的力.三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反.2方向与大力不异3.拉密定理:三个力感化于物体上达到平衡时,则三个力应在同一平面内,其感化线必交于一点,且每一个力必和其它两力间夹角之正弦成反比,即4.两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值.78.撑持力(压力)必定垂直撑持面指向被撑持(被压)的物体,压力N纷歧定等于重力G.9.已知合力不变,其中一分力F1大小不变,分析其大小,和另一分力F2.用“三角形”或“平行四边形”法则二、活动学1F已知方向F2的最小值F2的最小值F2的最小值F2活动)时间等分(T ):① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3③第一个T 内、第二个T 内、第三个T内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比:③ 经过第一个1S 0、第二个 2 S 0、第三个 3S 0···时间比2.匀变速直线活动中的平均速度3.匀变速直线活动中的两头时刻的速度两头地位的速度4.变速直线活动中的平均速度前一半时间v 1,后一半时间v 2.则全程的平均速度:前一半路程v 1,后一半路程v 2.则全程的平均速度: 5.自在落体 6.竖直上抛活动)1(::)23(:)12(:1::::321----=n n t t t t n )::3:2:1n n::3:2:1 221v v v +=-同一地位 v 上=v 下 7.绳端物体速度分解,确S=v o t/2,求滑行距离;若t 9.匀加速直线活动位移公式:S = A t + B t 2式中a=2B (m/s 2) V 0=A (m/s )10.追逐、相遇成绩匀减速追匀速:恰能追上或恰好追不上 V 匀=V 匀减V 0=0的匀加速追匀速:V 匀=V 匀加时,两物体的间距最大S max = 同时同地出发两物体相遇:位移相等,时间相等.A 与B 相距△S,A 追上B :S A =S B +△S,相向活动相遇时:S A =S B +△S. 11.划子过河:⑴当船速大于水速时①船头的方向垂直于水流的方向时,所②合速度垂直于河岸时,航程s 最短 s=d d 为河宽⑵当船速小于水速时①船头的方向垂直于水流的方向时,所1.沿粗糙水平面滑行的物体: a=μg2.沿光滑斜面下滑的物体: a=gsinα3.沿粗糙斜面下滑的物体 a =g(sinα-μcosα) 45.7F 感化下匀加速活动8.以下各模型中,速度最大时合力为零,速度为零时,加速度最大α增大, 时间变短当α=45°时所用时间最短 小球着落时间相等αα9.超重:a 方向竖直向上;(匀加速上升,匀减速降低) 失重:a 方向竖直向下;(匀减速上升,匀加速降低) 四、圆周活动,万有引力:1.水平面内的圆周活动:F=mg tg α方向水平,指向圆心要通过最高点,小球最小下滑高度为2.5R . 3)竖直轨道圆活动的两种基本模型绳端系小球,从水平地位无初速度释放下摆到最低点:T=3mg ,a =2g ,与绳长有关.“杆”最高点v min =0,v 临 = ,v > v 临,杆对小球为拉力v = v 临v < v 临,杆对小球为撑持力4)重力加速度, 某星球概况处(即距球心R ):g=GM/R 2 距离该星球概况h 处(即距球心R+h 处) gR B5推导卫星的线速度 ;卫星的运转周期 . 卫星由近地点到远地点,万有引力做负功.第一宇宙速度 V Ⅰ= = =地表附近的人造卫星:r = R = m ,V 运 = V Ⅰ 6)同步卫星T=24小时,h=5.6R=36000km ,7)主要变换式:GM = GR 2 (R 为地球半径)8)行星密度:ρ = 3 /GT 2 式中T 为绕行星运转的卫星的周期,即可测. 三、机械能1.判断某力是否作功,做正功还是负功 ① F 与S 的夹角(恒力)② F 与V 的夹角(曲线活动的情况)③ 能量变更(两个相联系的物体作曲线活动的情况) 2.求功的六种方法①W = F S cosa (恒力) 定义式 ② W = P t (变力,恒力) ③ W = △E K (变力,恒力)④ W = △E (除重力做功的变力,恒力) 功能道理 ⑤ 图象法 (变力,恒力)⑥ 气体做功: W = P △V (P ——气体的压强;△V ——气体的体积变更)61046⨯⋅gR R GM /skm /97⋅gR /2ππrGMv =GM r T 324π=3.恒力做功的大小与路面粗糙程度有关,与物体的活动形态有关.4.摩擦生热:Q = f ·S 绝对 .Q 常不等于功的大小(功能关系)1.反弹:△p = m (v 1+v 2)2.弹开:速度,动能都与质量成反比.3.一维弹性碰撞: V 1'= [(m 1—m 2)V 1 + 2 m 2V 2]/(m 1 + m 2) V 2'= [(m 2—m 1)V 2 + 2 m 1V 2]/(m 1 + m 2)当V 2 = 0时, V 1'= (m 1—m 2)V 1 /(m 1 + m 2) V 2'= 2 m 1V 1/(m 1 + m 2)特点:大碰小,一路跑;小碰大,向后转;质量相等,速度交换.4.1球(V 1)追2球(V 2)相碰,可能发生的情况:① P 1 + P 2 = P '1 + P '2 ;m 1V 1'+ m 2 V 2'= m 1V 1 + m 2V 2动量守恒.② E'K1 +E 'K2 ≤ E K1 +E K2动能不添加③ V 1'≤ V 2' 1球不穿过2球④当V 2 = 0时,( m 1V 1)2/ 2(m 1 + m 2)≤ E'K ≤( m 1V 1)2/2m 1E K =( mV )2/ 2m= P 2 / 2m = I 2 / 2m 5.三把力学金钥匙五、振动和波1.平衡地位:振动物体静止时,∑F外=0 ;振动过程中沿振动方向∑F=0.2.由波的图象讨论波的传播距离、时间和波速:留意“双向”和“多解”.3.振动图上,振动质点的活动方向:看下一时刻,“上坡上”,“下坡下”.4.振动图上,介质质点的活动方向:看前一质点,“在上则上”,“鄙人则下”.5.波由一种介质进入另一种介质时,频率不变,波长和波速改变(由介质决定)6.已知某时刻的波形图象,要画经过一段位移S或一段时间t 的波形图:“去整存零,平行挪动”.7.双重系列答案:△X-△X)(K=0、1、2、3…)六、热和功 分子活动论∶1.求气体压强的途径∶①固体封闭∶《活塞》或《缸体》《全体》列力平衡方程 ;②液体封闭:《某液面》列压强平衡方程 ;③零碎活动:《液柱》《活塞》《全体》列牛顿第二定律方程.由几何关系确定气体的体积.2.1 atm=76 cmHg = 10.3 m H 2O ≈ 10 m H 2O 3.等容变更:△p =P ·△T/ T4.等压变更:△V =V ·△T/ T 七、静电场:1.粒子沿中间线垂直电场线飞入匀强电场,飞出时速度的反向耽误线通过电场中间. 2.3.匀强电场中,等势线是彼此平行等距离的直线,与电场线垂d直.4. 5.LC振荡电路中两组互余的物理量:此长彼消.1)电容器带电量q,极板间电压u,电场强度E及电场能E c等量为一组;(变大都变大)2)自感线圈里的电流I,磁感应强度B及磁场能E B等量为一组;(变小都变小)电量大小变更趋势分歧:同增同减同为最大或零值,异组量大小变更趋势相反,此增彼减,若q,u,E及E c等量按正弦规律变更,则I,B,E B等量必按余弦规律变更.电容器充电时电流减小,流出负极,流入正极;磁场能转化为电场能;放电时电流增大,流出正极,流入负极,电场能转化为磁场能.八、恒定电流1.串连电路:总电阻大于任一分电阻;2.并联电路:总电阻小于任一分电阻;3.和为定值的两个电阻,阻值相等时并联值最大.4.估算准绳:串联时,大为主;并联时,小为主.5. 6.并联电路中的一个电阻发生变更,电路有消长关系,某个电阻增大,它本人的电流小,与它并联的电阻上电流变大.7.外电路中任一电阻增大,总电阻增大,总电流减小,路端电压增大.8.画等效电路:始于一点,电流表等效短路;电压表,电容器等效电路;等势点合并.9.R=r101112.含电容器的电路中,电容器是断路,其电压值等于与它并联的电阻上的电压,波动时,与它串联的电阻是虚设.电路发生变更时,有充放电电流.13九、直流电实验1.考虑电表内阻影响时,电压表是可读出电压值的电阻;电流表是可读出电流值的电阻.2.电表选用测量值禁绝超出量程;测量值越接近满偏值(表针的偏转角度尽量大)误差越小,普通大于1/3满偏值的.3程大的指针摆角小.指针摆角小.4.电压测量值偏大,给电压表串联一比电压表内阻小得多的电阻;电流测量值偏大,给电流表并联一比电流表内阻大得多的电阻;5.分压电路:普通选择电阻较小而额定电流较大的电阻1)若采取限流电路,电路中的最小电流仍超出用电器的额定电流时;2)当用电器电阻弘远于滑动变阻器的全值电阻,且实验请求的电压变更范围大(或请求多组实验数据)时;3)电压,电流请求从“零”开始可连续变更时,分流电路:变阻器的阻值应与电路中其它电阻的阻值比较接近;分压和限流都可以用时,限流优先,能耗小.6.变阻器:并联时,小阻值的用来粗调,大阻值的用来细调;串联时,大阻值的用来粗调,小阻值的用来细调.72)如R x.3)如R A、R V均不知的情况时,用试触法判定:电流表变更大内接,电压表变更大外接.8.欧姆表:123)选档,换档后均必须调“零”才可测量,测量终了,旋钮置OFF或交流电压最高档.9.故障分析:串联电路间断路点两端有电压,通路两端无电压(电压表并联测量).断开电源,用欧姆表测:断路点两端电阻无量大,短路处电阻为零.10.描点后画线的准绳:1)已知规律(表达式):通过尽量多的点,欠亨过的点应靠近直线,并均匀分布在线的两侧,舍弃个别阔别的点.2)未知规律:依点顺序用平滑曲线连点.11r:结果的误差.结果的误差..十、磁场1.安培力方向必定垂直电流与磁场方向决定的平面,即同时有F A⊥I,F A⊥B.2.期与速度有关).3.在有界磁场中,粒子通过一段圆弧,则圆心必定在这段弧两端点连线的中垂线上.4.半径垂直速度方向,即可找到圆心,半径大小由几何关系来求.5.与粒子的带电性质和带电量多少有关,与进入的方向有关.6.7.B的夹角,S线圈的面积)8.当线圈平面平行于磁场方向,即,磁力矩最大,十一、电磁感应1.楞次定律:(障碍缘由)内外环电流方向:“增反减同”自感电流的方向:“增反减同”磁铁绝对线圈活动:“你追我退,你退我追”通电导线或线圈旁的线框:线框活动时:“你来我推,你走我拉”电流变更时:“你增我阔别,你减我靠近”2力.3.楞次定律的逆命题:双解,加速向左=减速向右4.两次感应成绩:先因后果,或先果后因,结合安培定则和楞次定律顺次判定.57图1时发生的焦耳热.图2中:两线框着落过程:重力做功相等甲落地时的速度大于乙落地时的速度.十二、交流电e为互余关系,此消彼长.12.线圈从中性面开始动弹:线圈从平行磁场方向开始动弹:.变压器原线圈:相当于电动机;副线圈相当于发电机.6.理想变压器原、副线圈不异的量:7. 输电计算的基本模式:十三、 光的反射和折射1. 光过玻璃砖,向与界面夹锐角的一侧平移;光过棱镜,向底边偏折.2. 光射到球面、柱面上时,半径是法线. 十四、光的赋性1. 的明暗相间的条纹;白光的干涉条纹两头为白色,两侧为黑色条纹.2. 单色光的衍射条纹两头最宽,两侧逐步变窄;白光衍射时,两头条纹为白色,两侧为黑色条纹.3. 增透膜的最小厚度为绿光在膜中波长的1/4.4. 用尺度样板检查工件概况的情况:条纹向窄处弯是凹;向宽处弯是凸.5. 电磁波穿过介质概况时,频率(和光的色彩)不变.光入介6 射线 射线发电机P 输U 输U 用U 线贯穿本领电离本领临界角C 大小可见光能量E 小大紫外线γ射线大小干涉条纹宽窄 X射线绕射本领强弱γ射线大短附录1SI基本单位物理量名称单位名称单位符号长度米m质量千克kg时间秒s电流安[培] A热力学温度开[尔文] K物资的量摩[尔] mol发光强度坎[德拉] cd附录2。

[实用参考]高中物理重要二级结论(全).doc

[实用参考]高中物理重要二级结论(全).doc

物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

8G 。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比: ③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度 4.变速直线运动中的平均速度)1(::)23(:)12(:1::::321----=n n t t t t n )::3:2:1nn ::3:2:1 TS S v v v v t t 222102/+=+==-202/tt v v v v +==-22202/t t v v v +=v v +-F 已知方向F 2的最小值F 2的最小值F 2的最小值F 2前一半时间v 1,后一半时间v 2。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论之袁州冬雪创作一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力.三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反.2方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每个力必和其它两力间夹角之正弦成正比,即4.两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另外一个分力(或合力)的方向,则第三个力与已知方向不知大小的阿谁力垂直时有最小值.78.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N纷歧定等于重力G.9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另外一分力F2.用“三角形”或“平行四边形”法则二、运动学1运动)F已知方向F2的最小值F2的最小值F2的最小值F2时间等分(T ):① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3③第一个T 内、第二个T 内、第三个T内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2S n -S n-k = k aT 2a=ΔS/T 2a=( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 颠末1S 0时、2 S 0时、3 S 0时···时间比:③ 颠末第一个1S 0、第二个 2 S 0、第三个 3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2.则全程的平均速度:前一半旅程v 1,后一半旅程v 2.则全程的平均速度: 5.自由落体 6.竖直上抛运动 同一位置 v 上=v 下)1(::)23(:)12(:1::::321----=n n t t t t n)::3:2:1n n ::3:2:1 221v v v +=-7.绳端物体速度分解,确S=v o t/2,求滑行间隔;若t 9.匀加速直线运动位移公式:S = A t + B t 2式中a=2B (m/s 2) V 0=A (m/s ) 10.追赶、相遇问题匀减速追匀速:恰能追上或恰好追不上 V 匀=V 匀减V 0=0的匀加速追匀速:V 匀=V 匀加时,两物体的间距最大S max = 同时同地出发两物体相遇:位移相等,时间相等.A 与B 相距△S,A 追上B :S A =S B +△S,相向运动相遇时:S A =S B +△S. 11.小船过河:⑴当船速大于水速时①船头的方向垂直于水流的方向时,所②合速度垂直于河岸时,航程s 最短 s=d d 为河宽⑵当船速小于水速时①船头的方向垂直于水流的方向时,所1 a=μg 2 a=gsinα3.沿粗糙斜面下滑的物体 a=g(si nα-μcosα)45.7在力F 作用下匀加速运动8.下列各模子中,速度最大时合力为零,速度为零时,加速度最大α增大,时间变短当α=45°时所用时间最短小球下落时间相等αα9.超重:a 方向竖直向上;(匀加速上升,匀减速下降) 失重:a 方向竖直向下;(匀减速上升,匀加速下降) 四、圆周运动,万有引力:1.水平面内的圆周运动:F=mg tg α方向水平,指向圆心2 要通过最高点,小球最小下滑高度为2.5R . 3)竖直轨道圆运动的两种基本模子绳端系小球,从水平位置无初速度释放下摆到最低点:T=3mg ,a =2g ,与绳长无关.“杆”最高点v min =0,v 临 = v > v 临v = v 临v < v 临,杆对小球为支持力4)重力加速度, 某星球概况处(即距球心R ):g=GM/R 2间隔该星球概况h 处(即距球心R+h 处) gR5推导卫星的线速度 ;卫星的运行周期 .卫星由近地点到远地点,万有引力做负功.第一宇宙速度 V Ⅰ= = =地表附近的人造卫星:r = R = m ,V 运 = V Ⅰ 6)同步卫星T=24小时,h=5.6R=36000km ,7)重要变换式:GM = GR 2(R 为地球半径)8)行星密度:ρ = 3 /GT 2 式中T 为绕行星运转的卫星的周期,即可测. 三、机械能1.断定某力是否作功,做正功还是负功 ① F 与S 的夹角(恒力)② F 与V 的夹角(曲线运动的情况)③ 能质变更(两个相接洽的物体作曲线运动的情况) 2.求功的六种方法①W = F S cosa (恒力) 定义式 ② W = P t (变力,恒力) ③ W = △E K (变力,恒力)④ W = △E (除重力做功的变力,恒力) 功能原理 ⑤ 图象法 (变力,恒力)⑥ 气体做功: W = P △V (P ——气体的压强;△V ——气体的体积变更)61046⨯⋅gR R GM /skm /97⋅gR /2ππr GMv =GM r T 324π=3.恒力做功的大小与路面粗糙程度无关,与物体的运动状态无关.4.磨擦生热:Q = f·S相对 .Q常不等于功的大小(功能关系)µ mg S1.反弹:△p = m(v1+v2)2.弹开:速度,动能都与质量成反比.3.一维弹性碰撞: V1'= [(m1—m2)V1 + 2 m2V2]/(m1 + m2) V2'= [(m2—m1)V2 + 2 m1V2]/(m1 + m2)当V2 = 0时, V1'= (m1—m2)V1 /(m1 + m2)V2'= 2 m1V1/(m1 + m2)特点:大碰小,一起跑;小碰大,向后转;质量相等,速度交换.4.1球(V1)追2球(V2)相碰,能够发生的情况:① P1 + P2 = P'1 + P'2 ;m1V1'+ m2 V2'= m1V1 + m2V2动量守恒.② E'K1 +E'K2≤ E K1 +E K2动能不增加③ V1'≤ V2' 1球不穿过2球④当V2 = 0时,( m1V1)2/ 2(m1 + m2)≤ E'K ≤( m1V1)2/2m1E K=( mV)2/ 2m= P2 / 2m = I2 / 2m5.三把力学金钥匙五、振动和波1.平衡位置:振动物体运动时,∑F外=0 ;振动过程中沿振动方向∑F=0.2.由波的图象讨论波的传播间隔、时间和波速:注意“双向”和“多解”.3.振动图上,振动质点的运动方向:看下一时刻,“上坡上”,“下坡下”.4.振动图上,介质质点的运动方向:看前一质点,“在上则上”,“在下则下”.5.波由一种介质进入另外一种介质时,频率不变,波长和波速改变(由介质决议)6.已知某时刻的波形图象,要画颠末一段位移S或一段时间t 的波形图:“去整存零,平行移动”.7.双重系列答案:S =(λ-△X)(K=0、1、2、3…) 六、热和功 分子运动论∶1.求气体压强的途径∶①固体封闭∶《活塞》或《缸体》《整体》列力平衡方程 ;②液体封闭:《某液面》列压强平衡方程 ;③系统运动:《液柱》《活塞》《整体》列牛顿第二定律方程.由几何关系确定气体的体积.2.1 atm=76 cmHg = 10.3 m H 2O ≈ 10 m H 2O 3.等容变更:△p =P ·△T/ T 4.等压变更:△V =V ·△T/ T 七、静电场:1.粒子沿中心线垂直电场线飞入匀强电场,飞出时速度的反向延长线通过电场中心. 2.d3.匀强电场中,等势线是相互平行等间隔的直线,与电场线垂直.4. 5.LC振荡电路中两组互余的物理量:此长彼消.1)电容器带电量q,极板间电压u,电场强度E及电场能E c等量为一组;(变大都变大)2)自感线圈里的电流I,磁感应强度B及磁场能E B等量为一组;(变小都变小)电量大小变更趋势一致:同增同减同为最大或零值,异组量大小变更趋势相反,此增彼减,若q,u,E及E c等量按正弦规律变更,则I,B,E B等量必按余弦规律变更.电容器充电时电流减小,流出负极,流入正极;磁场能转化为电场能;放电时电流增大,流出正极,流入负极,电场能转化为磁场能.八、恒定电流1.串连电路:总电阻大于任一分电阻;2.并联电路:总电阻小于任一分电阻;3.和为定值的两个电阻,阻值相等时并联值最大.4.估算原则:串联时,大为主;并联时,小为主.5. 6.并联电路中的一个电阻发生变更,电路有消长关系,某个电阻增大,它自己的电流小,与它并联的电阻上电流变大.7.外电路中任一电阻增大,总电阻增大,总电流减小,路端电压增大.8.画等效电路:始于一点,电流表等效短路;电压表,电容器等效电路;等势点合并.9.R=r101112.含电容器的电路中,电容器是断路,其电压值等于与它并联的电阻上的电压,稳定时,与它串联的电阻是虚设.电路发生变更时,有充放电电流.13九、直流电实验1.思索电表内阻影响时,电压表是可读出电压值的电阻;电流表是可读出电流值的电阻.2.电表选用丈量值不准超出量程;丈量值越接近满偏值(表针的偏转角度尽能够大)误差越小,一般大于1/3满偏值的.3程大的指针摆角小.指针摆角小.4.电压丈量值偏大,给电压表串联一比电压表内阻小得多的电阻;电流丈量值偏大,给电流表并联一比电流表内阻大得多的电阻;5.分压电路:一般选择电阻较小而额定电流较大的电阻1)若采取限流电路,电路中的最小电流仍超出用电器的额定电流时;2)当用电器电阻远大于滑动变阻器的全值电阻,且实验要求的电压变更范围大(或要求多组实验数据)时;3)电压,电流要求从“零”开端可持续变更时,分流电路:变阻器的阻值应与电路中其它电阻的阻值比较接近;分压和限流都可以用时,限流优先,能耗小.6.变阻器:并联时,小阻值的用来粗调,大阻值的用来细调;串联时,大阻值的用来粗调,小阻值的用来细调.712)如R x.3)如R A、R V均不知的情况时,用试触法断定:电流表变更大内接,电压表变更大外接.8.欧姆表:123)选档,换档后均必须调“零”才可丈量,丈量完毕,旋钮置OFF或交流电压最高档.9.故障分析:串联电路中断路点两头有电压,通路两头无电压(电压表并联丈量).断开电源,用欧姆表测:断路点两头电阻无穷大,短路处电阻为零.10.描点后画线的原则:1)已知规律(表达式):通过尽能够多的点,欠亨过的点应接近直线,并平均分布在线的两侧,舍弃个别远离的点.2)未知规律:依点顺序用平滑曲线连点.11r:成果的误差.成果的误差..十、磁场1.安培力方向一定垂直电流与磁场方向决议的平面,即同时有F A⊥I,F A⊥B.2.期与速度无关).3.在有界磁场中,粒子通过一段圆弧,则圆心一定在这段弧两头点连线的中垂线上.4.半径垂直速度方向,即可找到圆心,半径大小由几何关系来求.5.与粒子的带电性质和带电量多少无关,与进入的方向有关.6.7.B的夹角,S线圈的面积)8.当线圈平面平行于磁场方向,即,磁力矩最大,十一、电磁感应1.楞次定律:(阻碍原因)表里环电流方向:“增反减同”自感电流的方向:“增反减同”磁铁相对线圈运动:“你追我退,你退我追”通电导线或线圈旁的线框:线框运动时:“你来我推,你走我拉”电流变更时:“你增我远离,你减我接近”2力.3.楞次定律的抗命题:双解,加速向左=减速向右4.两次感应问题:先因后果,或先果后因,连系安培定则和楞次定律依次断定.567图1时发生的焦耳热.图2中:两线框下落过程:重力做功相等甲落地时的速度大于乙落地时的速度.十二、交流电1e 为互余关系,此消彼长. 2.线圈从中性面开端转动:线圈从平行磁场方向开端转动:. 变压器原线圈:相当于电动机;副线圈相当于发电机.6. 抱负变压器原、副线圈相同的量:7. 输电计算的基本形式:十三、 光的反射和折射 1. 光过玻璃砖,向与界面夹锐角的一侧平移;光过棱镜,向底边偏折.2. 光射到球面、柱面上时,半径是法线. 十四、光的赋性1. 隔的明暗相间的条纹;白光的干涉条纹中间为白色,两侧为黑色发电机P 输U 输U 用U 线条纹.2. 单色光的衍射条纹中间最宽,两侧逐渐变窄;白光衍射时,中间条纹为白色,两侧为黑色条纹.3. 增透膜的最小厚度为绿光在膜中波长的1/4.4. 用尺度样板检查工件概况的情况:条纹向窄处弯是凹;向宽处弯是凸.5. 电磁波穿过介质概况时,频率(和光的颜色)不变.光入介6电磁波谱频率υ 波长λ 小 无线电波 小 长 折 红外线 β 射线临界角C 大 小 可见光能量 E 小 大 紫外线 γ 射线 大 小干涉条纹 宽 窄 X 射线绕射本领 强 弱 γ射线 大 短附录1贯穿本领电离本领SI基本单位物理量称号单位称号单位符号长度米m质量千克kg时间秒s电流安[培] A热力学温度开[尔文] K物质的量摩[尔] mol发光强度坎[德拉] cd附录2。

高中物理重要二级结论 全

高中物理重要二级结论 全

物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比:③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

高中物理二级结论(超全)

高中物理二级结论(超全)

高中物理二级结论集温馨提示 1、“二级结论〞是常见知识和经验的总结,都是可以推导的。

2、先想前提,后记结论,切勿盲目照搬、套用。

3、常用于解选择题,可以提高解题速度。

一般不要用于计算题中。

一、静力学:1.几个力平衡,那么一个力是与其它力合力平衡的力。

2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。

三个大小相等的共面共点力平衡,力之间的夹角为1200。

3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。

4.三力共点且平衡,那么312123sin sin sin F F F ααα==〔拉密定理〕。

5.物体沿斜面匀速下滑,那么tan μα=。

6.两个一起运动的物体“刚好脱离〞时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力〞。

8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力〞。

10、轻杆一端连绞链,另一端受合力方向:沿杆方向。

10、假设三个非平行的力作用在一个物体并使该物体保持平衡,那么这三个力必相交于一点。

它们按比例可平移为一个封闭的矢量三角形。

〔如图3所示〕11、假设F 1、F 2、F 3的合力为零,且夹角分别为θ1、θ2、θ3;那么有F 1/sin θ1=F 2/sin θ2=F 3/sin θ3,如图4所示。

12、合力F 、分力F 1的大小,分力F 2于F 的夹角θ,那么F 1>Fsin θ时,F 2有两个解:θθ22212sin cos F F F F -±=;F 1=Fsin θ时,有一个解,F 2=Fcos θ;F 1<Fsin θ没有解,如图6所示。

13、在不同的三角形中,如果两个角的两条边互相垂直,那么这两个角必相等。

(完整word版)高中物理重要二级结论(全)

(完整word版)高中物理重要二级结论(全)

物理重要二级结论(选)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

4.已知合力不变,其中一分力F 1大小不变,分析其大小, 以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32 ② 1T 末、2T 末、3T 末······速度比:v 1:v 2:v 3=1:2:3③ 第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2 S n -S n-k = k aT 2 a =ΔS/T 2 a =( S n -S n-k )/k T 2 2.匀变速直线运动中的平均速度 3.匀变速直线运动中的中间时刻的速度 中间位置的速度4.竖直上抛运动同一位置 v 上=v 下 运动的对称性6.“刹车陷阱”,应先求滑行至速度为零即停止的时间t 0 ,确定了滑行时间t 大于t 0时,用as v t 22= 或S =v o t /2,求滑行距离;若t 小于t 0时2021at t v s += TS S v v v v t t 222102/+=+==-202/t t v v v v +==-22202/t t v v v +=F已知方向F 2的最小值F 2的最小值F 2的最小值F 25.绳端物体速度分解:沿绳方向的分速度相等7m/s 2)v 0=A (m/s ) 8.追赶、相遇问题匀减速追匀速:恰能追上或恰好追不上v 匀=v 匀减v 0=0的匀加速追匀速:v 匀=v 匀加 时,两物体的间距最大Smax = 同时同地出发两物体相遇:位移相等,时间相等。

高中物理重要二级结论(全)

高中物理重要二级结论(全)
③ 经过第一个 1S0、第二个 2 S0、第三个 3 S0···时间比
t1 : t2 : t3 :: tn 1: ( 2 1) : ( 3 2) :: ( n n 1)
2.匀变速直线运动中的平均速度
v vt / 2
v0 vt 2
S1 S2 2T
3.匀变速直线运动中的中间时刻的速度
v
vt / 2
或向波传的方向看“上波下,下波上”。 4.振动图上,介质质点的运动方向:向右看前一质点,“在上则上”,“在下则下”。 5.波由一种介质进入另一种介质时,频率不变,波长和波速改变(由介质决定) 6.已知某时刻的波形图象,要画经过一段位移 S 或一段时间 t 的波形图:“去整存零,平行移动”。 7.双重系列答案:
之后隔离分析
g
a
a
简谐振动至最高点
在力 F 作用下匀加速运动
F 在力 F 作用下匀加速运动
8.下列各模型中,速度最大时合力为零,速度为零时,加速度最大
F F
B B
9.超重:a 方向竖直向上;(匀加速上升,匀减速下降) 失重:a 方向竖直向下;(匀减速上升,匀加速下降)
四、圆周运动,万有引力
1.水平面内的圆周运动:F=mg tgα方向水平,指向圆心 N N
研究对象 研究角度
物理概念
物理规律
适用条件
质点 质点 系统
质点
力的瞬时作用效果 F、m、a
F=m·a
力作用一段位移(空 W = F S cosa
间累积)的效果
P = W/ t
W =EK2 — EK1
P =FV cosa EK = mv2/2
E1 = E2
EP = mgh
力作用一段时间(时 P = mv

高中物理重要二级结论

高中物理重要二级结论

物理重要二级结论(全)一、静力学1.几个力均衡,则任一力是与其余全部力的协力均衡的力。

三个共点力均衡,随意两个力的协力与第三个力大小相等,方向相反。

2.两个力的协力:F1F2 F F1F2方向与鼎力同样3.拉密定理:三个力作用于物体上达到均衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其余两力间夹角之正弦成正比,即F1F2F3 sin sin sin4.两个分力F1和 F2的协力为F,若已知协力(或一个分力)的大小和方向,又知另一个分力(或协力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

F1已知方向 F F 的最小值1 2F1F FF2的最小值2的最小值mgF5.物体沿倾角为α的斜面匀速下滑时,μ= tanα6.“二力杆”(轻质硬杆)均衡时二力必沿杆方向。

7.绳上的张力必定沿着绳索指向绳索缩短的方向。

8.支持力(压力)必定垂直支持面指向被支持(被压)的物体,压力N不必定等于重力G。

9.已知协力不变,此中一分力F1大小不变,剖析其大小,以及另一分力F2。

用“三角形”或“平行四边形”法例1F二、运动学2F 1.初速度为零的匀加快直线运动(或末速度为零的匀减速直线运动)FS1: S2: S3=12: 22: 32 时间均分( T):① 1T 内、 2T 内、 3T 内······位移比:② 1T 末、 2T 末、 3T 末······速度比:V : V:V =1:2:31 2 3③第一个 T 内、第二个 T 内、第三个 T 内···的位移之比:SⅠ:SⅡ:SⅢ =1:3:5④Δ S=aT2 S n-S n-k = k aT2 a= S/T 2 a = ( S n-S n-k) /k T 2位移均分( S0):① 1S 0处、 2 S 0处、 3 S0处···速度比: V1 :V2: V3:···V n=3 : : n1: 2:0 0 01 :2 :3 : : n )②经过1S 时、2S 时、3S 时···时间比:③ 经过第一个1S0、第二个 2 S 0、第三个 3 S 0···时间比t1 : t 2 : t3 : : t n1: ( 2 1) : ( 32) : : ( n n1)vv 0 v tS 1 S 2 vt / 22T2.匀变速直线运动中的均匀速度2v 0 v t3.匀变速直线运动中的中间时辰的速度v v t / 22v 02 v t 2 vt / 22中间地点的速度4.变速直线运动中的均匀速度v 1v 2前一半时间 v ,后一半时间 v 。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

创作编号:BG7531400019813488897SX创作者:别如克*物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121FFFFF+≤≤-方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsinsinsin321FFF==4.两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时,μ= tanα6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。

9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

用“三角形”或“平行四边形”法则F已知方向F2的最小值F2的最小值F2的最小值F2二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比: ③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

(完整版)高中物理二级结论(最新整理)

(完整版)高中物理二级结论(最新整理)

高三物理——结论性语句及二级结论一、力和牛顿运动定律1.静力学(1)绳上的张力一定沿着绳指向绳收缩的方向.(2)支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G . (3)两个力的合力的大小范围:|F 1-F 2|≤F ≤F 1+F 2.(4)三个共点力平衡,则任意两个力的合力与第三个力大小相等,方向相反,多个共点力平衡时也有这样的特点.(5)两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值.图1(6)物体沿斜面匀速下滑,则tan μα=.2.运动和力(1)沿粗糙水平面滑行的物体:a =μg (2)沿光滑斜面下滑的物体:a =g sin α(3)沿粗糙斜面下滑的物体:a =g (sin α-μcos α) (4)沿如图2所示光滑斜面下滑的物体:(5)一起加速运动的物体系,若力是作用于m 1上,则m 1和m 2的相互作用力为N =m 2Fm 1+m 2,与有无摩擦无关,平面、斜面、竖直方向都一样.(6)下面几种物理模型,在临界情况下,a=g tan α.(7)如图5所示物理模型,刚好脱离时,弹力为零,此时速度相等,加速度相等,之前整体分析,之后隔离分析.(8)下列各模型中,速度最大时合力为零,速度为零时,加速度最大.(9)超重:a 方向竖直向上(匀加速上升,匀减速下降). 失重:a 方向竖直向下(匀减速上升,匀加速下降). (10)系统的牛顿第二定律 x x x x a m a m a m F 332211++=∑(整体法——求系统外力)y y y y a m a m a m F 332211++=∑二、直线运动和曲线运动一、直线运动1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)的常用比例时间等分(T ):①1T 末、2T 末、3T 末、…、nT 末的速度比:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . ②第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比:x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1).③连续相等时间内的位移差Δx =aT 2,进一步有x m -x n =(m -n )aT 2,此结论常用于求加速度a =ΔxT 2=x m -x nm -n T 2.位移等分(x ):通过第1个x 、第2个x 、第3个x 、…、第n 个x 所用时间比: t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1). 2.匀变速直线运动的平均速度①v =v t 2=v 0+v 2=x 1+x 22T.②前一半时间的平均速度为v 1,后一半时间的平均速度为v 2,则全程的平均速度:v =v 1+v 22.③前一半路程的平均速度为v 1,后一半路程的平均速度为v 2,则全程的平均速度:v =2v 1v 2v 1+v 2.3.匀变速直线运动中间时刻、中间位置的速度v t2=v =v 0+v 2,v x 2=v 20+v 22. 4.如果物体位移的表达式为x =At 2+Bt ,则物体做匀变速直线运动,初速度v 0=B (m/s),加速度a =2A (m/s 2). 5.自由落体运动的时间t =2hg.6.竖直上抛运动的时间t 上=t 下=v 0g =2H g ,同一位置的速率v 上=v 下.上升最大高度202m v h g= 7.追及相遇问题匀减速追匀速:恰能追上或追不上的关键:v 匀=v 匀减. v 0=0的匀加速追匀速:v 匀=v 匀加时,两物体的间距最大. 同时同地出发两物体相遇:时间相等,位移相等.A 与B 相距Δs ,A 追上B :s A =s B +Δs ;如果A 、B 相向运动,相遇时:s A +s B =Δs .8.“刹车陷阱”,应先求滑行至速度为零即停止的时间t 0,如果题干中的时间t 大于t 0,用v 20=2ax 或x =v 0t 02求滑行距离;若t 小于t 0时,x =v 0t +12at 2.9.逐差法:若是连续6段位移,则有: 21234569)()(T x x x x x x a ++-++=二、运动的合成与分解 1.小船过河(1)当船速大于水速时①船头的方向垂直于水流的方向则小船过河所用时间最短,t =dv 船.②合速度垂直于河岸时,航程s 最短,s =d . (2)当船速小于水速时①船头的方向垂直于水流的方向时,所用时间最短,t =dv 船.②合速度不可能垂直于河岸,最短航程s =d ×v 水v 船.2.绳端物体速度分解: 分解不沿绳那个速度为沿绳和垂直于绳三、圆周运动1.水平面内的圆周运动,F=mg tan θ,方向水平,指向圆心.图142.竖直面内的圆周运动图15(1)绳,内轨,水流星最高点最小速度为gR,最低点最小速度为5gR,上下两点拉压力之差为6mg.(2)离心轨道,小球在圆轨道过最高点v min=gR,如图16所示,小球要通过最高点,小球最小下滑高度为2.5R.图16(3)竖直轨道圆周运动的两种基本模型绳端系小球,从水平位置无初速度释放下摆到最低点:绳上拉力F T =3mg ,向心加速度a =2g ,与绳长无关.小球在“杆”模型最高点v min =0,v 临=gR ,v >v 临,杆对小球有向下的拉力. v =v 临,杆对小球的作用力为零. v <v 临,杆对小球有向上的支持力.图17四、万有引力与航天1.重力加速度:某星球表面处(即距球心R ): g =GMR2.距离该星球表面h 处(即距球心R +h 处):g ′=GM r 2=2)(h R GM +. 2.人造卫星:G Mm r 2=m v 2r =mω2r =m 4π2T2r =ma =mg ′.速度 v 2T =,加速度2GMar =<g第一宇宙速度v 1=gR =GMR=7.9 km/s ,211.2km/s v =,316.7km/s v = 地表附近的人造卫星:r =R =6.4×106 m ,v 运=v 1,T =2πRg=84.6分钟. 3.同步卫星T =24小时,h =5.6R =36 000 km ,v =3.1 km/s.4.重要变换式:GM =gR 2(R 为地球半径)5.行星密度:ρ=3πGT 2,式中T 为绕行星表面运转的卫星的周期.6. 卫星变轨: 2143v v v v >>>7.恒星质量: 2324r M GT π=或GgR 2= 8.引力势能:P GMm E r =-,卫星动能 2k GMm E r =,卫星机械能2GMmE r=- 同一卫星在半长轴为a =R 的椭圆轨道上运动的机械能,等于半径为R 圆周轨道上的机械能。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论之马矢奏春创作一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力.三个共点力平衡,任意两个力的合力与第三个力年夜小相等,方向相反.2方向与年夜力相同3.拉密定理:三个力作用于物体上到达平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即4.两个分力F1和F2的合力为F,若已知合力(或一个分力)的年夜小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知年夜小的那个力垂直时有最小值.,78.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N纷歧定即是重力G.9.已知合力不变,其中一分力F1年夜小不变,分析其年夜小,以及另一分力F2.用“三角形”或“平行四边形”法则F已知方向F2的最小值F2的最小值F2的最小值F2二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ):① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3③第一个T 内、第二个T 内、第三个T内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2S n -S n-k = k aT 2a=ΔS/T 2a=( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比:③ 经过第一个1S 0、第二个 2 S 0、第三个 3S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2.则全程的平均速度:)1(::)23(:)12(:1::::321----=n n t t t t n )::3:2:1n n::3:2:1 221v v v +=-前一半路程v 1,后一半路程v 2.则全程的平均速度: 5.自由落体 6.竖直上抛运动 同一位置 v 上=v 下 7.绳端物体速度分解S=v o t/2,求滑行距离;若t 小于t 09.匀加速直线运动位移公式:S = A t + B t 2式中a=2B (m/s 2) V 0=A (m/s )10.追赶、相遇问题匀减速追匀速:恰能追上或恰好追不上 V 匀=V 匀减V 0=0的匀加速追匀速:V 匀=V 匀加时,两物体的间距最年夜S max = 同时同地动身两物体相遇:位移相等,时间相等.A 与B 相距△S,A 追上B :S A =S B +△S,相向运动相遇时:S A =S B +△S. 11.小船过河:⑴当船速年夜于水速时①船头的方向垂直于水流的方向时,所用时间最短②合速度垂直于河岸时,航程s 最短 s=d d 为河宽⑵当船速小于水速时①船头的方向垂直于水流的方向时,所用时间最短1a=μg2.沿光滑斜面下滑的物体:a=gsinα3.沿粗拙斜面下滑的物体 a=g(sinα-μcosα)45.,与有无摩擦无关,平面,斜面,7.如图示物理模型,此时速度相等,加速度α增年夜, 时间变短当α=45°时所用时间最短小球下落时间相等αα简谐振动至最高点 在力F 作用下匀加速运动 在力F 作用下匀加速运动8.下列各模型中,速度最年夜时合力为零,速度为零时,加速度最年夜失重:a 四、圆周运动,万有引力:1.水平面内的圆周运动:F=mg tg α方向水平,指向圆心22)离心轨道,小球在圆轨道过最高点 v min 要通过最高点,小球最小下滑高度为2.5R . 3)竖直轨道圆运动的两种基本模型绳端系小球,从水平位置无初速度释放下摆到最低点:T=3mg,a =2g,与绳长无关.“杆”最高点vmin =0,v 临 = ,v > v 临,杆对小球为拉力v = v 临,v < v 临,杆对小球为支持力4)重力加速度, 某星球概况处(即距球心R ):g=GM/R 2距离该星球概况h 处(即距球心R+h 处)5 . 卫星由近地址到远地址,万有引力做负功.第一宇宙速度 V Ⅰ= = = 地表附近的人造卫星:r = R = m,V 运 = V Ⅰ 6)同步卫星7)重要变换式:GM = GR 2(R 为地球半径)8)行星密度:ρ = 3 /GT 2式中T 为绕行星运转的卫星的周期,即可测. 三、机械能1.判断某力是否作功,做正功还是负功 ① F 与S 的夹角(恒力)② F 与V 的夹角(曲线运动的情况)gR 61046⨯⋅gR RGM /skm /97⋅g R /2ππ③能量变动(两个相联系的物体作曲线运动的情况)2.求功的六种方法①W = F S cosa (恒力)界说式② W = P t (变力,恒力)③ W = △E K(变力,恒力)④ W = △E (除重力做功的变力,恒力)功能原理⑤图象法(变力,恒力)⑥气体做功: W = P △V (P——气体的压强;△V——气体的体积变动)3.恒力做功的年夜小与路面粗拙水平无关,与物体的运动状态无关.4.摩擦生热:Q = f·S相对 .Q常不即是功的年夜小(功能关系),1.反弹:△p = m(v1+v2)2.弹开:速度,动能都与质量成反比.3.一维弹性碰撞: V1'= [(m1—m2)V1 + 2 m2V2]/(m1 + m2) V2'= [(m2—m1)V2 + 2 m1V2]/(m1 + m2)当V2 = 0时, V1'= (m1—m2)V1 /(m1 + m2)V2'= 2 m1V1/(m1 + m2)特点:年夜碰小,一起跑;小碰年夜,向后转;质量相等,速度交换.4.1球(V1)追2球(V2)相碰,可能发生的情况:① P1 + P2 = P'1 + P'2 ;m1V1'+ m2 V2'= m1V1 + m2V2动量守恒.② E'K1 +E'K2≤ E K1 +E K2动能不增加③ V1'≤ V2' 1球不穿过2球④当V2 = 0时,( m1V1)2/ 2(m1 + m2)≤ E'K ≤( m1V1)2/2m1E K=( mV)2/ 2m= P2 / 2m = I2 / 2m5.三把力学金钥匙五、振动和波1.平衡位置:振植物体静止时,∑F外=0 ;振动过程中沿振动方向∑F=0.2.由波的图象讨论波的传布距离、时间和波速:注意“双向”和“多解”.3.振动图上,振动质点的运动方向:看下一时刻,“上坡上”,“下坡下”.4.振动图上,介质质点的运动方向:看前一质点,“在上则上”,“在下则下”.5.波由一种介质进入另一种介质时,频率不变,波长和波速改变(由介质决定)6.已知某时刻的波形图象,要画经过一段位移S或一段时间t 的波形图:“去整存零,平行移动”.7.双重系列谜底:(λ-△X)(K=0、1、2、3…)六、热和功分子运动论∶1.求气体压强的途径∶①固体封闭∶《活塞》或《缸体》《整体》列力平衡方程;②液体封闭:《某液面》列压强平衡方程;③系统运动:《液柱》《活塞》《整体》列牛顿第二定律方程.由几何关系确定气体的体积.2.1 atm=76 cmHg = 10.3 m H 2O ≈ 10 m H 2O 3.等容变动:△p =P ·△T/ T 4.等压变动:△V =V ·△T/ T 七、静电场:1.粒子沿中心线垂直电场线飞入匀强电场,飞出时速度的反向延长线通过电场中心. 2.3.匀强电场中,等势线是相互平行等距离的直线,与电场线垂直. 4.电容器充电后,与板间距离无关.5.LC 振荡电路中两组互余的物理量:此长彼消.1)电容器带电量q,极板间电压u,电场强度E 及电场能E c 等量为一组;(变年夜都变年夜)2)自感线圈里的电流I,磁感应强度B 及磁场能E B 等量为一组;(变小都变小)电量年夜小变动趋势一致:同增同减同为最年夜或零值,异组量年夜小变动趋势相反,此增彼减,d若q,u,E及E c等量按正弦规律变动,则I,B,E B等量必按余弦规律变动.电容器充电时电流减小,流出负极,流入正极;磁场能转化为电场能;放电时电流增年夜,流出正极,流入负极,电场能转化为磁场能.八、恒定电流1.串连电路:总电阻年夜于任一分电阻;2.并联电路:总电阻小于任一分电阻;3.和为定值的两个电阻,阻值相等时并联值最年夜.4.估算原则:串连时,年夜为主;并联时,小为主.5随外电阻的增年夜而增年夜.6.并联电路中的一个电阻发生变动,电路有消长关系,某个电阻增年夜,它自己的电流小,与它并联的电阻上电流变年夜.7.外电路中任一电阻增年夜,总电阻增年夜,总电流减小,路端电压增年夜.8.画等效电路:始于一点,电流表等效短路;电压表,电容器等效电路;等势点合并.9.R=r101112.含电容器的电路中,电容器是断路,其电压值即是与它并联的电阻上的电压,稳按时,与它串连的电阻是虚设.电路发生变动时,有充放电电流.13.含电念头的电路中,发热功率九、直流电实验1.考虑电表内阻影响时,电压表是可读出电压值的电阻;电流表是可读出电流值的电阻.2.电表选用丈量值禁绝超越量程;丈量值越接近满偏值(表针的偏转角度尽量年夜)误差越小,一般年夜于1/3满偏值的.3,量程年夜的指针摆角小.,量程年夜的指针摆角小.4.电压丈量值偏年夜,给电压表串连一比电压表内阻小很多的电阻;电流丈量值偏年夜,给电流表并联一比电流表内阻年夜很多的电阻;5.分压电路:一般选择电阻较小而额定电流较年夜的电阻1)若采纳限流电路,电路中的最小电流仍超越用电器的额定电流时;2)当用电器电阻远年夜于滑动变阻器的全值电阻,且实验要求的电压变动范围年夜(或要求多组实验数据)时;3)电压,电流要求从“零”开始可连续变动时,分流电路:变阻器的阻值应与电路中其它电阻的阻值比力接近;分压和限流都可以用时,限流优先,能耗小.6.变阻器:并联时,小阻值的用来粗调,年夜阻值的用来细调;串连时,年夜阻值的用来粗调,小阻值的用来细调.7.电流表的内、外接法:内接时12)如R x既不很年夜又不很小时,,.3)如R A、R V均不知的情况时,用试触法判定:电流表变动年夜内接,电压表变动年夜外接.8.欧姆表:1)指针越接近误差越小,一般应在范围内23)选档,换档后均必需调“零”才可丈量,丈量完毕,旋钮置OFF或交流电压最高档.9.故障分析:串连电路中断路点两端有电压,通路两端无电压(电压表并联丈量).断开电源,用欧姆表测:断路点两端电阻无穷年夜,短路处电阻为零.10.描点后画线的原则:1)已知规律(表达式):通过尽量多的点,欠亨过的点应靠近直线,并均匀分布在线的两侧,舍弃个别远离的点.2)未知规律:依点顺序用平滑曲线连点.11r:结果的误差.结果的误差.丈量值偏小;取代法测电表内阻:丈量值偏年夜.十、磁场1.安培力方向一定垂直电流与磁场方向决定的平面,即同时有F A ⊥I,F A⊥B.2.期与速度无关).3.在有界磁场中,粒子通过一段圆弧,则圆心一定在这段弧两端点连线的中垂线上.4.半径垂直速度方向,即可找到圆心,半径年夜小由几何关系来求. 5.粒子沿直线通过正交电、磁场(离子速度选择器)与粒子的带电性质和带电量几多无关,与进入的方向有关.6.7.B 的夹角,S线圈的面积)8.当线圈平面平行于磁场方向,即时,磁力矩最年夜十一、电磁感应1.楞次定律:(阻碍原因)内外环电流方向:“增反减同”自感电流的方向:“增反减同”磁铁相对线圈运动:“你追我退,你退我追”通电导线或线圈旁的线框:线框运动时:“你来我推,你走我拉”电流变动时:“你增我远离,你减我靠近”2受力.3.楞次定律的逆命题:双解,加速向左=减速向右4.两次感应问题:先因后果,或先果后因,结合安培定章和楞次定律依次判定.567图1时发生的焦耳热.图2中:两线框下落过程:重力做功相等甲落地时的速度年夜于乙落地时的速度.十二、交流电1.中性面垂直磁场方向e为互余关系,此消彼长.2.线圈从中性面开始转动:线圈从平行磁场方向开始转动:.变压器原线圈:相当于电念头;副线圈相当于发机电.6. 理想变压器原、副线圈相同的量:7. 输电计算的基本模式:十三、光的反射和折射1. 光过玻璃砖,向与界面夹锐角的一侧平移;光过棱镜,向底边偏折.2. 光射到球面、柱面上时,半径是法线. 十四、光的赋性1. 的明暗相间的条纹;白光的干涉条纹中间为白色,两侧为黑色条纹. 2. 单色光的衍射条纹中间最宽,两侧逐渐变窄;白光衍射时,中间条纹为白色,两侧为黑色条纹.3. 增透膜的最小厚度为绿光在膜中波长的1/4.4. 用标准样板检查工件概况的情况:条纹向窄处弯是凹;向宽处弯是凸.5. 电磁波穿过介质概况时,频率(和光的颜色)不变.光入介质发机电P 输U 输U 用U 线6υ 波长λ 小 无线电波 小 长 折 红外线 β 射线临界角C 年夜 小 可见光能量 E 小 年夜 紫外线 γ 射线 年夜 小干涉条纹 宽 窄 X 射线绕射本事 强 弱 γ射线 年夜 短附录1SI 基本单元物理量名称 单元名称 单元符号 长度 米 m 质量 千克 kg 时间 秒 s 电流 安[培] A 热力学温度 开[尔文] K 物质的量 摩[尔] mol 发光强度坎[德拉]cd附录2贯穿本事电离本事。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理重要二级结论(全) 1 / 14 物理重要二级结论(全) 一、静力学 1.几个力平衡,则任一力是与其他所有力的合力平衡的力。 三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。 2.两个力的合力:2121FFFFF 方向与大力相同 3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且

每一个力必和其它两力间夹角之正弦成正比,即sinsinsin321FFF 4.两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时, μ= tanα 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 7.绳上的张力一定沿着绳子指向绳子收缩的方向。 8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。 9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。 用“三角形”或“平行四边形”法则 二、运动学 1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T): ① 1T内、2T内、3T内······位移比:S1:S2:S3=12:22:32 ② 1T末、2T末、3T末······速度比:V1:V2:V3=1:2:3 ③ 第一个T内、第二个T内、第三个T内···的位移之比: SⅠ:SⅡ:SⅢ=1:3:5

④ΔS=aT2 Sn-Sn-k= k aT2 a=ΔS/T2 a =( Sn-Sn-k)/k T2 位移等分(S0): ① 1S0处、2 S0处、3 S0处···速度比:V1:V2:V3:···Vn= ② 经过1S0时、2 S0时、3 S0时···时间比: ③ 经过第一个1S0、第二个2 S0、第三个3 S0···时间比 )1(::)23(:)12(:1::::321nnttttn

)::3:2:1nn::3:2:1

F F1已知方向 F2的最小值 mg

F1 F2的最小值 F F1

F2的最小值

F F1 F2 高中物理重要二级结论(全)

2 / 14 2.匀变速直线运动中的平均速度 3.匀变速直线运动中的中间时刻的速度 中间位置的速度 4.变速直线运动中的平均速度 前一半时间v1,后一半时间v2。则全程的平均速度:

前一半路程v1,后一半路程v2。则全程的平均速度:

5.自由落体 6.竖直上抛运动 同一位置 v上=v下 7.绳端物体速度分解

8.“刹车陷阱”,应先求滑行至速度为零即停止的时间t0 ,确定了滑行时间t大于t0时,用 asvt22 或S=vot/2,求滑行距离;若t小于t0时2021attvs

9.匀加速直线运动位移公式:S = A t + B t2 式中a=2B(m/s2) V0=A(m/s) 10.追赶、相遇问题 匀减速追匀速:恰能追上或恰好追不上 V匀=V匀减 V0=0的匀加速追匀速:V匀=V匀加 时,两物体的间距最大Smax= 同时同地出发两物体相遇:位移相等,时间相等。

TSSvvvvtt222102/



202/tt

vvvv

22202/tt

vvv

221vvv

21212vvvvv

ght2

gHgvtto2下上

v v

θ 2θ ω 平面镜

点光源 高中物理重要二级结论(全)

3 / 14 A与B相距 △S,A追上B:SA=SB+△S,相向运动相遇时:SA=SB+△S。 11.小船过河: ⑴ 当船速大于水速时 ①船头的方向垂直于水流的方向时,所用时间最短,船vdt/ ②合速度垂直于河岸时,航程s最短 s=d d为河宽 ⑵当船速小于水速时 ①船头的方向垂直于水流的方向时,所用时间最短,船vdt/

②合速度不可能垂直于河岸,最短航程船水vvds

三、运动和力 1.沿粗糙水平面滑行的物体: a=μg 2.沿光滑斜面下滑的物体: a=gsinα 3.沿粗糙斜面下滑的物体 a=g(sinα-μcosα) 4.沿如图光滑斜面下滑的物体:

5. 一起加速运动的物体系,若力是作用于1m上,则1m和2m的相互作用力为212mmFmN 与有无摩擦无关,平面,斜面,竖直方向都一样

d V VV

α增大, 时间变短 当α=45°时所用时间最短 沿角平分线滑下最快 小球下落时间相等 小球下落时间相等 α 1

m

2m

F

1m2mα

F 高中物理重要二级结论(全) 4 / 14 6.下面几种物理模型,在临界情况下,a=gtgα 光滑,相对静止 弹力为零 相对静止 光滑,弹力为零 7.如图示物理模型,刚好脱离时。弹力为零,此时速度相等,加速度相等,之前整体分析,之后隔离分析

简谐振动至最高点 在力F 作用下匀加速运动 在力F 作用下匀加速运动 8.下列各模型中,速度最大时合力为零,速度为零时,加速度最大

9.超重:a方向竖直向上;(匀加速上升,匀减速下降) 失重:a方向竖直向下;(匀减速上升,匀加速下降) 四、圆周运动,万有引力: 1.水平面内的圆周运动:F=mg tgα方向水平,指向圆心

2.飞机在水平面内做匀速圆周盘旋 飞车走壁

a a α a a a a

a

2mα F 1 m 2mα F m

1

g a F F a

F F B B

N mg mg N

θ T 高中物理重要二级结论(全)

5 / 14 3.竖直面内的圆周运动:

1) 绳,内轨,水流星最高点最小速度gR,最低点最小速度gR5,上下两点拉压力之差6mg 2)离心轨道,小球在圆轨道过最高点 vmin = 要通过最高点,小球最小下滑高度为2.5R 。 3)竖直轨道圆运动的两种基本模型 绳端系小球,从水平位置无初速度释放下摆到最低点: T=3mg,a=2g,与绳长无关。 “杆”最高点vmin=0,v临 = , v > v临,杆对小球为拉力 v = v临,杆对小球的作用力为零 v < v临,杆对小球为支持力 4)重力加速度, 某星球表面处(即距球心R):g=GM/R2

距离该星球表面h处(即距球心R+h处) :22)('hRGMrGMg

5)人造卫星:'422222mgmarTmrmrvmrMmG 推导卫星的线速度 ;卫星的运行周期 。 卫星由近地点到远地点,万有引力做负功。 第一宇宙速度 VⅠ= = = 地表附近的人造卫星:r = R = m,V 运 = VⅠ ,T= =84.6分钟 6)同步卫星

gRH R

gR

61046

gRRGM/

skm/97

gR/2

火车R、V、m v 绳 L .o

m v m v

L .o

rGMv

GM

rT324高中物理重要二级结论(全)

6 / 14 T=24小时,h=5.6R=36000km,v = 3.1km/s 7)重要变换式:GM = GR2 (R为地球半径) 8)行星密度:ρ = 3 /GT2 式中T为绕行星运转的卫星的周期,即可测。 三、机械能 1.判断某力是否作功,做正功还是负功 ① F与S的夹角(恒力) ② F与V的夹角(曲线运动的情况) ③ 能量变化(两个相联系的物体作曲线运动的情况) 2.求功的六种方法 ① W = F S cosa (恒力) 定义式 ② W = P t (变力,恒力) ③ W = △EK (变力,恒力) ④ W = △E (除重力做功的变力,恒力) 功能原理 ⑤ 图象法 (变力,恒力) ⑥ 气体做功: W = P △V (P——气体的压强;△V——气体的体积变化) 3.恒力做功的大小与路面粗糙程度无关,与物体的运动状态无关。 4.摩擦生热:Q = f·S相对 。Q常不等于功的大小(功能关系)

动摩擦因数处处相同,克服摩擦力做功 W = µ mg S 四、动量 1.反弹:△p = m(v1+v2) 2.弹开:速度,动能都与质量成反比。 3.一维弹性碰撞: V1'= [(m1—m2)V1 + 2 m2V2]/(m1 + m2) V2'= [(m2—m1)V2 + 2 m1V2]/(m1 + m2) 当V2 = 0时, V1'= (m1—m2)V1 /(m1 + m2) V2'= 2 m1V1/(m1 + m2) 特点:大碰小,一起跑;小碰大,向后转;质量相等,速度交换。 4.1球(V1)追2球(V2)相碰,可能发生的情况: ① P1 + P2 = P'1 + P'2 ;m1V1'+ m2 V2'= m1V1 + m2V2 动量守恒。

S S

相关文档
最新文档