深度大数据分析对于中国医疗保险管理的价值N多案例分析附

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作者:张岚,总监,医疗保险及医院管理事业部

引言

随着大数据在各行各业的应用和扩展,医疗领域大数据及其分析技术也正日益赢得人们

的关注。那么大数据在医疗领域指的是什么?又有什么样的特点?我们知道,广义上的

大数据指的是所涉及的信息量规模巨大,无法通过目前主流软件工具在合理时间内撷取、管理、处理、并分析成能有效支持决策制定的数据资讯,通常具有 4 个V 的特征—数据量大(Volume),速度快(velocity), 多样性(Variety), 价值高(value)。在医疗领域,大数据包括的数据和信息类型非常广泛,可以大致分为以下四种。

医疗领域大数据的类型

●行政数据(Administrative Data),主要包括从医疗支付方(医疗保险机构)或者医疗

机构获得的理赔信息等,通常涉及病人所使用的医疗服务、相关诊断信息、提供服务的

医疗机构及时间地点、以及费用明细与支付情况。

●临床数据(Clinical Data),?包括从医疗机构获得的电子病历(EMR)、医疗影像数据、处方信息等。

●体征数据(Biometric Data),例如由检测仪器测量所得的体重、血压、血糖水平等信,

以及饮食、运动、睡眠等自我跟踪信息。随着可穿戴设备及相关手机软件的广泛应用,

此类数据量越来越大也越来越多元化。

●个人及偏好数据(Demographic/Preference Data),?例如性别、年龄、职业等基本信息

以及个人偏好、对产品和服务满意度等主观信息。

由于数据量大、种类繁杂,不同类型的数据之间会有交叉或者交集。例如处方数据,既

可以从医疗机构的信息系统中获得——即临床数据的一种,也可以从医疗保险机构的理

赔数据库中找到——即理赔信息的一部分;又如血压等信息既可以从随身携带的便携血

压计测量得到(体征数据),也可以在医疗机构的电子病历中发现(临床数据)。

大数据分析应用关键的一点在于将不同类型不同来源的数据有序链接,尤其是医疗领域

数据在患者或个人层面的链接,从而为深度数据挖掘奠定基础,达到“1+1>>2”的效果。虽然目前这样的“链接”还未广泛实现,但小范围的“链接”已体现出其重要作用(如

将电子病历与理赔数据链接帮助确认欺诈、过度医疗的行为),对更大规模的以患者或

个人为中心、相互关联的多类数据的深度分析将帮助我们更有效的挖掘出大数据潜在的

巨大价值。

大数据的特征:

●Volume —数据量大数据量巨大,从数兆字节(TB) 1 级别跃升到数十兆亿字节(PB) 级别。例如一个CT 图像含有大约150MB的数据,而一个基因组序列文件大小约为

750MB,一个标准的病理接近 5 GB。如果考虑到人口数量和平均寿命等因素,仅一个

社区医院就可以生成和累积达数个TB 甚至数个PB 级的数据。

●Velocity —速度快处理速度快,时效性强。举例来说,检测医疗支付中的欺诈行为可

以事后追溯,也可以实时检测;如果能够实现实时检测,即在支付发生前甚至在医疗服

务发生前就识别出欺诈行为,则可有效避免重大经济损失。

●Variety —种类多数据类型繁多,来源广泛。既包括数值型数据,也包括文字、图形、图像、音频、视频、网络日志、邮件、等非数值型或者非结构化数据,且预计这些非结

构化信息将占未来十年数据产生量的90%。

●Value —价值高价值的体现的是大数据分析应用的目的意义所在。通过深入的大数据分析挖掘,可以为各方各面的经营决策提供有效支持,创造巨大的经济及社会价值。

从整个医疗领域来看,大数据的应用比比皆是,包括临床治疗、公共卫生监控、产品研

发及市场推广、医疗保险管理等各个方面。

●在临床治疗中,大数据分析可以应用于“比较效果研究”(Comparative Eectiveness Research, CER)。通过深入分析包括患者体征、治疗方案、费用和疗效在内的大数据,

帮助医生评估在实际临床应用中最有效或成本效益最高的治疗方法。大数据还可以应用

于临床决策支持系统,分析医生输入的医嘱,比较其与医学指南的差异,提醒医生防止

潜在的错误(如药物间相互作用等),从而降低医疗事故率。

●在公共卫生领域,大数据的应用可以改善公众健康监控。公共卫生部门可以通过覆

盖全国的患者病历数据库更快地检测出传染病疫情,进行全面的疫情监测并且及时采取

响应措施尽早控制疫情。

●在医药产品研发上,制药公司可以通过大数据分析有效判断研发项目成功的可能型,

以供支持投资决策。此外结合基因组及蛋白组学信息还可帮助企业优化研发方案及临床

试验设计,根据在研产品选择特定患者群体有针对性的进行临床开发,从而大大降低研

发中的风险。

●在产品的市场推广中,大数据可以用于药物经济学或卫生经济学分析,以治疗结果

及其相应社会及经济效益作为定价基础,从而帮助监管部门及医疗支付方科学制定新药

的上市及报销政策。

●在医疗保险领域,大数据分析可有多方面的应用,包括保障设计及精算定价、理赔

运营管理、对医疗机构的管理、市场和销售推广、及对跨多个领域的决策支持。本文将聚焦于中国医疗保险业务,重点阐述大数据分析在此领域可发挥的作用。

中国医疗保险管理的现状

在中国现有的医疗保险管理体制下,基本医疗保险仍然以政府为主导,各地分散管理。

基本医疗保险可以分为城镇职工基本医疗保险、城镇居民基本医疗保险和新农村合作医

疗保险(简称新农合),通常由各地人社和卫计部门管理。

目前,商业医疗保险作为政府基本医疗保险的补充,市场规模有限。2013 年, 3 种基本医疗保险的筹资总额已经超过 1 万亿元 2 ,而商业健康险的保费收入为1123.5 亿元,仅为前者的10% 左右。考虑到真正的赔付型医疗保险只是商业健康险的一部分,实际上真正意义上的商业医疗保险的市场规模更小一些。现今商业健康险中约30% 为团体业务,主要包括面向企业的团体医疗补充保险;另~70% 为个人业务,其中一大部分为储蓄理财型。虽然规模与政府医保相比尚小,但在市场需求和政策支持的推动下,今年

发展趋势良好,以年均25-30% 的速度增长。

2012 年发布的《关于开展城乡居民大病保险工作的指导意见》,试点由商业医疗保险机

构通过招投标方式承办大病补充保险的运营并承担费用风险,为商业医疗保险公司带来

了业务拓展的新方向,也为其介入到政府医保的运营管理提供了契机。2013 年十八届

相关文档
最新文档