谐波绪论

谐波绪论
谐波绪论

一.绪论

1.1谐波的定义

谐波是一个周期的正弦波分量,其频率为基波频率的整数倍,又称高次谐波。通俗地说,基波频率是50HZ,那末谐波就是频率为100HZ、150HZ、200HZ...N*50HZ 的正弦波。谐振是交流电路的一种特定工作状况,在由电阻、电感和电容组成的电路中,当电压相量与电流相量同相时,就称这一电路发生了谐振。谐波在电网中长期存在,而谐振仅是电网某一范围内的一种异常状态。

1 .2谐波产生的原因

在供电系统中谐波的发生主要是由两大因素造成的:

(1)可控硅整流装置和调压装置等的广泛使用,晶闸管在大量家用电器中的普通采用以及各种非线性负荷的增加导致波形畸变。

(2)设备设计思想的改变。过去倾向于采用在额定情况以下工作或裕量较大的设计。现在为了竞争,对电工设备倾向于采用在临界情况下的设计。例如有些设计为了节省材料使磁性材料工作在磁化曲线的深饱和区段,而在这些区段内运行会导致激磁材料波形严重畸变。

1.3谐波对电力系统的危害

谐波对电力系统的污染日益严重,谐波源的注入使电网谐波电流、谐波电压增加,其危害波及全网,对各

种电气设备都有不同程度的影响和危害。现将对具体设备的危害分析如下:

(1)交流发电机。同步电动机及感应电动机在定子绕组和转子绕组产生附加热损耗,热损耗除谐波电流铜

损I2nR 以外,还由于电流的集肤效应,产生附加损耗,对转子引起热损耗增大。对大型汽轮发电机来说,

若发生多次谐波振荡,谐波电流超过额定电流的25%时,由于上述原因可能会导致转子局部过热而损坏。

对变压器来说,铁芯产生热损耗,尤其是涡流损耗大,在变压器绕组中有谐波电流,在铁芯中感应磁通,

产生铁损。

(2)架空线路谐波电流产生热损,较大的高次谐波电流分量能显著地延缓潜供电流的熄灭,导致单相重合

闸失败。电缆中的谐波电流会产生热损,使电缆介损、温升增大。

(3)电力电容器由于谐波电流会引起附加绝缘介质损耗,加快电力电容器绝缘老化。系统谐波电压或电流

发生谐振则引起过电压和过电流,对电气设备绝缘损坏,引起噪音与振动。

(4)电子计算机会由于谐波干扰发生失真;工业电子设备功能会因其被破坏。

(5)对继电保护、自动控制装置和计算机产生干扰和造成误动作,造成电能计量的误差。(6)谐波电流在高压架空线路上的流动除增加线损外,还将对相邻通讯线路产生干扰影响。

1.4 电力系统谐波的基本特性和测量

谐波是一个周期电气量的正弦波分量,其频率是基波频率的整数倍数。理论上看,非线性负荷是配电网谐波的主要产生因素。非线性负荷吸收电流和外加端电压为非线性关系,这类负荷的电流不是正弦波,且引起电压波形畸变。周期性的畸变波形经过傅立叶级数分解后,那些大于基频的分量被称作谐波。

非线性负荷除了产生基频整次谐波外,还可能产生低于基频的次谐波,或高于基波的非整数倍谐波。电力系统中出现系统短路、开路等事故,而导致系统进入暂态过程引起的谐波,将不归属谐波治理的范畴。要治理谐波改善供电品质,需要了解谐波类型。谐波按其性质和波动的快慢可分成四类:准稳态谐波、波动谐波、快速变化的谐波和间谐波四类。因其多样性和随机性,在实际工作中,要精确评估谐波量值非常困难,所以在IEC 6100-4-7标准中对前三类谐波进行了规定,推荐采用数理统计的方法对谐波进行测量。

实际工作中,通常采用谐波测试仪来监测和分析谐波。一般来说,将用户接入公用电网的公共连接点作为谐波监测点,测量该点的电压和注入公共电网的电流后,通过对电压和电流的分析,取得谐波测量资料。

相对单点的谐波测量而言,从区域或整个电网角度来看,谐波源的定位和确定谐波模型进而分析它是一个相对复杂的过程。谐波源定位,一般采用功率方向法和瞬时负荷参数分割法。而谐波模型分析的方法一般有三种:非线性时域仿真、非线性和线性频率分析。三种方法的相同点是对电网作适当的线性化处理,只是在处理非线性设备时采取了不同的模拟方式。

1. 5谐波治理技术的现状

谐波问题的研究可以分为一下四个方面:与谐波有关的功率理论的研究;谐波标准的研究;谐波测量的分析;谐波治理。

当电网电压或电流中含有谐波时,如何定义各种功率是一个至今尚未得到圆满解决的问题,这是一个关系到电量计算、分析及控制的重要问题。如何使定义科学严谨,又能满足各种工程和管理的需要,还有许多问题需要研究。传统的平均功率理论在系统存在谐波时不能完全使用,容易造成诸如电能计量变差等问题。

由于谐波具有固有的非线性、随机性、分布性、非稳定性和影响因素的复杂性等特征,难以对谐波进行准确测量,为此许多学者对谐波分析问题进行了广泛研究。谐波分析算法中使用最为广泛的是快速傅里叶变换方法及其改进算法,当然基于自适应理论、基于小波变化和基于神经网络的方法今年来也受到了较大关注,但是在有源电力滤波器中应用最为普遍的是基于瞬时无功功率理论测量方法,该理论最大有点在于可以实时分离出各次谐波用于谐波分析。

谐波治理的措施主要有三种:

1. 受端治理,即从受到谐波影响的设备或系统出发,提高它们抗干扰能力。治理的措施主要有如下几种:选择合理的供电方式,将谐波源由较大的容量的供电点或由高一级电压的电网供电,可以减小谐波对系统和其他用电设备的影响;避免电容器对谐波的放大。改变电容器的串联电抗器,或将电容器组的某些支路改为滤波器。或限定电容器组的投入容量,可以有效地减小电容器对谐波的放大并保证电容器组的安全运行;提高设备的抗干扰能力;改善谐波保护性能。

2. 主动治理,既从谐波源本身出发,是谐波源产生谐波或降低谐波源产生的谐波。治理的方式有:增加变流装置的相数或脉冲数;改变谐波源的配置或工作方式;采用多重化技术,将多个变流器联合起来使用,将多个方波叠加,以消除频率较低的谐波,得到接近正弦波的阶梯波,但装置复杂,成本较高;谐波叠加技术和PWM技术也是很好的主动治理方法。

3. 被动治理,既外加滤波器,阻碍谐波源产生的谐波注入电网,或者阻碍电力系统的谐波流入负载端。现在电能质量治理主要是被动治理。如:采用无功滤波器PF,在谐波附近或公用电网节点装设单调谐及高通滤波器,可以吸收谐波电流,同时还可以进行无功补偿,运行维护也简单;在谐波源附近和公用电网节点装设并联型和串联型电力有源滤波器APF,可以有效起到补偿或隔离谐波的作用,并联型还可以进行无功功率补偿,但装置造价较高,补偿容量较小,电压等级偏低。而采用混合型有源电力滤波器,可以很好的兼顾PF成本低廉、电压等级高、补偿容量大和APF性能优越的优点,属于APF的分支和发展。

而要实现谐波的治理,谐波检测就成为了重中之重。

1.6谐波检测方法

1.模拟电路

消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为先进的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波幅值误差很难控制在10%以内,严重影响了有源滤波器的控制性能。近年来,人工神经网络的研究取得了较大进展,由于神经元有自适应和自学习能力,且结构简单,输入输出关系明了,因此可用神经元替代自适应滤波器,再用一对与基波频率相同,相位相差90度的正弦向量作为神经元的输入。由神经元先得到基波电流,然后检测出应补偿的电流,从而完成谐波电流的检测。但人工神经网络的硬件目前还是一个比较薄弱的环节,限制了其应用范围。

2.傅立叶变换

利用傅立叶变换可在数字域进行谐波检测,电力系统的谐波分析,目前大都是通过该方法实现的,离散傅立叶变换所需要处理的是经过采样和A/D转换得到的数字信号,设待测信号为x(t),采样间隔为t秒,采样频率=1/ t满足采样定理,即大于信号最高频率分量的2倍,则采样信号为x(n t),并且采样信号总是有限长度的,即n=0,1……N-1。这相当于对无限长的信号做了截断,因而造成了傅立叶变换的泄露现象,产生误差。此外,对于离散傅立叶变换来说,如果不是整数周期采样,那么即使信号只含有单一频率,离散傅立叶变换也不可能求出信号的准确参数,因而出现栅栏效应。通过加窗可以减小泄露现象的影响。

3.小波变换

小波变换已广泛应用于信号分析、语音识别与合成、自动控制、图象处理与分析等领域。电力谐波是由各种频率成分合成的、随机的、出现和消失都非常突然的信号,在应用离散傅立叶变换进行处理受到局限的情况下,可充分发挥小波变换的优势。即对谐波采样离散后,利用小波变换对数字信号进行处理,从而实现对谐波的精确测定。小波可以看作是一个双窗函数,对一信号进行小波变换相当于从这一时频窗内的信息提取信号。对于检测高频信息,时窗变窄,可对信号的高频分量做细致的观测;对于分析低频信息,这时时窗自动变宽,可对信号的低频分量做概貌分析。所以小波变换具有自动“调焦”性。其次,小波变换是按频带而不是按频点的方式处理频域信息,因此信号频率的微小波动不会对处理产生很大的影响,

并不要求对信号进行整周期采样。另外,由小波变换的时间局部可知,在信号的局部发生波动时,不会象傅立叶变换那样把影响扩散到整个频谱,而只改变当时一小段时间的频谱分布,因此,采用小波变换可以跟踪时变和暂态信号。

1.7.1法国CA公司

电能质量分析仪CA8335的特点:

?4路电压及4路电流输入

?可同时捕捉及记录所有的电量参数,暂态波形和告警。

?标配超大容量2G SD存储卡,可同时连续记录所有的电量参数达1个月。

?CA8335菜单含21种语言包括简/繁体中文,操作简便而精确。

?新增“启动电流”记录

?实时显示电压电流波形

?可测谐波至50次

?闪变计算

电能质量分析仪CA8335的主要功能:

⑴波形实时显示(4路电压/4路电流)

⑵半周期有效值测量(电压和电流)

⑶操作直观

⑷自动识别电流钳

⑸可测量直流成分

⑹各相谐波的测量、计算与显示可达50次

⑺总谐波失真度(THD)的计算

⑻快速暂态捕捉(每周期的采样256点)

⑼相量图显示

⑽可测量总VA、W和Var电量值及其各相值

⑾可测量总VAh、Wh和Varh电量值及其各相值

⑿K因数计算

⒀COSφ位移功率因数(DPF)和功率因数√(PF)的计算

⒁300次的暂态捕捉

⒂闪变计算

⒃三相不平衡度计算(电流和电压)

⒄可设置告警监控电网

⒅备份和储存截屏(图像和数据)

⒆趋势图记录可输出到PC

⒇PC软件支持数据恢复读取、可实时与仪器保持通讯

详细技术参数

1.7.2美国理想工业公司(IDEAL)

美国理想工业公司(IDEAL)的电能分析仪,是目前市场上功能最强和最为便于使用的电能质量测试设备。有4种测量与分析软件,即可用于单相电力系统也可用于3相电力系统。可即时读取测试结果,包括:数据列表、柱形图甚至单个波形,便于解析现场数据工作。具有实时时钟和1MB内存的电能分析仪可将存储的数据下载至个人计算机,以便用PowerVision 分析软件作深入分析。

电能与谐波程序是IDEAL电能分析仪的标准配置与其一起提供。扰动、检测表和快速检测程序可分别提供。这些程序允许用户用一个仪器监测电能质量多个参数和指标。每个程序的详细情况参见E-37。

专业人员在监测与分析方面的每项需要都能在一个设备中找到。如坚固、通用及多种功能特点,包括计算机兼容性。这样可使工作更简单的测试设备确实早已存在,但IDEAL 的电能分析仪将电能质量分析推到了崭新的水平。

电力谐波分析仪61-835

1.7.3日本万用

谐波测试仪HWT-1000测试功能包括:

·测试线路:

可为单相,单相3线,三相3线,三相4线

·测试分析:

电压/电流谐波测试,有效/无效功率,相位/力率之数字显示·电压/电流的波形显示

电压/电流的高次谐波分析显示

电压/电流的高次谐波功率谱显示

高次谐波电力/方向的功率谱显示

各次谐波含有率/相位一览表

各次谐波有效值/相位一览表

·测试结果可存储于本体内,或可利用打印机打印

·可接高压钳形CT

1.7.4意大利HT公司

HT9030 的先进设计,能够分析和测试单相和叁相叁线制或叁相四线制电力系统,HT9030取样频率为6400Hz即时显示电力基本参数(如电压、电流、有功功率,无功功率、视在功率和功率因素等等),显示电压和电流的动态波形,及监测异常电压和电力中断。可以同时分析并存储最大64个不同项目。当配合使用处理软件(应用于微软视窗系统),仪器就会拥有更强大的分析能力。这款HT9030能够显示并记录电压和电流中的谐波以及监测两个模拟和两个数字辅助输入端。

功能

记录

综合周期(IP值,从1秒到900秒) 且可以记录计算周期中各个项目的最大值、最小值和平均值。取样时间为20毫秒。

统计学分析

在不受IP(综合周期)数值的影响下,每20毫秒中的所有测量值都会被包含到统计学分析中进而显示分布曲线和过载曲线等等。

异常电压

在分析异常电压时仪器将会每10毫秒根据两个设定的上限值和下限值(根据额定电压选择从1%到30%)监控输入电压。如果高于或低于设定值时,仪器就会记录以下项目:- 时间(单位:10毫秒) 和开始日期- 现象持续时间- 现象中的最大或最小值- 异常现象出现前640毫秒的平均电压值上限和下限电压值可以设定固定的或根据平均电压值上下浮动的。

谐波分析

一台卓越的电力装置电子分析仪应拥有精确的谐波分析能力。Skylab 可以分析并记录电压和电流的谐波变化,以及测量总谐波失真度(THD)。

辅助输入

此台仪器有两种输入端:模拟式和数字式。模拟式输入端可以使用适合的可选配件监控温度、风速及其它项目的模拟直流信号(0~1 V)

这个不间断地显示电力和显示各环境数据可以全面地分析它们相互的关系。

数字输入端可以测量,在测量电力供应网时产生的测量数值。

用途

Skylab HT9030 主要应用于测量和分析电力质数,单相和叁相电力装置,如办公室和工业建筑物,诊断异常电压及记录各种电力项目。

这台仪器可以计算因非线性负载(如电脑,电视,马达等)引起的谐波的成分,而这些谐波会促发漏电断路器不正常跳掣或中线过热。

1.7.5德国美翠

电能质量分析MI2492)产品特点:

1)高达50次分量的谐拨波分析

2)同时记录分析电力质量参数:电流(I),电压(U),有功功率(P),无功功率(Q),视在功率(S), 功率因数(PF)

3)全中文菜单,方便用户现场快速操作,方面快捷.

4)标准配置含3只4档电流钳:5A/30A/300A/1000A.钳口尺寸50mm,适合各种电流范围的测量记录.

5)提供专业级的电能质量分析软件

6)具有相位图和三相系统不平衡计算.

7)新颖的电压和电流的在线示波器功能.

8)电流和电压记录仪功能

9)功率记录仪功能,适合电能的功耗监视评估与记录.

10谐波记录仪功能

11)频率:30HZ~65HZ,基本精度:1%,采样频率:5120HZ.

12)可以配置现场数据打印机,方便用户现场打印数据.

13)标准配置锂充电电池可支持系统长达168小时的记录.

14)usb口数据通讯,方便与pc的连接与通讯.

15)图形液晶显示屏,测试信息显示全面.方便用户全面了解现场状态.

16)仪器可以使用30A/300A/3000A柔性钳(选配),方便用户适应各种电流的测试.

17)豪华标准配置,性价比高,同类产品价格最低.

谐波检测数据

1.7.6中国智联电气

LZ-PQ2000C分析仪

技术参数:

频率测量

测量范围:45~55Hz,中心频率50Hz,测量条件:信号基波分量不小于80%F.S.

测量误差:<0.01Hz

电压测量范围:标配10V-450V;450V-1140V可选。

电流测量范围:0.06A-6A,其他量程(100A、200A、500A、1000A、2000A)可以根据用户要求选配

基波误差:基波电压允许误差≤0.5%F.S.;基波电流允许误差≤1%F.S.

基波电压和电流之间相位差的测量误差:≤0.5°

电压不平衡度测量的绝对误差:≤0.2%;电流不平衡度测量的绝对误差:≤1%

电压偏差测量误差:≤±0.5%

功率偏差:≤0.5%

谐波分析范围:1-50次谐波

谐波含有率误差:

当谐波电压含有率≥1%UN时,允许误差σ<±5%Uh

当谐波电压含有率<1%UN时,允许误差σ<±0.05%UN

当谐波电流含有率≥3%IN时,允许误差σ<±5%Ih

当谐波电流含有率<3%IN时,允许误差σ<±0.15%IN

二.设计

2.1谐波分析仪设计

目前电力系统谐波分析仪的设计,总体上都是包括数据采集,A/D 转换,对谐波进行FFT 算法分析然后显示结果。通过对每一部分使用原件进行改进和综合,对使用软件系统上的不断更新,以及算法研究来达到更加精确,简便和便于观测等目的。

一.硬件部分

谐波检测仪的硬件主要包括:数据信号的采集及处理、按键输入、液晶显示和通讯接口等。要对电压和电流进行采样,必须先将电网电压和电流调理成适合于A/D 采样的电压和电流。最常采用的是电流和电压互感器,例如采用DVDI 一001 型卧式穿芯小型精密交流电压电流互感器,它既可作电压互感器使用,又可作电流互电压互感器( VT)经A/D 转换芯片,感器使用,使用更方便。利用电流互感器( C T)、把C T 、VT 输出电压和电流的模拟信号转为数字信号。当然,在信号进行A/D 转换之前,还要对采样信号进行调理。例如以TMS320F2812 为核心的电力系统谐波分析仪:其采样调理电路包括隔离变换电路、B1 限幅电路、电压调理电路、同步方波变换电路及控制电路等。隔离变换电路中利用带有磁补偿的霍尔传感器将相关TV、TA 送来的电压、电流信号转换为同波形A/D 通道允许的弱电电压信号。在模/数转换中,如果A/D 转换器损坏,检测和控制的功能就不能实现。由于安全考虑,在A/D 转换前采用限幅电路,以保障系统的A/D 转换器安全。由于采用2812 片内ADC 进行模数转换,所以经过了限幅电路的信号要通过电压调理电路才能接入片内ADC,进行采集转换。设计中的同步方波变换电路由迟滞电压比较电路、高速光耦和脉冲整形电路组成。其中,迟滞比较电路将正弦波输入信号变为0~3.3V 的同频率方波信号,同时利用迟滞电压特性消除输入信号在过零点可能出现的抖动现象。高速光耦把模拟部分和数字部分电路隔离开,同时进一步隔离了强弱电之间的电气连接。同步信号经分压后,被送入2812 的捕获模块CAP1,用于频率的测量。

A/D 转换中,有如上所说的片内A/D 转换器,也有片内没有集成A/D 转换器,因而需外扩A/D 转换芯片的。例如利用T I ( Texas I nst rumen t)公司的DSP (T M$ 3 2 0 F 2 0 6)设计的电力系统谐波分析仪,选择的A/D 转换芯片可以是由MA X I M 公司生产的MA X 1 2 5 芯片,MA X 1 2 5 是高速2 X 4 通道同步采样 1 4 位逐次比较型A/D 转换芯片,它总共可以对8 路信号进行采样,4 个采样/保持放大器可对 4 个通道的模拟信号同时采样,以保持输入信号的对应相位信息。

液晶模块以TMS320F2812 为核心的电力系统谐波分析仪采用深圳市拓普微公司的LM19264A 汉字图形液晶显示模块,DSP 与液晶模块的接口连接是将液晶模块映射在2812 的XZCS6 区上。基于T M$ 3 2 0 F 2 0 6 的可采用L C D 2 4 0 1 2 8 A 模块,它具有尺寸小、功耗低、可靠性高、成本低等优点,可显示 1 6 点阵汉字1 5×8 个。

二.软件部分

在过去的几十年里,单片机的广泛应用实现了简单的智能控制功能。随着信息化的进程和计算机科学与技术、信号处理理论与方法等的迅速发展,需要处理的数据量越来越大,对实时性和精度的要求越来越高,低档单片机已不再能满足要求。近年来,各种集成化的单片DSP 的性能得到很大改善,软件和单片机开发工具也越来越多,越来越好;价格却大幅度下滑,从而使得DSP 器件及技术更容易使用,价格也能够为广大用户接受;越来越多的单片机用户开始选用DSP 器件来B2 提高产品性能,DSP 器件取代高档单片机的时机已经成熟。

与单片机相比,DSP 器件具有较高的集成度。DSP 具有更快的CPU,更大容量的存储器,内置有波特率发生器和FIFO 缓冲器。提供高速、同步串口和标准异步串口。有的片内集成了A/D 和采样/保持电路,可提供PWM 输出。DSP 器件采用改进的哈佛结构,具有独立的程序和数据空间,允许同时存取程序和数据。内置高速的硬件乘法器,增强的多级流水线,使DSP 器件具有高速的数据运算能力。DSP 器件比16 位单片机单指令执行时间快8~10 倍,完成一次乘加运算快16~30 倍。DSP 器件还提供了高度专业化的指令集,提高了FFT 快速傅里叶变换和滤波器的运算速度。此外,DSP 器件提供JTAG 接口,具有更先进的开发手段,批量生产测试更方便,开发工具可实现全空间透明仿真,不占用用户任何资源。软件配有汇编/链接C 编译器、C 源码调试器。

目前国内推广应用最为广泛的DSP 器件是美国德州仪器(TI)公司生产的TMS320 系列。DSP 开发系统的国产化工作已经完成,国产开发系统的价格至少比进口价格低一半,有的如TMS320C2XX 开发系统只有进口开发系统价格的1/5,这大大刺激了DSP 器件的应用。目前,已有不少高校计划建立DSP 实验室,TI 公司和北京闻亭公司都已制订了高校支持计划,将带动国内DSP 器件的应用和推广。

三、算法分析

目前,分析电力系统谐波的方法大多是傅立叶变换FT,其具有正交性、完备性等很多优点。实际使用的是离散傅立叶变换DFT,并且还有基于Cooly 和Tukey 提出的快速傅立叶变换FFT(Fastfouriertransform)这样的快速算法。对于确知信号和平稳随机过程,傅立叶变换是信号分析和信号处理技术的理论基础,发挥了重大的作用。但是,傅立叶变换有其明显的缺点,那就是没有时间局部信息,也就是说信号1(t)任何时刻的微小变化会牵动整个频谱;反过来,任何有限段上的信息都不足以确定在任意时间小范围的函数x(t)。

实际上,实时信号往往是时变信号,非平稳过程,了解它们的局部特性是很重要的。为了观察信号的局部特性,人们自然想到了通过预先加窗的方法使频谱反映时间局部特性,1994 年Gabor 提出了短时傅立叶变换STFT(Shorttimefouriertransform),又称为加窗傅立叶变换WFT,STFT 将FT 用于B3 不平稳信号的分析,把不平稳过程看成一系列平稳过程的叠加,具有了一定时间分辨率,对于弥补FT 的不足起到了一定的作用,但是STFT 的时-频窗大小固定,而且时间分辨率与频率分辨率之间的矛盾无法克服,故并没有很好的解决时-频局部化问题,应用于实际信号分析,尚有很多不足之处。

FFT 算法因其算法简单,有较好的实用性,因此成为当前谐波分析的主要算法,但这种算法需要在完全同步采样的条件下,当信号的测量时间不等于信号周期的整数倍,或当信号含有非整数次谐波时,由传统FFT 算法得到的各次谐波的频率和真实的谐波频率之

间有较大的误差。实际电网频率总会在额定频率附近波动,消除频率同步误差一般有两种方法:一种是由硬件实现同步采样,在采集系统中加入锁相同步技术,优点是信号处理比较简单,但由于锁相环响应较慢,不能及时跟踪信号频率的快速变化,从而不能实现真正意义的同步采样;另一种方法是通过软件算法解决非同步问题,加窗插值FFT 算法,有效地改善了谐波参数的测量精度。而用FFT 迭代计算则实现自适应整周期采样,减少了泄漏误差。

电力系统的谐波产生的原因

电力系统的谐波产生的原因电网谐波来自于3个方面: 一是发电源质量不高产生谐波: 发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。 二是输配电系统产生谐波: 输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。 三是用电设备产生的谐波: 晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。 电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。 气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。 家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。 供电系统的无功补偿及谐波治理 在供电系统中,为了节能降损、提高电压质量和电网经济运行水平,经常采用各种无功补偿装置。近年来,配电网中整流器、变频调速装置、电弧炉、各种电力电子设备以及电气化铁路大量应用。这些负荷大都具有非线性、冲击性和不平衡性的特点,在运行中会产

谐波的危害

1、高次谐波能使电网的电压与电流波形发生畸变,另外相同频率的谐波电压和 谐波电流要产生同次谐波的有功功率和无功功率,从而降低电网电压,增加线路损耗,浪费电网容量, 2、影响供电系统的无功补偿设备,谐波注入电网时容易造成变电站高压电容过 电流和过负荷,在谐波场合下,电容柜无法正常投切,更严重的请况下,电容柜会将电网谐波进一步放大。 3、影响设备的稳定性,尤其是对继电保护装置,危害特大。 4、谐波的存在会造成异步电动机效率下降,噪声增大;使低压开关设备产生误 动作;对工业企业自动化的正常通讯造成干扰,影响电力电子计量设备的准确性。 5、谐波的存在会使电力变压器的铜损和铁损增加,直接影响变压器的使用容量和使用效率;还会造成变压器噪声增加,缩短变压器的使用寿命。 谐波对公用电网和其他系统的危害大致有以下几个方面: 1、加大企业的电力运行成本 由于谐波不经治理是无法自然消除的,因此大量谐波电压电流在电网中游荡并积累叠加导致线路损耗增加、电力设备过热,从而加大了电力运行成本,增加了电费的支出。 2、降低了供电的可靠性 谐波电压在许多情况下能使正弦波变得更尖,不仅导致变压器、电容器等电气设备的磁滞及涡流损耗增加,而且使绝缘材料承受的电应力增大。谐波电流能使变压器的铜耗增加,所以变压器在严重的谐波负荷下将产生局部过热,噪声增大,从而加速绝缘老化,大大缩短了变压器、电动机的使用寿命,降低供电可靠性,极有可能在生产过程中造成断电的严重后果。 3、引发供电事故的发生 电网中含有大量的谐波源(变频或整流设备)以及电力电容器、变压器、电缆、电动机等负荷,这些电气设备处于经常的变动之中,极易构成串联或并联的谐振条件。当电网参数配合不利时,在一定的频率下,形成谐波振荡,产生过电压或过电流,危及电力系统的安全运行,如不加以治理极易引发输配电事故的发生。

谐波对电网危害

谐波污染对电网有哪些具体影响? 谐波污染对电网的影响主要表现在: (1)造成电网的功率损耗增加、设备寿命缩短、接地保护功能失常、遥控功能失常、线路和设备过热灯,特别是三次谐波会产生非常打的中性线电流,使得配电变压器的零线电流甚至超过相线电流值,造成设备的不安全运行。谐波对电网的安全性、稳定性、可靠性的影响还表现在可能引起电网发生谐振、使正常的供电中断、事故扩大、电网解裂灯。 (2)引起变电站局部的并联或串联谐振,造成电压互感器灯设备损坏;造成变电站系统中的设备和元件产生附加的谐波损耗,引起电力变压器、电力电缆、电动机等设备发热,电容器损坏,并加速绝缘材料的老化;造成断路器电弧熄灭时间的延长,影响断路器的开断容器;造成电子元器件的继电保护或自动装置误动作;影响电子仪表和通信系统的正常工作,降低通信质量;增大附加磁场的干扰等。 谐波对电力电容器有哪些影响? 当配电系统非线性用电负荷比重较大,并联电容器组投入时,一方面由于电容器组的谐波阻抗小,注入电容器组的谐波电流打,使电容器过负荷而严重影响其使用寿命,另一方面当电容器组的谐波容抗与系统等效谐波感相等而发生谐振时,引起电容器谐波电流严重放大使电容器过热而导致损坏。因此,电压谐波和电流谐波超标,都会使电容器的工作电流增大和出现异常,例如,对于常用自愈式并联电容器,其允许过电流倍数是1.3倍额定电流,当电容器的电流超过这一限制时,将会造成电容器的损坏增加、发热异常、绝缘加速老化而导致使用寿命降低,甚至造成损坏事故。同时,谐波使工频正弦波形发生畸变,产生锯齿状尖顶波,易在绝缘介质中引发局部放电,长时间的局部放电也会加速绝缘介质的老化、自愈性能下降,而容易导致电容器损坏。 按照电力系统谐波管理规定,电网中任何一点电压正弦波的畸变率(歌词谐波电压有效值的均方根与基波电压有效值的百分比),均不得超过表2-5规定。 表2-5 电网电压正弦波形畸变极限值 用户供电电压(kV)总电压正弦波形畸变率极限值各奇、偶次谐波电压正弦波形畸变率极限之(%) 0.38 5 4 2 6或10 4 3 1.75 35或63 3 2 1 110 1.5 1 0.5 谐波对电力变压器有哪些影响? (1)谐波电流使变压器的铜耗增加,引起局部过热,振动,噪声增大,绕组附加发热等。(2)谐波电压引起的附加损耗使变压器的磁滞及涡流损耗增加,当系统运行电压偏高或三相不对称时,励磁电流中的谐波分量增加,绝缘材料承受的电气应力

谐波的危害及其抑制措施

谐波的危害及其抑制措施 中国联通苏州分公司 柳振伟 摘要:本文对谐波的概念及产生原理、谐波产生的问题作了较为详细的描述,并对目前解决谐波问题的措施作了分析。 关键词:交频器;谐波危害;抑制谐波措施 一、概述 理想状态下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国工业用电频率以50Hz 为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基频率波的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I 区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4,6、8等为偶次谐波,如基波为50Hz 时,2次谐波为lOOHz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。一个正弦波在5次谐波和7次谐波的影响下怎样发生畸变。(相对于基波的24%和9%),如下图所示。 图1 基波和谐波 图2 失真波形 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热,使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏,从而降低继电保护、控制、以及检测装

谐波电流计算公式是什么

谐波电流计算公式是什么? 谐波含量计算: 测试时最好测出设备较长时期运行时最大的谐波电流,其和产生谐波电流的负载投入有关,若产生谐波电流的负载全部投入,测试的数据是比较准的。 A、咨询现场工程人员,此时产生谐波的负载是否全部满负荷运行,产生谐波的负载就是非线性负载,变频器,整流设备,中频炉等。测试时现场工程人员应该知道同类的非线性负载投入了多少,所以一定问清楚,自己也可以通过配电盘看一下同类的设备投入了多少,最终目的就是能够知道我们此次测试的谐波电流含量是否为其真正的谐波含量,否则按比例推算。譬如我们测试时同类设备只有一半运行,毫无疑问我们的测试报告要对其进行说明,并且推算出其真实的谐波含量应该乘以2。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大谐波含量,如下图: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其THDA (平均畸变率)为9.4%,Arms为1.119KA,那么其计算的谐波含量为105.186A,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大谐波含量,那么选取1台100A的设备即可满足谐波补偿要求。 无功功率补偿计算: A、咨询现场工程人员,或者调用其原始功率因数数据,因为功率因数是考核指标,主要咨询两个问题,一是功率因数长期基本上是多少,二是在此功率因数时长期负载电流I多大,通过公式计算出P的值,然后计算出需要补偿的无功功率,无功功率计算公式为,——对应cosφ前的正切值,——对应cosφ后的正切值。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大无功补偿量,如下图所示: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其平均功率为P=140KW,补偿前功率因数cosφ前=0.554,若补偿后要求功率因数不低于cosφ后=0.90,那么根据公式其计算的无功补偿容量为142.66KVAR,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大无功补偿容量,那么选取3台100A的设备即可满足谐波补偿要求。

高次谐波-百度百科

高次谐波(high order harmonic component) 对于任意一复合周期振动函数Y(T)按傅氏级数分解表示为:第一项称均值或直流分量,第二项为基波或基本振动,第三项称二次谐波,依次类推或把二次谐波以后的统称为高次谐波。 危害 与一般无线电电磁干扰一样,变频器产生的高次谐波通过传导、电磁辐射和感应耦合三种方式对电源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰,感应耦合是指在传导的过程中,与变频器输出线平行敷设的导线又会产生电磁耦合形成感应干扰,电磁辐射是指变频器输出端的高次谐波还会产生辐射作用,对邻近的无线电及电子设备产生干扰。 高次谐波的危害具体表现在以下几个方面: ①变压器 电流和电压谐波将增加变压器铜损和铁损,结果使变压器温度上升,影响绝缘能力,造成容量裕度减小。谐波还能产生共振及噪声。 ②感应电动机 电流和电压谐波同样使电动机铜损和铁损增加,温度升。同时谐波电流会改变电磁转距,产生振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。 ③电力电容器 当高次谐波产生时,由于频率增大,电容器阻抗瞬间减小,涌人大量电流,因而导致过热、甚至损坏电容器,还有可能发生共振,产生振动和噪声。 ④开关设备 由于谐波电流使开关设备在起动瞬间产生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。 ⑤保护电器 电流中含有的谐波会产生额外转距,改变电器动作特性,引起误动作,甚至改变其操作特性,或烧毁线圈。 ⑥计量仪表 计量仪表因为谐波会造成感应盘产生额外转距,引起误差,降低精度,甚至烧毁线圈。 ⑦电力电子设备

谐波分析产生原因,危害,解决方法

谐波分析 一、谐波的相关概述 谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。 谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性。由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。 电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波。因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。 二、谐波的危害 谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率。(2)谐波影响各种电气设备的正常工作。(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故。(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 三、谐波的分析 由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害。我国对于谐波相关工作的研究大致起源于20世纪80年代。我国国家技术监督局于93年颁布了国家标准《电能质量——公用电网谐波》(GB/T 14549-1993)。该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。这个规定给我国相关人员进行谐波检测分析、谐波污染的抑制提供了理论依据和大致思路。

谐波表说明书

多功能谐波电量仪表 特点:⊙4路开关量输入和4路开关量输出;输入/输出全隔离(可选) ⊙真有效值测量;(标配) ⊙具有可编程变送输出功能,可对电压/电流/有功功率/无功功率/频率/功率因数变送输出(可选) ⊙具有RS485数字接口,采用Modbus RTU通信协议(标配) ⊙具有2路电能脉冲输出;2路可编程报警;显示编程设置输入参数(可选) ⊙对显示页面选择/有功电能/无功电能有掉电保护功能(标配) ⊙具有3-31次谐波测量功能(标配) -⊙具有需量测量功能(标配) ⊙具有8时段4费率功能;实时时钟功能(可选) 该系列仪表可广泛应用于控制系统、SCADA系统和能源管理系统中、变电站自动化、配电网自动化、小区电力监控、工业自动化、智能建筑、智能型配电盘、开关柜中;有安装方便、接线简单、维护方便、工程量小、现场可编程设置输入参数的特点。 一、主要技术参数 网络三相三线、三相四线 电压额定值AC 100V 400V(订货时说明) 电压功耗<1V A (每相) 电压阻抗≥300KΩ 电压精度RMS测量、精度等级0.5 电流额定值AC 1A 、5A(订货时请说明) 电流过负荷持续:1.2倍瞬时:10倍/10S 电流功耗<0.4V A (每相) 电流阻抗<20mΩ 电流精度RMS 测量、精度等级0.5 频率45~60Hz、精度0.1Hz 功率有功、无功、视在功率,精度0.5% 电能四象限计量,有功精度0.5%,无功精度1% 显示可编程设置、切换、循环3排LED显示 电源工作范围AC/DC 100~240V 电源功耗≤5V A 输出数字接口标准RS-485、MODBUS-RTU 协议 脉冲输出2路电能脉冲输出(光耦继电器) 开关量输入4路开关量输入(干结点方式) 报警输出4路开关输出,250V AC/3A或30VDC/5A 模拟量输出4路模拟量变送输出,4-20mA DC 工作环境温度:-10~55℃湿度:<85% RH 存储环境-20~75℃ 耐压输入和电源1600V AC, 输入和输出1600V AC,电源和输出1600V AC 绝缘输入、输出、电源对机壳>5MΩ 尺寸(mm) 120W×120H×95L 96W×96H×95L 重量0.6Kg

什么是间谐波

什么是间谐波?什么是电压谐波? 问:什么是间谐波? 答:间谐波是指不是工频频率整数倍的谐波。间谐波往往由较大的电压波动或冲击性非线性负荷所引起,所有非线性的波动负荷如电弧炉、电焊机,各种变频调速装置,同步串级调速装置及感应电动机等均为间谐波源,电力载波信号也认为是一种间谐波。间谐波源的特点是放大电压闪变和对音频干扰,影响电视机画面及增大收音机的噪声,造成感应电动机振动及异常。对于采用电容、电感和电阻构成的无源滤波器电路,间谐波可能会被放大,严重时会使滤波器因谐波过载而不能投运,甚至造成损坏。间谐波的影响和危害等同整数次谐波电压的影响和危害已成共识,IEC 61000-3-6对间谐波的发射水平作出了明确的说明,如间谐波电压水平应低于邻近谐波水平,并规定为(0.5%~1%)UN。我国目前还没有制定相应的 国家标准给出限制规定。 问:什么是电压谐波? 答:电压谐波是指电力系统各公共连接点的电压谐波含有率允许值。国际电工委员会文件IEC61000-3-6 《中、高压电力系统畸变负荷发射限制的评估》提出了决定畸变负荷接入电网时所作评估的一些基本原则和评估程序。其目的是将电网的谐波电压限制到对所有用电设备不致造成有害影响的水平(兼容水平),保证对接入电网的用户都有合适的供电质量,并提出了电网谐波的兼容水平、规划水平和发射水平三个方面的标准。我国目前执行的电压谐波标志是GB/T 14549-1993 《公用电网谐波》,标准中对电网0.38,6,10,35,66,110kV 电压等级公共连接点的电压谐波含有率允许值做了明确的规定。 问:什么是电压波动和闪变? 答:电压波动和闪变是指电压幅值在一定范围内有规则变动时,电压最大值与最小值之差相对额定电压的百分比,或电压幅值不超过0.9p.u.~1.1p.u.(标幺值)的一系列随即变化。这种电压变化被称为闪变,以表达电压波动对照明灯的视觉影响。因此,闪变是说明对不同频率电压波动引起灯闪的敏感度及引起闪变刺激性程度的电压波动值,是人眼对灯闪的一种主观感觉。对用户负荷引起的闪变限制,是根据用户负荷的大小、协议用电容量占供电容量的比例及系统电压等级规定的。电力系统公共供电点由冲击负荷产生的电压波动允许值的百分数,分三级作不同的规范和限制。 (1)10kV及以下为2.5 (2)35~110kV为2.0 (3)220kV及以上为1.6 GB 12326-2000《电压允许波动和闪变》特别规定了各级电压下的闪变限制值,它适用于由波动负荷引起的公共连接点电压的快速变动及由此可能造成人对灯闪 明显感觉的场合。 问:什么是三相电压不平衡度? 答:三相电压不平衡度是指三相系统中三相电压的不平衡度程度,用电压或电流负序分量与正序分量的均方根百分比表示。三相电压不平衡(即存在负序分量)会引起继电保护误动、电机附加振动力矩和发热。额定转矩的电动机,如长期在负序电压含量4%的状态下运行,由于发热,电动机绝缘的寿命将会降低一半,若某相电压高于额定电压,其运行寿命的

谐波谐振产生的原因及危害分析

谐波谐振产生的原因及危害分析 摘要:在电网运行中,不可避免地会产生谐波和谐振。当谐波谐振发生时,其电压幅值高、变化速度快、持续时间长,轻则影响设备的安全稳定 运行,重则可使开关柜爆炸、毁坏设备,甚至造成大面积停电等严重 事故。本文就其定义、产生原因、危害及预防措施作以介绍,供参考。 1.定义 谐波是一个周期的正弦波分量,其频率为基波频率的整数倍,又称高次谐波。通俗地说,基波频率是50HZ,那么谐波就是频率为100HZ、150HZ、200HZ...N*50HZ的正弦波。 谐振是交流电路的一种特定工作状况,是指在含有电阻、电感、电容的交流电路中,电路两端电压与其电流一般是不同相位的,当电路中的负载或电源频率发生变化,使电压相量与电流相量同相时,称这时的电路工作状态为谐振。谐波在电网中长期存在,而谐振仅是电网某一范围内的一种异常状态。 2.产生的原因 谐波的产生是由于电网中存在着非线性负荷(谐波源),如电力变压器和电抗器、可控硅整流设备、电弧炉、旋转电机、家用电器等,另外,当系统中发生谐振时,也要产生谐波。 谐振的发生是由于电力系统中存在电感和电容等储能元件,在某些情况下,如电压互感器铁磁饱和、非全相拉合闸、输电线路一相断线并一端接地等,在部分电路中形成谐振。谐波也可产生谐振,由谐波源和系统中

的某一设备或某几台设备可能构成某次谐波的谐振电路。 3.造成的危害 3.1谐波的危害 谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也对周围的通信系统产生干扰。电力电子设备广泛应用以前,人们对谐振及其危害就进行过一些研究,并有一定认识,但那时谐波污染没有引起足够的重视。近三四十年来,各种电力、电子装置的迅速使用,使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度的关注。谐波对公用电网和其他系统的危害大致有以下几个方面。 (1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热 甚至发生火灾。 (2)谐波影响各种电气设备的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重 过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以 至损坏。 (3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述(1)和(2)的危害大大增加,甚至引起严重事故。 (4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。 (5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;

基于单片机的谐波检测仪的研究.

河北农业大学现代科技学院本科毕业论文(设计) 题目:基于单片机的谐波检测仪的研究 学部:工学部 专业班级:电子信息科学与技术0801 学号:XXXXXXXXX 学生姓名:XXXX 指导教师姓名:XXXX 指导教师职称:讲师 二O一二年六月三日

摘要 本文首先介绍了谐波分析算法的理论依据。在广泛使用的FFT算法的基础上,对谐波检测的对象进行数据分析,为系统的设计提供参考数据。本文完成了系统硬件电路的设计和仿真。硬件电路以MCS一51单片机为核心,配以适当的外围接口电路来完成各项功能。主要包括A/D采样电路、数据处理电路(单片机)、D/A转换器。软件设计以快速傅立叶变换(FFT)为主要部分,通过对所采集的数据来测量电参数。进行了相关软件算法的设计,完成每周期256点的离散采样,由单片机进行基2一FFT运算,运算结果可用于63次以下的谐波分析。系统程序采用模块化的设计思想,在软件设计中对每个模块都完成了框图设计和相关的编码设计。 关键字:单片机;谐波检测;FFT Abstract This paper first introduced the harmonic analysis algorithm theory basis. In the extensive use of FFT algorithm, on the basis of the object of harmonic detection of data analysis, for the design of the system with reference data. We completed a hardware circuit and the design of system simulation. Hardware circuit to 51 single-chip microcomputer is a MCS, match with appropriate interface circuit to the periphery of the complete all the function. Mainly includes A/D sampling circuit, data processing circuits (SCM), D/A converter. The software design with fast Fourier transform (FFT) as the main part, from all the data to measure electric parameters. Some software algorithm design, complete each cycle of discrete sampling 256 points, by MCU and 2 a FFT calculation, the operation result can be used for 63 times of the harmonic analysis. System programming the modularized design thought, in the software design of each module completed the block diagram design and relevant code design. Key word: single chip microcomputer;the harmonic detection; FFT

次谐波的产生原理

在理想的干净供电系统中,电流和电压都是正弦波的。在只含线性元件(电阻、电感及电容)的简单电路里,流过的电流与施加的电压成正比,流过的电流是正弦波。 在实际的供电系统中,由于有非线性负荷的存在,当电流流过与所加电压不呈线性关系的负荷时,就形成非正弦电流。任何周期性波形均可分解为一个基频正弦波加上许多谐波频率的正弦波。谐波频率是基频的整倍数,例如基频为50Hz,二次谐波为100Hz,三次谐波则为150Hz。因此畸变的电流波形可能有二次谐波、三次谐波……可能直到第三十次谐波组成。 有几个常见多发的问题是由谐波引起的:电压畸变、过零噪声、中性线过热、变压器过热、断路器的误动作等。 ①电压畸变:因为电源系统有内阻抗,所以谐波负荷电流将造成电压波形的谐波电压畸变(这是产生"平顶"波的根源)。此阻抗有两个组成部分:电源接口(PCC)以后的电气装置内部电缆线路的阻抗和PCC以前电源系统内的阻抗,用户处的供电变压器即是PC C的一例。 由非线性负荷引起的畸变负荷电流在电缆的阻抗上产生一个畸变的电压降。合成的畸变电压波形加到与此同一电路上所接的全部其他负荷上,引起谐波电流的流过,即使这些负荷是线性的负荷也是如此。 解决的办法是把产生谐波的负荷的供电线路和对谐波敏感的负荷的供电线路分开,线性负荷和非线性负荷从同一电源接口点开始由不同的电路馈电,使非线性负荷产生的畸变电压不会传导到线性负荷上去。 ②过零噪声:许多电子控制器要检测电压的过零点,以确定负荷的接通时刻。这样做是为了在电压过零时接通感性负荷不致产生瞬态过电压,从而可减少电磁干扰(EM I)和半导体开关器件上的电压冲击。当在电源上有高次谐波或瞬态过电压时,在过零处电压的变化率就很高且难于判定从而导致误动作。实际上在每个半波里可有多个过零点。 ③中性线过热:在中性点直接接地的三相四线式供电系统中,当负荷产生3N次谐波电流时,中性线上将流过各相3N次谐波电流的和。如当时三相负荷不平衡时,中性线上流经的电流会更大。最近研究实验发现中性线电流会可能大于任何一相的相电流。造成中性线导线发热过高,增加了线路损耗,甚至会烧断导线。 现行的解决措施是增大三相四线式供电系统中中性线的导线截面积,最低要求要使用与相线等截面的导线。国际电工委员会(IEC)曾提议中性线导线的截面应为相线导线截面的200%。 ④变压器温升过高:接线为Yyn的变压器,其二次侧负荷产生3N次谐波电流时,其中性线上除有三相负荷不平衡电流总和外,还将流过3N次谐波电流的代数和,并将谐波电流通过变压器一次侧流入电网。解决上述问题最简单的办法是采用Dyn接线的变压器,使负荷产生的谐波电流在变压器△形绕组中循环,而不致流入电网。 无论谐波电流流入电网与否,所有的谐波电流都会增加变压器的电能损耗,并增加了变压器的温升。 ⑤引起剩余电流断路器的误动作:剩余电流断路器(RCCB)是根据通过零序互感器的电流之和来动作的,如果电流之和大于额定的限值它就将脱扣切断电源。出现谐波时RCC B误动作有两个原因:第一,因为RCC B是一种机电器件,有时不能准确检测出高频分量的和,所以就会误跳闸。第二,由于有谐波电流的缘故,流过电路的电流会比计算所得或简单测得的值要大。大多数的便携式测量仪表并不能测出真实的电流均方根值而只是平均值,然后假设波形是纯正弦的,再乘一个校正系数而得出读数。在有谐波时,这样读出的结果可能比真实数值要低得多,而这就意味着脱扣器是被整定在一个十分低的数值上。 现在可以买到能检测电流均方根值的断路器,再加上真实的均方根值测量技术,校正脱扣器的整定值,便可保证供电的可靠性。

第102节平面间谐波方程

第10.2节 平面间谐波方程 10.2.1 频率在20至20000Hz 的弹性波能使入耳产生听到声音的感觉.0℃时,空气中的声速为331.5m/s ,求这两种频率声波的波长. 解:m v V v V v V 58.16/, /,20 5.33111≈= ==∴=λλλ m v V 3221058.1620/5.331/-?≈==λ 10.2.2 一平面简谐声波的振幅为0.001m ,频率为1483Hz ,在20℃的水中传播,写出其波方程. 解:查表可知,波在20oC 的水中传播,其波速V=1483m/s.设o-x 轴沿波传播方向,x 表示各体元平衡位置坐标,y 表示各体元相对平衡位置的位移,并取原点处体元的初相为零,则: )22966cos(001.0)(2cos x t t v A y V x πππ-=-= 10.2.3 已知平面简谐波的振幅A=0.1cm ,波长lm ,周期为10-2s ,写出波方程(最简形式).又距波源9m 和10m 两波面上的相位差是多少? 解:取坐标原点处体元初相为零,o-x 轴沿波传播方向,则波方程的最简形式为 ) 100(2cos 10)(2cos )(cos 3x t A t A y x T t V x -=-=-=-ππωλ πππ2)10100(2)9100(2=---=?Φt t 10.2.4 写出振幅为A , = f ,波速为v = c ,沿Ox 轴正方向传播的平面简谐波方程.波源在原点O ,且当t=0时,波源的振动状态被称为零,速度沿Ox 轴正方向. 解:设波源振动方程为)cos( φω+=t A y . ∵t=0时,2,0sin ,0cos πφφωφ-=∴>-== ==A u A y dt dy ∴波方程])(2cos[])(2cos[22ππππ--=--=C x V x t f A t v A y 10.2.5 已知波源在原点(x=0)的平面简谐波方程为 y=Acos(bt-cx) A ,b ,c 均为常量.试求:(1)振幅、频率、波速和波长;(2)写出在传播方向上距波源l 处的振动方程式,此质点振动的初相位如何? 解:⑴将)cos(cx bt A y -=与标准形式)cos( kx t A y -=ω比较,ω=b,k=c,∴振幅为

关于三次谐波

三次谐波电流主要来自于单相整流电路。 图示的是一个典型的单相整流电路,电路中的电容是平滑电容,大部分整流电路中都包含这个电容,否则直流电压的纹波很大。这个电容是导致三次谐波电流的主要原因。 熟悉电路的人都知道,平滑电容的电压被充电到交流电的峰值后,就维持在交流电峰值附近。当交流电的电压低于电容上的电压时,电网上没有电流流入负载。这时,负载的电流由电容供给,随着输出电流,电容的电压开始降低,在某个时刻,交流电的电压会高于电容上的电压,这时,电网上才会有电流流入电容(给电容充电,使电容上的电压升高)和负载中。因此,电网仅在接近电压峰值的时刻向负载输入电流,电流的形状为脉冲状。 通过付立叶分析可知,这种脉冲状的波形包含丰富的三次谐波成分。 脉冲状的电流中包含了高次谐波成分,3次谐波电流最大。传统负荷与现代符合的重要区别是,传统负荷大部分是线性负荷,现代负荷大部分是非线性负荷:

1.通信设备、UPS电源 2.电脑为代表的信息设备、办公自动化设备 3.大型医疗设备 4.电视机为代表的家用电器,特别是变频空调、电磁炉等 5.节能灯、调光灯等照明设备 6.大尺寸的LED屏幕 电视机和计算机电流波形 调光灯和节能灯电流波形

电视机和计算机的电流为很窄的脉冲波,这是很典型的单相整流电路的电流波形,实际上,任何使用开关电源作为直流电源的设备都。会产生这种电流的波形。这是三次谐波电流的主要来源。 目前大量使用的大尺寸LED屏幕,采用很多开关电源并联供电,因此LED 屏幕产生的3次谐波电流很大。 节能灯也是目前常见的负载,他的电流也是脉冲状的。实际上,现代建筑物中,节能灯导致的三次谐波电流已经成为主要的危害。 三次谐波引起跳闸 常识告诉我们,电流的持续时间短了,要保持一定的有效值,就必须具有更高的峰值。

间谐波简单分析

间谐波介绍 随着电力电子元件等非线性设备在电力系统中的广泛应用,由此而产生的谐波对电网的污染也越来越严重。谐波问题已引起广泛关注。通常的谐波一般指频率为工频(基波频率)整数倍的成分,而对非整数倍基波频率的成分则称之为间谐波。 1.DFT(FFT)分析间谐波应注意的问题 1)在进行DFT(FFT)分析时,由于间谐波和谐波之间的频域宽度小于一个基波频率,故分析窗的宽度至少需要一个信号周期以上,即分析窗的宽度需要增加。如果某一信号确实含有间谐波,分析时只要采样窗宽度选择恰当,就可以得到真正的间谐波。例:有一信号:x(t)=sin(2π60t)+0.5sin(2π90t),这里60 Hz 是基波频率,90 Hz分量是介于基频和二次谐波之间的间谐波。在用DFT(FFT)分析该间谐波问题时,为了得到90 Hz的频谱,需要取采样窗的宽度为两个信号周期(33.3 ms),即频率分辨率为30 Hz,这样分析就可以得到该信号中含有的90 Hz间谐波分量。 2)有些信号并不含有真正的间谐波,只是在进行DFT(FFT)分析时,由于频谱泄漏和栅栏效应而产生了一些额外的间谐波。再如(1)中分析时采用的信号x(t),如果把90Hz的间谐波频率改为100 Hz,采样窗口还是用两个信号周期(33.3 ms),即每隔30Hz就得到一个频率值,而100 Hz并不是30的整数倍,由于DFT(FFT)分析时是按30 Hz的整数倍进行采样的,所以就不能完整重复的采集到100 Hz分量,此即频谱泄漏现象,由此而产生了一些新的间谐波分量,实际上这些间谐波在原信号中并不存在。 由于频谱泄漏而使波形没有了重复性。栅栏效应使得信号本身具有的一些间谐波被其它间谐波给淹没了。又如上述的信号x(t),设其含有100 Hz的间谐波,同样用两个信号周期的采样窗来分析。那么栅栏效应就会使100 Hz的间谐波被淹没掉,而出现90 Hz的间谐波分量,实际上该90 Hz 的间谐波在原信号中是不存在的。 3)当用DFT(FFT)分析波动负荷时,并不能肯定得到的所有间谐波都是信号本身含有的。比如对于变压器涌流,其可以看成是一个快速变化的冲击信号。 当用12个信号周期的采样窗时,在360 Hz和420 Hz处出现了峰值,但是

(推荐)二次谐波的产生及其解

§2.3 二次谐波的产生及其解 二次谐波或倍频是一种很重要二阶非线性光学效应,在实践中有广泛的应用,如Nd:YAG 激光器的基频光(1.064μm)倍频成0.532m 绿光,或继续将0.532μm 激光倍频到0.266μm 紫外区域。 本节从二阶非线性耦合波方程出发,求解出产生的二次谐波光强小信号解,并解释相位匹配对二次谐波产生的影响。 2.3.1 二次谐波的产生 设基频波的频率为1ω,复振幅为1E u r ;二次谐波的频率为()2212ωωω=,复振幅2E u r 。由基频波在介质中极化产生的二阶极化强度()2P u r ,辐射出的二次谐波场()3E z u r 所满足的非线性极化耦合波方程 ()()()222202 22 2ik z d E z i P z e dz k μω-= u r u r (2.3.1-1) ()() ()()()1222110211;,ik z P z z E z e εχωωω=-:E u r u r u r t (2.3.1- 2) 注意简并度1D =,212ωω= ()()()()()()()()()22202 1102112 2 1112112;,2;,i kz i kz d E z i E z E z e dz k i E z E z e n c μωεχωωωωχωωω??=-:=-:u r u r u r t u r u r t (2.3.1-3) 波矢失配量, 122k k k ?=- (2.3.1-4) 写成单位矢量(光波的偏振方向或电场的振动方向)和标量的乘积形式 333E a E =u r r ,基频光场可能有两种偏振方向,即'1111,a E a E r r ,两种偏振方向可以是 相互平行也可以是相互垂直,并有331a a ?=r r ()() ()()'222121121112;,i kz dE z i a a a E z e dz n c ωχωωω???=?-::? ???r r r t (2.3.1-5) 基频波与产生的二次谐波耦合产生的极化场强度() 21P u r ,辐射出基频光场满足的非线性极化耦合波方程。

谐波产生的根本原因及治理对策

谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真在电力系统中对谐波的抑制就是如何减少或消除注入系统的谐波电流,以便把谐波 电压控制在限定值之内,抑制谐波电流主要有四方面的措施: 1)降低谐波源的谐波含量。也就是在谐波源上采取措施,最大限度地避免谐波的产生。这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用。2)采取脉宽调制(PWM)法。采用脉宽调制(PWM)技术,在所需要的频率周期内,将直流电压调制成等幅不等宽的系列交流电压脉冲,这种方法可以大大抑制谐波的产生。3)在谐波源处吸收谐波电流。这类方法是对已有 的谐波进行有效抑制的方法,这是目前电力系统使用最广泛的抑制谐波方法。4)改善供电系统及环境。对于供电系统来说,谐波的产生不可避免,但通过加大供电系统短路容量、提高供电系统的电压等级、加大供电设备的容量、尽可能保持三相负载平衡等措施都可以提高电网抗谐波的能力。选择合理的供电电压并尽可能保持三相电压平衡,可以有效地减小谐波 对电网的影响。谐波源由较大容量的供电点或高一级电压的电网供电,承受谐波的能力将会 增大。对谐波源负荷由专门的线路供电, 减少谐波对其它负荷的影响,也有助于集中抑制和消除高次谐波。 谐波的产生原因及其危害介绍 一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。[/B][/size] 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。

谐波的基础知识,谐波、谐波的种类及谐波频率计算

谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 ———谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 本文介绍谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率如何计算,哪些设备或电路容 易产生谐波,谐波的影响是什么 1 谐波的基础知识 (1)什么是基波? 电力网络中呈周期性变化的电压或电流的频率即为基波(又称一次波),我国电网规定频率是50 Hz,所以 2 基波是50 Hz。 (2)什么是谐波? 电力网络中除基波(50 Hz)外,任一周期性的电压或电流信号,其频率高于基波(50 Hz)的,称为谐波。 电网或电路中,电压产生的谐波为电压谐波; 电流产生的谐波为电流谐波。 (3)谐波有几种? 整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波。 偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。 奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。 正序谐波:谐波次数为3k+1(k 为正整数)即4、7、10等次谐波。 负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。 零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。 高频谐波:指频率为圆耀怨kHz的谐波。 (4)谐波频率如何计算? 谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊50 Hz越猿 3 缘园Hz等。 (5)哪些设备或电路容易产生谐波? 1)非线性负载,例二极管整流电路(AC/DC)。 2)三相电压或电流不对称性负载。 3)逆变电路(DC/AC)。 4)UPS 电源(PC 机用),EPS 电源(大功率动力用),即不间断电源。 5)晶闸管调压装置或调速电路。 6)电镀设备。 7)电弧炉、矿热炉、锰矿炉、磷矿炉、电石炉、硅铁炉。 8)电解槽。 9)电焊机(弧焊、缝焊、点焊、碰焊、对焊)。 10)电池充电机。 11)变频器(低压或高压变频器)。 12)脉幅调制(PAM)调压电路或者是脉宽调制(PWM)调频电路。 13)谐波的次数与整流电路的相数有关,例三相、六相、十二相、十八相、二十四相,当相数越多并通过移相方式就可

相关文档
最新文档