高效焊接智能化技术与研究现状
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效焊接智能化技术与研究现状
据不完全统计,全世界在役的工业机器人中大约有将近一半的工业机器人用于各种形式的焊接加工领域,焊接机器人应用中最普遍的主要有两种方式,即点焊和电弧焊。我们所说的焊接机器人其实就是在焊接生产领域代替焊工从事焊接任务的工业机器人。这些焊接机器人中有的是为某种焊接方式专门设计的,而大多数的焊接机器人其实就是通用的工业机器人装上某种焊接工具而构成的。在多任务环境中,一台机器人甚至可以完成包括焊接在内的抓物、搬运、安装、焊接、卸料等多种任务,机器人可以根据程序要求和任务性质,自动更换机器人手腕上的工具,完成相应的任务。因此,从某种意义上来说,工业机器人的发展历史就是焊接机器人的发展历史。
1.焊接机器人在国内外的应用
焊接机器人具有焊接质量稳定、改善工人劳动条件、提高劳动生产率等特点,广泛应用于汽车、工程机械、通用机械、金属结构和兵器工业等行业。据不完全统计,全世界在役的工业机器人中大约有一半用于各种形式的焊接加工领域。截止2005年全世界在役工业机器人约为91.4万套,其中日本装备的工业机器人总量达到了50万台以上,成为“机器人王国”,其次是美国和德国;在亚洲,日本、韩国和新加坡的制造业中每万名雇员占有的工业机器人数量居世界前三位。近几年,全球机器人的数量在迅速增加,仅2005年就达12.1万台。
我国自上个世纪70年代末开始进行工业机器人的研究,经过二十多年的发展,在技术和应用方面均取得了长足的发展,对国民经济尤其是制造业的发展起到了重要的推动作用。据不完全统计,最近几年我国工业机器人呈现出快速增长势头,平均每年的增长率都超过40%,焊接机器人的增长率超过了60%;2004年国产工业机器人数量突破1400台,进口机器人数量超过9000台,这其中的绝大多数都应用于焊接领域;2005年我国新增机器人数量超过了5000台,但仅占亚洲新增数量的6%,远小于韩国所占的15%,更远小于日本所占的69%。这样的增长速度相对于我国的经济发展速度以及经济总量来说显然是不匹配的,这说明我国制造业的自动化程度有待进一步提高,另一方面也反映了我国劳动力成本的低廉,
制造业自动化水平以及工业机器人应用程度的提高受到限制。
当前焊接机器人的应用迎来了难得的发展机遇。一方面,随着技术的发展,焊接机器人的价格不断下降,性能不断提升;另一方面,劳动力成本不断上升,我国经济的发展,由制造大国向制造强国迈进,需要提升加工手段,提高产品质量和增加企业竞争力,这一切预示着机器人应用及发展前景空间巨大。
2. 焊接机器人的发展趋势
焊接机器人在高质量、高效率的焊接生产中,发挥了极其重要的作用。工业机器人技术的研究、发展与应用,有力地推动了世界工业技术的进步。近年来,焊接机器人技术的研究与应用在焊缝跟踪、信息传感、离线编程与路径规划、智能控制、电源技术、仿真技术、焊接工艺方法、遥控焊接技术等方面取得了许多突出的成果。随着计算机技术、网络技术、智能控制技术、人工智能理论以及工业生产系统的不断发展,焊接机器人技术领域还有很多亟待我们去认真研究的问题,特别是焊接机器人的视觉控制技术、模糊控制技术、智能化控制技术、嵌入式控制技术、虚拟现实技术、网络控制技术等方面将是未来研究的主要方向。3.1焊缝跟踪技术
人的智能标志之一是能够感知外部世界并依据感知信息而采取适应性行为。要使机器人焊接系统具有一定的智能,研究机器人对焊接环境、焊缝位置及走向以及焊接动态过程的智能传感技术是十分必要的。机器人具备对焊接环境的感知功能可利用计算技术视觉技术实现,将对焊接工件整体或局部环境的视觉模型作为规划焊接任务、无碰路径及焊接参数的依据,这里需要建立三维视觉硬件系统,以及实现图像理解、物体分割、识别算法软件等技术。
视觉焊缝跟踪传感器是焊接机器人传感系统的核心和基础之一。为了获取焊缝接头的三维轮廓并克服焊接过程中弧光的干扰,机器人焊缝跟踪识别技术一般是采用激光、结构光等主动视觉的方法,从而正确导引机器人焊枪终端沿实际焊缝完成期望的轨迹运动。由于采用的主动光源的能量大都比电弧光的能量小,一般将这种传感器放在焊枪的前端以避开弧光直射的干扰。主动光源一般为单光面或多光面的激光域扫描处理稳定、简单、实用性好。
结构光视觉是主动视觉焊缝跟踪的另一种形式,相应的传感器主要有两部分组成:一个是投影器,用它的辐射能量形成一个投影光面;一个是光电位置探测
器件,常采用面阵CCD 摄像机。它们以一定的位置关系装配后,并配以一定的算法,便构成了结构光视觉传感器,它能感知投影面上所有可视点的三维信息。一条空间焊缝的轨迹可看成是由一系列离散点构成的,其密集程度根据控制的需要而定,焊缝坐标系的原点便建立在这些点上,传感器每次测得一个焊缝点位姿并可获得未知焊缝点的位姿启发信息。导引机器人焊枪完成整个光滑连续焊缝的跟踪。
3.2焊接机器人与外围设备的协调控制技术
对焊接机器人这一工作来说,并不是像表面看的那样轻松。这一过程是一个焊接机器人系统又叫工作站。对于工作站而言,是由很多的部件组合而成的。如机器人本体、机器人控制柜。焊机系统及送丝单位等。对于生产应用过程,单个机器人所发挥的作用相对比较单一,为了生产应用的需要就必须对焊接机器人与变位机、弧焊电源等相关的设备规定要求,从而促进柔性化的集成。为减少焊接过程中的辅助时间及生产效率的提高,就要对焊接机器人与周边设备的柔性化进行适当的协调控制。
3.3焊接电源
要想实现焊接机器人充分发挥出高效优质的特点,对电器性能良好的专用弧焊电源的研究是至关重要的。目前,模糊控制电源的出现引起了大家的关注,对于模糊控制电源,采用了模糊控制的方法对电源进行控制。对焊接表面有波浪型起伏的工作和焊接过程中有较大变形工作这两项工作中最适合采用这种电源。模糊控制电源的运用,不仅可以减少焊接缺陷,还可以对熔宽和熔深给予保证,而且还可以拥有美观的焊接表面。目前,弧焊电源的发展不断数字化,数字焊机也将成为弧焊机器人焊接电源的发展方向。
3.4 仿真系统
目前,机器人在生产过程中,运动学和动力学起到了重要的作用。对机器人来说,拥有比较自由和连杆空间复杂的机构,因此运动学和动力学得采用可以解决其中存在的很多问题,但是还是有较大多得问题存在,相对而言,其中的计算机的难度和计算机都很大。为解决在对机械手研究过程所存在的问题,应采用计算机图形技术、CAD 技术和机器人学理论的基础上进行,通过计算机达到集合图形的生成,然后进行动画显示工作,其次对机器人的机构设计、运动学正反解