药物在肝脏内的代谢

药物在肝脏内的代谢
药物在肝脏内的代谢

药物在肝脏内的代谢

药物在肝脏内的代谢

一、药物在肝内的生物转化

肝脏在药物(或外源性毒物)的代谢和处置中起着十分重要的作用,大多数药物和毒物在肝内经生物转化作用而排出体外。肝脏的病理状态可以影响药物在体内的代谢过程,从而影响药物的疗效和不良反应。另一方面,药物的代谢过程中的产物,可以造成肝损害。药物在肝内所进行的生物转化过程,可分为两个阶段:①氧化、还原和水解反应;②结合作用。

(一)第一相反应

多数药物的第一相反应在肝细胞的光面内质网(微粒体)处进行。此系由一组药酶(又称混合功能氧化酶系)所催化的各种类型的氧化作用,使非极性脂溶性化合物产生带氧的极性基因(如羟基),从而增加其水溶性。有时羟化后形成的不稳定产物还可进一步分解,脱去原来的烷基或氨基等。其反应可概括如下:

D+A→DA

NADPH+DA+H+→DAH2+NADP-

DAH2+O2+HADPH→A+DOH+H2O+NADP-

(注:D=药物;A=细胞色素P450)

药酶是光面内质网上的一组混合功能氧化酶系,其中最重要的是细胞色素P450,其他有关的酶和辅酶包括:NADPH细胞色素P450还原酶、细胞色素b5、磷脂酰胆碱和NADPH等。细胞色素P450(以下简称P450)是一种铁卟啉蛋白,能进行氧化和还原。当外源性化学物质进入肝细胞后,即在光面内质网上与氧化型P450结合,形成一种复合物,再在NADPH细胞色素P450还原酶作用下,被NADPH所提供的电子还原,并形成还原型复合物。后者与分子氧(O2)作用,产生含氧复合物,并接受NADPH所提供的电子,与O2形成H2O,同时药物(或毒物)被氧化成为氧化产物。

细胞色素P450:药物代谢的第一相反应,主要在肝细胞的光面内质网(微粒体)进行,此过程系由一组混合功能氧化酶系(又称药酶)所催化促进,其中最重要的是P450和有关的辅酶类。P450酶系包括二个重要的蛋白质组分:含铁的血红素蛋白和黄素蛋白,后者能从NADPH将电子转移至P450底物复合体。药物与P450结合位点与血红素分子非常接近,有利于电子的转移。药物与氧化型P450结合,此时血红素的铁为三价铁(Fe3+),通过NADPH还原酶的作用,将NADPH的电子转移给P450,使其还原,血红素铁成二价(Fe2+)。还原型的P450药物复合物与氧分子作用,成为含氧复合物,并接受NADPH所提供的电子,与氧生成H2O,同时药物也被氧化,P450又成为氧化型(Fe3+)。如此反复循环,使药物进行第一相的代谢。

P450实际上为同一家庭的多种异构型。迄今为止,人类P450的基因已发现有27种,编码多种P450。基本上分成至少4个基因族,又可进一步区分为不同亚族。其分类为CYP1,CYP2,CYP3和CYP4,亚族的分类按英语A、B、C……和阿拉伯数字1,2,3,……进一步分类。按其功能,人类的P450可分成二类。CYP1,2,3,主要代谢外源性化合物,如药物、毒物等,有交叉的底物特异性,常可被外源性物质诱导,在进化过程中,其保守性差。GYP4则主要代谢内源性物质,有高度特异性,通常不能被外源性物质诱导,在进行过程中相对保守。此类P450在类固醇、脂肪酸和前列腺素代谢中起作用。在药物代谢中起重要作用的P450。

表39-1具有代表性药物代谢CYP1,CYP2和CYP3亚家族

P450亚族代谢的底物(药物)

CYP1A2 氧阿米替林,咖啡因,氟哌啶醇,茶碱,他克林,西咪替丁

CYP2B6 环磷酰胺

CYP2C

卡马西平,环磷酰胺,地西泮,布洛芬,奈普生,奥美拉唑,苯妥英,普奈洛尔,甲苯磺西脲

CYP2D6 异喹胍,大多数β受体拮抗剂,氧阿米替林,氯丙嗪,可待因,右美沙芬,恩卡尼,氟哌啶醇,去甲替林,维拉帕米

CYP2E 对乙酰氨基酚,乙醇,氟烷

CYP3A 胺碘酮,卡马西平,西沙必利,可卡因,皮质醇,环孢素,氨苯砜,地塞米松,地尔硫草,红霉素,丙米嗪,利多卡因,洛伐他汀,硝苯地平,孕酮,他克莫司,他莫昔芬,睾丸酮,丙戊酸盐,维拉帕米,长春新碱,华法令

一般说来,药物经过第一相的氧化、还原等作用,变为极性和水溶性较高而活性低的代谢物,再经过第二相的结合作用,通过胆汁或尿液排到体外。但有些药物,在P450药酶作用下,转化为对肝细胞肝毒性的代谢物。

(二)第二相反应

药物经过第一相反应后,往往要通过结合反应,分别与极性配体如葡萄糖醛酸、硫酸、甲基、乙酰基、硫基、谷胱甘肽、甘氨酸、谷酰胺等基因结合。通过结合作用,不仅遮盖了药物分子上某些功能基因,而且还可改变其理化性质,增加其水溶性,通过胆汁或尿液排出体外。药物结合作用的相对能力也有不同,如葡萄糖醛酸结合、乙酰化和甲基化是高能力组,甘氨酸、谷酰胺和硫酸结合为低能力组。例如,与硫酸结合通常是代谢苯环化合物的主要途径之一,但它有一定的限度,可能是可利用的“活性硫酸盐”(PAPS)含量有一定的限度。如低剂量的扑热息痛,主要是与硫酸结合,高剂量时则主要与葡萄糖醛酸结合;很大剂量时,由于结合能力耗竭,可能通过第一种途径,生成N-羟基衍生物,造成肝损害。

药物的结合反应有两种类型,第一种药物与活性基团结合(表39-2),第二种是被激活的药物与有关化合物结合(表39-3)。

表39-2第一种结合反应

激活的结合物转移酶酶定位结合物

尿核苷二磷酸葡萄糖醛酸(UDPGA)葡萄糖醛酸转移酶微粒体(光面内质网)葡萄糖醛酸

硫酸磷酸腺苷磷酰硫酸(PAPS)硫酸转移酶胞质液

甲基S-腺苷蛋氨酸甲基转移酶胞质液

乙酰基乙酰辅酶A 乙酰基转移酶胞质液

硫基硫代硫酸硫代硫酸转移酶胞质液

表39-3第二种结合反应

药物激活的药物结合物酶定位

芳香酸芳香酰辅酶A 甘氨酸线粒体芳香基乙酸芳香基乙酰辅酶A 谷氨酰胞质液

芳香环化合物环氧化合物谷胱甘肽胞质液

第一相的P450酶系与第二相结合作用酶系的分布、功能和可诱导性均有差别,反映了这二类生物转化和解毒作用的不同生物学意义。谷胱甘肽(GSH)在结合和解毒作用中起着十分重要的作用,它能与亲电子基、氧基作用,防止肝细胞的损害。

二、影响药物代谢的因素

(一)药物代谢的遗传多态性

由于肝脏药酶系特别是P450的遗传多态性,以致造成药物代谢的个体差异,这影响了药物的药理作用、不良反应和致癌的易感性等。对某些药代谢的缺陷者称为:不良代谢者(poor metabolizer)或PM-表型1,而正常良好代谢者(extensive metabolizer)称为EM-表型。在第一相中的药物代谢多态性以异喹胍和乙妥英为例,分别为P450UD6和P450ⅡC的变异。对异喹胍的羟化作用有遗传性缺陷的个体,在应用β-受体拮抗剂、三环类抗郁剂、某些膜抑制抗心律紊乱药、抗高血压药和钙离子拮抗剂等,由于药物代谢的异常,使药效增强、时间延长,容易发生不良反应。在第二相反应的药物代谢多态性,以异烟肼和磺胺二甲嘧啶为例,可区分为乙酰化快型和慢型两种,慢型乙酰化个体长期服用肼苯达嗪和普鲁卡因酰胺后可产生红斑狼疮综合征,服异烟肼后易发生周围神经病变(表39-5)。P450ⅠA1,P450ⅠA2是芳香碳氢化合物羟化酶(过去称P448),激活某些致癌原,其遗传变异与某些癌的易患性有关。

(二)药酶的诱导和抑制

1.酶诱导作用某些亲脂性药物或外源性物质(如农药、毒物等)可使肝内药酶的合成显著增加,从而对其它药物的代谢能力增加,称为酶的诱导。在形态学上有光面内质网增生和肥大。目前,已知至少有200多种的药物和环境中的化学物质,具有酶诱导的作用。其中,比较熟知的苯巴比妥、导眠

药物在肝脏内的代谢

药物在肝脏内的代谢 药物在肝脏内的代谢 一、药物在肝内的生物转化 肝脏在药物(或外源性毒物)的代谢和处置中起着十分重要的作用,大多数药物和毒物在肝内经生物转化作用而排出体外。肝脏的病理状态可以影响药物在体内的代谢过程,从而影响药物的疗效和不良反应。另一方面,药物的代谢过程中的产物,可以造成肝损害。药物在肝内所进行的生物转化过程,可分为两个阶段:①氧化、还原和水解反应;②结合作用。 (一)第一相反应 多数药物的第一相反应在肝细胞的光面内质网(微粒体)处进行。此系由一组药酶(又称混合功能氧化酶系)所催化的各种类型的氧化作用,使非极性脂溶性化合物产生带氧的极性基因(如羟基),从而增加其水溶性。有时羟化后形成的不稳定产物还可进一步分解,脱去原来的烷基或氨基等。其反应可概括如下: D+A→DA NADPH+DA+H+→DAH2+NADP- DAH2+O2+HADPH→A+DOH+H2O+NADP- (注:D=药物;A=细胞色素P450) 药酶是光面内质网上的一组混合功能氧化酶系,其中最重要的是细胞色素P450,其他有关的酶和辅酶包括:NADPH细胞色素P450还原酶、细胞色素b5、磷脂酰胆碱和NADPH等。细胞色素P450(以下简称P450)是一种铁卟啉蛋白,能进行氧化和还原。当外源性化学物质进入肝细胞后,即在光面内质网上与氧化型P450结合,形成一种复合物,再在NADPH细胞色素P450还原酶作用下,被NADPH所提供的电子还原,并形成还原型复合物。后者与分子氧(O2)作用,产生含氧复合物,并接受NADPH所提供的电子,与O2形成H2O,同时药物(或毒物)被氧化成为氧化产物。 细胞色素P450:药物代谢的第一相反应,主要在肝细胞的光面内质网(微粒体)进行,此过程系由一组混合功能氧化酶系(又称药酶)所催化促进,其中最重要的是P450和有关的辅酶类。P450酶系包括二个重要的蛋白质组分:含铁的血红素蛋白和黄素蛋白,后者能从NADPH将电子转移至P450底物复合体。药物与P450结合位点与血红素分子非常接近,有利于电子的转移。药物与氧化型P450结合,此时血红素的铁为三价铁(Fe3+),通过NADPH还原酶的作用,将NADPH的电子转移给P450,使其还原,血红素铁成二价(Fe2+)。还原型的P450药物复合物与氧分子作用,成为含氧复合物,并接受NADPH所提供的电子,与氧生成H2O,同时药物也被氧化,P450又成为氧化型(Fe3+)。如此反复循环,使药物进行第一相的代谢。 P450实际上为同一家庭的多种异构型。迄今为止,人类P450的基因已发现有27种,编码多种P450。基本上分成至少4个基因族,又可进一步区分为不同亚族。其分类为CYP1,CYP2,CYP3和CYP4,亚族的分类按英语A、B、C……和阿拉伯数字1,2,3,……进一步分类。按其功能,人类的P450可分成二类。CYP1,2,3,主要代谢外源性化合物,如药物、毒物等,有交叉的底物特异性,常可被外源性物质诱导,在进化过程中,其保守性差。GYP4则主要代谢内源性物质,有高度特异性,通常不能被外源性物质诱导,在进行过程中相对保守。此类P450在类固醇、脂肪酸和前列腺素代谢中起作用。在药物代谢中起重要作用的P450。 表39-1具有代表性药物代谢CYP1,CYP2和CYP3亚家族 P450亚族代谢的底物(药物) CYP1A2 氧阿米替林,咖啡因,氟哌啶醇,茶碱,他克林,西咪替丁 CYP2B6 环磷酰胺 CYP2C 卡马西平,环磷酰胺,地西泮,布洛芬,奈普生,奥美拉唑,苯妥英,普奈洛尔,甲苯磺西脲 CYP2D6 异喹胍,大多数β受体拮抗剂,氧阿米替林,氯丙嗪,可待因,右美沙芬,恩卡尼,氟哌啶醇,去甲替林,维拉帕米 CYP2E 对乙酰氨基酚,乙醇,氟烷 CYP3A 胺碘酮,卡马西平,西沙必利,可卡因,皮质醇,环孢素,氨苯砜,地塞米松,地尔硫草,红霉素,丙米嗪,利多卡因,洛伐他汀,硝苯地平,孕酮,他克莫司,他莫昔芬,睾丸酮,丙戊酸盐,维拉帕米,长春新碱,华法令 一般说来,药物经过第一相的氧化、还原等作用,变为极性和水溶性较高而活性低的代谢物,再经过第二相的结合作用,通过胆汁或尿液排到体外。但有些药物,在P450药酶作用下,转化为对肝细胞肝毒性的代谢物。

关于肝脏的功能及作用

关于肝脏的功能及作用 肝脏有什么功能? 肝脏是人体最大的实质性消化器官,位于右上腹部,具有代谢、分泌、排泄解毒等非常复杂的生理功能,对脂类、蛋白质及糖等营养物质的消化、吸收、氧化、分解、转化等起着重要的作用。使其保持动态平衡,为机体的活动提供热能。 肝脏还是分泌(制造)和排泄胆汁的场所,胆酸也在肝脏中合成,并随胆汁排入肠内,参与脂质代谢、转化等生化过程,从而保障了人体各处器官,尤其是心、脑、肾等脏器的功能活动。 同时肝脏也是人体重要的代谢器官,每时每刻都在进行着一系列的物质代谢过程,被喻为人体的中心化工厂。 因此肝脏的健康保护对提高人的生活质量、促进您的健康长寿是至关重要的。 解毒功能:肝脏是人体的主要解毒器官,它可保护机体免受损害,使毒物成为低毒的或溶解度大的物质,随胆汁或尿液排出体外。 此外,肝脏还有防御机能、调节血液循环量、制造凝血因子、产生热量、肝脏再生能力等。因此,在某种意义上讲,肝脏健康是人体健康的基本条件之一。体内的某些代谢废物或肠道细菌的腐败产物以及服用的药物等,经过肝脏处理,把有毒物质变成无毒或毒性较小、或易于溶解的物质而便于排出体外,这些变化过程称为解毒作用。如酒精在肝内经过氧化过程,变成二氧化碳和水,胆红素与葡萄

糖醛酸结合,变成直接胆红素,随肝汁排入肠道,这些变化过程,就是肝脏的解毒作用。 【肝脏的生理功能】 ●肝脏是人体内最大的消化腺。也是体内新陈代谢的中心站。在肝脏中发生的化学反应有500种以上,实验证明,动物在完全摘除肝脏后即使给予相应的治疗,最多也只能生存50多个小时。这说明肝脏是维持生命活动的一个必不可少的重要器官。肝脏的血流量极为丰富,约占心输出量的1/4。每分钟进入肝脏的血流量为1000-1200ml。肝脏的主要功能是进行糖的分解、贮存糖原;参与蛋白质、脂肪、维生素、激素的代谢;解毒;分泌胆汁;吞噬、防御机能;制造凝血因子;调节血容量及水电解质平衡;产生热量等。在胚胎时期肝脏还有造血功能。肝呈红褐色,质软而脆嫩。成人肝重约1500克左右。肝大部分位于右腹上部,小部分延伸到左腹上部。人们常把它比喻为机体内的化工厂,起着改造、加工、合成、转变、排泄等复杂的作用。肝脏除能分泌胆汁外,还有很多重要功能。 ●肝脏的胆汁分泌作用:肝细胞能不断地生成胆汁酸和分泌胆汁,胆汁在消化过程中可促进脂肪在小肠内的消化和吸收。每天有600-1100ml的胆汁,经胆管输送到胆囊。胆囊起浓缩和排放胆汁的功能。 人体需要的能源,是我们吃进去的食物,它们含有碳水化合物、蛋白质和脂肪。这些营养物质的代谢过程和相互转化,主要是在肝脏内进行的。

药物体外肝代谢研究方法

药物体外肝代谢研究方法 摘要:对近几年的文献资料进行分析、综合、归纳。介绍肝微粒体体外温孵法、肝细胞体外温孵法、离体肝灌流及器官组织切片法。其中,肝细胞体外温孵法是当今药物体外肝代谢研究的热点,对新药研究与开发及正确指导临床合并用药有着巨大的推动作用,将对其进行重点论述。 关键词:体外肝代谢;肝微粒体;肝细胞;离体肝灌流;组织切片 广义的药物代谢指药物在体内吸收、分布、代谢、排泄等一系列过程[1]。狭义的药物代谢是指药物的生物转化。生物转化后,药物的理化性质发生变化,从而引起其药理和毒理活性的改变。因此,研究药物的生物转化,明确其代谢途径[2],对制定合理的临床用药方案,剂型设计及新药开发工作都具有重要的指导意义。当前,国内外对药物代谢的研究主要集中在代谢产物生成和确定代谢途径。在分子生物学技术推动下,药物代谢酶[3]领域的研究因其对临床药物间相互作用的研究有着积极的推动意义,已得到广泛的重视。 肝脏是药物代谢的重要器官,是机体进行生物转化的主要场所,富含参与药物代谢的一个庞大的依赖细胞色素P450的混合功能氧化酶系统[4],大多数药物的Ⅰ相反应及Ⅱ相反应都依赖于肝脏酶系统而发生。以肝脏为基础的体外代谢模型以其特有的优势在药物代谢研究中得到广泛应用,现概述如下。 1 肝微粒体体外温孵法 肝微粒体法[5]是由制备的肝微粒体辅以氧化还原型辅酶[6],在模拟生理温度及生理环境条件下进行生化反应的体系,制备肝微粒体一般用差速离心法。 肝微粒体体外温孵法和其它的体外肝代谢方法相比较,其酶制备技术简单,代谢过程快,结果重现性好,易大量操作,便于积累代谢样品供结构研究;同时,该方法可用于对药酶的抑制及体外代谢清除等方面的研究,因而在实际工作中应用较为普遍。但肝微粒体体外温孵法同其它体外肝代谢方法相比,在体内情况的一致性方面存在不足,因而其实验结果用于预测体内情况仍需进一步的确证。 2 肝细胞体外温孵法 肝细胞体外温孵法同肝微粒体法相似,即以制备的肝细胞辅以氧化还原型辅酶,在模拟生理温度及生理环境条件下进行生化反应的体系,适于研究蛋白及mRNA水平药物代谢酶诱导及酶活性,在评估药物代谢过程中药物间的相互作用时,该方法得到广泛的应用。但肝细胞制备技术较复杂,目前以胶原酶灌注技术为主[7],且体外肝细胞活性仅能维持4h,不利于储存和反复使用。 3 离体肝灌流法

(完整版)执业药师药物代谢动力学习题及答案

第二章药物代谢动力学 一、最佳选择题 1、决定药物每天用药次数的主要因素是 A、吸收快慢 B、作用强弱 C、体内分布速度 D、体内转化速度 E、体内消除速度 2、药时曲线下面积代表 A、药物血浆半衰期 B、药物的分布容积 C、药物吸收速度 D、药物排泄量 E、生物利用度 3、需要维持药物有效血浓度时,正确的恒定给药间隔时间是 A、每4h给药一次 B、每6h给药一次 C、每8h给药一次 D、每12h给药一次 E、每隔一个半衰期给药一次 4、以近似血浆半衰期的时间间隔给药,为迅速达到稳态血浓度,可以首次剂量 A、增加半倍 B、增加1倍 C、增加2倍 D、增加3倍 E、增加4倍 5、某药的半衰期是7h,如果按每次0.3g,一天给药3次,达到稳态血药浓度所需时间是 A、5~10h B、10~16h C、17~23h D、24~28h E、28~36h 6、按一级动力学消除的药物,按一定时间间隔连续给予一定剂量,达到稳态血药浓度时间长短决定于 A、剂量大小 B、给药次数 C、吸收速率常数 D、表观分布容积 E、消除速率常数 7、恒量恒速给药最后形成的血药浓度为 A、有效血浓度 B、稳态血药浓度 C、峰浓度 D、阈浓度 E、中毒浓度 8、药物吸收到达血浆稳态浓度时意味着 A、药物作用最强 B、药物吸收过程已完成 C、药物消除过程正开始 D、药物的吸收速度与消除速率达到平衡 E、药物在体内分布达到平衡 9、按一级动力学消除的药物有关稳态血药浓度的描述中错误的是 A、增加剂量能升高稳态血药浓度 B、剂量大小可影响稳态血药浓度到达时间 C、首次剂量加倍,按原间隔给药可迅速达稳态血药浓度 D、定时恒量给药必须经4~6个半衰期才可达稳态血药浓度 E、定时恒量给药达稳态血药浓度的时间与清除率有关 10、按一级动力学消除的药物,其消除半衰期 A、与用药剂量有关 B、与给药途径有关 C、与血浆浓度有关 D、与给药次数有关 E、与上述因素均无关 11、某药按一级动力学消除,其血浆半衰期与消除速率常数k的关系为 A、0.693/k B、k/0.693 C、2.303/k D、k/2.303 E、k/2血浆药物浓度 12、对血浆半衰期(一级动力学)的理解,不正确的是 A、是血浆药物浓度下降一半的时间 B、能反映体内药量的消除速度 C、依据其可调节给药间隔时间 D、其长短与原血浆浓度有关 E、一次给药后经4~5个半衰期就基本消除 13、静脉注射1g某药,其血药浓度为10mg/dl,其表观分布容积为 A、0.05L B、2L C、5L D、10L E、20L 14、在体内药量相等时,Vd小的药物比Vd大的药物 A、血浆浓度较低 B、血浆蛋白结合较少 C、血浆浓度较高 D、生物利用度较小 E、能达到的治疗效果较强 15、下列叙述中,哪一项与表观分布容积(Vd)的概念不符 A、Vd是指体内药物达动态平衡时,体内药量与血药浓度的比值 B、Vd的单位为L或L/kg C、Vd大小反映分布程度和组织结合程度 D、Vd与药物的脂溶性无关 E、Vd与药物的血浆蛋白结合率有关 16、下列关于房室概念的描述错误的是 A、它反映药物在体内分却速率的快慢 B、在体内均匀分布称一室模型 C、二室模型的中央室包括血浆及血流充盈的组织 D、血流量少不能立即与中央室达平衡者为周边室 E、分布平衡时转运速率相等的组织可视为一室 17、影响药物转运的因素不包括

体外药物肝代谢研究进展

体外药物肝代谢研究进展 (作者:___________单位: ___________邮编: ___________) 【摘要】目的:介绍药物体外肝代谢方法的最新进展. 方法:根据近几年的文献资料进行分析、综合、归纳. 分别按肝微粒体体外温孵法、肝细胞体外温孵法、肝匀浆体外孵育法进行介绍. 结果:体外肝代谢研究方法发展迅速. 结论:目前主要的药物体外肝代谢方法各有利弊,但对于新药开发来都是必不可少的研究手段. 【关键词】肝代谢;微粒体,肝;肝细胞;药代动力学 0 引言 肝脏是药物主要的和重要的代谢器官,是药物生物转化的主要场所,是富含参与药物代谢的一个庞大的依赖细胞色素P450的混合功能氧化酶系统,大多数药物的Ⅰ相和Ⅱ相代谢反应都是在肝药酶系统的参与下发生的,因此药物的体外代谢模型主要是以肝脏为基础的,并以其特有的优势和特点在药物代谢的研究中得到广泛的应用. 体外药物的肝代谢研究已经发展很长时间,与体内代谢研究相比,体外代谢研究有许多优点,①体外代谢研究可以排除体内诸多的干扰因

素,直接观察到代谢酶对底物的选择性代谢,为体内代谢研究提供重要的线索和依据. ②对于体内代谢转化率低且缺乏灵敏检测手段的药物来说,体外代谢不失为一种很好的研究手段. ③体外代谢研究具有快速简便的特点,适合大量化合物的药动学筛选. ④不需要消耗大量的样品和实验动物,因而研究费用相对较低[1]. 我们从体外肝代谢模型入手,综述了近年来药物体外肝代谢的文献. 1 肝微粒体体外温孵法 肝微粒体体外温孵实验是采用从肝脏中提取的肝微粒体,并加入还原型辅酶II(NADPH)再生系统,在体外模拟生理环境下进行代谢反应,采用高效液相色谱(HPLC)、高效液相色谱质谱联用法(HPLC MS)等测定方法对原型药及代谢产物进行测定的一种体外代谢的实验方法. 1.1 Ⅰ相代谢Ⅰ相代谢又称为官能团反应,包括氧化、还原、水解、水合等反应. NADPH为还原型酰胺腺嘌呤二核苷酸磷酸,是许多药物生物转化反应中不可缺少的辅助因子,它在这些反应中起到还原剂的作用,体系中只要NADPH浓度达到1 mmol/L时,便足以维持药物代谢反应进行,但NADPH价格较高,且不易长时间保存. 因此常采用NADPH再生系统来代替NADPH. 即利用相对稳定和廉价的辅酶II(NADP)与6磷酸葡萄糖在6磷酸葡萄糖脱氢酶的作用下生成NADPH. 6磷酸葡萄糖+NADP 6磷酸葡萄糖脱氢酶

肝脏的功能

肝脏的功能 D贮存血液肝脏只有凝血的功能,而没有贮存血液的功能。 肝脏是人体最大的腺体,它在人的代谢、胆汁生成、解毒、凝血、免疫、热量产生及水与 电解质的调节中均起着非常重要的作用,是人体内的一个巨大的化工厂”。 一、代谢功能: ①糖代谢:饮食中的淀粉和糖类消化后变成葡萄糖经肠道吸收,肝脏将它合成肝糖原贮存起来;当机体需要时,肝细胞又能把肝糖原分解为葡萄糖供机体利用。 ②蛋白质代谢:肝脏是人体白蛋白唯一的合成器官;丫球蛋以外的球蛋白、酶蛋白及 血浆蛋白的生成、维持及调节都要肝脏参与;氨基酸代谢如脱氨基反应、尿素合成及氨的处理均在肝脏内进行。 ③脂肪代谢:脂肪的合成和释放、脂肪酸分解、酮体生成与氧化、胆固醇与磷脂的合成、脂蛋白合成和运输等均在肝脏内进行。 ④维生素代谢:许多维生素如 A B C D和K的合成与储存均与肝脏密切相关。肝脏明显受损时会出现维生素代谢异常。 ⑤激素代谢:肝脏参与激素的灭活,当肝功长期损害时可出现性激素失调。 二、胆汁生成和排泄:胆红素的摄取、结合和排泄,胆汁酸的生成和排泄都由肝脏承担。肝细胞制造、分泌的胆汁,经胆管输送到胆囊,胆囊浓缩后排放入小肠,帮助脂肪的消化和吸收。 三、解毒作用:人体代谢过程中所产生的一些有害废物及外来的毒物、毒素、药物的代谢和分解产物,均在肝脏解毒。 四、免疫功能:肝脏是最大的网状内皮细胞吞噬系统,它能通过吞噬、隔离和消除入侵和内生的各种抗原。 五、凝血功能:几乎所有的凝血因子都由肝脏制造,肝脏在人体凝血和抗凝两个系统的 动态平衡中起着重要的调节作用。肝功破坏的严重程度常与凝血障碍的程度相平行,临床上常见有些肝硬化患者因肝功衰竭而致出血甚至死亡。 六、其它:肝脏参与人体血容量的调节、热量的产生和水、电解质的调节。如肝脏损害时对钠、钾、铁、磷、等电解质调节失衡,常见的是水钠在体内潴留,引 起水肿、腹水等。 肝脏的功能和作用 肝为人体最大的消化腺,也是最大的腺体,它不仅分泌胆汁参与消化活动,而且有营养物质代谢、贮存糖原、解毒、吞噬防御等重要机能,在胚胎期还有造血功能。 肝的重量约占体重的1/50~1/40,小儿肝相对比成人的大。据统计,成年男性肝为1230~1500克,女性肝为1100~1300克。 肝的位置和形态人的肝脏位于腹腔,大部分在腹腔的右上部,小部分在左上部,是人体最大的实质性腺体器官,一般重约1200?1600g,约占成人体重的1/50,男性的比女性的略重,胎儿和新生儿的肝脏相对较大,可达体重的 1 /20 。正常肝脏外观呈红褐色,质软而脆。肝脏形态呈一不规则楔形,右侧钝厚而左侧偏窄,一般 左右径(长)约25cm前后径(宽)约15cm上下径(厚)约6cm)上面突起浑圆,与

药物是怎么经肝脏代谢转化的

如对您有帮助,可购买打赏,谢谢药物是怎么经肝脏代谢转化的 导语:我们都知道,肝脏是我们人体内的解毒场所,肝脏内部的代谢对我们是非常重要的。人们所吃下的都需要经过肝脏来进行代谢,对于药物来说,肝脏 我们都知道,肝脏是我们人体内的解毒场所,肝脏内部的代谢对我们是非常重要的。人们所吃下的都需要经过肝脏来进行代谢,对于药物来说,肝脏对其的清除能力也是非常强的,主要还是经过酶的分解以及药物自身的代谢来完成这个过程。那么,药物究竟是怎么经肝脏代谢转化的呢?让我们一起来看一下。 药物代谢是研究药物在生物体内的吸收、分布、生物转化和排泄等过程的特点和规律的一门科学,即药物分子被机体吸收后,在机体作用下发生的化学结构转化。也是药物研发产业链中的重要环节,贯穿药物研究过程的始终。代谢的意义就在于能把外源性的物质包括药物和毒物,进行化学处理失活,并使排出体外。但药物的作用、副作用、毒性、给药剂量、给药方式、药物作用的时间、药物的相互作用等对代谢具有重要的影响。 肝脏是药物的主要清除器官,肝脏清除分成肝脏代谢和胆汁排泄两种方式。肝脏富含药物Ⅰ相代谢和Ⅱ相代谢所需的各种酶,其中以 P450酶最为重要。P450酶是由多种类型的P450酶所组成的一个大家族,根据氨基酸的排序的雷同性,P450酶可以分为不同几个大类,每个大类又可以细分成几个小类。在人体中重要的P450酶有CYP1A2、CYP2A6、CYP2B6、CYP2C8、CYP2C9、CYP2C19、CYP2D6、CYP2E1、CYP3A4和CYP3A5)。 P450酶存在有明显的种属差异,药物在动物和人体内的代谢途径和代谢产物可能是不同的。多态性(polymorphisms)是P450酶的一个重要 预防疾病常识分享,对您有帮助可购买打赏

肝脏在物质代谢中的作用

一、肝脏在糖代谢中的作用 肝脏是调节血糖浓度的主要器官。当饭后血糖浓度升高时,肝脏利用血糖合成糖原(肝糖原约占肝重的5%)。过多的糖则可在肝脏转变为脂肪以及加速磷酸戊糖循环等,从而降低血糖,维持血糖浓度的恒定。相反,当血糖浓度降低时,肝糖原分解及糖异生作用加强,生成葡萄糖送入血中,调节血糖浓度,使之不致过低。因此,严重肝病时,易出现空腹血糖降低,主要由于肝糖原贮存减少以及糖异生作用障碍的缘故。临床上,可通过耐量试验(主要是半乳糖耐量试验)及测定血中乳酸含量来观察肝脏糖原生成及糖异生是否正常。 肝脏和脂肪组织是人体内糖转变成脂肪的两个主要场所。肝脏内糖氧化分解主要不是供给肝脏能量,而是由糖转变为脂肪的重要途径。所合成脂肪不在肝内贮存,而是与肝细胞内磷脂、胆固醇及蛋白质等形成脂蛋白,并以脂蛋白形式送入血中,送到其它组织中利用或贮存。 肝脏也是糖异生的主要器官,可将甘油、乳糖及生糖氨基酸等转化为葡萄糖或糖原。在剧烈运动及饥饿时尤为显著,肝脏还能将果糖及半乳糖转化为葡萄糖,亦可作为血糖的补充来源。 糖在肝脏内的生理功能主要是保证肝细胞内核酸和蛋白质代谢,促进肝细胞的再生及肝功能的恢复。(1)通过磷酸戊糖循环生成磷酸戊糖,用于RNA的合成;(2)加强糖原生成作用,从而减弱糖异生作用,避免氨基酸的过多消耗,保证有足够的氨基酸用于合成蛋白质或其它含氮生理活性物质。 肝细胞中葡萄糖经磷酸戊糖通路,还为脂肪酸及胆固醇合成提供所必需的NADPH。通过糖醛酸代谢生成UDP?葡萄糖醛酸,参与肝脏生物转化作用。 二、肝脏在脂类代谢中的作用 肝脏在脂类的消化、吸收、分解、合成及运输等代谢过程中均起重要作用。 肝脏能分泌胆汁,其中的胆汁酸盐是胆固醇在肝脏的转化产物,能乳化脂类、可促进脂类的消化和吸收。 肝脏是氧化分解脂肪酸的主要场所,也是人体内生成酮体的主要场所。肝脏中活跃的β-氧化过程,释放出较多能量,以供肝脏自身需要。生成的酮体不能在肝脏氧化利用,而经血液运输到其它组织(心、肾、骨骼肌等)氧化利用,作为这些组织的良好的供能原料。 肝脏也是合成脂肪酸和脂肪的主要场所,还是人体中合成胆固醇最旺盛的器官。肝脏合成的胆固醇占全身合成胆固醇总量的80%以上,是血浆胆固醇的主要来源。此外,肝脏还合成并分泌卵磷脂?胆固醇酰基转移酶(LCA T),促使胆固醇酯化。当肝脏严重损伤时,不仅胆固醇合成减少,血浆胆固醇酯的降低往往出现更早和更明显。

肝脏的生理功能

肝脏的生理功能 肝脏是人体中最大的消化腺,也是最重要的器官之一。 人的肝脏分左右二叶,位于腹腔中,左叶小右叶大。肝脏的分泌物是一种黄褐色的苦涩液体,即胆汁。胆汁可直接从胆管流入十二指肠,也可储存于胆囊中,浓缩后,再从胆管进入十二指肠,参与脂肪的消化。 肝脏的功能不只是为脂肪消化提供胆汁,而是多方面的,涉及多个器官系统,简述于下: (1)肝脏对体液的调节作用 食物在小肠中消化后,消化产物通过小肠绒毛而进入血液或淋巴中(血管和淋巴管是相通的),所以小肠壁上毛细血管中的血液含有高量的单糖和氨基酸。如果“放任自流”,全身血液的成分很快就要发生变化,内稳态就要遭到破坏。但实际上这种情况并不发生,因为肝脏发挥了调节的作用。原来,小肠毛细血管在离开小肠时逐渐集合成几条静脉,这些静脉会合流入肝门脉(静脉)而入肝。所以肝脏一方面有肝动脉供应含O2的血液,另一

方面又接受肝门脉送入的含有高量营养物质和CO2的血液。肝门脉和肝动脉入肝之后分支而成毛细血管网(血窦),然后又集合而成肝静脉,肝静脉再和大静脉相连,而入心脏。肝门脉系统是肝脏血液循环的特征。肝门脉中的血是在肠壁上已经流过了一个毛细血管网的血,从肝门脉进入肝脏后,又要经过一个毛细血管网与肝脏细胞交换物质,就是在这一交换物质的过程中,肝脏发挥着它的调节作用。 对糖类代谢的调节:食物消化后产生葡萄糖、果糖、半乳糖等。果糖和半乳糖在进入血液后也都转变为葡萄糖。所谓血糖就是血中的葡萄糖。人的正常血糖含量约为血浆总量的0.08%~0.14%,即每100mL血液中含有0.08g~0.14g(平均0.1g)葡萄糖。饭后,从肝门脉流入肝的血液含葡萄糖的量可高达0.14%,但此时从肝脏流出的肝静脉血液的血糖含量却低至0.11%。这是因为肝脏把血液中过多的葡萄糖转化为糖原而储存于肝细胞中之故。大静脉中的血液是身体各部向心脏回流的血液,由于各组织已经从中吸收了葡萄糖,所以大静脉血液中葡萄糖含量是较低的。肝静脉的血液流入大静脉后,就和身体各处流入大静脉的血混合,葡萄糖含量就恢复了正常。如果食量过大,葡萄糖收入量过多,超过了全身的需要量,也超过了肝脏的储存能力,肝脏就将超量的葡萄糖转化为脂肪,由血液运到各处脂肪组织中储存,结果脂肪增多,人发胖。 反之,如果一个人没有吃饭,“腹内空空”,流入肠壁的血液就不但不能从肠内收入葡萄糖,反而要把带来的葡萄糖输送给肠壁细胞。因而离开肠壁

肝脏在物质代谢中的作用

一、肝脏在糖代谢中地作用 肝脏是调节血糖浓度地主要器官.当饭后血糖浓度升高时,肝脏利用血糖合成糖原(肝糖原约占肝重地).过多地糖则可在肝脏转变为脂肪以及加速磷酸戊糖循环等,从而降低血糖,维持血糖浓度地恒定.相反,当血糖浓度降低时,肝糖原分解及糖异生作用加强,生成葡萄糖送入血中,调节血糖浓度,使之不致过低.因此,严重肝病时,易出现空腹血糖降低,主要由于肝糖原贮存减少以及糖异生作用障碍地缘故.临床上,可通过耐量试验(主要是半乳糖耐量试验)及测定血中乳酸含量来观察肝脏糖原生成及糖异生是否正常. 肝脏和脂肪组织是人体内糖转变成脂肪地两个主要场所.肝脏内糖氧化分解主要不是供给肝脏能量,而是由糖转变为脂肪地重要途径.所合成脂肪不在肝内贮存,而是与肝细胞内磷脂、胆固醇及蛋白质等形成脂蛋白,并以脂蛋白形式送入血中,送到其它组织中利用或贮存. 肝脏也是糖异生地主要器官,可将甘油、乳糖及生糖氨基酸等转化为葡萄糖或糖原.在剧烈运动及饥饿时尤为显著,肝脏还能将果糖及半乳糖转化为葡萄糖,亦可作为血糖地补充来源. 糖在肝脏内地生理功能主要是保证肝细胞内核酸和蛋白质代谢,促进肝细胞地再生及肝功能地恢复.()通过磷酸戊糖循环生成磷酸戊糖,用于地合成;()加强糖原生成作用,从而减弱糖异生作用,避免氨基酸地过多消耗,保证有足够地氨基酸用于合成蛋白质或其它含氮生理活性物质. 肝细胞中葡萄糖经磷酸戊糖通路,还为脂肪酸及胆固醇合成提供所必需地.通过糖醛酸代谢生成?葡萄糖醛酸,参与肝脏生物转化作用. 二、肝脏在脂类代谢中地作用 肝脏在脂类地消化、吸收、分解、合成及运输等代谢过程中均起重要作用. 肝脏能分泌胆汁,其中地胆汁酸盐是胆固醇在肝脏地转化产物,能乳化脂类、可促进脂类地消化和吸收. 肝脏是氧化分解脂肪酸地主要场所,也是人体内生成酮体地主要场所.肝脏中活跃地β氧化过程,释放出较多能量,以供肝脏自身需要.生成地酮体不能在肝脏氧化利用,而经血液运输到其它组织(心、肾、骨骼肌等)氧化利用,作为这些组织地良好地供能原料. 肝脏也是合成脂肪酸和脂肪地主要场所,还是人体中合成胆固醇最旺盛地器官.肝脏合成地胆固醇占全身合成胆固醇总量地以上,是血浆胆固醇地主要来源.此外,肝脏还合成并分泌卵磷脂?胆固醇酰基转移酶(),促使胆固醇酯化.当肝脏严重损伤时,不仅胆固醇合成减少,血浆胆固醇酯地降低往往出现更早和更明显. 肝脏还是合成磷脂地重要器官.肝内磷脂地合成与甘油三酯地合成及转运有密切关系.磷脂合成障碍将会导致甘油三酯在肝内堆积,形成脂肪肝( ).其原因一方面由于磷脂合成障碍,导致前β?脂蛋白合成障碍,使肝内脂肪不能顺利运出;另一方面是肝内脂肪合成增加.卵磷脂与脂肪生物合成有密切关系.卵磷脂合成过程地中间产物——甘油二酯有两条去路:即合成磷脂和合成脂肪,当磷脂合成障碍时,甘油二酯生成甘油三酯明显增多.

肝脏的生化功能

肝脏是机体最大的腺体,它在机体的代谢﹑胆汁生成﹑解毒﹑凝血﹑免疫﹑热量产生及水与电解质的调节中均起着非常重要的作用,是机体内的一个巨大的“化工厂”。 代谢功能: ①糖代谢:饮食中的淀粉和糖类消化后变成葡萄糖经肠道吸收,肝脏将它合成肝糖原贮存起来;当机体需要时,肝细胞又能把肝糖原分解为葡萄糖供机体利用。 ②蛋白质代谢:肝脏是人体白蛋白唯一的合成器官;γ球蛋以外的球蛋白﹑酶蛋白及血浆蛋白的生成﹑维持及调节都要肝脏参与;氨基酸代谢如脱氨基反应﹑尿素合成及氨的处理均在肝脏内进行。 ③脂肪代谢:脂肪的合成和释放﹑脂肪酸分解﹑酮体生成与氧化﹑胆固醇与磷脂的合成﹑脂蛋白合成和运输等均在肝脏内进行。 ④维生素代谢:许多维生素如A B C D和K的合成与储存均与肝脏密切相关。肝脏明显受损时会出现维生素代谢异常。 ⑤激素代谢:肝脏参与激素的灭活,当肝功长期损害时可出现性激素失调。 胆汁生成和排泄:胆红素的摄取﹑结合和排泄,胆汁酸的生成和排泄都由肝脏承担。肝细胞制造﹑分泌的胆汁,经胆管输送到胆囊,胆囊浓缩后排放入小肠,帮助脂肪的消化和吸收。 解毒作用:机体代谢过程中所产生的一些有害废物及外来的毒物﹑毒素、药物的代谢和分解产物均在肝脏解毒。 免疫功能:肝脏是最大的网状内皮细胞吞噬系统,它能通过吞噬﹑隔离和消除入侵和内生的各种抗原。 凝血功能:几乎所有的凝血因子都由肝脏制造,肝脏在机体凝血和抗凝两个系统的动态平衡中起着重要的调节作用。肝功破坏的严重程度常与凝血障碍的程度相平行,临床上常见有些肝硬化动物因肝功衰竭而致出血甚至死亡。 其它:肝脏参与肌体血容量的调节﹑热量的产生和水、电解质的调节。如肝脏损害时对钠﹑钾﹑铁﹑磷﹑等电解质调节失衡,常见的是水钠在体内潴留,引起水肿、腹水等。 代谢功能: 1、肝脏参与糖代谢过程。对糖的贮存,分布和调节具有重要意义。在正常情况下,血液中葡萄糖的浓度是恒定的,空腹时血糖的浓度为每100毫升血液中含80-100毫克。饭后,食物在胃肠道内分解成葡萄糖,一部分直接入血液循环供人体利用,大部分经肝细胞合成肝糖元,贮存于肝脏。当饥饿、劳动、发热时,血糖浓度下降,此时肝细胞又能把肝糖元分解成葡萄糖,进入血液循环,提高血糖的浓度,维持血糖的正常乎衡。肝脏可以通过一系列的化学变化,将多余的蛋白质,脂肪转变为糖元。在机体营养状况好肝糖元贮备丰富时,可以保护肝脏免受损害。

肝病与药物肝毒性及其药物代谢

肝病与药物肝毒性及其药物代谢 周权 浙江大学医学院附属二院药剂科临床药学室(310009) 肝病状态下药物代谢能力如何、药物的肝毒性是否与药物代谢机制参与等话题,是临床药师必须关心的内容。笔者简要介绍相关知识。 一、肝脏疾病状态下的药物代谢 肝脏是药物代谢的主要场所,所以肝脏疾病对药物代谢酶的影响最为直接。 a. 病毒性肝炎甲型肝炎患者的CYP2A6活性显著下降,而且在儿童中更甚。慢性活动性丙型肝炎患者CYP2D6和CYP3A4的活性显著下降。经 -干扰素、利巴韦林联合治疗1个月后活性恢复。提示经抗病毒药物治疗后,应用CYP2D6和CYP3A4底物时剂量无需调整。与无脂肪变性的慢性丙型肝炎患者相比,慢性丙型肝炎合并脂肪变性患者的CYP2E1 mRNA表达增加37%。机制与TNF-α mRNA表达增加和氧化应激(谷胱甘肽、超氧化物歧化酶、过氧化氢酶活性下降)有关。提示这些患者应用CYP2E1底物时剂量应适度增加。 b. 肝硬化一般来说,肝硬化比其他肝脏疾病对药物代谢的影响要大。肝硬化对一相代谢有抑制作用,而相对而言葡醛酸转移酶的活性不受肝硬化和慢性肝病的影响。例如地西泮的去甲基化和普萘洛尔的氧化代谢受影响非常显著。奥沙西泮、罗拉西泮的代谢纯粹为葡醛化,在肝硬化病中并无影响。肝硬化患者的CYP3A4活性、含量和基因表达显著下降,且CYP3A4活性与血清白蛋白浓度显著相关,与血清转氨酶浓度则无关。慢性活动性肝炎和代偿期肝硬化患者的CYP1A2和NAT2的活性显著降低。因此,肝硬化患者使用CYP3A4或CYP1A2底物时剂量应降低,参考血清白蛋白浓度有一定的临床价值。 c. 酒精性肝病乙醇对肝药酶活性的影响呈双相性,短时间内大量饮酒,乙醇通过直接竞争性结合CYP2E1而产生药酶抑制作用;乙醇慢性中毒者肝内质网增生,CYP2E1数量和活性增加,使同时服用药物的代谢加快、t1/2缩短、药效降低。 d. 胆汁淤积肝内胆汁淤积患者的P450含量和CYP2E1显著受损,且下降程度与血清总胆红素、胆汁酸浓度相关,但与血清谷草转氨酶水平无相关性。细胞色素b5含量、NADPH-细胞色素还原酶活性无改变。慢性肝病伴血清胆红素浓度升高患者的CYP1A2、CYP2C8/10含量显著下降。提示这些患者应用经P450代谢的药物时,剂量应下降,参考血清胆红素和胆汁酸浓度具有临床价值。 二、肝毒性与药物代谢 药物性肝损伤的机制可纳为:(1)药物的直接损伤;(2)免疫特异质机制损伤;(3)代谢特异质机制损伤和(4)氧应激损伤。本文着重介绍与药物代谢有关的机制。某些药物在肝细胞内经CYP450代谢产生亲电子物、自由基、氧基等,他们可与肝细胞内大分子物质共价结合,引起膜系统脂质过氧化,破坏膜完整性和膜Ca2+-ATP酶系,扰乱细胞内外Ca2+稳态,影响线粒体、内质网等重要细胞器的功能,并最终导致肝细胞损伤甚至死亡。 1 长期饮酒者服用对乙酰氨基酚后致肝细胞损伤 - 118 -

关于肝脏的功能及作用

关于肝脏得功能及作用 肝脏有什么功能? 肝脏就是人体最大得实质性消化器官,位于右上腹部,具有代谢、 分泌、排泄解毒等非常复杂得生理功能,对脂类、蛋白质及糖等营养物质得消化、吸收、氧化、分解、转化等起着重要得作用。使其保持动态平衡,为机体得活动提供热能。 肝脏还就是分泌(制造)与排泄胆汁得场所,胆酸也在肝脏中合成并随胆汁排入肠内,参与脂质代谢、转化等生化过程,从而保障了人体各处器官,尤其就是心、脑、肾等脏器得功能活动。 同时肝脏也就是人体重要得代谢器官,每时每刻都在进行着一系列得物质代谢过程,被喻为人体得中心化工厂。 因此肝脏得健康保护对提高人得生活质量、促进您得健康长寿就是至关重要得。 解毒功能:肝脏就是人体得主要解毒器官,它可保护机体免受损害 使毒物成为低毒得或溶解度大得物质,随胆汁或尿液排出体外。 此外,肝脏还有防御机能、调节血液循环量、制造凝血因子、产生热量、肝脏再生能力等。因此,在某种意义上讲,肝脏健康就是人体健康得基本条件之一。体内得某些代谢废物或肠道细菌得腐败产物以及服用得药物等,经过肝脏处理,把有毒物质变成无毒或毒性较小、或易于溶解得物质而便于排出体外,这些变化过程称为解毒作用。如酒精在肝内经过 氧化过程,变成二氧化碳与水,胆红素与葡萄糖醛酸结合 变成直接胆红素,随肝汁排入肠道,这些变化过程,就就是肝脏得解毒

作用。 【肝脏得生理功能】 ? 肝脏就是人体内最大得消化腺。也就是体内新陈代谢得中心站。在肝脏中发生得化学反应有500 种以上,实验证明,动物在完全摘除肝脏后即使给予相应得治疗,最多也只能生存50 多个小时。这说明肝脏就是维持生命活动得一个必不可少得重要器官。肝脏得血流量极为丰富约占心输出量得1/4 。每分钟进入肝脏得血流量为10001200ml 。肝脏得主要功能就是进行糖得分解、贮存糖原;参与蛋白质、脂肪、维生素、激素得代谢;解毒;分泌胆汁;吞噬、防御机能;制造凝血因子;调节血容量及水电解质平衡;产生热量等。在胚胎时期肝脏还有造血功能。肝呈红褐色,质软而脆嫩。成人肝重约1500 克左右。肝大部分位于右腹上部,小部分延伸到左腹上部。人们常把它比喻为机体内得化工厂,起着改造、加工、合成、转变、排泄等复杂得作用。肝脏除能分泌胆汁外,还有很多重要功能。 ?肝脏得胆汁分泌作用:肝细胞能不断地生成胆汁酸与分泌胆汁,胆汁在消化过程中可促进脂肪在小肠内得消化与吸收。每天有6001100ml 得胆汁,经胆管输送到胆囊。胆囊起浓缩与排放胆汁得功能。 人体需要得能源,就是我们吃进去得食物,它们含有碳水化合物、蛋白质与脂肪。这些营养物质得代谢过程与相互转化,主要就是在肝脏 内进行得 1. 胆汁分泌作用:肝细胞能不断地分泌胆汁,可促进脂肪在小肠内得消化与吸收。肝脏得分泌与排泄功能:胆汁中既含有肝脏得分泌物(主

肝脏是怎样代谢药物的

肝脏是怎样代谢药物的 文章目录 肝脏怎样代谢药物的 1、肝脏是怎样代谢药物的 药物在肝内的分解与代谢一般分两个阶段:Ⅰ相反应,通过氧化,还原或水解作用将药物转化成相应产物;Ⅱ相反应,将药物或Ⅰ相代谢产物与内源性物质(如葡糖苷酸,硫酸)结合产生一个极性易排出性产物。Ⅰ相反应首先发生的氧化反应由肝内单氧化酶(混合功能氧化酶)催化进行。这组酶是以血红蛋白细胞色素 P-450为核心酶的复杂微粒体系统。该酶系统受遗传因素控制,对多种诱导(刺激)或抑制因素(如药物,杀虫剂,除草剂,吸烟及咖啡等)亦非常敏感,因此在健康人中,药物的肝内代谢差异很大。

很多药物可通过诱导P-450加速自身的分解。因为这种作用通常是非特异的,其他药物的转化也可因此而加速。这种诱导常可引起一些潜在重要的后果,例如:同时口服抗凝剂和苯巴比妥的患者,如果突然停用后者则会导致出血,因为苯巴比妥是一种较强的细胞色素P-450诱导剂。 2、如何提高肝脏代谢功能 2.1、给肝脏补充营养 蛋白质、糖、维生素A、维生素E等都是肝脏“喜欢”的的营养素,平时多补充这些营养素有利于养肝护肝。谷类食物是养肝护肝的最好的食物之一,如小米,含有丰富的蛋白质、维生素E等,护肝的同时还能够保护胃黏膜。 2.2、减轻肝脏负担 肝炎病人的饮食要清淡,便于消化。忌油腻、辛辣、高脂肪的食物,尤其是在肝脏急性炎症期间。其次,多吃含纤维素的食物,如蔬菜等,这样才能保持胃肠道的通畅。人体内的有毒物质十之八九来自于肠道中细菌对食物残渣的分解,水果有利于排便通畅。

2.3、改善肝脏供血 俗话说:“肝藏血”。这话的意思是,白天人们活动频繁,血会向四肢扩散,晚上休息时,血藏于肝脏。现代的动物实验证实了这句话:直立时,肝脏血流量减少40%,而运动时肝脏血流量减少80-85%。 3、肝脏代谢功能不佳有何症状 3.1、容易喝醉 有些人,平时酒量很大,然而现在变得喝一点之后就感觉“醉了”,这种征兆提醒您肝脏功能下降,肝受损了,肝脏不能完全分解酒精代谢物乙醛。 3.2、脸色发黑 肝脏对铁的代谢起着重要作用,平时肝脏内积蓄有铁成份。肝细胞遭到破坏的话,肝细胞内的铁会流入血管,使血液内铁成份增加,导致脸色发黑。这种症状最容易在男性和闭经后的女性身上出现。因此,当出现脸色发黑征兆时,一定要警惕是否肝受损了,并要及时护肝。

肝脏的代谢功能

肝脏的代谢功能 肝脏是人体主要的代谢器官,除了糖、蛋白质、脂类、维生素以外,激素也要在肝脏进 行灭活。 糖:肝脏是维持血糖浓度相对稳定的重要器官。进食之后自肠道吸收进入门静脉再进入肝脏,肝细胞迅速摄取葡萄糖,并合成肝糖原储存起来。于是在肝静脉血液中保持着较低的血糖浓度。相反,在空腹时,循环血糖浓度下降,肝糖原即迅速分解6磷酸葡萄糖,并在葡萄糖6磷酸酶催化下,生成葡萄糖补充血糖,所以,肝脏有较强的糖原合成,分解和储存能力。肝脏还含有一些酶,能催化某些非糖物质,如生糖氨基酸、乳酸等转化成糖原或葡 萄糖,即糖的异生。 蛋白:肝脏利用氨基酸合成肝细胞自身的结构蛋白质,还能合成多种血浆蛋白质(白蛋白、纤维蛋白原、凝血酶原及多种血浆蛋白质),其中合成的量最多的是白蛋白。白蛋白在维持血浆渗透压上起重要作用。肝脏合成的许多凝血因子和纤维蛋白原等,在血液凝固功能上起重要作用。肝内有十分丰富的氨基酸代谢酶,因此,氨基酸的转氨基、脱氨基、转甲基及脱羧基作用以及个别氨基酸特异的代谢过程在肝内旺盛的进行。鸟氨酸循环合成尿素也是 肝脏的一种特异性功能医学教育网整理。 脂类:肝脏在脂类的消化、吸收、分解、合成及运输等代谢过程中均起重要作用。肝细胞是合成胆固醇、甘油三酯和磷脂的最重要的器官,并能进一步合成LDL、HDL和LCAT。某些载脂蛋白(如ApoA1、ApoB100、ApoCⅠ、ApoCⅡ等)和LCAT参与脂蛋白的代谢和脂类的运输。肝分解甘油三酯和脂肪酸的能力很强,参与脂肪酸的β氧化,并且进行 酮体合成。 维生素:肝脏在维生素代谢中起重要作用。肝脏能储存多种维生素,如维生素A、B、D、E、K及B12等。胡萝卜素转变成维生素A,维生素D3在C25位上羟化,维生素PP 合成NAD+和NADP+,维生素B1合成TPP等过程均在肝内进行。 激素:激素的灭活主要在肝脏进行。血浆中的类固醇激素进入肝脏,被肝细胞摄取后,进行一系列转化反应,改变了活性,最后生成易于排泄的代谢终末产物。许多蛋白质及多肽激素灭活和氨基酸衍生的激素(肾上腺素及甲状腺素等)分解代谢主要是在肝脏医学教育网 整理 肝脏对来自体内和体外的许多非营养性物质如各种药物、毒物以及体内某些代谢产物,具有生物转化作用。通过新陈代谢将它们彻底分解或以原形排出体外。这种作用也被称作“解毒功能”,某些毒物经过生物转化,可以转变为无毒或毒性较小,易于排泄的物质;但也有一些物质恰巧相反,毒性增强(如假神经递质形成),溶解度降低(如某些磺胺类药)。肝脏的生物转化方式很多,一般水溶性物质,常以原形从尿和胆汁排出;脂溶性物质则易在体内积聚,并影响细胞代谢,必须通过肝脏一系列酶系统作用将其灭活,或转化为水溶性物质,再予排出。 其生物化学反应可分四种形式:①氧化作用。如乙醇在肝内氧化为乙醚、乙酸,再氧化为二氧化碳和水。这种类型又称氧化解毒。②还原作用。某些药物或毒物如氯

药代动力学试题

1 影响药物代谢的因素有哪些及评价药物代谢的方法? 2 药物动力学参数包括哪些?阐明各个参数的意义? 1.影响药物代谢的因素: (1)给药途径的影响 一种药物可以制成多种剂型,因此可以有不同的给药途径和方法。给药途径和方法影响药物代谢进而影响疗效,因而引起了人们对给药方法研究的重视。这与药物代谢酶在体内的分布以及局部器官和组织的血流量有关。由于肝脏和胃肠道存在众多的药物代谢酶,“首过效应”是导致口服药物体内代谢差异的主要原因。 给药剂量和剂型的影响 (任何药物代谢反应都是在酶参与下完成的。体内的酶都是有一定量的,当体内药物量超过酶的代谢反应能力的时候,代谢反应往往会出现饱和的现象。在硫酸结合和甘氨酸结合的代谢反应中,用较少的剂量就能达到饱和的作用)。 ①剂量对代谢的影响 机体对药物的代谢能力主要取决于体内各种药物代谢酶的活力和数量。代谢存在饱和现象。剂量过大时出现中毒反应。 ②剂型对代谢的影响 对口服后要在胃肠道中代谢的药物影响大。如:口服含1g水杨酰胺的溶液、混悬液、和颗粒剂后,测得尿中硫酸酯的量,服用颗粒剂比溶液剂和混悬剂多,这是因为颗粒剂吸收前需要溶解,吸收较慢,不会出现硫酸结合反应的饱和状态,生产硫酸酯的量就多,这是剂型对代谢影响的结果。

药物的光学异构特性对药物代谢的影响 体内的酶及药物受体具有立体选择性,导致不同异构体显示明显的代谢差异。 酶诱导作用和酶抑制作用 药物重复应用或与其他药物合并应用时,药物代谢发生了变化。这种变化可分为两类:一类是某些药物的代谢被另外一些药物所促进(诱导),另一类是某些药物代谢被其它药物所抑制,促进代谢的物质叫做诱导剂,抑制代谢的物质叫做抑制剂。有的药物对某一药物来说是诱导剂,对另一药物来说可能是抑制剂。 ①酶抑制作用 某些药物能抑制肝微粒体中酶的作用,使其它药物代谢速率减慢,导致药理活性及毒副作用增加,这些具有酶抑制作用的药物称酶的抑制剂。酶抑制作用包括不可逆抑制(抑制剂+P450活性部位结合,阻止其与氧结合而失活,常见药物:乙炔雌二醇、炔诺酮、安体舒通等)和可逆抑制(β-二乙氨乙基二苯丙乙酸酯)。 ②酶诱导作用 酶诱导剂也可加速本身的代谢,可导致药物临床疗效降低,产生耐受性。 如:苯巴比妥:自身酶诱导剂,开始几天有效,连续服用代谢速度加快,安眠作用下降。 保泰松:自身酶诱导剂,开始几天血浓高,副作用大,连续服用后,副作用减小。

相关文档
最新文档