第10章航空活塞动力装置

第10章航空活塞动力装置
第10章航空活塞动力装置

第10章航空活塞动力装置(Aero Piston engine)

10,1航空发动机概述

10.1.1航空发动机的类型

航空活塞动力装置

功率小;经济性好;主要用于:低空低速的通用机

航空燃气涡轮动力装置

重量轻、推力(功率)大;sfc高;燃烧稳定性差;使用成本高

10.1.2对航空发动机的一般要求

一般衡量发动机品质的主要指标有:性能参数;可靠性;维修性;总寿命

性能参数的定义及其对飞行的影响:

推重比:发动机的推力与自身重量的比值

重功比:发动机的重量与发动机产生的功率的比值

燃油消耗率:发动机在单位时间产生单位推力(功率)的燃油量。

意义:表示发动机经济性的好坏,直接影响飞机的有效载重,航程和续航时间

1、性能参数

发动机的加速性:

发动机转速上升的快慢程度

影响飞机的起飞越障能力和复飞性能

活塞发动机的加速性好于喷气发动机

发动机高空性:

指发动机性能随飞行高度增加的下降程度

高空性主要限制飞机的实用升限

喷气发动机的高空性好于活塞发动机

2、发动机的可靠性

衡量发动机可靠性的指标

空中停车率:发动机在每飞行1000小时因发动机本身故障引起的空中停车次数

提前换发率:

3、发动机的维修性

提高发动机的维修性:可以确保飞行安全和飞行任务的完成;

可以节省大量的人力、物力、财力

4、发动机的寿命

早期:翻修寿命和总寿命

现在:部件寿命、视情维护

10.2航空活塞式发动机的分类,基本组成及工作情形

10.2.1航空活塞式发动机的分类

1.按混合气形成的方式划分

2.按发动机的冷却方式划分

3.按气缸的排列方式划分

4.按空气进入气缸前是否增压划分

5.按发动机转子是否带有减速器划分

活塞五型发动机(国产运五飞机)

九缸、星型、气冷式、汽化器式、增压式、非直接驱动式活塞发动机IO540-C4D5D (法国TB-20飞机)

六缸、水平对置式、气冷式、直接喷射式、吸气式、直接驱动式活塞发动机

10.2.2航空活塞式动力装置的基本组成

活塞动力装置=发动机+螺旋桨

发动机的主要器件(图见教材232页)

1、气缸:混合气进行燃烧,并将燃烧后的热能转化为机械功的地方,同时,气缸还引

导活塞运动。

2、活塞:在气缸内作往复直线运动,实现气体能量与曲轴机械功的相互转换。

3、连杆:连接活塞和曲轴,传递机械功。

4、曲轴:通过连杆将活塞直线往复运动转变为曲轴旋转运动,用来带动螺旋桨和其它

附件。

曲拐机构:活塞+连杆+曲轴将活塞直线往复运动转变为曲轴旋转运动。

5、气门机构:控制进、排气门的开启与关闭,保证适时地将混合气送入汽缸和将汽缸

内的废气排出。

6、机匣:发动机的壳体,用来安装气缸及有关附件、支撑曲轴和传递螺旋桨拉力,并

将发动机上的所有机件连接起来,构成一个整体。

7、减速器:降低螺旋桨转速,防止桨尖运动速度超过音速,出现激波阻力。

8、发动机的工作系统

燃油系统:连续供给适量的燃油,将燃油变成雾状,便于与空气混合。

点火系统:适时地产生电火花,点燃气缸内的混合气。

润滑系统:减小摩擦阻力,减轻机件磨损,将摩擦产生的热量带走。

起动系统:利用外部动力将曲轴转起来,使发动机从静止进入工作状态。

冷却系统:将气缸的部分热量散发到大气,确保气缸温度正常。

10.2.3 奥托循环与四行程发动机的工作

1、奥托循环:1-2 绝热压缩

2-3 等容加热

3-4 绝热膨胀

4-1 等容放热

2、四行程发动机的工作

进气行程

压缩行程

膨胀行程

排气行程

四行程活塞发动机完成一个工作循环,曲轴共转两圈,进、排气门各开关一次,

气体膨胀做功一次,点火一次

10.2.4 航空活塞式发动机气缸的点火次序

点火原则(教材235页):

星型发动机点火次序:1—3—5—2—4—1

水平对置发动机点火次序:1—4—5—2—3—6

10.3航空活塞式发动机的主要性能指标和常见性能状态

10.3.1有效功率

1.有效功率的意义

2.有效功率的影响因素

10.3.2 燃油消耗率

1.燃油消耗率的意义

2.影响燃油消耗率的因素

10.3.3航空发动机的加速性

1.场强,场压

2.混合气的余气系数

3.螺旋桨的桨叶角

10.3.4航空活塞式发动机常见的工作状态及应用

1.最大工作状态

2.额定工作状态

3.巡航工作状态

4.慢车工作状态

10.3.5航空活塞式发动机的不正常燃烧

1.混合气过贫油和过富油燃烧

2.早燃

3.爆震

10.4航空活塞动力装置的附件系统

10.4.1 燃油系统

1、燃油系统的作用:向发动机供给适量的燃油,促进燃油的雾化、汽化,以便与

空气均匀地混合,组成混合比例适当的混合气,满足发动机在各种工作情况下的需要。

2、燃油系统的分类、组成和工作情形

汽化器式燃油系统

直接喷射式燃油系统

3、两种燃油调节系统的燃油调节器

汽化器燃油系统的燃油调节器

直接喷射式燃油系统的燃油调节器

4、燃油系统的使用注意事项

1、加油时应防止加错油。飞行后应加满油

2.发动机工作时,燃油选择开关应打开,停车后应关闭。

3.油门杆、混合比调节杆使用时应严格按飞行手册的规定,操纵动作应柔和。

4.飞行中,应密切注意汽油压力表(或然油流量表)以及排气温度表(或气缸头温度表)的指示,了解发动机燃油系统的使用情况。

10.4.2 点火系统

1、点火系统的作用:按规定的气缸点火次序,适时地产生高强度的电火花,点燃混合气

2、点火系统的组成:为缩短燃烧时间以提高发动机的功率和经济性,保证发动机

工作可靠,目前航空活塞发动机普遍采用双点火制,即发动

机安装两个磁电机,每个气缸两个电嘴,各自独立工作。

3、磁电机的工作原理

4、电嘴

电嘴间隙:电嘴间隙不能太大或太小否则影响电嘴跳火。

电嘴挂油,积碳和受潮:在烧电嘴就是在起飞前、停车前和发动机长期处于小

转速状态工作后,利用热冲击的方法,烧掉电嘴上的

积炭、水蒸汽和漏入气缸内的滑油。方法就是利用油

门杆将发动机调节在中转速下连续工作7—8秒钟即可。

电嘴温度:电嘴温度不能太高或太低否则影响电嘴跳火。

5、磁电机开关

开:电路断开,能产生高压电;

关:电路闭合接地,不能产生高压电

正常工作时BOTH位

注意:—人工扳动螺旋桨时必须保证磁电机关闭,否则易伤人

—正常停车失效时,可以通过关磁电机或燃油选择开关停车

10.4.3 润滑系统

1、滑油系统的作用

润滑;冷却(内部散热);密封;清洁;防腐;调节系统工作液(变矩)

2、发动机机件的润滑方式

泼溅润滑

压力润滑——缺点:系统复杂

优点:滑油压力高,可润滑的部件多;油路上可以安装油滤和散热器,

能保持滑油的温度和清洁。

喷射润滑

3、润滑系统的组成和工作

湿机匣滑油系统干机匣滑油系统油泵散热器

滑油消耗

消耗的原因:滑油进入汽缸烧掉了

呈雾状和蒸汽状态从通气管逸出

氧化分解,变成了胶状物和沉淀物

如果发现滑油内消耗量突然变大,应检查发动机或滑油系统是否有泄漏或严重磨损。

滑油温度

滑油温度过高的处置:调整滑油散热器风门开度;降低功率;加强散热;

使混合气变富油

滑油压力

10.4.4 散热系统

1、散热系统的功用:利用冷却介质吸收和带走汽缸的部分热量,使发动机工作温度保

持在规定的范围。

2、散热系统的组成和工作

散热片;导风板;整流罩;鱼鳞板

3、气缸头温度的影响及调节

散热空气流量和温度:流量增加----汽缸头温度降低

温度增加----汽缸头温度增加

调节汽缸头温度通常采用的措施:调整发动机功率;调整散热空气量;调节混合

气的余气系数

地面:依靠螺旋桨空气散热,地面大功率时间不能太长

起飞与爬高:超温时,采用阶段爬升

下降与着陆:快速下降时,注意保温

10.4.5 起动系统

1、定义:发动机的起动是指发动机从静止状态加速到慢车或慢车以上的工作状态。

2、起动系统应具备的条件

—要有足够的外部能源

—要有起动供油和点火装置

3、起动系统的组成和工作

4、起动注意事项

—起动注油要适量

—扳转螺旋桨应按规定

—发动机起动后滑油压力应达到规定值

—发动机出现不正常工作应按规定处置

—发动机起动失败后,应间隔不少于1分钟,连续四次不成功应间隔30分钟

—起动时应严格按照起动条例和规定的口令、信号进行联络

10.4.6 螺旋桨和调速器

1、螺旋桨的基本组成和工作

定距螺旋桨

—爬升螺旋桨转速反映功率,由油门控制

变距螺旋桨

—巡航螺旋桨转速由变距杆控

2、螺旋桨变距

定义:根据需要改变桨叶角,桨叶角由小变大叫变大距,由大变小叫变小距。

螺旋桨变距包括自动变距和操纵变距杆人工变距。

变距的目的:发挥螺旋桨效率;使发动机工作最经济。

两者不能同时满足时,现代变距螺旋桨一般是首先保证发动机工作的经济性,同时兼顾发挥螺旋桨的效率。

变距的方法:飞行速度减小;推油门;前推变距杆

螺旋桨的顺桨、回桨和反桨

—顺桨:当多发飞机一台失效后,为减小螺旋桨的飞行阻力,把桨叶角变到最大。

—人工顺桨

—自动顺桨

—回桨:顺桨反过程,一般在发动机重新启动时用。

—反桨:桨叶角最小,产生负拉力,缩短着陆滑跑距离。

3、调速器:飞行速度减小;推油门;前推变距杆

螺旋桨转速调节原理

—自动变距保持转速不变

—人工变距改变转速

变距杆的使用:

配合油门杆改变和设置发动机的工作状态

油门杆设置进气压力,变距杆设置转速。

增加功率先推变距再推油门,减小功率先收油门再收变距。

特殊状态特殊位置

状态位置原因

启动最前最小距,便于启动和试车

起飞最前保证得到起飞需要的功率和拉力

下滑着陆最前便于复飞

停车最前便于下一次起动

停车后最后放松锥形弹簧

主要问题:

10.1性能参数的定义及其对飞行的影响。

10.2分类方式及其类别。

活塞发动机主要部件及其工作。

奥托循环组成及活塞发动机的工作原理。

活塞发动机点火原则及其不同类型的点火次序。

10.3航空活塞式发动机的不正常燃烧

10.4发动机附件系统的功用、组成及工作。

燃油管理。

附件系统的使用注意。

航空发动机原理与构造复习题

一、选择题 1.燃气涡轮发动机的核心机包括 C 。 A.压气机、燃烧室和加力燃室B.燃烧室、涡轮和加力燃室 C.压气机、燃烧室和涡轮D.燃烧室、加力燃室和喷管 2.在0~9截面划分法中,压气机出口截面是 B 。 A.1—1截面B.3—3截面C.4—4截面D.6—6截面 3.在0~9截面划分法中,燃烧室出口截面是。 C A.1—1截面B.3—3截面C.4—4截面D.6—6截面 4.发动机正常工作时,燃气涡轮发动机的涡轮是_____B____旋转的。 A.压气机带动B.燃气推动 C.电动机带动D.燃气涡轮起动机带动 5.气流在轴流式压气机基元级工作叶轮内流动,其_____C____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 6.气流在轴流式压气机基元级整流环内流动,其____C_____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 7.气流流过轴流式压气机,其____C_____。 A.压力下降,温度增加B.压力下降,温度下降 C.压力增加,温度上升D.压力增加,温度下降 8.轴流式压气机基元级工作叶轮叶片通道和整流环叶片通道的形状是____C_____。A.工作叶轮叶片通道是扩散形的,整流环叶片通道是收敛形的 B.工作叶轮叶片通道是收敛形的,整流环叶片通道是扩散形的 C.工作叶轮叶片通道是扩散形的,整流环叶片通道是扩散形的 D.工作叶轮叶片通道是收敛形的,整流环叶片通道是收敛形的 9.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 10.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 11.多级轴流式压气机由前向后,____A_____。 A.叶片长度逐渐减小,叶片数量逐渐增多 B.叶片长度逐渐减小,叶片数量逐渐减小 C.叶片长度逐渐增大,叶片数量逐渐增多 D.叶片长度逐渐增大,叶片数量逐渐减小 12.涡轮由导向器和工作叶轮等组成,它们的排列顺序和旋转情况是___A_____。A.导向器在前,不转动;工作叶轮在后,转动 B.导向器在前,转动;工作叶轮在后,不转动

航空发动机发展史

航空发动机发展史 摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从0.11kW/daN提高到1.5kW/daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,

航空活塞式发动机组成及工作原理

航空活塞式发动机组成及工作原理 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。(一)活塞式发动机的主要组成

主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9个、

14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关

闭。 (二)活塞式发动机的原理 活塞顶部在曲轴旋转中心最远的位置叫上死点、最近的位置叫下死点、从上死点到下死点的距离叫活塞冲程。活塞式航空发动机大多是四冲程发动机,即一个气缸完成一个循环,活塞在气缸内要经过四个冲程,依次是进气冲程、压缩冲程、膨胀

冲程和排气冲程。发动机开始时,首先进入“进气冲程”,气缸头上的进气门打开,排气门关闭,活塞从上死点向下滑动到下死点为止,气缸内的容积逐渐增大,气压降低——低于外面的大气压。于是新鲜的汽油和空气的混合气体,通过打开的进气门被吸入气缸内。混合气体中汽油和空气的比例,一般是1比15即燃烧一公斤的汽油需要15公斤的空气。

活塞式航空发动机

空 发 动 机 组成: 活塞式航空发动机是一种往复式内燃机, 连杆、曲轴、进气活门和排气活门等组成。 工作原理: 胀)冲程、排气冲程。在进气冲程,活塞从上死点运动到下死点,进气活门开放而 排气活门关闭,雾化了的汽油和空气的混 合气体 被下行的活塞吸入气缸内。在压缩 冲程,活塞从下死点运动到上死点,进气 活门和排气活门都关闭,混合气体在气缸 内被压缩,在上死点附近,由装在气缸头 部的火花塞点火。在做功(膨胀)冲程, 混合气体点燃后,具有高温高压的燃气开 始膨胀,推动活塞从上死点向下死点运动。 在此行程,燃烧气体所蕴含的内能转变为 活塞运动的机械能,并有连杆传给曲轴, 成为带动螺旋桨转动的动力。在排气冲程, 活塞从下死点运动到上死 点,排气活门开 放,燃烧后的废气被活塞排出缸外。当活塞到达上死点 后,排气活门关闭,此时就完成了四个冲程的循 环。 为满足功率要求,航空发动机一般都是由多气缸组合构成,多个缸体同时工作带动曲轴和螺旋桨转 动以产生足够动力。缸体的数量和布置形式多种多样,但不管是哪种布置形式都必须保证活塞运动与曲 轴运动的协调,不能在运动中互相牵制。 通过带动螺旋桨高速转动而产生推力。 主要由气缸、活塞、 活塞式航空发动机一般用汽油作为燃料, 每一循环包括四个冲程, 即进气冲程、压缩冲程、做功(膨 啟功冲程 排競冲程 四申陛洁塞塩动或MfE 原理 排气口若谨這口开喷抽嘴

活塞式发动机的运

转速度很高,气缸内每秒钟要点火燃烧几十次。高温高压的工作条件使得气缸壁温度很高, 因此必须配备冷却系统 平对置早活塞发动机上采用液体冷却, 在发缸机外壳布置散热套,具有 定压力的冷却液在套内循环流动带走热量。 液体冷却系统因包括水箱、水泵、散热器和相 进气系统:进气系统内常装有增压器来增大进气压力,以此改善高空性能。 燃料系统:燃料系统由燃料泵、汽化器或燃料喷射装置等组成。燃料泵将汽油压入汽化器, 汽油在此雾化并与空气混合进入气缸。 点火系统:点火系统由磁电机产生的高压电在规定的时间产生电火花, 将气缸内的混合气体 点燃。 冷却系统:发动机内燃料燃烧时产生的热量除转化为的动能和排出的废气所带走的部分内能 外,还有很大一部分传给了气缸壁和其他有关机件。 冷却系统的作用就是将这些热量散发出 去,以保证发动机正常工作。 启动系统:将发动机发动起来, 需要借助外来动力,通常用电动机带动曲轴转动使发动机启 动。 定时系统:定时系统是由曲轴带动凸轮盘推动连杆和摇臂, 定时将进气活门和排气活门开启 和关闭的系统。 主要性能指标: 活塞式发动机的主要要求是重量轻、 功率大、尺寸小和耗油省等,因此活塞式发动机的 主要性能指标有以下几个: 发动机功率: 发动机可用于驱动螺旋桨的功率称为有效功率。 功率重量比: 发动机提供的功率和发动机重量之比。 功率重量比越大,越有利于改善飞机的飞行性能。 燃料消耗率: 燃料消耗率(耗油率)是衡量发动机经济性的一项指标。 一般定义为产生1KW 功率在每 小时所消耗的燃料的质量。 活塞发动机的发展在二战期间达到了顶峰,飞机喷气化以后用得越来越少。在 1000m 高度上,816km/h 的飞行速度已是活塞发动机的极限飞行速度。由于活塞发动机功率小,重 量大,外形阻力大,螺旋桨高速旋转时效率低, 且桨尖易产生激波,因此战后随着涡轮喷气、 涡轮螺桨和涡轮风扇发动机的发展,它逐渐退出了大中型飞机领域。 尽管活塞式发动机有如上致命弱点。 但是对低速飞机而言, 它具有喷气式发动机无可比 拟的优点,即效率高、耗油率低和价格低廉等。另外,由于燃烧较完全,对环境的污染相对 较小,噪音也比 应的管路系 复杂而笨 来采用气体 气冷式发动 曲轴为中 形,气缸外 散热片,飞 的高速气流 的热量散 却目的。 辅助系 统等,结构 重,因此后 冷却系统。 机气缸以 心,排成星 面有很多 行时产生 将气缸壁 去,达到冷 统:

航空发动机知识大全

航空发动机知识大全 飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。 飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示: 吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。 火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。 按产生推进动力的原理不同,飞行器的发动机又可分为直接反作用力发动机、间接反作用力发动机两类。直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。 间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。

航空发动机构造

航空发动机构造 课堂测试-1 1.航空发动机的研究和发展工作具有那些特点? 技术难度大;周期长;费用高 2.简述航空燃气涡轮发动机的作用。 是现代飞机与直升机的主要动力(少数轻型、小型飞机和直升机采用航空活塞式发动机),为飞机提供推进力,为直升机提供转动旋翼的功率。 3.航空燃气涡轮发动机包括哪几类?民航发动机主要采用哪种? 涡喷、涡桨、涡扇、涡轴、桨扇、齿扇等;涡扇。 4.高涵道比民用涡扇发动机的涵道比范围是多少? 5-12 课堂测试-2 1.发动机吊舱包括(进气道)、(整流罩)和(尾喷管)等。 2.对于民用飞机来说,动力装置的安装位置应该考虑到以下几点: 不影响进气道的效率;排气远离机身;容易接近,便于维护 3.在现代民用飞机上,发动机在飞机上的安装布局常见的有(翼下安装)、(翼下吊装和垂直尾翼安装)和(机身尾部安装)。 4.发动机安装节分两种:(主安装节)与(辅助安装节)。前者传递轴向力、径向力、扭矩,后者传递径向力、扭矩。一般主安装节装于(温度较低,靠近转子止推轴承处的压气机或风扇机匣上)上,辅助安装节装于(涡轮或喷管的外壳上)上。 5.涡轮喷气发动机的进气道可分为(亚音速)进气道和(超音速)进气道两大类。我国民航主要使用亚音速飞机,其发动机的进气道大多采用(亚音速)进气道。 6.通常在涡轮喷气和涡轮风扇发动机上采用(热空气)防冰的方式,在涡轮螺旋桨发动机上采用(电加热)防冰,或是两种结合的方式。 7.对于涡轮螺旋桨发动机来说,需要防冰的部位有(进气道)、(桨叶)和(进气锥)。 8.为了对吊舱进行通风冷却,一般把吊舱分成不同区域,各区之间靠(防火墙)隔开,以阻挡火焰的传播。9.发动机防火系统包括(火情探测)、(火情警告)和(灭火)三部分。 课堂测试-3 1.现代涡轮喷气发动机由(进气道)、(压气机)、(燃烧室)、(涡轮)、(尾喷管)五大部件和附件传动装置 与附属系统所组成。 2.发动机工作时,在所有的零部件上都作用着各种负荷。根据这些负荷的性质可以分为(气动)、(质量) 和(温度)三种。 3.航空燃气涡轮发动机主轴承均采用(滚动)轴承,其中(滚棒轴承)仅承受径向载荷,(滚珠轴承)可承 受径向载荷与轴向载荷。 4.转子上的止推支点除承受转子的(轴向)负荷、(径向)负荷外,还决定了转子相对于机匣的(轴向)位 置。因此每个转子有(一)个止推支点,一般置于温度较(低)的地方。 5.压气机转子轴和涡轮转子轴由(联轴器)连接形成发动机转子,分为(柔性联轴器)和(刚性联轴器)。 其中(柔性联轴器)允许涡轮转子相对压气机转子轴线有一定的偏斜角。 6.结合图3.9,简述发动机的减荷措施有哪些?这些措施是否会减少发动机推力? 减荷措施:

航空发动机动力装置重点

发动机燃油和控制系统有三个分系统: 燃油分配包括,燃油泵组件、IDG滑油冷却器、伺服燃油加温器 燃油控制包括,飞机接口、传感器、EEC、HMU 燃油指示包括,燃油流率、耗费的燃油、HPSOV、油滤旁通灯 总压有效条件 从两个ADIRU来的总压和静压信号在极限内,总压信号一致,至少一个总压传感器的空速管传感器与加温是接通的,空速管传感器加温关且飞机是在地面上和TRA小于53 软备用方式确保发动机推力在总压数值无效时不会有大的变化,这时如果外界空气温度变化,发动机推力可能小于正常或者发生发动机超限。这是因为EEC使用TA T,标准大气压和从标准大气压的空气温度增量的最后有效值估算马赫数。在正常方式下,空气静温从空气总温和MA计算,软备用方式没有可用的马赫数,EEC使用标准大气温度的空气温度增量的最后有效值。只有外界空气温度相同,这个估算值才是有效的。 在较大的推力水平时,EEC从软备用改变到应备用能有非指令的大的推力的改变,此时EEC 不会自动的转变备用方式。硬备用时,EEC使用静压获得假定马赫数,为了保证任何情况下飞机都有充足的推力,EEC假定的外界的大气温度具有最大的推力要求。在高温条件下,大的最大推力额定值超限是有可能的,能够造成排气温度超限。 发动机空气系统控制 涡轮间隙控制和压气机气流控制。TCC是指调解在HPT和LPT的叶片和外壳的间隙,通常发动机空气系统减小转子与涡轮机匣的间隙,这有助于减少燃油消耗。在一些功率下空气也增加在高压涡轮叶片和外壳的间隙,确保HPT叶尖部没擦机匣。压气机气流控制是指调节LPC和HPC对所有功率的气流,防止发动机失速。 HPTACC的五个工作方式 无空气作动筒完全缩入,HPC的4和9级或们都关闭,这是发动机停车时的作动筒位置且是失效保险位置。如果EEC或HMU有故障,EEC指令HPTACC活门在此位置。此时HPT 叶尖间隙最大 低流量第9级作动筒至8%伸长,第9级活门让低流量的第9级空气流至HPT护罩机匣,第4级蝶形活门全关,少量地冷却护罩支架 高流量第9级作动筒至37%伸长,第9级活门让全开,第4级蝶形活门全关,较多地冷却护罩支架 混合在38%-99%之间计算作动筒位置,这调定第9级和第4级空气比率至精确地调节HPT 间隙,更多得冷却护罩支架 全第4级作动筒全部伸长,第9级活门全关,第4级全开,提供最小HPT间隙的最大护罩支架冷却 TBV控制流入一级LPT导向器的HPC第9级的空气量,在发动机启动期间和发动机加速期间增加HPC喘振裕度。EEC使用N2和T25计算N2校正转速。启动过程中TBV打开。N2校正转速达到慢车时TBV关闭;在发动机加速过程中,N2校正转速在慢车转速与76%之间TBV打开;当N2校正转速在76%至80%取决于T25时TBV关闭;当N2校正转速大于80%时TBV关闭。

航空发动机基础知识

航空发动机基础知识 航空发动机基础知识 涡轮喷气发动机的诞生 涡轮喷气发动机的诞生 二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。但到了三十年代末,航空技术的发展使得这一组合达到了极限。螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。 这促生了全新的喷气发动机推进体系。喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。 早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,喷气

推进只是一个空想。1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。 涡轮喷气发动机的原理 涡轮喷气发动机的原理 涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。 涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。 工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。 压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。 随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。 高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化

航空发动机原理

航空发动机主要有三种类型:活塞式航空发动机,燃气涡轮发动机和冲压发动机。 航空发动机的发展经历了活塞发动机,喷气时代的活塞发动机,燃气涡轮发动机,涡轮喷气发动机/涡轮风扇发动机,涡轮螺旋桨发动机/涡轮轴发动机。本文主要利用动态图来说明航空发动机的工作原理。 星型活塞发动机(常见于旧飞机,例如B-36,yun-5等): 星型活塞发动机的原理与汽车发动机的原理相同。燃料在汽缸中爆炸并燃烧以推动活塞工作,但汽缸装置为星形。汽车上的活塞发动机通常以V或w的形式布置。活塞式航空发动机由于效率低,噪音大,燃油消耗大而已基本取消。 涡轮喷气发动机:(J-7,MiG-25等) 涡轮喷气发动机是涡轮发动机的一种。取决于气流产生推力。它通常用于为高速飞机提供动力,但其燃油消耗高于涡轮风扇发动机。著名的MiG-25和SR-71黑鸟侦察机均配备了涡轮喷气发动机,其最大速度可突破3马赫。由于油耗高,逐渐被涡轮风扇发动机取代。 涡轮螺旋桨发动机:(Y-8,C-130,a-400m等) 涡轮喷气发动机的本质类似于带有减速器和外部螺旋桨的涡轮喷气发动机。涡轮螺旋桨发动机的推力主要由螺旋桨产生,而喷气机产生的推力很小,仅为螺旋桨的十分之一。涡轮螺旋桨发动机的优点是速度低,效率高,适用于运输机,海上巡逻机等。由于螺旋桨旋转的面积较大,因此在高速飞行时会有很多阻力,因此涡轮螺旋桨发动

机不适合高速飞行。 涡轮风扇发动机:(涡轮风扇10,AL-31F,f-135等,cmf56)涡轮风扇发动机是从涡轮喷气发动机发展而来的。与涡轮喷气发动机相比,涡轮风扇发动机的主要特点是第一级压缩机的面积要大得多。目前,大多数先进的飞机都使用涡扇发动机。涡扇发动机相当于涡轮螺旋桨发动机和涡轮喷气发动机性能的折衷产品,适用于以400-1000 km / h的速度飞行。 优点:高推力,高推进效率,低噪音,低油耗,飞行距离长。 缺点:风扇直径大,迎风面大,阻力大,发动机结构复杂,设计困难。 螺旋桨风扇发动机:(ge-36) 螺旋桨式风扇发动机不仅可以被视为具有先进高速螺旋桨的涡轮螺旋桨发动机,而且除了外部管道外,还可以被视为超高旁通比涡轮风扇发动机。它具有涡轮螺旋桨发动机低油耗率和涡轮风扇发动机高飞行速度的优点。实验中的Ge36显示出非常低的燃料消耗,但是由于噪音,它并未在任何飞机上使用。

[整理]《航空发动机结构分析》思考题答案.

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2

2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子?

航空动力装置100

航空动力装置(100题) 1.一个物理大气压约为 A.14.3PSI B.29.92百帕斯卡 C.1013帕斯卡 2.温度为0摄氏度约合 A.9华氏度 B.0华氏度 C.32华氏度 3.在活塞发动机起动之前,进气压力表通常指示在29.9英寸汞柱,这是因为A.表的指针卡在此位上 B.油门关断,进气管道内有高压 C.进气管道压力和大气压力相等 4.发动机排出的废气温度与外界大气温度相比 A.更高 B.更低 C.相等 5.四行程活塞发动机输出功率的行程是 A.压缩行程

B.膨胀行程 C.排气行程 6.飞机的马赫数指的是 A.飞机的表速与当地的音速之比 B.当地的音速与飞机的速度之比 C.飞机的真空速与当地的音速之比 7.活塞发动机混合气的油/气比是指 A.进入气缸的燃油体积与空气体积之比 B.进入气缸的燃油重量与空气重量之比 C.进入汽化器的燃油重量与空气重量之比 8.活塞发动机的汽缸头温度过高将 A.增加燃油消耗率并增加功率 B.造成胶制受热部件损坏和气缸散热片翘曲 C.导致失去功率,滑油过度消耗 9.如果活塞发动机滑油温度和气缸头温度超过正常范围,是因为A.混合比过富油 B.使用了比规定牌号高的燃油 C.使用功率过大和混合气过贫油 10.如果飞机有燃油箱放油口和燃油滤油口,飞行前放油检查

A.只从油箱放油口放油检查 B.只从油滤放油口放油检查 C.应从油箱放油口和滤油口放油检查 11.如果活塞发动机使用的燃油牌号低于规定的牌号,将最有可能产生A.爆震 B.气缸头温度过低 C.在增加功率时,发动机内的部件应力过大 12.关于活塞发动机电嘴积碳,下列说法哪种正确 A.是因为混合气过富油造成的 B.是因为发动机气缸头温度太高造成的 C.是因为发动机内燃烧温度太高造成的 13.当给飞机加油时,为预防静电带来的危害,应注意 A.检查电瓶和点火电门是否关断 B.油车是否用接地线接地 C.将飞机、加油车和加油枪用连线接地 14.当飞机飞行高度增加,如果混合比杆没有向贫油位调整,将会使A.进入气缸的混合气变富油 B.进入气缸的混合气变贫油 C.进入气缸的混合气油气比不变

活塞式航空发动机.docx

谢谢欣赏 活塞式航空发动机+ 组成: 活塞式航空发动机是一种往复式内燃机,通过带动螺旋桨高速转动而产生推力。主要由气缸、活塞、连杆、曲轴、进气活门和排气活门等组成。 工作原理: 活塞式航空发动机一般用汽油作为燃料,每一循环包括四个冲程,即进气冲程、压缩冲程、做功(膨胀)冲程、排气冲程。在进气冲程,活塞从上死点运动到下死点,进气活门开放而 排气活门关闭,雾化了的汽油和空气的 混合气体被下行的活塞吸入气缸内。在 压缩冲程,活塞从下死点运动到上死点, 进气活门和排气活门都关闭,混合气体 在气缸内被压缩,在上死点附近,由装 在气缸头部的火花塞点火。在做功(膨 胀)冲程,混合气体点燃后,具有高温 高压的燃气开始膨胀,推动活塞从上死 点向下死点运动。在此行程,燃烧气体 所蕴含的内能转变为活塞运动的机械能, 并有连杆传给曲轴,成为带动螺旋桨转 动的动力。在排气冲程,活塞从下死点 运动到上死点,排气活门开放,燃烧后的废气被活塞排出缸外。当活塞到达上死点后,排气活门关闭,此时就完成了四个冲程的循环。 为满足功率要求,航空发动机一般都是由多气缸组合构成,多个缸体同时工作带动曲轴和螺旋桨转动以产生足够动力。缸体的数量和布置形式多种多样,但不管是哪种布置形式都必须保证活塞运动与曲轴运动的协调,不能在运动中互相牵制。 谢谢欣赏

谢谢欣赏 谢谢欣赏 活 塞 式发动机的运 转速度很高,气缸内每秒钟要点火燃烧几十次。高温高压的工作条件使得气缸壁温度很高, 因此必须配备冷却系统。最早活塞发动机上采用液体冷却,在发动机外壳内有散热套,具有 一定压力的冷却液在套内循环流动带走热量。液体冷却系统因包括水箱、水泵、散热器和相应的管路系统等,结构复杂而笨重,因此后来采用气体冷却系统。气冷式发动机气缸以曲轴为中心,排成星形,气缸外面有很多散热片,飞行时产生的高速气流将气缸壁的热量散去,达到冷却目的。 辅助系统: 进气系统:进气系统内常装有增压器来增大进气压力,以此改善高空性能。 燃料系统:燃料系统由燃料泵、汽化器或燃料喷射装置等组成。燃料泵将汽油压入汽化器,汽油在此雾化并与空气混合进入气缸。 点火系统:点火系统由磁电机产生的高压电在规定的时间产生电火花,将气缸内的混合气体点燃。 冷却系统:发动机内燃料燃烧时产生的热量除转化为的动能和排出的废气所带走的部分内能外,还有很大一部分传给了气缸壁和其他有关机件。冷却系统的作用就是将这些热量散发出去,以保证发动机正常工作。 启动系统:将发动机发动起来,需要借助外来动力,通常用电动机带动曲轴转动使发动机启动。 定时系统:定时系统是由曲轴带动凸轮盘推动连杆和摇臂,定时将进气活门和排气活门开启和关闭的系统。 主要性能指标: 活塞式发动机的主要要求是重量轻、功率大、尺寸小和耗油省等,因此活塞式发动机的主要性能指标有以下几个: 发动机功率: 发动机可用于驱动螺旋桨的功率称为有效功率。 功率重量比: 4缸水平对置 6缸V 形布置 2缸水平对置

航空发动机原理与构造知识点

航空发动机原理与构造知识点 1.热力系 2.热力学状态参数 3.热力学温标表示方法 4.滞止参数在流动中的变化规律 5.连续方程、伯努利方程 6.激波 7.燃气涡轮发动机分类及应用 8.燃气涡轮喷气发动机即使热机也是推进器 9.涡喷发动机结构、组成部件及工作原理 10.涡扇发动机结构、组成部件及工作原理 11.涡桨发动机结构、组成部件及工作原理 12.涡轴发动机结构、组成部件及工作原理 13.EPR、EGT、涡轮前燃气总温含义 14.喷气发动机热力循环(理想循环、实际循环) 15.最佳增压比、最经济增压比 16.热效率、推进效率、总效率 17.喷气发动机推力指标 18.发动机中各部件推力方向 19.喷气发动机经济指标 20.涡扇发动机中N1、涡扇发动机涵道比的定义 21.涡扇发动机的优缺点及质量附加原理 22.发动机的工作原理(涡喷、涡扇、涡轴和涡桨) 23.发动机各主要部件功用和原理,各部件热力过程和热力循环 24.进气道的分类及功用 25.总压恢复系数和冲压比的定义 26.超音速进气道三种类型 27.超音速进气道工作原理(参数变化) 28.离心式压气机组成部件 29.离心式压气机增压原理 30.离心式压气机优缺点 31.轴流式压气机组成部件 32.轴流式压气机优缺点 33.压气机叶片做成扭转的原因 34.压气机基元级速度三角形及基元级增压原理 35.扭速 36.多级轴流式压气机特点 37.喘振现象原因及防喘措施(原因) 38.轴流式压气机转子结构形式、优缺点 39.鼓盘式转子级间连接形式 40.叶片榫头类型、优缺点

41.减振凸台的作用以及优缺点 42.压气机级的流动损失 43.多级轴流压气机流程形式,机匣结构形式 44.压气机喘振现象、根本原因、机理过程 45.压气机防喘措施、防喘措施原理 46.燃烧室的功用和基本要求 47.余气系数、油气比、容热强度的定义 48.燃烧室出口温度分布要求 49.燃烧室分类及优缺点 50.环形燃烧室的分类及区别 51.燃烧室稳定燃烧的条件和如何实现 52.燃烧室分股进气作用 53.燃烧室的组成基本构件及功用 54.旋流器功用 55.涡轮的功用和特点(与压气机比较) 56.涡轮叶片的分类和结构 57.一级涡轮为何可以带动更多级压气机 58.提高涡轮前温度措施 59.带冠叶片优缺点 60.间歇控制定义、发动机在起动巡航、停车时间隙变化情况 61.如何实现涡轮主动间隙控制 62.涡轮叶片冷却方式 63.喷管功用 64.亚音速喷管工作原理(参数变化) 65.亚音速喷管三种工作状态(亚临界、临界和超临界)的判别 66.超音速喷管形状 67.发动机噪声源及解决措施 68.发动机的基本工作状态 69.发动机特性(定义、表述) 70.涡喷发动机稳态工作条件(4个)举例说明如何保持稳态工作 71.稳态下涡轮前温度随转速变化规律 72.剩余功率的定义 73.发动机加速的条件 74.联轴器的分类及作用 75.封严装置的作用、基本类型 76.双转子、三转子支承方案 77.中介支点、止推支点作用 78.封严件作用和主要类型 79.燃油系统功用和主要组件功用 80.燃油泵分类和特点 81.燃油喷嘴分类和特点 82.发动机控制系统分类 83.滑油系统功用、主要部件及分类,滑油性能指标 84.起动过程的定义

民航航空动力装置期末考试考点总复习

航空器系统和动力装置 航空器系统与动力装置是飞行签派员的一门技术基础课。内容涉及飞机机体结构、飞行载荷与飞机过载,飞机各机械系统:起落架、操纵系统、液压系统、燃油系统、座舱空调系统、应急设备,飞机电气系统,直升机基本结构与操纵系统,航空活塞动力装置,航空燃气涡轮动力装置等内容。飞行签派员理解民用飞机机体结构特点、各系统的基本工作原理、飞机动力装置的型式、工作性能特点、以及熟悉有关故障的基本处置方法,将为保证签派员安全、准确、正常、高效地实施飞行运营计划打下良好的理论基础。基本要求如下: 1、了解民用飞机机体结构特点,结构破坏形式与强度概念;理解飞行载荷及其变化;熟悉飞机过载及影响因素。 2、了解民用飞机起落架的型式特点,减震装置、收放机构、刹车装置等的基本工作原理;理解飞机着陆减震原理,轮胎过热与防止,起落架收放动力及应急放下起落架方式,飞机滑跑刹车减速原理;基本掌握飞机重着陆与结构检查,起落架收放信号及显示,刹车方式与安全高效。 3、了解民用飞机飞行操纵面及主操纵型式;理解无助力机械式主操纵特点,液压助力式主操纵原理与大型客机主操纵方式;熟悉无助力机械式主操纵失效的处置,调整片的工作原理及操纵,襟翼、缝翼与扰流板的操纵。 4、了解民用飞机液压传动系统基本组成及工作;理解液压传动原理,单液压源与多液压源系统的供压特点;熟悉液压传动在飞机上的应用与供压安全保证。 5、了解飞机燃油系统的功能及基本组成;理解民用飞机燃油系统的型式特点;熟悉供油方式及油泵失效的处置,飞机压力加油与空中放油控制,燃油系统的工作显示。 6、了解民用飞机空调系统的要求及功能;理解空调气源及控制,调压与调温基本方法与方式,熟悉客机座舱空调参数,调温控制原理,客机座舱压力制度及调压控制压力,空调空中失效的处置。 7、了解飞机氧气系统的基本组成及工作;基本掌握机组及乘客供氧使用方法。 8、了解直升机的应用、分类与基本结构;理解直升机结构特点的分类,旋翼的型式特点,飞行操纵原理及型式;基本掌握直升机飞行姿态操纵特点及方法。 9、了解飞机直流电源系统、交流电源系统的基本组成与额定值,直流与交流发电机基本控制;理解电力传动设备、蓄电池、恒速传动装置及电力起动设备的功用;熟悉电源系统的主要保护装置,发电机起动电源的特点。 10、了解航空活塞式动力装置基本组成及分类,活塞式发动机的工作原理,螺旋桨调速器的调节原理;理解活塞式发动机的主要性能指标及影响因素,各系统工作控制;熟悉活塞式发动机的工作状态,燃油、滑油系统使用注意事项,磁电机开关控制。 11、了解喷气发动机的工作特点及分类,航空燃气涡轮发动机的基本结构,

《飞机动力装置》知识

一、单选题 1.对于燃油泵,按供油增压原理可分为: A.齿轮泵和柱塞泵 B.齿轮泵和容积式泵 C.叶轮式泵和容积式泵 D.叶轮式泵和柱塞泵 D 2.柱塞泵属于: A.叶轮式,定量泵 B.叶轮式,变量泵 C.容积式泵 ,变量泵 D.容积式泵 ,定量泵 C 3.柱塞泵供油量的多少由()决定。 A.转速和斜盘角度 B.转速和分油盘大小 C.齿数和斜盘角度 D.转速和齿数 A 4.发动机全功能(全权限)数字电子控制器的英文缩写是( )。 A.APU B.EEC C.FADEC D.FMU C 5.发动机启动过程是指: A.从接通启动电门到达到慢车转速 B.从接通启动电门到自维持转速 C.从接通启动电门到启动机脱开 D.从接通启动电门到点火断开 A 6.发动机点燃的标志是发动机的: A.滑油压力低灯灭 B.转速升高 C.进气温度升高 D.排气温度上升 D 7.发动机能够保持稳定工作的最小转速是: A 自持转速 B 慢车转速 C.巡航转速 D.最大连续转速 B

8.目前在干线客机上最广泛采用的启动机是: a 电动启动机 b 冲击启动机 c 空气涡轮启动机 d 燃气涡轮启动机 C 9.下列不是飞机用气气源的是: a APU b 发动机压气机 c 地面气源 d 客舱空调 D B 10.放气活门打开放掉()的空气来防喘。 A、风扇后 B、压气机前面级 C、压气机中间 D、压气机后面级 C 11、在双转子发动机中,可调静子叶片是调节()。 A、高压压气机进口导向叶片和前几级静子叶片 B、低压压气机进口导向叶片和前几级静子叶片 C、高压涡轮进口导向叶片和前几级静子叶片 D、低压涡轮进口导向叶片和前几级静子叶片 A 12 飞机空调、增压、除冰、加温用的空气来自何处: a 压气机引气 b 地面供气 c冲压空气 d 燃烧气体 A 13 燃烧室中用于冷却的气体约占其进气量的: A.1/5 B.1/4 C.1/3 D.3/4 D 14 涡喷发动机的冰部位有()。 A.进气整流罩,前整流锥和压气机的进气导向器 B.进气整流罩和压气机静子 C.前整流锥和压气机转子 D.压气机和尾喷管 A

航空发动机发展史

摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出 kW的功率,重量却有81 kg,功重比为daN。发动机通过两根自行车上那样的链条,带动两个直径为的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从daN提高到daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,构成了所有战斗机、轰炸机、运输机和侦察机的动力装置;活塞式发动机加上旋

活塞式航空发动机

活塞式航空发动机 + 组成: 活塞式航空发动机是一种往复式内燃机,通过带动螺旋桨高速转动而产生推力。主要由气缸、活塞、连杆、曲轴、进气活门和排气活门等组成。 工作原理: 活塞式航空发动机一般用汽油作为燃料,每一循环包括四个冲程,即进气冲程、压缩冲程、做功(膨胀)冲程、排气冲程。在进气冲程,活塞从上死点运动到下死点,进气活门开放而 排气活门关闭,雾化了的汽油 和空气的混合气体被下行的活 塞吸入气缸内。在压缩冲程, 活塞从下死点运动到上死点, 进气活门和排气活门都关闭, 混合气体在气缸内被压缩,在 上死点附近,由装在气缸头部 的火花塞点火。在做功(膨胀) 冲程,混合气体点燃后,具有 高温高压的燃气开始膨胀,推 动活塞从上死点向下死点运 动。在此行程,燃烧气体所蕴含的内能转变为活塞运动的机械能,并有连杆传给曲轴,成为带动螺旋桨转动的动力。在排气冲程,活塞从下死点运动到上死点,排气活门开放,燃烧后的废气被活塞排出缸外。当活塞到达上死点后,排气活门关闭,此时就完成了四个冲程的循环。 为满足功率要求,航空发动机一般都是由多气缸组合构成,多个缸体同时工作带动曲轴和螺旋桨转动以产生足够动力。缸体的数量和布置形式多种多样,但不管是哪种布置形式都必须保证活塞运动与曲轴运动的协调,不能在运动中互相牵制。

活塞式发动机的运转速度很高,气缸内每秒钟要点火燃烧几十次。高温高压的工作条件使得气缸壁温度很高,因此必须配备冷却系统。最早活塞发动机上采用液体冷却,在发动机外壳内有散热套,具有一定压力的冷却液在套内循环流动带走热量。液体冷却系统因包括水箱、水泵、散热器和相应的管路系统等,结构复杂而笨重,因此后来采用气体冷却系统。气冷式发动机气缸以曲轴为中心,排成星形,气缸外面有很多散热片,飞行时产生的高速气流将气缸壁的热量散去,达到冷却目的。 辅助系统: 进气系统:进气系统内常装有增压器来增大进气压力,以此改善高空性能。 燃料系统:燃料系统由燃料泵、汽化器或燃料喷射装置等组成。燃料泵将汽油压入汽化器,汽油在此雾化并与空气混合进入气缸。 点火系统:点火系统由磁电机产生的高压电在规定的时间产生电火花,将气缸内的混合气体点燃。 冷却系统:发动机内燃料燃烧时产生的热量除转化为的动能和排出的废气所带走的部分内能外,还有很大一部分传给了气缸壁和其他有关机件。冷却系统的作用就是将这些热量散发出去,以保证发动机正常工作。 启动系统:将发动机发动起来,需要借助外来动力,通常用电动机带动曲轴转动使发动机启动。 4缸水平对置 6缸V 形布置 2缸水平对置

相关文档
最新文档