单相逆变器电路设计及仿真研究 文献综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相逆变器电路设计及仿真研究
前言:
随着能源消费的增长、日益恶化的生态环境和人类环保意识的提高,世界各国都在积极寻找一种可持续发展且无污染的新能源。太阳能作为一种高效无污染的绿色新能源,一种未来常规能源的替代品,尤其受到人们的重视。太阳能的直接应用主要有光热转换、光电转换和光化学转换三种形式,光电转换即光伏技术是最有发展前途的一种。太阳能光伏并网发电是太阳能光伏利用的主要发展趋势,必将得到快速的发展。在并网型光伏发电系统中,逆变器是系统中最末一级或唯一一级能量变换装置,其效率的高低,可靠性的好坏,将直接影响整个并网型系统的性能和投资。因此,逆变器已成为影响光伏并网发电系统经济可靠运行的关键因素。本文将对光伏并网单相逆变器进行设计仿真,通过对比不同的单相逆变器电路的逆变效果,确定其各自的适用条件。
主题:
自20世纪50年代太阳能电池的空间应用到如今的太阳能光伏集成建筑,世界光伏工业已经走过了近半个世纪的历史。在世界各国尤其是美、日、德等发达国家先后发起的大规模国家光伏发展计划和太阳能屋顶计划的刺激和推动下,光伏工业近几年保持着年均30%以上的高速增长。其中,以光伏集成建筑为核心的光伏并网发电市场己经超过离网应用,近几年的增长速度都在40%以上,成为世界光伏工业的最主要发动机。并网光伏发电已经成为光伏发电领域研究和发展的最新亮点。并网型光伏发电系统的核心为并网型逆变器。并网型逆变器是影响和决定整个系统是否能够稳定、安全、可靠、高效地运行的一个主要因素,同时也是影响整个系统使用寿命的主要因素。
国外并网型逆变器已经是一种比较成熟的市场产品,例如在欧洲光伏专用逆变器市场中就有SMA,Fronius,Sputnik,Sun Power和西门子等众多的公司具有市场化的产品,其中SMA在欧洲市场中占有的50%的份额。除欧洲外,美国、加拿大、澳大利亚、新西兰以及亚洲的日本在并网型逆变器方面也都己经产品化。以SMA和西门子为例介绍目前光伏并网发电系统用逆变器的发展情况。SMA 光伏并网逆变器目前具有三大系列产品:支路逆变器、集中逆变器和多支路逆变器,其中以SWR和SB两个系列应用最为广泛。该产品具有如下特点:高效率、高功率因数、低THD;测量数据和工作状态通过总线传输至PC机:多台逆变器可以任意组合构建系统,使系统设计更加简便、扩展更加方便。多支路逆变器是SMA最新推出的产品,该产品采用最大功率跟踪和并网逆变两级能量变换结构,多个不同支路共用同一个逆变环节,中间设置有内部直流母线,可以使系统的灵活性大为提高;输出端无工频变压器隔离,采用最新的电网阻抗检测和交、直流剩余电流检测来实现有效保护。与SMA相比较,西门子并网光伏逆变器则采用主从式构建系统,由主逆变器和若干个从逆变器来组建用户要求容量的并网光伏系统,灵活性和系统扩展等均没有SMA的强。西门子SITOP Solar主要分为隔离和非隔离两种支路逆变器,两级能量变换,最大功率跟踪和逆变部分集成在一个机箱内;功率因数高;基本单级式并网型光伏发电系统用逆变器的研究数据本地集中显示;实时发电电能显示;除SMA和西门子外,美国的Xantrex的SunTie XR系列并网逆
变器也是根据光伏市场需要推出的产品,系列覆盖了中、大功率范围,也可将多台中功率的逆变器并联构成系统。
综上所述,目前国外光伏并网逆变器产品的研发主要集中在最大功率跟踪和逆变环节集成的单级能量变换上,功率主要为几百瓦到五千瓦的范围,控制电路主要采用数字控制,注重系统的安全性、可靠性和扩展性,均具有各种完善的保护电路。
由于我国光伏发电等可再生能源发电技术的研究仍然处于起步阶段,技术水平相对国外还有一定差距。就并网型光伏发电系统的核心技术并网型逆变器而言,合肥工业大学能源研究所、燕山大学、上海交通大学、中国科学院电工研究所等科研单位和大学在这一方面进行了相关的研究,并且在“九五”、“十五”期间,国家科技部投入相当数额的经费进行开发工作。除此之外,北京索英电气技术有限公司和合肥阳光电源有限公司也在推出了适合并网光伏系统用的逆变器。北京索英电气技术有限公司的三相光伏并网逆变器,采用日本的智能功率模块IPM作为主回路功率器件,运用该公司先进的并网控制技术,具有结构简单、效率高、性能优良、电磁干扰小和安全可靠等优点。多项先进的并网发电控制技术,保证向电网优质送电,还能够追踪太阳能电池板的最大功率点,检测电网的状态,并实现对电网供电质量的调节。合肥阳光的正弦波并网充放电装置虽不是专门为并网光伏设计,但是也可应用在并网光伏系统中。从这两种成熟的市场产品可以看出,国内对并网光伏逆变器的研究比较多的采用最大功率跟踪和逆变部分相分离的两级能量变换结构,而且市场产品的种类还相对单一,系统构建死板。并网型光伏发电系统在我国还没有真正地投入商业化运行的应用,目前所建并网型光伏系统都为示范工程。并网型光伏发电系统的核心并网型逆变器还主要依赖进口或者合作研究的方式获得,导致并网型光伏系统的造价升高、依赖性强,从而制约了并网型光伏系统在国内市场的发展和推广。因此掌握并网型光伏系统的核心并网型逆变器技术对推广并网型光伏系统有着至关重要的作用。
随着电力电子元器件的发展、数字信号处理技术的应用以及先进的控制方法的提出,电力电子能量变换发生了巨大的变化。首先,元器件正向着低导通损耗、快速化、智能化、封装合理化等几个方向发展。低导通损耗将有助于并网型逆变器系统提高效率、减少发热;快速化将减小开关应力;智能化将有助于提高系统可靠性;封装的改进将减少寄生参数、有效散热、保持高机械强度。其次,数字信号处理技术的应用有助于减少并网逆变器输出的直流成分;提高开关频率,减小滤波器体积;善输出波形,提高THD;速响应电网瞬态变化。最后,先进的控制方法将有助于改善输出波形质量,从而减小滤波环节的体积;提高系统的动态响应性能。因此,并网型逆变器的发展必将沿着数字化、高频化的方向进行。
总结:
20世纪50年代太阳能电池的空间应用到如今的太阳能光伏集成建筑,世界光伏工业已经走过了近半个世纪的历史。由于太阳能资源分布相对广泛、蕴藏丰富,光伏发电系统具有清洁、安全、寿命长以及维护量小等诸多优点,光伏发电被认为将是21世纪最重要、最具活力的新能源。我国太阳能资源丰富,但相对于蓬勃发展的世界光伏工业,中国光伏工业还处于起步阶段。国际上方兴未艾的光伏并网集成建筑在国内还几乎是空白。因此,对并网型光伏系统的研究必将成