空间损耗计算

空间损耗计算
空间损耗计算

对移动通信而言,当电波传输距离很小且为直射波,例如,在微小区中或室内环境下,其传播损耗非常接近自由空间的情况,约与距离的平方成正比

计算公式为:

Ls = (4πd/λ) 2

式中,d 为传输距离,f为电波频率,c为光速。

用对数表示为:

LS(dB)=10lg (4πd f/c)2

=20lg(4π/c)+20lgf(MHz)+20lgd(m)

=-27.56+20 lg f (MHz) + 20 lgd(m)

GSM计算:

LS(dB)=10lg (4πd f/c)2

=20lg(4π/c)+20lgf(MHz)+20lgd(m)

=-27.56+20 lg f (MHz) + 20 lgd(m)

f: 890~960MHz

c: 3×108m/秒

代入上式可得:

LS(dB)=32.44 + 20lg d (m)

=32.44 dB(d=1m)

=46.42 dB(d=5m)

=58.46 dB(d=20m)

接头损耗按1dB计算

无源天线单元所对应的天线外1m处(近处)和20m处(远处)的场强分别为:

P′1m=天线输出功率-1dB-32.44dB

P ′20m=天线输出功率-1dB-58.46dB

WLAN计算:

LS(dB)=10lg (4πd f/c)2

=20lg(4π/c)+20lgf(MHz)+20lgd(m)

=-27.56+20 lg f (MHz) + 20 lgd(m)

f: 2.45GHz

c: 3×108m/秒

代入上式可得:

LS(dB)=40.22 + 20lg d (m)

=40.22 dB(d=1m)

=54.20 dB(d=5m)

=66.24 dB(d=20m)

接头损耗按1dB计算

无源天线单元所对应的天线外1m处(近处)和20m处(远处)的场强分别为:

P′1m=天线输出功率-1dB-40.22dB

P ′20m=天线输出功率-1dB-66.24dB dB和dBm的关系:

1、dBm是功率的单位

dBm=10lg()mW

如:1W= 10lg1000=30dBm

2、dB为衰减量,不是功率单位

但在以dBm为单位的功率计算中

可以直接加减计算

自由空间损耗

无线传输距离和发射功率以及频率的关系 功率灵敏度(dBm dBmV dBuV) dBm=10log(Pout/1mW),其中Pout是以mW为单位的功率值 dBmV=20log(Vout /1mV),其中Vout是以mV为单位的电压值 dBuV=20log(Vout /1uV),其中Vout是以uV为单位的电压值 换算关系: Pout=Vout×Vout/R dBmV=10log(R/0.001)+dBm,R为负载阻抗 dBuV=60+dBmV 应用举例 无线通信距离的计算 这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。 通信距离与发射功率、接收灵敏度和工作频率有关。 [Lfs](dB)=32.44+20lgd(km)+20lgf(MHz) 式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。 由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB. 下面的公式说明在自由空间下电波传播的损耗 Los = 32.44 + 20lg d(Km) + 20lg f(MHz) Los=20Lg(4π/c)+20Lg(f(Hz))+20Lg(d(m))=20Lg(4π /3x10^8)+20Lg(f(MHz)x10^6)+20Lg(d(km)x10^3)=20Lg(4π /3)-160+20Lgf+120+20Lgd+60=32.45+20Lgf+20Lgd, d 单位为km,f 单位为MHz Los 是传播损耗,单位为dB,一般车内损耗为8-10dB,馈线损耗8dB

电缆损耗计算公式

电缆损耗计算公式 如果从材料上计算,那需要的数据比较多,那不好算,而且理论与实际差别较大。嗯,是比较正常的。常规电缆是5-8%的损耗。一般常用计算损耗的方法,就是通过几个电表的示数加减计算的。因为理论与实际的误差是比较大的,线路老化,会造成线路电阻变大,损耗增大。7%的损耗,是正常的。还需要你再给出一些数据…如电阻率等… 185的铜线,长度200米,电 缆损耗是多少。 电缆线路损耗计算一条500米长的240铜电缆线路损耗怎么计。 首先要知道电阻: 截面1平方毫米长度1米的铜芯线在20摄氏度时电阻为0.018 欧,R=P*L/S(P电阻系数.L长度米.S截面平方毫米) 240平方毫米铜线、长度500米、电阻:0.0375欧姆假定电流100安培,导线两端的电压:稀有金属3.75伏。耗功率:37.5瓦。 急求电缆线电损耗的计算公式? 线路电能损耗计算方法A1 线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗 电量计算为:ΔA=3 Rt×10-3 (kW·h) (Al-1)Ijf = (A) (Al-2)式中ΔA——代表日损耗电量,kW·h;t——运行时间(对于代表日t=24),h;Ijf——均方根电流,A;R——线路电 阻,n;It——各正点时通过元件的负荷电流,A。当负荷曲线以三相有功功率、无功功率表示时:Ijf= = (A) (Al-3)式中Pt ——t时刻通过元件的三相有功功率,kW;Qt——t时刻通过 元件的三相无功功率,kvar;Ut——t时刻同端电压,kV。A2 当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流Ijf与平均电流 Ipj(代表日负荷电流平均值)的等效关系。 3*150+1*70电缆300米线路损耗如何计算 300*0.01=3米也就是说300米的主材消耗量是3米.如果工作量是300米的工程,那么造价时的主材应申请303米.但如果是300米的距离敷设电缆时,需考虑波形弯度,弛度和交叉的附加长度,那么就应该是(水平长度+垂直长度)*1.025+预留长度,算完得数后再乘以1.01就是主材的最后消耗量。 一般电缆的损耗怎样计算 理论上只能取个适当的系数,如金属1.01~1.02,非金属1.04~1.05。要确切的得称重收集数据并总结归纳可得。 电缆线用电损耗如何计算?如现用YJV22-3*150+1*70 电缆线。 电缆电阻的计算: 1、铜导线的电阻率为:0.0175hexun1 Ω·m, 根据公式:R=P*L/S(P电阻系数.L长度米.S截面平方毫米),电缆的电阻为:R=0.0175*260/70=0.065Ω; 2、根据用公式P=I2R计算功率损耗。

室内传播和路径损耗计算及实例(完整版)

室内传播与路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗得估算来预测无线通信系统在其工作环境下得性能;解释了自由空间传播损耗得计算;电磁波在介质中得发射与反射系数得理论计算就是预测反射与发射系数得工具。下面得一些实例与模型就是在2、4GHz工作频率时给出得。 ------------------------------------------------------------------------------------------- 1、简介 大多数无线应用设计人员最关心得问题就是系统能否正常工作在无线信道得最大距离。最简单得方法就是计算与预测:a)系统得动态范围;b)电磁波得传播损耗。 动态范围对设计者而言就是一个重要得系统指标。它决定了传输信道上(收发信机之间)允许得最大功率损耗。决定动态范围得主要指标就是发射功率与接收灵敏度。例如:某系统有80dB得动态范围就是指接收机可以检测到比发射功率低80dB得信号电平。传播损耗就是指传输路径上损失得能量,传播路径就是电磁波传输得路径(从发射机到接收机)。例:如果某路径得传播损耗就是50dB,发射机得功率就是10dB,那末接收机得接收信号电平就是-40dB。 2.自由空间中电磁波得传播 如上所述,当电磁波在自由空间传播时,其路径可认为就是连接收发信机得一条射线,可用Ferris公式计算自由空间得电波传播损耗: Pr/Pt= Gt、Gr、 (λ/4πR)2 (2、1) 式中Pr就是接收功率,Pt就是发射功率,Gt与Gr分别就是发射与接收天线得增益,R就是收发信机之间得距离,功率损耗与收发信机之间得距离R得平方成反比。公式2、1可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) (2、2) 式中Gr与Gt分别代表接收天线与发射天线增益(dB),R就是收发信机之间得距离,λ就是波长。 当λ=12、3cm时(f=2、44GHz)可得出: PL2、44=-Gr-Gt+40、2+20log(R) (2、3) R得单位为米。 图2-1表示了信号频率2、44GHz,天线得增益为0dBi时得自由空间得损耗曲线。 注意:在此公式中收发天线得极化要一致(匹配),天线得极化不同会产生另一损耗系数。一般情况下对于理想得线极化天线,极化损耗同两个天线得极化方向得夹角得余弦得平方成正比。例如:两个偶极天线得方向夹角为45°时,极化损耗系数为-3dB左右。

电力线路线损计算方法

电力线路线损计算方法 线路电能损耗计算方法 A1线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗电量计算为: ΔA=3Rt×10-3(kW?h)(Al-1) Ijf=(A)(Al-2) 式中ΔA——代表日损耗电量,kW?h; t——运行时间(对于代表日t=24),h; Ijf——均方根电流,A; R——线路电阻,n; It——各正点时通过元件的负荷电流,A。 当负荷曲线以三相有功功率、无功功率表示时: Ijf==(A)(Al-3) 式中Pt——t时刻通过元件的三相有功功率,kW; Qt——t时刻通过元件的三相无功功率,kvar; Ut——t时刻同端电压,kV。 A2当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流Ijf与平均电流Ipj(代表日负荷电流平均值)的等效关系为K(亦称负荷曲线形状系数),Ijf=KIpj,则代表日线路损耗电量为: ΔA=3K2Rt×10-3(kW?h)(A2-1) 系数K2应根据负荷曲线、平均负荷率f及最小负荷率α确定。 当f>0.5时,按直线变化的持续负荷曲线计算K2: K2=[α 1/3(1-α)2]/[1/2(1 α)]2(A2-2) 当f<0.5,且f>α时,按二阶梯持续负荷曲线计算K2: K2=[f(1 α)-α]/f2(A2-3) 式中f——代表日平均负荷率,f=Ipj/Imax,Imax为最大负荷电流值,Ipj为平均负荷电流值; α——代表日最小负荷率,α=Imin/Imax,Imin为最小负荷电流值。 A3当只具有最大电流的资料时,可采用均方根电流与最大电流的等效关系进行能耗计算,令均方根电流平方与最大电流的平方的比值为F(亦称损失因数),F=/,则代表日的损耗电量为: ΔA=3FRt×10-3(kW?h)(A3-1) 式中F——损失因数; Imax——代表日最大负荷电流,A。 F的取值根据负荷曲线、平均负荷率f和最小负荷率α确定。 当f>0.5时,按直线变化的持续负荷曲线计算F: F=α 1/3(1-α)2(A3-2) 当f<0.5,且f>α时,按二阶梯持续负荷曲线计算:

变压器损耗计算公式

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是:

自由空间衰减信道的光终端(翻译)

自由空间衰减信道的光终端 摘要 本文介绍了使用空间激光通信终端的多样性来减轻大气闪烁引起的衰减。多接收孔被充分分离来捕捉传入束中的统计独立样本。接收到的光信号通过照片与实测多样性增益被单独跟踪。终端由现成的组件组成。它用来成功演示了在2008年6月到9月之间的一个广泛的温度范围内超过5.4公里的地对地的链接。提出了设计概要和硬件实现。 这篇文章是由美国国防部,RRCO复员急症室,空军合同FA8721 - 05 - C- 0002赞助的。其中的意见,结论和建议都是作者的观点,不一定是美国政府支持的。关键词:自由空间光通信,激光通信 1.引言 地面自由空间激光通信的链接工作由于必须克服大气湍流在低海拔的角度上所以面临重大挑战。本文介绍一个终端设计来减少波前畸变和降低由于闪烁引起的瞬时功率损失的不利影响。 我们的设计采取的办法是使用无波前补偿的多重小孔径。有三个原因。首先,使用小孔径几乎消除了对波前校正的需要,因为小截面有效地降低了波前畸变的倾斜,它可进行追踪利用商业的快速控制反射镜。第二,由于闪烁的存在,小孔增加了在瞳平面的理想的或接近理想的常量光强分布的可能性,从而导致更有效地耦合到单模光纤。第三,通过增加小孔输出,有可能减少所有孔径同时衰减的可能性。 虽然空对地应用程序被假设为不对称,但主要是要求较高的下行数据速率,要求跟踪双向光信号。通过该报告中对实验链接的描述,地面配置终端用来空间分集而飞机终端不能。一种常见的光学模块设计应用于所有的孔径,包围了之间光纤和自由空间的组成部分,还包括指针机制和空间跟踪传感器。由于空对地应用不要求前置发射和接收之间的光束共同自于光纤发射器和接收器,从而简化了指向机制的终端设计。光纤元素实现了传输-接收的双重通信。 基于我们链接表明的孔径小于几厘米所引起的对模拟大气信道的影响将保 持波前畸变产生足够小的失真来避免波前恢复的需要,从而需要简化终端。通过商用单模光纤准直器的观察我们选择了12毫米直径的孔径,这足以满足有关水平链接的空间分集技术。合宜地,这使得整个终端很容易得到1”光学直径。如果可以,增加扩展束,在将来的飞行设计中用来提供更多光学增益但是仍要满足 D

10KV电缆的线路损耗及电阻计算公式

10KV电缆的线路损耗及电阻计算公式 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不

噪声衰减公式

点声源随传播距离增加引起的衰减 在自由声场(自由空间)条件下,点声源的声波遵循着球面发散规律,按声功率级作为点声源评价量,其衰减量公式为: (8-1) 式中: △L——距离增加产生衰减值,dB ; r ——点声源至受声点的距离,m 。 在距离点声源,r 1处至r 2处的衰减值: △L=20 lg (r 1/r 2)(8-2) 当r 2=2 r 1时,△L=-6dB ,即点声源声传播距离增加1倍,衰减值是6 dB 。 点声源的几何发散衰减实际应用有两类: a .无指向性点声源几何发散衰减的基本公式是: L (r )=L (r 0)-20 lg (r/r 0) (8-3) 式中:L (r ),L (r 0)——分别是r ,r 0处的声级。 如果已知r 0处的A 声级,则式(8-4)和式(8-3)等效: L A (r )=L A (r 0)-20 lg (r/r 0) (8-4) 式(8-3)和式(8-4)中第二项代表了点声源的几何发散衰减: A div =20 lg (r/r 0) (8-5) 如果已知点声源的A 声功率级L WA ,且声源处于自由空间,则式(8-4)等效为式 (8-6): L A (r )=L WA -20 lgr-11 (8-6) 如果声源处于半自由空间,则式(8-4)等效为式(8-7):

L A (r)=L WA -20 lgr-8 (8-7) b.具有指向性声源几何发散衰减的计算见式(8-8)或式(8-9): L(r)=L(r 0)-20 lg(r/r )(8-8) L A (r)=L A (r )-20 lg(r/r )(8-9) 式(8-8)、式(8-9)中,L(r)与L(r 0),LA(r)与L A (r )必须是在同一 方向上的声级。 如有侵权请联系告知删除,感谢你们的配合!

低压线路损失计算方法

1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为

Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不同,负载变化波动大,要起模拟真实情况,计算出某一各线路在某一时刻或某一段时间内的电能损失是很困难的。因为不仅要有详细的电网资料,还在有大量的运行资料。有些运行资料是很难取得的。另外,某一段时间的损失情况,不能真实反映长时间的损失变化,因为每个负载点的负载随时间、随季节发生变化。而且这样计算的结果只能用于事后的管理,而不能用于事前预测,所以在进行理论计算时,都要对计算方法和步骤进行简化。为简化计算,一般假设: (1)线路总电流按每个负载点配电变压器的容量占该线路配电变压器总容量的比例,分配到各个负载点上。 (2)每个负载点的功率因数cos 相同。 这样,就能把复杂的配电线路利用线路参数计算并简化成一个等值损耗电阻。这种方法叫等值电阻法。

室内传播和路径损耗计算及实例(完整版)

室内传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态范围;b)电磁波的传播损耗。 动态范围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态范围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态范围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= . (λ/4πR)2 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) () 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=时(f=可得出: =-Gr-Gt++20log(R) () R的单位为米。 图2-1表示了信号频率,天线的增益为0dBi时的自由空间的损耗曲线。

电缆电路功率损耗计算

电缆电路功率损耗计算 公式: 电流等于电压除以电阻:I=U/R 功率等于电压与电流的乘积:P=U×I=U×U×I Db危化简大数字的计算,采用对数的方式进行缩小计算:db=10log p 电缆电阻等于电阻率与电缆长度的积再比上电缆的截面积 电阻率的计算公式为:ρ=RS/L ρ为电阻率----常用单位是Ω.m S 为横截面积----单位是㎡ R 为电阻值----单位是Ω L 是导线长度----单位是 M 电缆选择的计算顺序 例:允许损耗为 Xdb x=10log p 计算所损耗的功率 p (1)p=U×U/R 根据额定功率与额定电压计算负荷的等效电阻 (2)计算整个电路的电流 I=(p额—p负)/R负

(3)根据电流与损耗功率决定电缆电阻P=I×I×R (5) 根据电阻率与长度决定电缆截面积 ρ=RS/L 电阻率请询问电缆厂家 几种金属导体在20℃时的电阻率

已知电缆长度,功率,电压,需要多粗电缆 电压380V,电压降7%,则每相电压降=380×2= 功率30kw,电流约60A,线路每相电阻R=60=Ω 长度1000M,电阻 铝的电阻率是,则电缆截面S=1000×=131㎜2 铜的电阻率是,则电缆截面S=1000×=77㎜2 由于电机启动电流会很大,应选用150㎜2以上的铝缆或95㎜2以上的铜缆 电压降7%意味着线路损耗7%这个损耗实际上是很大的。如果每天使用8小时一月就会耗电500度, (农电规程中电一年就是6000度。 压380V的供电半径不得超过500米) 电缆选型表

基本含义:H—电话通信电缆 Y—实心聚氯乙烯或聚乙烯绝缘 YF—泡沫聚烯轻绝缘 YP—泡沫/实心皮聚烯轻绝缘 V—聚乙烯 A—涂塑铝带粘接屏蔽聚乙烯护套 C—自承式 T—石油膏填充 23—双层防腐钢带线包铠装聚乙烯外被层 33—单层细钢丝铠装聚乙烯外被层 43—单层粗钢丝铠装聚乙烯外被层 53—单层钢丝带皱纹纵包铠装聚乙烯外被层 553—双层钢带皱纹纵包铠装聚乙烯外被层

噪声衰减公式(建议收藏)

点声源随传播距离增加引起的衰减 在自由声场(自由空间)条件下,点声源的声波遵循着球面发散规律,按声功率级作为点声源评价量,其衰减量公式为:.。.。..文档交流 (8—1) 式中: △L—-距离增加产生衰减值,dB; r——点声源至受声点的距离,m. 在距离点声源,r1处至r2处的衰减值: △L=20 lg(r1/r2)(8-2) 当r2=2 r1时,△L=—6dB,即点声源声传播距离增加1倍,衰减值是6 dB. 点声源的几何发散衰减实际应用有两类: a.无指向性点声源几何发散衰减的基本公式是: L(r)=L(r0)-20 lg(r/r0)(8—3) 式中:L(r),L(r0)—-分别是r,r0处的声级。 如果已知r0处的A声级,则式(8-4)和式(8-3)等效: L A(r)=L A(r0)-20 lg(r/r0) (8—4) 式(8-3)和式(8-4)中第二项代表了点声源的几何发散衰减: A div=20 lg(r/r0) (8-5)

如果已知点声源的A声功率级L WA,且声源处于自由空间,则式(8—4)等效为式(8—6): L A(r)=L WA-20 lgr—11 (8—6) 如果声源处于半自由空间,则式(8—4)等效为式(8—7): L A(r)=L WA-20 lgr-8 (8—7) b.具有指向性声源几何发散衰减的计算见式(8-8)或式(8-9): L(r)=L(r0)-20 lg(r/r0)(8-8) L A(r)=L A(r0)—20 lg(r/r0)(8—9) 式(8-8)、式(8-9)中,L(r)与L(r0),LA(r)与L A(r0)必须是在同一方向上的声级.。..。.。文档交流 文档交流感谢聆听

室内传播和路径损耗计算与实例(完整版)

室传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在2.4GHz工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态围;b)电磁波的传播损耗。 动态围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= Gt.Gr. (λ/4πR)2 (2.1) 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式2.1可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) (2.2) 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=12.3cm时(f=2.44GHz)可得出: PL2.44=-Gr-Gt+40.2+20log(R) (2.3) R的单位为米。 图2-1表示了信号频率2.44GHz,天线的增益为0dBi时的自由空间的损耗曲线。 注意:在此公式中收发天线的极化要一致(匹配),天线的极化不同会产生另一损耗系数。一般情况下对于理想的线极化天线,极化损耗同两个天线的极化方向的夹角的余弦的平方成正比。例如:两个偶极天线的方向夹角为45°时,极化损耗系数为-3dB左右。

线路电能损耗计算方法

线路电能损耗计算方法 A1 线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗电量计算为:ΔA=3R t×10-3(kW·h) (Al-1) I =(A) (Al-2) jf 式中ΔA——代表日损耗电量,kW·h; t——运行时间(对于代表日t=24),h; I ——均方根电流,A; jf R——线路电阻,n; I ——各正点时通过元件的负荷电流,A。 t 当负荷曲线以三相有功功率、无功功率表示时: I = =(A) (Al-3) jf 式中P t——t时刻通过元件的三相有功功率,kW; ——t时刻通过元件的三相无功功率,kvar; Q t U t——t时刻同端电压,kV。 A2 当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流I jf与平均电流I pj(代表日负荷电流平均值)的等效关系为K(亦称负荷曲线形状系数),I jf=KI pj,则代表日线路损耗电量为: ΔA=3K2Rt×10-3(kW·h) (A2-1) 系数K2应根据负荷曲线、平均负荷率f及最小负荷率α确定。 当f >时,按直线变化的持续负荷曲线计算K2:

K2=[α+1/3(1-α)2]/ [1/2(1+α)]2 (A2-2) 当f <,且f >α时,按二阶梯持续负荷曲线计算K2: K2=[f(1+α)-α]/f2 (A2-3) 式中f——代表日平均负荷率,f=I pj/ I max,I max为最大负荷电流值,I pj为平均负荷电流值; α——代表日最小负荷率,α=I min/ I max,I min为最小负荷电流值。 A3 当只具有最大电流的资料时,可采用均方根电流与最大电流的等效关系进行能耗计算,令均方根电流平方与最大电流的平方的比值为F(亦称损失因数),F=/,则代表日的损耗电量为: ΔA=3FRt×10-3(kW·h) (A3-1) 式中F——损失因数; I ——代表日最大负荷电流,A。 max F的取值根据负荷曲线、平均负荷率f和最小负荷率α确定。 当f >时,按直线变化的持续负荷曲线计算F: F=α+1/3(1-α)2 (A3-2) 当f <,且f >α时,按二阶梯持续负荷曲线计算: F=f (1+α)-α (A3-3) 式中α——代表日最小负荷率; f——代表日平均负荷率。 A4 在计算过程中应考虑负荷电流引起的温升及环境温度对导线电阻的影响,具体按下式计算: (1+β1+β2) (Ω) (A4—1) R=R 20 β =(I pj / I20)2 (A4—2) 1

10kV线路损耗计算

10kV线路损耗计算 1、线路资料 线路长度:7km,导线型号:JKLYJ-150, 配变容量:2800kV A 2、线路参数计算: 20℃时铝绞线交流电阻率:31.5Ω·mm2/km,则R=L·ρ/S=7×31.5/150=1.47Ω。 3、损耗计算 ⑴、按用户功率因数达0.9来计,只考虑有功电量。 P=3UIcosφI= P/(3Ucosφ) (U=10.5kV cosφ取0.9 R= 1.47Ω) ΔP=3*I2R=0.01646P2(w)=1.646×10-5 P2 (kw) ,即线路有功功率损耗与有功负荷的平方成正比。 P总=P+ΔP 同时乘以等效时间τ,即电量W总=W+ΔW。 ΔW=ΔPτ=1.646×10-5 P2τ=1.646×10-5 PW=1.646×10-5 W2/τ 按一班制,等效时间τ取240小时,则 ΔW=6.86×10-8 W2(kw·h) (W单位为kw·h) 即线路有功电量损耗与用户有功电量的平方成正比。 ⑵不考虑功率因数达标,同时考虑有功电量和无功电量。 ΔP=R*(P2+Q2)/ 1000U2(除1000是将R折算为kΩ) ΔW=ΔPτ= R*(W2+V2)/1000U2τ(U=10.5kV R= 1.47Ω) 按一班制,等效时间τ取240小时,则 ΔW=ΔPτ=1.47*(W2+V2)/26460000=5.56×10-8(W2+V2) (kw·h) (W单位为kw·h,V单位为kvar·h)

两种方式计算比较: 由此可见,采用同时考虑有功电量和无功电量计算方式较为客观,在功率因数为0.9时,两种方式线损一致。在功率因数低时,线损增加。 若要采用固定线损率方式,根据配变容量2800kV A,每月电量估计在30~40万度,固定线损率取2.4%较为合理。

线路损耗计算公式

线路损耗: 线路损耗,简称线损。是电能通过输电线路传输而产生的能量损耗。 正文 电能通过输电线路传输而产生的能量损耗,简称线损。电力网络中除输送电能的线路外,还有变压器等其他输变电设备,也会产生电能的损耗,这些电能损耗(包括线损在内)的总和称为网损。 线损是由电力传输中有功功率的损耗造成的,主要由以下3个部分组成。 ①由于电流流经有电阻的导线,造成的有功功率的损耗,它是线损的最主要部分式中P、Q、I分别为流经路线的有功功率、无功功率和电流;U为路线上与P、Q同一点测得的电压;R为线路的电阻,与导线的截面、导线的材料和线路的长度有关。 ②由于线路有电压,而线间和线对接之间的绝缘有漏电,造成的有功功率损耗 ΔPg=U2g 式中g是表征绝缘漏电情况的电导。 ③电晕损耗:架空输电线路带电部分的电晕放电造成的有功功率损耗。在一般正常情况下,后两部分只占极小的份量。 减少线损,节约能量,提高电力传输的效率,是电力部门设计运行工作的主要内容之一。可以从下列几个方面着手降低线损:①提高电力系统的电压水平,包括在其他条件合理的情况下尽可能采用高一

级电压送电,在运行中保证电压水平;②使线路中的潮流合理,尤其应尽可能减少线路上无功功率的流动;③选用合理的导线材料和截面。 线损计算: 线损理论计算,是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 简介: 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 方法: 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A;

低压配电线路理论线损的计算

低压配电线路理论线损的计算 在农村用电管理工作中,低压配电网理论线损的计算和实际线损的考核是一个薄弱环节。笔者推荐一种简单实用的计算方法,以供广大城乡电工参考。 1低压线路理论线损的构成 1.1低压线路本身的电能损耗。 1.2低压接户线的电能损耗。 1.3用户电能表的电能损耗。 1.4用户电动机的电能损耗。 1.5用户其他用电设备的电能损耗。 以上所有供电设备的电能损耗之和,即构成低压线路的理论线损电量,其线损电量与线路供电量之比百分数,即为线路的理论线损率。 要说明的是,在实际线损计算中,只计算到用户电能表,用户的用电设备不再参与实际线损计算。但在理论计算中,凡连接在低压线路上的用电设备的电能损耗,均应计算在内。 2低压线路理论线损计算通用公式 △A=N。K2。I2 pj 。R dz 。t×10-3 式中N——配电变压器低压侧出口电网结构系数; ①单相两线制照明线路N=2; ②三相三线制动力线路N=3; ③三相四线制混合用电线路N=3.5; K——负荷曲线形状系数,即考虑负荷曲线变化而采用的对平均电流(I pj )的修正系数,K值按推荐的理论计算值表1选用; 表 1 负荷曲线形状系数 k 值表

(最小负荷率a=最小负荷/最大负荷) t——线路月供电时间,h; R dz ——线路导线等值电阻,Ω。 等值电阻可按下式计算: R dz =ΣN K I2 zd。k R k /N×I2 zd 式中I zd ——配电变压器低压出口实测最大电流,A; I zd。k ——低压线路各分段实测最大电流,A; R K ——低压线路各分段电阻:R K =r ok 。I k ,Ω; N——配电变压器低压出口结构常数(如前); N K ——低压线路各分段结构常数,取值与N相同; I pj ——线路首端负荷电流的月平均值,A。可根据以下不同情况计算选用。 ①配电室装有电流表,并有记录的,可直接计算月平均负荷电流值。 ②如装有电流表,但无记录的,可选取代表性时段读取电流值,然后计算平均负荷电流值。 ③如未装电流表时,可选取代表性时段,直接用钳形电流表读取负荷电流值。 ④配电室装有有功电能表和无功电能表时,可按下式计算。 式中U pj ——线路平均运行电压值,kV,也可近似地用额定电压(Un)代替; A P ——线路月有功供电量,kW。h; A Q ——线路月无功供电量,kvar。h; t——线路月供电量时间,h。 ⑤如配电室装有有功电能表和功率因数表时,可按下式计算:

空间传播衰耗公式及其他一些经验值详解

WLAN室内传播模型 无线局域网室内覆盖的主要特点是:覆盖范围较小,环境变动较大。一般情况下我们选取以下两种适用于WLAN的模型进行分析。由于室内无线环境千差万别,在规划中需根据实际情况选择参考模型与模型系数。 (1) Devasirvatham模型 Devasirvatham模型又称线性路径衰减模型,公式如下: Pl(d,f)[dB]为室内路径损耗= 其中,为自由空间损耗= d:传播路径;f:电波频率;a:模型系数 (2) 衰减因子模型 就电波空间传播损耗来说,2.4GHz频段的电磁波有近似的路径传播损耗。公式为: PathLoss(dB) = 46 +10* n*Log D(m) 其中,D为传播路径,n为衰减因子。针对不同的无线环境,衰减因子n的取值有所不同。在自由空间中,路径衰减与距离的平方成正比,即衰减因子为2。在建筑物内,距离对路径损耗的影响将明显大于自由空间。一般来说,对于全开放环境下n的取值为2.0~2.5;对于半开放环境下n的取值为2.5~3.0;对于较封闭环境下n的取值为3.0~3.5。典型路径传播损耗理论计算值如表1。

现阶段可提供的2.4GHz电磁波对于各种建筑材质的穿透损耗的经验值如下: ●隔墙的阻挡(砖墙厚度100mm ~300mm):20-40dB; ●楼层的阻挡:30dB以上; ●木制家具、门和其他木板隔墙阻挡2-15dB; ●厚玻璃(12mm):10dB(2450MHz) 开阔空间内,设计覆盖距离尽量不要超过30m。 ●如果天线目标区域之间有20mm左右薄墙阻隔时,设计覆盖距离尽量不要超过20m。 ●如果天线与目标区域之间有较多高于1.5m的家具等阻隔时,设计覆盖距离尽量不要超过20m。 ●如果天线安装在长走廊的一端,设计覆盖距离尽量不要超过20m。 ●如果天线与目标区域之间有一个拐角时,设计覆盖距离尽量不要超过15m。 ●如果天线与目标区域之间有多个拐角时,设计覆盖距离尽量不要超过10m。 ●不要进行隔楼层进行覆盖。

线损的计算公式

线损的计算公式: 有功线损=(单位长度线路电阻*线路长度*10(-3))*((有功总抄见电量+总有功变损)的平方+(无功总抄见电量+总无功变损)的平方)/ (额定电压的平方*线路运行时间) 其中线路运行时间(小时) 额定电压(千伏安) 单位长度线路电阻欧姆 有功总抄见电量千瓦时 6.5.1 计算电费时,对客户采用专用变压器实施高供低计的,应加计变压器的损耗电量。6.5.2 计算电费时,对客户采取专用线路(包括电缆)供电和产权所有线路(包括电缆)达到以下长度,并采取受电端计量的,应加计线路损耗电量。 ①380伏为0.2km; ②6—10千伏线路为0.1km; ③35千伏及以上线路为0.5km。 6.5.3变压器损耗电量的计算: ①△P变=(△P0×T1)+〔(Sδ/SH)2×△PH×T2〕 ②△Q变=(△Q0×T1)+〔(Sδ/SH)2×△QH ×T2〕 以上两式中: △P变和△Q变分别为变压器有功、无功损耗电量(千瓦时); △T1 为变压器月带电时间(小时); △T2 变压器负载时间(小时); △Sδ为变压器的月平均负荷(千瓦); SH 为变压器的额定容量(千伏安)。 6.5.4 线路有功功率损失的计算: △P线==0.001×(Sδ/U)2×R×T2 式中: △P线----线路的有功功率损失(千瓦时); U----线路电压(千伏); R----线路总电阻(统一取用当温度为200C时的电阻值)(欧姆); Sδ、T2 ----参见以上各式。 6.5.5 平均负荷的计算 Sδ=WN/(T2 ×cosφ2 ) 式中: Sδ----变压器的月平均负荷; WN ----月抄见有功电量(度); T2 ----变压器负载时间(小时);

配电网理论线损计算方法

配电网理论线损计算方法 配电网线损是电力部门一项综合性的经济、技术指标。准确合理的配电网线损理论计算是电力部门分析线损构成、制定降损措施的有力工具,对促进供电企业降低能耗,内部挖潜,提高经济效益,优化电网规划设计方案,加强运行管理具有重要意义。目前,由于配电网结构的复杂性、参数多样性和资料不完善以及缺乏实时监控设备,准确计算配电网理论线损比较困难,一直是个难题。 配电网理论线损计算的主要目的是通过对电能在输送和分配过程中各元件产生的电能损耗及各类损耗所占比例的计算,来确定配电网线损的变化规律。配电网理论线损计算方法,主要分为两类:一类是依据网络主要损耗元件的物理特征建立的各种等值模型算法;另一类是根据馈线数据建立的各种统计模型和神经网络模型等算法。传统计算方法,如均方根电流法、平均电流法等,计算结果精度不高,不便于降损分析。针对这种情况,近几年来,部分学者将遗传算法(GA)、人工神经网络(ANN)和模糊识别等理论应用于配电网理论线损计算,研究计算速度快、计算结果精度高的数学模型,丰富和发展了理论线损计算方法,拓宽了研究思路。 1传统的主要的配电网理论线损计算方法 1.1均方根电流法 均方根电流法是基本计算方法。均方根电流法的物理概念是,线路中流过的均方根电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。均方根电流法的优点是:方法简单,按照代表日24小时整点负荷电流或有功功率、无功功率或有功电量、无功电量、电压、配电变压器额定容量、参数等数据计算出均方根电流就可以进行电能损耗计算,易于计算机编程计算。缺点是:代表日选取不同会有不同的计算结果,计算误差较大。 1.2平均电流法 平均电流法也称形状系数法,是利用均方根电流法与平均电流的等效关系进行电能损耗计算的,由均方根电流法派生而来。平均电流法的物理概念是,线路中流过的平均电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。平均电流法的优点是:用实际中较容易得到并且较为精确的电量作为计算参数,计算结果较为准确,计算出的电能损耗结果精度较高;按照代表日平均电流和计算出形状系数等数据计算就可以进行电能损耗计算,易于计算机编程计算。缺点是:对没有实测记录的配电变压器,形状系数不易确定,计算误差较大。 1.3最大电流法 最大电流法也称损失因数法,是利用均方根电流法与最大电流的等效关系进行电能损耗计算的,由均方根电流法派生而来。最大电流法的物理概念是,线路中流过的最大电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。最大电流法的优点是:计算需要的资料少,只需测量出代表日最大电流和计算出损失因数等数据就可以进行电能损耗计算,易于计算机编程计算。缺点是:损失因数不易计算,不同的负荷曲线、网络结构和负荷特性,计算出的损耗因数不同,不能通用,使用此方法时必须根据电网实际情况计算损耗因数;计算精度低,常用于计算精度要求不高的情况。 1.4等值电阻法 等值电阻法的理论基础是均方根电流法。等值电阻法的物理概念是,在线路出口处,假想一个等值的线路电阻,在通过线路出口处的总电流产生的损耗,与线路各段不同的分段电流通过分段电阻产生的损耗的总和相等。等值电阻法的优点是:在理论上比较完善,在方法上克服了均方根电流法的诸多方面的缺点;不用收集运行数据,仅与结构参数配电变压器额定容量、分段线路电阻有关,计算出等值电阻数据就可以进行电能损耗计算,适合于10kV

相关文档
最新文档