冷却器的选择及计算

冷却器的选择及计算
冷却器的选择及计算

冷却器的选择及计算

冷却器的选择及计算

在选择冷却器时应首先要求冷却器安全可靠、压力损失小、散热效率高、体积小、重量轻等。然后根据使用场合,作业环境情况选择冷却器类型如使用现场是否有冷却水源,液压站是否随行走机械一起运动,当存在以上情况时,应优先选择风冷式,而后是机械制冷式。

(1)水冷式冷却器的冷却面积计算

(1)

式中 A——冷却器的冷却面积(m2);

N h——液压系统发热量(W);

N hd——液压系统散热量(W);

K——散热系数,见表55;

△T av——平均温差(℃)。

(2)

T1、T2——进口和出口油温(℃);

t1、t2——进口和出口水温(℃)。

系统发热量和散热量的估算:

(3)

式中 N p——输入泵的功率(W);

ηc ——系统的总效率。合理、高效的系统为70%~80%,一般系统仅达到50%~60%。

(4)

式中 K 1——油箱散热系统(W/m 2·℃),取值范围见表56。

表56 油箱散热系数

A ——油箱散热面积(m 2); △t——油温与环境温度之差(℃) 冷却水用量Q S (单位:m 3/s )的计算:

(5)

式中 C ——油的比热容(J/kg·℃),一般C=2010J/kg·℃; C s ——水的比热容(J/kg·℃),一般C s =1J/kg·℃; γs ——油的密度(kg/m 3),一般γs =900kg/m 3; r s ——水的密度(kg/m 3),一般r s =1000kg/m 3; Q ——油液的流量(m 3/s )。 (2)风冷式冷却器的面积计算

(6)

式中 N h——液压系统发热量(W);

N hd——液压系统散热量(W);

α——污垢系数,一般α=1.5;

K——散热系数,见表55;

△T av——平均温差(℃),

(7)

、——进口、出口空气温度(℃);

Q p——空气流量(m3/s);

γp——空气密度(kg/m3),一般γp=1.4kg/m3;

C p——空气比热容(J/(kg·℃)),一般C p=1005J/(kg·℃);

空气流量Q p(单位:m3/s)

换热器设计计算范例

列管式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。根据 传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换 热器必须通过试差计算,按以下步骤进行。 ◎初选换热器的规格尺寸 ◆ 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式, 重新计算。 ◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 估。 ◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排 列。◎计算管、壳程阻力 在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计 算,直到合理为止。 ◎核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 ◎计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的 计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18 设计条件数据 物料流量 kg/h 组成(含乙醇量) mol% 温度℃操作压力 MPa 进口出口 釜液 3.31450.9

板式换热器选型计算书

目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水)7 8、附表二(空调采暖,汽-水)8 9、附表三(卫生热水,水-水)9 10、附表四(卫生热水,汽-水)10 11、附表五(散热片采暖,水-水)11 12、附表六(散热片采暖,汽-水)12

板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/ Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0 Kcal/ Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/ m 2.℃) Δt m —对数平均温差 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧 板间流速一般在15m/s 以时可按上表取值) Δt max - Δt min T1 Δt max Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T T1’ c 、板间流速计算公式: T2 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3/h – m 3/s )、 A S —单通道截面积(具体见下表)、n —流道数 2、板式换热器整机技术参数表: 计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9 m 2 板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) Ln Δt m =

冷凝器设计计算资料

冷凝器设计计算

冷凝器换热计算 第一部分:设计计算一、设计计算流程图

二、 设计计算(以HLR45S 为例) 1、已知参数 换热参数: 冷凝负荷:Q k =61000W 冷凝温度:t k =50℃ 环境风温度:t a1=35℃ 冷凝器结构参数: 铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管 铜管水平间距:S 1=25.4mm 铜管竖直方向间距:S 2=22mm 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0.35mm 翅片厚度:δf =0.115mm 翅片间距:S f =1.8mm 冷凝器尺寸参数 排数:N C =3排 每排管数:N B =52排 2、计算过程 1)冷凝器的几何参数计算 翅片管外径:f b d d δ20+== 9.75 mm

铜管内径:t i d d δ-=0=8.82 mm 当量直径:) ()(2))((4411f f b f f b eq S d S S d S U A d δδ-+---= ==3.04 mm 单位长度翅片面积:32 2110/)4 (2-?- =f b f S d S S f π=0.537 m 2/m 单位长度翅片间管外表面积:310/)(-?-=f f f b b s S d f δπ=0.0286 m 2/m 单位长度翅片管总面积:b f t f f f +==0.56666 m 2/m 翅片管肋化系数:i t i t d f f f πβ===20.46 2)空气侧换热系数 迎面风速假定:f w =2.6 m/s 最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=4.5 m/s 冷凝器空气入口温度为:t a1=35℃ 取出冷凝器时的温度为:t a2=43℃ 确定空气物性的温度为:2/)(21a a m t t t +==39℃ 在tm =39℃下,空气热物性: v f =17.5×10-6m 2/s ,λf =0.0264W/mK ,ρf =1.0955kg/m 3,C Pa =1.103kJ/(kg*℃) 空气侧的雷诺数:f eq f v d w /Re max = =783.7 由《制冷原理与设备》中公式(7-36),空气侧换热系数 m eq eq n f f O d d C ??? ? ??= γλαRe '=50.3 W/m 2K 其中: 362)( 103)( 000425.0)( 02315.0518.0eq eq eq d d d A γ γ γ -?-+-==0.1852

热交换器的选型和设计指南

热交换器的选型和设计指南

目录 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的范围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量

冷凝器的选型及工艺计算毕业设计

2.105m2冷凝器的选型及工艺设计 2.1冷凝器设计示列 已知一卧式固定管板式换热器的工艺条件如下:换热器工程直径为1000mm,换热管长度3000mm,换热面积105m2;壳程价质为二次蒸汽,轻微腐蚀,操作压力20Kpa(绝压),工作温度60C0,;管程价质为冷却水,操作压力0.4Mpa,工作度38C0,双管程,换热管规格为Φ25mm×2mm,换热管间距36mm,数量545 32 ~ 根,材料0Cr8Ni9;蒸汽进口管Φ377mm×8mm,冷凝水出口管Φ57mm,冷却水进,出口管均为Φ219mm×6mm。 2.2冷凝器结构设计 ①材料选择。根据换热器的工作状况及价质特性,壳程选用0Cr18Ni9,管程选用Q235B,管板选用0Cr18Ni9。 ②换热管。换热管是换热器的元件之一,置于筒体之内,用于两介质之间热量的交换。选用较高等级换热管,管束为I级管束。 换热管的选择 排列方式:正三角形、正方形直列和错列排列。 图2-1换热管排列方式 各种排列方式的优点: 正方形排列:易清洗,但给热效果差; 正方形错列:可提高给热系数; 等边三角形:排列紧凑,管外湍流程度高,给热系数大。 换热管与管板的连接方式有强度焊、强度胀以及胀焊并用。 强度胀接主要适用于设计压力小≤4.0Mpa;设计温度≤300℃;操作中无剧烈振动、无过大的温度波动及无明显应力腐蚀等场合。 除了有较大振动及有缝隙腐蚀的场合,强度焊接只要材料可焊性好,它可用于其它任何场合。 胀焊并用主要用于密封性能要求较高;承受振动和疲劳载荷;有缝隙腐蚀;需采用复合管板等的场合。

③管板。管板选用兼作法兰结构,管板密封面选用JB!T4701标准中的突面 密封面。换热管在管板上的排列采用正三角形排列,分程隔板两侧换热管中心距取44mm,实际排列548跟换热管。 ④分成隔板与分程隔板槽。分成隔板厚度10mm,开设Φ6mm泪孔;分成隔板槽宽12mm,深度4mm;垫片材料为石棉橡胶板,厚度为3mm。 ⑤换热管与管板的连接。换热管与管板的连接采用焊接结构,其中L1=2mm,L3=2mm。 ⑥支持板。换热器的壳程为蒸汽冷凝,不需折流板,但考虑到到换热管的支 撑,姑设置支持板。换热管无支撑最大跨距为1850mm,因此换热管至少需要3块儿支持板。本设计采用3块儿支持板,弓形缺口,垂直左右布置,缺口高度为25%筒体内直径。 ⑦拉杆与拉杆孔。选用8根Φ16mm拉杆,拉杆与管板采用用螺纹连接。拉杆两端螺纹为M16拉杆孔深度为24mm. 定距管及拉杆的选择 拉杆常用的结构型式有: a. 拉杆定距管结构,见图4-7-1(a)。此结构适用于换热管外径d≥19mm的管 束且l 2>L a (L a 按表4-5-5规定) b. 拉杆与折流板点焊结构,见图4-7-1(b)。此结构适用于换热管外径d≤14mm 的管束且l 1 ≥d; c. 当管板较薄时,也可采用其他的连接结构。

板式换热器选型与计算方法

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

冷凝器设计计算

冷凝器换热计算 第一部分:设计计算一、设计计算流程图

二、 设计计算(以HLR 45S 为例) 1、已知参数 换热参数: 冷凝负荷:Qk =61000W 冷凝温度:t k =50℃ 环境风温度:t a1=35℃ 冷凝器结构参数: 铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管 铜管水平间距:S 1=25.4mm 铜管竖直方向间距:S 2=22m m 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0。35mm 翅片厚度:δf =0。115m m 翅片间距:S f =1.8mm 冷凝器尺寸参数 排数:N C =3排 每排管数:N B =52排 2、计算过程 1)冷凝器的几何参数计算 翅片管外径:f b d d δ20+== 9。75 mm 铜管内径:t i d d δ-=0=8.82 mm 当量直径:) ()(2))((4411f f b f f b eq S d S S d S U A d δδ-+---===3.04 mm 单位长度翅片面积:32 2110/)4(2-?-=f b f S d S S f π=0.537 m 2/m 单位长度翅片间管外表面积:310/)(-?-=f f f b b s S d f δπ=0.0286 m2/m

单位长度翅片管总面积:b f t f f f +==0。56666 m 2/m 翅片管肋化系数:i t i t d f f f πβ== =20.46 2)空气侧换热系数 迎面风速假定:f w =2.6 m/s 最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=4.5 m/s 冷凝器空气入口温度为:t a1=35℃ 取出冷凝器时的温度为:t a2=43℃ 确定空气物性的温度为:2/)(21a a m t t t +==39℃ 在tm =39℃下,空气热物性: v f =17。5×10-6m 2/s,λf =0。0264W /mK ,ρf =1。0955k g/m 3,C Pa =1.103k J/(k g*℃) 空气侧的雷诺数:f eq f v d w /Re max = =783.7 由《制冷原理与设备》中公式(7-36),空气侧换热系数 m eq eq n f f O d d C ???? ??=γλαRe '=50.3 W/m 2K 其中: 362)(103)(000425.0)(02315.0518.0eq eq eq d d d A γγγ -?-+-==0。1852 ????? ??-=1000Re 24.036.1f A C =0.217 eq d n γ0066 .045.0+==0.5931 ? ?1000Re 08.028.0f m +-==-0。217 铜管差排的修正系数为1。1,开窗片的修正系数为1。2,则空气侧换热系数为:(开窗片、波纹片的修正系数有待实验验证) 'o o αα=×1.1×1.2=66.41 W/m 2K

换热器的选型和设计指南全

热交换器的选型和设计指南 2换热器的分类及结构特点。...................... 3换热器的类型选择......................... 4无相变物流换热器的选择....................... 5冷凝器的选择............................ 6蒸发器的选择........................... 7换热器的合理压力降......................... 8工艺条件中温度的选用....................... 9管壳式换热器接管位置的选取..................... 10结构参数的选取.......................... 11管壳式换热器的设计要点...................... 12空冷器的设计要点........................ 13空冷器设计基础数据........................

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2换热器的分类及结构特点。 表2-1换热器的结构分类

3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1 管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到 41.5MPa,温度可以从-100 ° C以下到1100° C高温。此外,它还具有容量大、结构简单、造价低廉、清洗方便等优点,因此它在换热器中是最主要的型式。 3.2 特殊型式的换热器 特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用

板式换热器的计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU 法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线 估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、 方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准 则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 * A3 F7 y& G7 S+ Q T2 = 热侧出口温度 3 s' _% s5 s. T" D0 q4 b t1 = 冷侧进口温度 & L8 ~: |; B: t2 M2 w$ z t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:0 B N/ I" A+ m0 z' H9 ~ (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W;# Q/ p3 p: I4 ~0 N' I) W mh,mc-----热、冷流体的质量流量,kg/s;+ Z: I9 b- h9 h" r3 P) {/ ^ Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K);6 L8 t6 b3 o& m/ n T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡 算式为:& w3 v) j4 I4 R 一侧有相变化1 Y# e$ B6 c& z% C3 W- W* J 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中

热交换器的选型和设计指南(20210201124748)

热交换器的选型和设计指南 1概述 (2) 2换热器的分类及结构特点。 (2) 3换热器的类型选择 (3) 4无相变物流换热器的选择 (12) 5冷凝器的选择 (14) 6蒸发器的选择 (15) 7换热器的合理压力降 (18) 8工艺条件中温度的选用 (19) 9管壳式换热器接管位置的选取 (19) 10结构参数的选取 (20) 11管壳式换热器的设计要点 (23) 12空冷器的设计要点 (31) 13空冷器设计基础数据 (34)

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法2换热器的分类及结构特点。 表2- 1换热器的结构分类

3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的 因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、 安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100 °C以下到1100 °C高温。此外,它还具有容量大、结构简单、造价低廉、清洗方

换热器设计计算步骤

换热器设计计算步骤 1. 管外自然对流换热 2. 管外强制对流换热 3. 管外凝结换热 已知:管程油水混合物流量 G ( m 3/d),管程管道长度 L (m),管子外径do (m), 管子内径di (m),热水温度 t ℃, 油水混合物进口温度 t 1’, 油水混合物出口温度 t 2” ℃。 1. 管外自然对流换热 1.1 壁面温度设定 首先设定壁面温度,一般取热水温度和油水混合物出口温度的平均值,t w ℃, 热水温度为t ℃,油水混合进口温度为'1t ℃,油水混合物出口温度为"1t ℃。 "w 11 t ()2 t t =+ 1.2 定性温度和物性参数计算 管程外为水,其定性温度为1()K -℃ 21 ()2 w t t t =+ 管程外为油水混合物,定性温度为'2t ℃ ''"2111 ()2t t t =+ 根据表1油水物性参数表,可以查得对应温度下的油水物性参数值 一般需要查出的为密度ρ (3/kg m ),导热系数λ(/())W m K ?,运动粘度2(/)m s ,体积膨胀系数a 1()K -,普朗特数Pr 。

表1 油水物性参数表 水 t ρ λ v a Pr 10 999.7 0.574 0.000001306 0.000087 9.52 20 998.2 0.599 0.000001006 0.000209 7.02 30 995.6 0.618 0.000000805 0.000305 5.42 40 992.2 0.635 0.000000659 0.000386 4.31 50 998 0.648 0.000000556 0.000457 3.54 60 983.2 0.659 0.000000478 0.000522 2.99 70 997.7 0.668 0.000000415 0.000583 2.55 80 971.8 0.674 0.000000365 0.00064 2.21 90 965.3 0.68 0.000000326 0.000696 1.95 100 958.4 0.683 0.000000295 0.00075 1.75 油 t ρ λ v a Pr 10 898.8 0.1441 0.000564 6591 20 892.7 0.1432 0.00028 0.00069 3335 30 886.6 0.1423 0.000153 1859 40 880.6 0.1414 9.07E-05 1121 50 874.6 0.1405 5.74E-05 723 60 868.8 0.1396 3.84E-05 493 70 863.1 0.1387 0.000027 354 80 857.4 0.1379 1.97E-05 263 90 851.8 0.137 1.49E-05 203 100 846.2 0.1361 1.15E-05 160 1.3 设计总传热量和实际换热量计算 0m v Q Cq t Cq t ρ=?=?v v C q t C q t αρβρ=?+?油油水水 C 为比热容/()j kg K ?,v q 为总体积流量3 /m s ,αβ分别为在油水混合物中 油和水所占的百分比,t ?油水混合物温差,m q 为总的质量流量/kg s 。 实际换热量Q 0Q Q *1.1/0.9= 0.9为换热器效率,1.1为换热余量。 1.4 逆流平均温差计算

板式换热器选型计算

板式换热器选型计算 板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人员都是非常重要的。目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。 一、手工简易算法 计算公式: F=Wq/(K*△T) 式中 F —换热面积 m2 Wq—换热量 W K —传热系数 W/m2·℃ △T—平均对数温差℃ 根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。若实际传热系数小于设定传热系数,则应降低设定传热系数,重新计算。若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确,应用范围窄。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。此外样本所提供的传热特性曲线及流阻特性曲线仅为水―水换热系统,在使用中有很大的局限性。 以下给出佛山显像管厂总装厂房低温冷却水及40℃热水两套换热系统实例加以说明采用手工简易算法得出的计算结果与实测结果的差别:

冷凝器换热面积计算方法

冷凝器換熱面積計算方法 (製冷量+壓縮機功率)/200~250=冷凝器換熱面 例如:(3SS1-1500壓縮機)CT=40℃:CE=-25℃ 製冷量12527W+壓縮機功率11250W 23777/230=氣冷凝器換熱面積103m2 水冷凝器換熱面積與氣冷凝器比例=概算1比18;(103/18)= 6m2 蒸發器的面積根據製冷量(蒸發溫度℃×Δt進氣溫度) 製冷量=溫差×重量/時間×比熱×安全係數 例如:有一個速凍庫1庫溫-35℃,2冷凍量1ton/H、3時間2/H內,4冷凍物品(鮮魚);5環境溫度27℃; 6安全係數1.23 計算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查壓縮機蒸發溫度CT=40;CE-40℃;製冷量=31266kcal/h NFB與MC選用 無熔絲開關之選用 考慮:框架容量AF(A)、額定跳脫電流AT(A)、額定電壓(V), 低電壓配線建議選用標準 (單一壓縮機) AF 取大於AT 一等級之值.(為接點耐電流的程度若開關會熱表示AF選太小了) AT(A ) = 電動機額定電流×1 .5 ~2 .5(如保險絲的IC值) (多台壓縮機) AT(A )=(最大電動機額定電流×1 .5 ~2 .5)+ 其餘電動機額定電流總和 IC啟斷容量,能容許故障時的最大短路電流,如果使用IC:5kA的斷路器,而遇到10kA的短路電流,就無法承受,IC值愈大則斷路器內部的消弧室愈大、體積愈大,愈能承受大一點的故障電流,擔保用電安全。要搭配電壓來表示220V 5KA 電壓380V時IC值是2.5KA。

電磁接觸器之選用 考慮使用電壓、控制電壓,連續電流I t h 之大小(亦即接點承受之電流大小),連續電流I th 的估算方式建議為I t h=馬達額定電流×1.25/√ 3。 直接啟動時,電磁接觸器之主接點應選用能啟閉其額定電流之10倍。 額定值通常以電流A、馬力HP或千瓦KW標示,一般皆以三相220V電壓之額定值為準。 電磁接觸器依啟閉電流為額定電流倍數分為: (1).AC1級:1.5倍以上,電熱器或電阻性負載用。 (2).AC2B級:4倍以上,繞線式感應電動機起動用。 (3).AC2級:4倍以上,繞線式感應電動機起動、逆相制動、寸動控制用。 (4).AC3級:閉合10倍以上,啟斷8倍以上,感應電動機起動用。 (5).AC4級:閉合12倍以上,啟斷10倍以上,感應電動機起動、逆相制動、寸動控制用。 如士林sp21規格 ◎額定容量CNS AC3級 3相 220~240V→kW/HP/A:5.5/7.5/24 380~440V→kW/HP/A:11/15/21 壓縮功率計算 一. 有關壓縮機之效率介紹: 1.體積效率(EFF V) :用以表示該壓縮機洩漏或閥門間隙所造成排出的氣體流量 減少與進入壓縮機冷媒因溫度升高造成比體積增加之比值 體積效率(EFF V)=壓縮機實際流量/壓縮機理論流量 體積效率細分可分為二部分 (1)間隙體積效率 ηvc=V′ / V V′:實際之進排氣量 V :理論之排氣量 間隙體積效率一般由廠商提供,當壓縮機之壓縮比(PH / PL)增大,即高壓愈高或低壓愈低,則膨脹行程會增長,ηvc減少。 (2)過熱體積效率 ηvs=v / v′

列管式换热器的设计计算

2.4 列管换热器设计示例 某生产过程中,需将6000 kg/h的油从140℃冷却至40℃,压力为0.3MPa;冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水入口温度30℃,出口温度为40℃。试设计一台列管式换热器,完成该生产任务。 1.确定设计方案 (1)选择换热器的类型 两流体温度变化情况:热流体进口温度140℃,出口温度40℃冷流体(循环水)进口温度30℃,出口温度40℃。该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式式换热器。 (2)流动空间及流速的确定 由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。选用ф25×2.5的碳钢管,管内流速取u i=0.5m/s。 2.确定物性数据 定性温度:可取流体进口温度的平均值。 壳程油的定性温度为(℃) 管程流体的定性温度为(℃) 根据定性温度,分别查取壳程和管程流体的有关物性数据。 油在90℃下的有关物性数据如下: 密度ρo=825 kg/m3 定压比热容c po=2.22 kJ/(kg·℃) 导热系数λo=0.140 W/(m·℃) 粘度μo=0.000715 Pa·s 循环冷却水在35℃下的物性数据: 密度ρi=994 kg/m3 定压比热容c pi=4.08 kJ/(kg·℃) 导热系数λi=0.626 W/(m·℃) 粘度μi=0.000725 Pa·s 3.计算总传热系数 (1)热流量 Q o=W o c poΔt o=6000×2.22×(140-40)=1.32×106kJ/h=366.7(kW) (2)平均传热温差 (℃) (3)冷却水用量 (kg/h)

换热器复习题

换热器复习题 一、选择题 1、高压容器的设计压力范围P为:() (a)P≥10MPa(b)1.6≤P<10MPa(c)10≤P<100MPa(d) P≥100 2、容器标准化的基本参数有:() (a)压力Pa(b)公称直径DN(c)内径(d)外径 3、为了防止管子与管板连接处产生不同程度的泄漏,应采用哪一种管板:() (a)平管板(b)薄管板(c)椭圆管板(d)双管板 4、下列哪一种换热器在温差较大时可能需要设置温差补偿装置?() (a)填料函式换热器(b)浮头式换热器(c)固定管板式换热器 5、管壳式换热器属于下列哪种类型的换热器?() (a)混合式换热器(b)间壁式换热器(c)蓄热式换热器(d)板面式换热器 6、U形管换热器的公称长度是指:() (a)U形管的抻开长度(b)U形管的直管段长度(c)壳体的长度 (d)换热器的总长度 7、换热管规格的书写方法为() (a)内径×壁厚(b)外径×壁厚(c)内径×壁厚×长(d)外径×壁厚×长

8、有某型号为: 2.59 8002004 1.625 BEM I ----的换热器,其中的200为() (a)公称换热面积(b)换热器的公称长度(c)换热器公称直径 (d)管程压力为1000Kg/m2 9、折流板间距应根据壳程介质的流量、粘度确定。中间的折流板则尽量等距布置,一般最 小间距不小于圆筒内直径的()。 (a)三分之一(b)四分之一(c)五分之一(d)六分之一 10、冷热两流体的对流给热系数h相差较大时,提高总传热系数K值的措施是() (a)提高小的h值;(b)提高大的h值;(c)两个都同等程度提高;(d)提高大的h值, 同时降低小的h值。 11、顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为 20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃

冷却器设计

本科毕业设计 (论文) 轻质燃油冷却器设计 Design of Light Fuel Oil Cooler 学院:机械工程学院 专业班级:过程装备与控制工程装备091 学生姓名: xxx 学号: 010912xxx 指导教师:张志文(副教授) 2013 年6 月

目录 1 绪论 (1) 2 结构设计 (2) 2.1 换热器类型的确定 (2) 2.2换热管结构尺寸设计 (2) 2.3壳体和管箱结构设计 (3) 2.4分程结构设计 (4) 2.5折流板和支持板结构 (4) 2.6拉杆和定距管 (5) 2.7防冲板和旁路挡板 (6) 2.8接管及其法兰的选择 (6) 3 强度计算和校核 (7) 3.1筒体和封头设计 (7) 3.2温差应力和管子拉脱力计算 (8) 3.3法兰装置的设计及选型 (10) 3.4固定管板的设计和计算 (12) 3.5开孔补强的校核 (22) 3.6支座设计及选型 (26) 结论 (28) 致谢 (29) 参考文献 (30)

1 绪论 1.1 换热器简介 换热器是一种非常重要的换热设备,能够把热量从一种介质传递给另一种介质,在各种工业领域中有很广泛的应用。尤其在化工、能源、交通、机械、制冷、空调等领域应用更广泛。换热器能够充分利用工业的二次能源,并且能够实现余热回收和节能。 1.2 换热器分类 换热器的种类很多,根据不同的工业领域可以选用不同的换热器,可以更大的发挥换热器的传递热量的作用。现在由于人们追求换热器重量轻、占地面积少、使用经济性高,从而推动了紧凑式换热表面的发展,所以紧凑式换热器在实际应用中种类很多。管壳式的换热器在过程工业中的应用很广泛。除了工业中用到的主要换热器种类,如紧凑式换热器、管壳式换热器、再生器和板式换热器外,还有其他特殊的换热器,如双套管、热管、螺旋式、板壳式、夹套式等。 1.3 换热器的发展趋势 近年来,随着全球能源形势的日趋紧张,常规能源的日益减少,节能降耗越来越受到人们的重视。换热器是化工、石油、钢铁、汽车、食品及许多其他工业部门的通用设备,是调节工艺介质温度以满足工艺需求以及回收余热以实现节能降耗的关键设备,其换热性能和动力消耗关系到生产效率和节能降耗水平,其重量和造价决定了整个生产系统的投资。根据统计,热交换器的吨位约占整个工艺设备的20%有的甚至高达30%,在现代石油化工企业中换热器的投资约占全部投资的30%-40%,其重要性可想而知。国内对换热器强化换热技术的研究,主要集中在对换热器内流体液态变化以及对各部件的参数优化两方面。而其他各国对强化技术研究的侧重点不同。 换热器是一个量大而品种繁多的产品,由于国防工业技术的不断发展换热器操作条件日趋苛刻,迫切需要新的耐磨损、耐腐蚀、高强度材料。近年来我国在发展不锈钢铜合金复合材料、铝镁合金及碳化硅等非金属材料等方面都有不同程度的进展,其中尤以钛材发展较快。未来,国内市场需求将呈现以下特点:对产品质量水平提出了更高的要求,如环保、节能型产品将是今后发展的重点;要求产品性价比提高;对产品的个性化、多样化的需求趋势强烈;逐渐注意品牌产品的选用;大工程项目青睐大企业或企业集团产品。 本课题所设计的轻质燃油冷却器是针对给定的设计参数,按照相关规定的要求,通过壁厚计算和强度校核等,设计换热器产品,熟悉压力容器设计的基本要求,掌握固定管板式换热器的常规设计方法,把所学的知识应用到实际的工程设计中去,为以后的工作和学习打下扎实基础。

板式换热器选型计算

板式换热器选型计算

(四)计算换热量 Wq=Qh*γh*Cph*(Th1-Th2)=Qc*γc*Cpc*(Tc2-Tc1) W (五)设备选型 根据样本提供的型号结合流量定型号,主要依据于角孔流速。即:Wl=4*Q/(3600*π*D2) ≤3.5~4.5m/s Wl—角孔流速m/s Q —介质流量m3/h D —角孔直径m (六)定型设备参数(样本提供) 单板换热面积s m2 单通道横截面积 f m2 板片间距l m 平均当量直径de m (d≈2*l) 传热准则方程式Nu=a*Re b*Pr m 压降准则方程式Eu=x*Re y Nu—努塞尔数Eu—欧拉数 a.b.x.y—板形有关参数、指数 Re—雷诺数 Pr—普朗特数 m —指数热介质m=0.3 冷介质m=0.4 (七)拟定板间流速初值Wh 或Wc Wc=Wh*Qc/Qh (纯逆流时) W取0.1~0.4m/s (八)计算雷诺数 Re=W*de/ν W —计算流速m/s de—当量直径m ν—运动粘度m2/s (九)计算努塞尔数 Nu=a*Re b*Pr m

(十)计算放热系数 α=Nu*λ/de α—放热系数W/m2·℃ λ—导热系数W/m·℃ 分别得出αh、αc热冷介质放热系数(十一)计算传热系数 K=1/(1/αh+1/αc+r p+r h+r c) W/m2·℃ r p—板片热阻0.0000459m2·℃/W r h—热介质污垢热阻0.0000172~0.0000258m2·℃/W r c—冷介质污垢热阻0.0000258~0.0000602m2·℃/W (十二)计算理论换热面积 Fm=Wq/(K*△T) (十三)计算换热器单组程流道数 n=Q/(3600*f*W) (圆整为整数) Q—流量m3/h f—单通道横截面积m2 W—板间流速m/s (十四)计算换热器程数 N=(Fm/s+1)/(2*n)N为≥1的整数s—单板换热面积m2 (十五)计算实际换热面积 F=(2*N*n-1)*s (纯逆流) (十六)计算欧拉数 Eu=x*Re y (十七)计算压力损失 △P=Eu*γ*W2*N*10-6 MPa γ—介质重度Kg/m3 W—板间流速m/s N—换热器程数

板式换热器的选型计算方法

1、压降控制 流体在流动中只有克服阻力才能前进,流速越大,阻力也越大。不同的板型或者统一板型不同板片结构参数,其阻力也不相同,阻力的大小直接关系到输送流体的泵或者风机的动力消耗和设备的投资费用。 如果将热侧允许压降设为0.05 MPa,则可以减少近10%的面积。因此,压降是影响换热换热器传热面积的影响因素之一。较大的集中供热项目一次网的压力损失基本确定在0.1 MPa左右是比较经济合理的。在此条件下得到的换热面积既可以满足运行工况的要求,也是最节约投资的。 由计算结果可以看出,允许压降适当计算面积可以减少近30%。 2、污垢热阻 污垢对传热、传质及流体流动带来负面影响,即随着污垢在传热表面上的积聚,流道表面的粗糙度增加,引起摩擦因数增大,并且流体的流通截面积减少,在相同的体积流量的情况下,流体流速增加,压力降增大。有人认为选取较大的污垢热阻比较可靠,其实这往往会带来更严重后果。这是因为在传热量一定的条件下,势必要加大传热面积或总平均温差,从而增加换热器成本。而传热面过大会导致热流体出口温度过低、冷流体出口温度过高,这不仅影响工艺要求,而且有时在运行中为避免此结果常将介质流速降低、致使壁面温度上升,这样反而促使污垢 更迅速地增长。 虽然换热面积没有减少,但是由于工况的污垢热阻较小,使得计算富裕量有很大增加。同样,不同的污垢热阻对换热面积影响也很大。设计换热器时,必须

采用正确的界膜导热系数,同时还必须采用正确的污垢系数,即使正确地确定了界膜导热系数。如果污垢系数的确定不准确,对换热器的设计误差也很大。由于板式换热器具有容易清洗的优点,所以定期对换热器进行清洗必不可少。 3、面积富裕量 换热器换热面积富裕量定义为设计值比计算值高出的百分比。其主要考虑工艺条件的变化稳态和持续积垢引起的热阻变化,还有一些未知因素,如积垢预测误差、工艺计算误差等。将裕量分为工艺裕量、设备老化裕量和控制裕量3个参数,还有一些不可知的因素需要再另加一些裕量。文献[1]在换热器计算中没有提到富裕量应该取值的问题,只是通过例题说明只要满足计算换热面积大于所需换热面积就可以。 板式换热器设计中,常取10%的面积富裕量。由序号6和序号7可以看出,面积富裕量对换热器计算的影响因素也很大。 4、温差推动力 温度推动力也叫平均对数温差。在传热过程中,冷、热流体的温度差沿加热面是连续变化的。但是由于此温度差与冷、热流体的温度成线性关系,因此可以用换热器两端温差的某种组合(即对数平均温差)来表示。对数平均推动力恒小于算术平均推动力,特别是当换热器两端推动力相差悬殊时,对数平均值要比算术平均值小得多。当换热器一端两流体温差接近于0时,对数平均推动力将急剧减小。

相关文档
最新文档