超强吸水材料SAP
超强吸水材料SAP应用和研究进展

超强吸水材料SAP应用和研究进展胡登平学号08080323摘要:超强吸水树脂作为一种新型的功能高分子材料,其具有两个显著特点:高吸水性和高保水性。
考虑其重要应用价值和经济价值[1-4],人们对它的研究越来越立体化,多角度,本文先是简单介绍了超强吸水材料SAP的组成,结构,吸水原理和分类。
后面重点介绍了现在国内关于SAP的研究,着重讲解了SAP对农作物的生长,环境保护以及石油开采中的应用。
关键字:超强吸水材料应用现状研究进展一.SAP的组成和结构:SAP的中文全称是高吸水树脂,英文全称是Super absorbent polymer,它是一种功能高分子材料,具有很高的分子量,主要是有碳氢原子和杂原子组成。
其结构特征有三点:一是分子中具有强亲水性基团,如羟基、羧基,能够与水分子形成氢键;二是树脂具有交联结构;三是聚合物内部具有较高的离子浓度。
再从三个角度解剖一下SAP的结构:从化学结构看,主链或侧链上含有亲水性基团,如-SO3H,-COOH,-CONH2,-OH等;从物理结构看,低交联度的三维网络,网络的骨架可以是淀粉,纤维素等天然高分子,也可以是合成树脂(如聚丙烯酸类)。
从微观结构看,因其合成体系不同而呈现多样性:淀粉接枝丙烯酸呈海岛型结构,纤维素接枝丙烯酰胺呈峰窝型结构,部分水解的聚丙烯酞胺树脂则呈粒状结构。
二.SAP的吸水原理和分类:一般吸水的原理分为物理吸附和化学吸附,而SAP正是通过化学键结合把水和亲水性基团结合在一起,从而达到吸水的目的,具体的吸水过程可以分为三步,首先是通过毛细管吸附和分散作用吸水,这一步的速度很慢的;而到了第二步速度明显增快,是水分子通过氢键与树脂的亲水基团作用,亲水基团离解,离子之间的静电排斥力使树脂的网络扩张。
最后随着吸水量的增大,网络内外的渗透压差趋向于零;而网络扩张的同时,其弹性收缩力也在增加,逐渐抵消阴离子的静电排斥,最终达到吸水平衡。
SAP的分类方法很多,可以根据原料来源分为淀粉系,纤维素系以及合成高分子系[5-6]。
高吸水性功能高分子要点

急速增长到平 稳增长的过程, 向精细化、 功 能化、 智能化 方向发展
1960
1970
1980
1990
2000
美国和日本相继成功开发, 品种、制造方法、性能及 应用领域
西欧各国:各种类型的高 吸水性树脂。 同时市场需求也影响着厂 商的技术转让。
2 高吸水性高分子简介
阴离子系 阳离子系 羧酸类、磺酸类、磷酸类 胺类、季胺类 羧酸-季胺类、磺酸-叔胺类 羟基类、酰胺基类 羟基-羧酸类、 羟基-羧酸基-酰胺基类、 磺酸基-羧酸基类 淀粉接枝、羧甲基化淀粉、 磷酸酯化淀粉、淀粉黄原酸盐 纤维素接枝、羧甲基化纤维素、 羟丙基化纤维素、黄原酸化纤维素 聚丙烯酸盐类、聚乙烯醇类、 聚氧化烷烃类、无机聚合物类
3 高吸水性高分子性能
吸液速率: 吸液速率是指单位质量的高吸水性树脂在单位时间内吸收的液体质量。 吸液速率与其本身的化学组成及物理状态有关, 如微粒的表面积、 毛细管现象、 吸液时是否形成“ 粉团”等。 一般表面积越大即微粒越小,吸液速率越快, 但微粒过小则会形成 “ 粉团”反会阻碍吸液。高吸水性树脂的吸液速率很高, 一般在几分 钟至半小时内吸收的液体已达饱和吸液量。
3 高吸水性高分子性能
热稳定性: 吸水树脂的热稳定性指两个方面, 一方面是吸水剂被加热一定时间后 再测其吸水性能是否发生改变;另一方面是指它吸水时加热, 测定不同 温度下的吸水能力。 一般高吸水性树脂随加热温度的升高, 加热时间的增加吸水能力都有 一定程度的下降, 但在130℃以下变化不是很大。所以其热稳定性较好, 而使用时一般温度都不高, 所以适应性较广。
2 高吸水性高分子简介
吸水能力:受溶液离子浓度影响
原因:属于水凝胶,能够通过和水分子连接的氢键吸收溶液
高吸水树脂

高吸水树脂高吸水性树脂(Super Absorbent Polymer, 简称SAP),通用名高吸水树脂、吸水树脂,用于不同行业又有专业俗称如农林保水剂、光缆阻水粉、高分子吸水珠、人工水晶泥、蓄热蓄冷剂等。
kl-sap主要化学成分是低交联型聚丙烯酸钠盐,属新型功能高分子吸水材料。
它能吸收比自身重几百或上千倍的无离子水。
吸水后即成凝胶状,即使加压也很难挤出水来。
具体特性如下:1.高吸水性能吸收自身重量的数百倍或上千倍的无离子水。
2.高吸水速率每克高吸水树脂能在30秒内就吸足数百克的无离子水。
3.高保水性吸水后的凝胶在外加压力下,水也不容易从中挤出来。
4.高膨胀性吸水后的高吸水树脂凝胶体体积随即膨胀数百倍。
5.吸氨性低交联型聚丙烯酸盐型高吸水性树脂其分子结构中含有羧基阴离子,遇氨可将其吸收,有明显的去臭作用。
6.安全性送样经江苏省卫生防疫站检测属无毒、无刺激。
详见江苏省卫生防疫站质量检测报告书[(毒)字第20000097号]。
具体指标如下:(执行标准Q/320682RYM01-2009)附:规格按颗粒大小分有:kl-5,kl-40,kl-80,kl-120,kl-150,kl-300按应用要求分有:速膨松散型(A)和缓膨增粘型(B)凯姆勒化学技术(北京)有限公司吸水材料部门是专业从事高吸水性树脂的技术研发、生产及推广应用的高新技术跨国联合体,与国外在该领域有着先进经验的技术专家和科研机构共同合作,同时还和国内重点科研院校共同承担该领域的专项课题的研发工作。
我们研制生产的各种性状的高分子吸水树脂已在农业、林业、园艺、工业生产、医疗卫生、日用化妆品及特殊领域广泛应用。
农林园艺:抗旱、保墒、节水、土壤润湿剂,用于种子包衣、人工草坪、育种移栽、无土栽培、土壤保水、苗木运输、花卉。
卫生用品:卫生巾、婴儿纸尿布、成人失禁垫片、吸水纸。
医疗医药:吸水、防粘接、缓释用,用于纱布、软膏、绷带、冰袋、缓释性药物。
工业生产:吸水、止水、增稠,用于膨胀橡胶、密封条、电缆止水条、电池、涂料、油水分离。
高吸水树脂sap详尽介绍

本次项目成果回顾
成功合成高吸水树脂SAP,并验证其吸水性能 拓展了SAP在农业、卫生用品等领域的应用研究
探究了不同合成条件对SAP性能的影响,优化了合成工 艺
建立了完善的SAP性能评价体系,为后续研究提供了有 力支持
存在问题和挑战识别
01
SAP吸水速率和吸水量 仍有提升空间,需进一 步优化配方和工艺
成品检测
对SAP的吸水性能、保水性能、粒度分布等指标进行检测, 确保产品质量符合要求。
工艺流程图解析
工艺流程图
原料→预处理→聚合反应→后处理→成品检测→包装→入库。
流程图解析
详细解析每个工艺步骤的操作要点和注意事项,帮助读者更好地理解SAP的制 备过程。
03 SAP的物理化学性质分析
外观形态与颜色特征
02
SAP在长期使用过程中 的稳定性有待提高,需 加强耐久性研究
03
SAP生产成本较高,限 制了其在某些领域的应 用推广
04
环保法规对SAP生产和使 用的要求日益严格,需关 注环保型SAP的研发
下一步工作计划安排
深入研究SAP吸水机理,探索 提高吸水速率和吸水量的新方
法
开展SAP耐久性试验,评估其 在不同环境下的性能变化
VS
国外生产商
国际知名SAP生产商如BASF、Dow等在 中国市场占据一定份额,但面临国内企业 的激烈竞争。
政策法规影响分析
环保政策
随着环保意识的提高,政府对SAP生产过程中的环保要求越来越严格,推动企业加大环 保投入。
产业政策
国家出台了一系列鼓励新材料产业发展的政策,为SAP产业的发展提供了良好的政策环 境。
其他领域拓展思路分享
医疗卫生
在医疗卫生领域,SAP可以应用于手术缝合线、止血材料等医疗用 品中,提高产品的吸水性和止血性能。
纸尿裤中超强吸水性树脂材料

纯合成高分子
聚丙烯酸类
聚丙烯酸钠交联物丙烯酸—乙烯醇共聚物丙烯腈聚合皂化物其它
聚乙烯醇类
聚乙烯醇交联聚合物 乙烯醇—其它亲水性单体接枝共聚物 其它
天然高分子加工产物
淀粉类
淀粉—丙烯腈接枝聚合水解物淀粉—丙烯酸共聚物淀粉—丙烯酰胺接枝聚合物其它
纤维素类
纤维素接枝共聚物 纤维素衍生物交联物 其它
其它
多糖类(琼脂糖、壳多糖)、蛋白质类等
01
按这种结构计算,每克高吸水性树脂所吸收的水合水的重量约为6~8 g,加上疏水性基团所冻结的水分子,也不过15 g左右。
01
这个数字,与高吸水性树脂的吸水量相比,相差1~2个数量级,而与棉花、海绵等的吸水量相当。
02
显然,还有更重要的结构因素在影响着树脂的吸水能力。
03
研究发现,高吸水性树脂中的网状结构对 吸水性有很大的影响: 未经交联的树脂基本上没有吸水功能。而少量交联后,吸水率则会成百上千倍地增加。但随着交联密度的增加,吸水率反而下降。 图1为交联剂聚乙二醇双丙烯酸盐(PAGDA)对聚丙烯酸钠系高吸水性树脂吸水能力的影响。
超强吸水高分子材料综述
普通吸水材料
60年代末期,美国首先开发成功高吸水性树脂。这是一种含有强亲水性基团并通常具有一定交联度的高分子材料; 它不溶于水和有机溶剂,吸水能力可达自身重量的500~2000倍,最高可达5000倍; 吸水后立即溶胀为水凝胶,有优良的保水性,即使受压也不易挤出; 吸收了水的树脂干燥后,吸水能力仍可恢复。
第七章 高吸水性树脂
图2 AN含量对吸水能力的影响
由此可见,被高吸水性树脂吸收的水主要是被束缚在高分子的网状结构内。
据测定,当网格的有效链长为10-9~10-8m时,树脂具有最大的吸水性。
高分子吸水性树脂

2.高吸水性树脂分类
⑴淀粉类 淀粉是一种原料来源广泛、种类多、价格 低廉的多羟基天然化合物。与淀粉进行接 枝共 聚反应的单体主要是亲水性和水解后 变成亲水性的乙烯类单体。 目前合成高吸 水树枝通常采 用的是自由基型接枝共聚。 例如:淀粉接枝、羧甲基化淀粉、磷酸化 淀粉、淀粉磺酸盐等。
2.高吸水性树脂分类
工业化生产多以合成聚丙烯酸系为主,因为其反应易于 实现且树脂的各项性指标都比较 好,吸水能力高、保水 能力强,与淀粉等天然高分子接枝共聚物相比,具有生产 成本低、工艺条件简单、生产效率高、吸水性能好等一系 列优点。
⑵纤维素系类 由于淀粉系高吸水性树脂的 出现, 人想到 用纤维素为原料制备高吸水树脂。 纤维素 原料来 源广泛, 能与多种低分子反应, 是 近十年来高吸水树脂发展的一个方面。 例 如: 纤维素接枝、 羟丙基化纤维素、黄原 酸化纤维素等。
2.高吸水性树脂分类
⑶合成树脂系 它的种类很多,且随着研究的深入,也越来越多。 例如:聚丙烯酸盐类、聚乙烯醇类、 聚氧化烷烃类、 无机聚合物类。
⑷吸氨性强 树脂中含有羧基的聚合阴离子物,适当调节 pH 值, 使部分羧基呈酸性,可吸收氨,有明 显的防臭作用。
3.高吸水性树脂的特点
⑸增稠性 高吸水性树脂吸水后呈凝胶状,比普通水 溶性高分子具有更高的粘度,用在化妆品 上具 有明显的增稠效果。
⑹能和其它高分子材料共混
1.高吸水性树脂定义
高吸水性树脂(Super Absorbent Resin )简称 SAR, 又称高吸水性聚合物(SAP)是一 种含有羧基、 羟基等 强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。 它不溶于水, 也不溶于有机溶剂,却有着奇特的吸水性 能和保水能力,同时又具备高分子材料的优点,与 传统 的吸水材料相比具有更大的优势:与海绵、棉花、纤维素、 硅胶相比,高吸水性树脂的 吸水量大,可以吸收比自身 重几百倍甚至上千倍的水,并且保水性强,即使在受热、 加压条 件下也不易失水,对光、热、酸、碱的稳定性好, 具有良好的生物降解性能。 [1]
高吸水树脂(SAP)详尽介绍

按交联方法分类
a.用交联剂网状化反应; b.自身交联网状化反应; c.辐射交联; d.在水溶性聚合物中引入疏水基团或结晶 结构。
按产品形状分类
a.粉末状; b.颗粒状; c.薄片状; d.纤维状。
淀粉类
淀粉类高吸水性树脂主要有两种形式。一种是淀粉与丙 烯腈进行接枝反应后,用碱性化合物水解引入亲水性基团 的产物,由美国农业部北方研究中心开发成功;另一类是 淀粉与亲水性单体(如丙烯酸、丙烯酰胺等)接枝聚合, 然后用交联剂交联的产物,是由日本三洋化成公司首开先 河的。 淀粉改性的高吸水性树脂的优点是原料来源丰富,产 品吸水倍率较高,通常都在千倍以上。缺点是吸水后凝胶 强度低,长期保水性差,在使用中易受细菌等微生物分解 而失去吸水、保水作用。
3.吸氨性
高吸水性树脂一般为含羧酸基的阴离子高分子,为提 高吸水能力,必须进行皂化,使大部分羧酸基团变为羧酸 盐基团。但通常树脂的水解度仅为70%左右,另有30%的 羧酸基团保留下来,使树脂呈现一定的弱酸性。这中弱酸 性使得它们对氨那样的碱性物质具有强烈的吸收作用。
4.增稠性
聚氧乙烯、羧甲基纤维素、聚丙烯酸钠等均可作
为水性体系的增稠剂使用。高吸水性树脂吸水后体积 可迅速膨胀至原来的几百倍到几千倍,因此增稠效果 进进高亍上述增稠剂。
二. 吸水原理
吸水实质
物理吸附
棉花、纸张、海 绵等,毛细管的 吸附原理。 有压力时水会流 出。
化学吸附
通过化学键的方 式把水和亲水性 物质结合在一起 成为一个整体。 加压也不能把水 放出。
(4)改性聚乙烯醇类 这类高吸水性树脂由聚乙烯醇与环状酸酐 反应而成,不需外加交联剂即可成为不溶于水 的产物。这类树脂由日本可乐丽公司首先开发 成功,吸水倍率为150~400倍,虽吸水能力较 低,但初期吸水速度较快,耐热性和保水性都 较好,故是一类适用面较广的高吸水性树脂。
sap吸水倍率

sap吸水倍率摘要:1.SAP 吸水倍率的定义和作用2.SAP 吸水倍率的计算方法3.SAP 吸水倍率的影响因素4.SAP 吸水倍率的实际应用5.SAP 吸水倍率的优缺点分析6.SAP 吸水倍率的发展趋势和前景正文:SAP 吸水倍率,即Super Absorbent Polymer(超强吸水性聚合物)的吸水倍率,是指SAP 材料在吸收水分时的吸水能力。
作为一种高分子材料,SAP 具有极高的吸水性和保水性,广泛应用于卫生护理、农业、环保等领域。
SAP 吸水倍率的计算方法为:吸水倍率= (湿重- 干重)/ 干重。
通常情况下,SAP 的吸水倍率越高,其吸水性能越强。
然而,吸水倍率并非唯一衡量SAP 性能的指标,还需综合考虑其他性能参数,如保水性能、机械强度等。
影响SAP 吸水倍率的因素主要包括:聚合物的类型、结构和形态;吸水过程中的温度、压力和时间;以及材料的改性程度等。
在实际应用过程中,需要根据具体需求选择合适的SAP 材料和制备工艺,以实现最佳的吸水倍率。
在卫生护理领域,SAP 吸水倍率的提高可以有效提高卫生用品的吸水性能,为使用者带来更加舒适和便捷的体验。
在农业方面,高吸水倍率的SAP材料可用于保水剂,提高土壤的持水能力,促进植物生长。
此外,SAP 在环保领域的应用也日益受到关注,如用于垃圾填埋场、污水处理等。
尽管SAP 吸水倍率具有诸多优点,但同时也存在一定的缺点,如耐酸碱性较差、易受有机溶剂侵蚀等。
因此,针对不同应用领域,需要对SAP 材料进行相应的改性处理,以满足性能要求。
随着科技的发展,SAP 吸水倍率有望进一步提高,同时开发出更多具有高性能、环保和多功能的新型SAP 材料。
超强吸水高分子材料

Super 普通吸水材料
SAP
Ab s o rb e nt po lym e r
超强吸水高分子材料综述
SAP优点
吸水能力高:可达自身重量的几百倍至几千倍。
Super 吸水前
吸水后
Ab s o rb e nt po水能力高:即使受压也不易失水
SAP优点
Super 观看保水能力演示 Ab s o rb e nt po lym e r
纤维素系
合成高分子系
纯合成高分子
聚丙烯酸类
聚丙烯酸钠交联物 丙烯酸—乙烯醇共聚物 丙烯腈聚合皂化物 其它
聚乙烯醇类 聚乙烯醇交联聚合物 乙烯醇—其它亲水性单体接枝共聚物 其它
天然高分子加工产物
淀粉类 淀粉—丙烯腈接枝聚合水解物 淀粉—丙烯酸共聚物 淀粉—丙烯酰胺接枝聚合物 其它
纤维素类 纤维素接枝共聚物 纤维素衍生物交联物 其它
n-2
OH
CH CN m
水解
NaOH
CH2OH
O
OH O
O
OH
CH2 CH
n-2
2HNOC
沉析
烘干
CH2 y
粉碎
CH x
COONa
中和 湿料
纤维素吸水树 脂干料
原料
糊化
通氮净化
产品
粉碎
调PH 干燥 离心中和
超强吸水高分子材料综述 优点
一、吸 水 原 理
用途
二、分类
三、基本结构
四、SAP结构 五、合成高吸水分子中一些重要术语 六、接枝共聚反应实例
合成系
工艺简单,吸水、 保水能力强 吸 水速度较快耐水
与优 点
联
系
共 同 点
储量丰富,可不断再生,成本低; 无毒且能微生物分解,可减少对环境 的污染。
sap分子结构-概述说明以及解释

sap分子结构-概述说明以及解释1.引言1.1 概述概述SAP(Super Absorbent Polymer)是一种高分子化合物,在现代化工领域中具有广泛的应用。
它具有极强的吸收能力和保水性能,被广泛应用于卫生用品、农业、建筑材料等领域。
SAP的分子结构复杂多样,其中包括聚合物链和交联结构,这使得其具有特殊的吸水能力和稳定性。
本文将对SAP分子结构的基本组成、功能特点以及应用领域进行详细介绍,旨在帮助读者更深入了解这一重要的高分子材料。
1.2 文章结构文章结构部分将主要介绍本文的整体架构和组织方式。
首先,我们会从引言开始,概述SAP分子结构的重要性和研究现状。
然后,正文部分将分为3个小节,分别讨论SAP分子结构的基本组成、功能特点和应用领域。
在结论部分,我们将对全文进行总结,展望未来SAP分子结构研究的发展方向,并结束文章。
通过以上结构,读者可以清晰地了解本文的内容和逻辑展开,帮助他们更好地理解和阐释关于SAP分子结构的相关知识。
1.3 目的本文的主要目的是对SAP分子结构进行深入探讨,包括其基本组成、功能特点以及应用领域。
通过对SAP分子结构的详细介绍,希望能够让读者更加全面地了解这种特殊的化学物质,并且探讨其在科学研究和工程领域中的重要性和应用前景。
同时,通过本文的研究,也可以为相关领域的科研人员提供参考和启示,促进对SAP分子结构的深入研究和应用。
希望本文内容能够为读者提供关于SAP分子结构的全面而准确的信息,为进一步推动相关领域的研究和发展做出贡献。
2.正文2.1 SAP分子结构的基本组成SAP(Super Absorbent Polymer)是一种高分子化合物,具有极强的吸水性能。
其分子结构主要由以下几个基本组成部分构成:1. 丙烯酸单体:丙烯酸是SAP的主要单体之一,其结构中含有羧基(-COOH),使得SAP具有较强的亲水性,有利于吸水。
丙烯酸单体通过聚合反应形成高分子链结构,使SAP具有较大的分子量。
改善混凝土性能的新型外加剂——超吸水性树脂(SAP)

改善混凝土性能的新型外加剂——超吸水性树脂(SAP)在混凝土技术高速发展的今天,各种改善混凝土性能的新型外加剂得到积极开发和研究,其中应用最为广泛的外加剂是高效减水剂。
使用高效减水剂和矿物超细粉是获得高强高性能混凝土的主要方式。
高强高性能的混凝土水灰比较低、水泥用量大、结构较致密,水泥在水化过程中往往因为自收缩过大而发生开裂,严重影响了其耐久性和使用年限,因此解决开裂问题对高性能混凝土的发展应用有着非常重要的意义。
什么是超吸水性树脂?超吸水性树脂(Superabsorbent polymers,简称SAP)是一种交联高分子化合物,能够吸收自重几十倍到几千倍的水,在接触水或水溶液后开始肿胀形成水凝胶,具有良好的保水性。
近些年部分学者将SAP应用于混凝土中将其当作“内部蓄水库”,在某些条件下如温度、孔隙溶液中的化学组成变化、时间推移等可以释放出水分,为混凝土提供内部养护。
已有研究显示,将SAP掺加到水泥混凝土中,不仅可以减少甚至可以完全避免自干燥以及由此产生的自收缩,还可以提高其抗冻、抗渗等耐久性能,因此SAP是一种非常有前景的新型混凝土外加剂。
下面介绍国内外学者研究SAP应用在混凝土中的研究成果,并提出未来进一步研究的方向。
· 混凝土中所掺SAP的种类和大小·SAP的类型较多,可从原料来源、官能团、亲水性和交联方法等进行分类,其中按原料来源可分为淀粉类、纤维素类以及合成聚合物类,应用在混凝土中的SAP大多数为丙烯酸胺-丙烯酸共聚型。
Jensen和Hansen认为SAP粒径大小会影响混凝土的性能,大的SAP粒子在搅拌过程中没有足够的时间去吸水导致效率降低,小的SAP粒子则相对其表面活性区域减少,吸水能力降低,认为SAP粒子在肿胀状态达到100μm左右最佳。
Lura研究了50μm~250μm内不同粒径的SAP对自收缩的影响,掺量较小时,粒径较大的SAP减少自收缩的效果优于粒径较小的。
高吸水性树脂简介

高吸水性树脂简介1、定义高吸水性树脂(Superabsorbent Polymer, SAP)是一种具有轻度交联的三维网络状吸水性的材料,含有大量的亲水性基团,能在很短的时间内迅速吸收大量的天然水分从而达到完全饱和状态,而且即便是施加一定的压力依旧能够有效保住水分的不流失。
2、高吸水性树脂的结构特点从化学结构看,SAP聚合网络链段上含有大量强亲水性基团,如羧基、羟基、酰胺基和磺酸基等,可以与水分子发生氢键作用,具备优异的亲和性能,所以,制备的SAP树脂与水接触后能够迅速吸收水分而达到溶胀平衡。
从物理结构看,SAP是一个三维网络结构,具有一定的交联密度,即使与水相遇也不容易发生溶解。
通常制备的SAP多为水溶性线性聚合物,如果没有经过交联处理,在吸收水分后便会形成一种流动性强的聚合液,无法达到保水效果。
进行适度的交联后,SAP在吸收水分溶胀后不会被水溶解。
水分被包裹在树脂网络内部,即便施加一定的压力水分也不会溢出,达到束水目的。
3、高吸水性树脂的性能(1)吸水性能SAP有着超高的吸水性能主要是因为其自身的三维网络结构,其聚合物网络链段上含有-COOH、-OH、-CONH2等多个强亲水性官能团,能够吸收大量的水分并将水分保持在网络内部。
其吸水性能也会因亲水基团类型的不同、网络结构、外部环境的变化而具有差异。
(2)耐盐性能根据SAP的吸水机制,可以大量吸收纯水中的自由水,但是如果水里含有盐离子的话,液体吸收能力会大幅下降,而SAP经常被广泛应用于农业、医疗、环保等领域,其吸收介质为肥料、血液、尿液和土壤等,其大多为混合的盐溶液,所以单纯的追求吸纯水的能力远不能满足其应用的要求,因此关于SAP耐盐性能的研究有重要的意义。
(3)保水性能保水性能是SAP的一个重要功能。
它可以通过交联网络将大量的水或水溶液锁定在网络内,从而保持大量的水。
即使在特定外压下,水分也难从网格中流出,吸水性树脂的网格构造是保水性的关键。
SAP一般材料简介

SAP一般材料简介1. 引言SAP(Super Absorbent Polymer)一般材料,也称为超高吸水树脂或超吸水聚合物,是一种具有极高吸水性能的材料。
它可以吸收比自身重几十到几百倍的水或其他液体,并且在吸水后仍能保持形态稳定,不易流失。
SAP材料在许多领域都有广泛的应用,如卫生产品、农业、建筑材料等。
本文将对SAP材料的特性、应用以及未来发展趋势进行介绍。
2. 特性SAP材料具有以下几个特性:•高吸水性:SAP材料可以快速吸收大量的水或其他液体,其吸水速度是普通材料的几十甚至上百倍。
这种特性使得SAP材料在卫生用品如尿布、卫生巾等的制造中有广泛的应用。
•良好的保水性:一旦吸收了液体,SAP材料可以有效地将其锁定在内部,不易流失。
这种特性使得它在农业领域中的水土保持、减少灌溉频率等方面有着重要的应用。
•安全性:SAP材料通常由化学合成而成,它的主要成分是聚丙烯酸钠。
经过处理后的SAP材料无毒害、无刺激性,对人体和环境安全无害。
•抗压性:SAP材料具备良好的抗压性能,即使在吸满水后,依然能够保持形态稳定,不易变形或溢出。
3. 应用领域由于SAP材料具有独特的特性,它在许多领域都得到了广泛的应用,包括但不限于以下几个方面:3.1 卫生产品卫生产品是SAP材料的主要应用领域之一。
尿布、卫生巾等产品使用了SAP材料作为吸水层,其高吸水性能可以迅速吸收液体并锁定在内部,保持表面干燥,提高使用者的舒适度。
3.2 农业SAP材料在农业领域有着重要的应用。
它可以被添加到土壤中,起到保水、保肥的作用,减少灌溉频率,提高作物的生长效率。
此外,SAP材料还可以用于包装农产品,在运输过程中保持产品的新鲜度。
3.3 建筑材料SAP材料还可以被应用于建筑材料中。
在建筑施工中,SAP材料可以添加到混凝土中,增强混凝土的吸水性,减少龟裂和渗漏的风险。
此外,SAP材料还可以用于制造防水涂料和防水材料,提高建筑物的防水性能。
高吸水性树脂

• 合成树脂系列:合成系高吸水保水材料是 20 世纪 70年代后讯速发
展起来的,是目前高吸水保水材料中发展最迅速、品种最多、产量最 大的一类高分子聚合物。主要由单体(主要有丙烯酸、丙烯腈、丙烯 酰胺、乙烯醇等)在交联剂作用下进行聚合/交联而成。与淀粉系、纤 维素系相比,合成系 SAP制备工艺简单、吸水、保水能力强,但其单 体的残留大、不易被降解,属于非环境友好材料。 • 其它天然物及其衍生物系列:其制备原理是将天然高分子进行化学改 性,在其分子上引入亲水基团,然后在交联剂的作用下形成网状结构。 研究较多的是纤维素衍生物的交联产物。以果胶类、海藻酸、肝素类、 壳聚糖类及有关衍生物等天然高分子为原料也可合成可降解的 SAP。 这些吸水性树脂虽然生物降解性好,原料来源广,但由于工艺复杂、 价格昂贵,无法工业化生产,目前难以推广。除了羧甲基纤维素交联 物外,其它品种均处于实验室阶段。
高吸水性树脂的应用
卫生用品:SAP最具规模的应用领域就是卫生行业,由于 SAP具有吸收率高,吸液量大,保液性好,且安全无毒和 重量轻等优点,因而卫生用品生产厂家把之添加在婴儿纸 尿裤、妇女卫生用品、成人失禁垫、宇航员尿袋和医用衬 垫内。其中高吸水性树脂用于婴儿纸尿裤等个人卫生用品 约占95%。 农业生产:研究表明,高吸水性树脂可以有效地抑制水分 的蒸发, 防止土壤中的水分流失, 并减小土壤的容重, 加 入旱田中可将农作物的产量提高20% 左右。用沥青铺底, 上面撒上一些高吸水性树脂, 再铺上一层十几厘米厚的土 层, 种植上几年农作物以后就可以将沙漠绿化. 这是治理 沙漠的一个重要途径, 在撒哈拉沙漠已经取得了成功. 这 对沙漠化越来越严重的我国来说有着极其重要的意义。
高吸水性树脂的分类
• 淀粉系列:淀粉是一种可再生、来源广泛的天然高分子化合物。
高吸水性树脂

高吸水性树脂高吸水性树脂(Super Absothent Polymer,简称SAP),是由低分子物质经聚合反应合成或由高分子化合物经化学反应制成,是一种经适度交联而具有三维网络结构的新型功能高分子材料,分子链上含有很多强亲水基团,能吸收相当于自身重量几百倍甚至几千倍的水,这是以往材料所不可比拟的。
高吸水性树脂不但吸水能力强,且保水能力非常高,吸水后无论加多大压力也不脱水【5】。
因此被广泛地应用到农业、林业、园艺等的土壤改良剂、卫生用品材料、工业用脱水剂、保鲜剂、防雾剂、医用材料、水凝胶材料等。
1高吸水树脂的结构高吸水树脂是一种三维网络结构,它不溶于水而大量吸水膨胀形成高含水凝胶。
高吸水树脂的主要性能是具有吸水性和保水性。
要具有这种特性,其分子中必须含有强吸水性基团和一定的网络结构,即具有移动的交联度。
实验表明:吸水基团极性极性越强,含量越多,吸水率越高,保水性也越好。
而交联度需要适中,交联度过低则保水性差,尤其在外界有压力时水很容易脱。
高吸水性树脂的微观结构因合成体系的不同而呈现出多样性[1]。
1.1离子型高吸水树脂结构大多数高吸水性树脂是由分子链上含有强亲水性基团(如梭基、磺酸基、酞图1 高吸水树脂的离子网络结构胺基、轻基等)的三维网状结构所组成,如图1所示。
吸水时,首先是离子型亲水团在水分子的作用下开始离解,阴离子固定在高分子链上,阳离子作为可移动离子在树脂内部维持电中性由于网络具有弹性,因而可容纳大量水分子,当交联密度较大时,树脂分子链的伸展受到制约,导致吸水率下降。
随着离解过程的进行,高分子链上的阴离子数增多,离子之间的静电斥力使树脂溶胀,同时,树脂内部的阳离子浓度增大,在聚合物网络内外溶液之间形成离子浓度差,渗透压随之增大,使水进一步进入聚合物内部。
当离子浓度差提供的驱动力不能克服聚合物交联构造及分子链间相互作用(如氢键)所产生的阻力时,达到饱和量。
1.2淀粉接枝型高吸水性树脂结构日本三洋化成工业公司温品谦二等根据V on E. Cgruber等的方法探讨了淀粉接枝丙烯酸的聚合物结构,见图2如示【2】。
高吸水性树脂的特性及其应用

性和特殊的吸湿能力的高分子材料也就称为高吸水性树脂。这种树脂具有传递、转换和
贮存水的功能,又称其为功能性高吸水性树脂。
高吸水性树脂的分子中含有极性基团,并具有一定的交联度,是一种三维空间网络
结构,这种特殊的化学结构和网络结构,使其吸水方式既有物理吸附,又有化学吸附和网
络吸附,因此它可以吸收成百上千倍的水。
重视,如婴儿襁褓、纸尿布、失禁片、妇女卫生巾,宇航员尿袋、餐巾、手帕、母乳垫
片、卫生棉、止血栓、生理棉、汗毛巾等产品中都可以应用高吸水性树脂。另外,如手
术垫、手术手套、手术衣、手术棉、贴身衬衣、内裤、鞋垫等一些生理用品中也广泛用
到高吸水性树脂。它的高吸水能力和保水能力使得生理卫生方面的产品大大轻便化、小
3、对光和热的稳定性高
不同的吸水性树脂在吸水状态时,有不同的热稳定性,高吸水性树脂在 70℃加热 1h, 水分损失较小,如把高吸水性树脂贮存在密闭容器中,可贮存 3~4 年,其吸水能力不变。
4、吸氨性强
树脂中含有羧基的聚合阴离子物,适当调节 PH 值,使部分羧酸基呈酸性,可吸收氨, 有明显的防臭作用。
可以被植物吸收和利用,并能在植物的根系附近形成一个局部湿润的环境,对植物来说, 能起到很好的“微型水库”的作用,土壤中混入 0.1%~0.5%的高吸水性树脂后,即使土 壤中水分过多或干旱缺水时都能保持土壤的有效湿度稳定,可减少浇水的次数,促进作 物生长,提高产量,同时也可以有效防止水分的流失和蒸发。
的三维空间网状结构,其吸水机理可用 Flory-Huggins 热力学理论加以说明。
一些高分子固体之所以能够吸水,是因为在高分子固体和水相界面两侧自由能有差
别,改吸水现象包括两个过程,一是对固体表面的润湿吸附,二是通过界面溶解于固体
高吸水树脂实验报告

1. 了解高吸水树脂的制备方法及原理。
2. 掌握高吸水树脂的性能测试方法。
3. 分析高吸水树脂在不同溶液中的吸水性能。
二、实验原理高吸水树脂(Super Absorbent Polymer,SAP)是一种具有三维网状结构的高分子物质,主要由不饱和烯类单体(如丙烯酸、丙烯酰胺等)作为原材料,通过添加交联剂和引发剂经聚合反应合成。
SAP 分子链上带有大量亲水性基因,如-OH、-COOH、-CONH2、-SO3H等,使其具有极强的吸水性和保水性。
本实验通过制备高吸水树脂,测试其吸液率、吸水速率和保水性能,以评估其应用价值。
三、实验材料与仪器1. 实验材料:- 不饱和烯类单体(如丙烯酸、丙烯酰胺等)- 交联剂- 引发剂- 离子水- 氯化钠溶液- 烧杯- 托盘天平- 离子交换树脂- 滤纸- 质构仪2. 实验仪器:- 实验室常用仪器(如烧杯、玻璃棒、滴管等)- 质构仪1. 制备高吸水树脂:(1)称取一定量的不饱和烯类单体,加入适量交联剂和引发剂;(2)将混合物加入烧杯中,搅拌溶解;(3)在恒温条件下进行聚合反应,得到高吸水树脂;(4)将高吸水树脂进行干燥处理,得到干燥的高吸水树脂。
2. 吸液率测试:(1)称取0.6克干燥的高吸水树脂;(2)将树脂加入烧杯中,加入2000毫升离子水;(3)等待1小时后,用滤纸过滤多余的离子水;(4)称取过滤后的树脂,计算吸液率。
3. 吸水速率测试:(1)称取4.3克干燥的高吸水树脂;(2)将树脂加入烧杯中,加入1000毫升氯化钠溶液;(3)记录开始吸水时间,每30分钟记录一次树脂的吸水质量;(4)计算吸水速率。
4. 保水性能测试:(1)称取2.3克干燥的高吸水树脂;(2)将树脂加入烧杯中,加入4000毫升氯化钠溶液;(3)等待半小时后,用滤纸过滤多余的氯化钠溶液;(4)称取过滤后的树脂,计算保水性能。
5. 凝胶强度测试:(1)将干燥的高吸水树脂加入质构仪的样品夹具中;(2)设置质构仪的参数,进行凝胶强度测试;(3)记录测试结果。
吸水聚合物

定义高吸水性树脂(Super Absorbent Resin )简称SAR,又称高吸水性聚合物(SAP)是一种含有羧基、羟基等强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。
它不溶于水,也不溶于有机溶剂,却有着奇特的吸水性能和保水能力,同时又具备高分子材料的优点,与传统的吸水材料相比具有更大的优势:与海绵、棉花、纤维素、硅胶相比,高吸水性树脂的吸水量大,可以吸收比自身重几百倍甚至上千倍的水,并且保水性强,即使在受热、加压条件下也不易失水,对光、热、酸、碱的稳定性好,具有良好的生物降解性能。
吸水性能高吸水树脂一般为含有亲水基团和交联结构的高分子电解质。
吸水前,高分子链相互靠拢缠在一起,彼此交联成网状结构,从而达到整体上的紧固。
与水接触时,水分子通过毛细作用及扩散作用渗透到树脂中,链上的电离基团在水中电离。
由于链上同离子之间的静电斥力而使高分子链伸展溶胀。
由于电中性要求,反离子不能迁移到树脂外部,树脂内外部溶液间的离子浓度差形成反渗透压。
水在反渗透压的作用下进一步进入树脂中,形成水凝胶。
同时,树脂本身的交联网状结构及氢键作用,又限制了凝胶的无限膨胀。
当水中含有少量盐类时,反渗透压降低,同时由于反离子的屏蔽作用,使高分子链收缩,导致树脂的吸水能力大大下降。
通常,高吸水树脂在0.9% NaCl溶液中的吸水能力只有在去离子水中的1/10左右。
吸水和保水是一个问题的两个方面,林润雄等对此进行了热力学探讨。
在一定温度和压力下,高吸水树脂能自发地吸水,水进入树脂中,使整个体系的自由焓降低,直到平衡。
若水从树脂中逸出,使自由焓升高,则不利于体系的稳定。
差热分析表明,高吸水树脂吸收的水在150°C以上仍有50%封闭在凝胶网络中。
因此,常温下即使施加压力,水也不会从高吸水树脂中逸出,这是由高吸水树脂的热力学性质决定的.SAP的吸水机理与传统的吸水材料不同, SAP先通过毛细管吸附和分散作用吸收水分,接着树脂的亲水基团通过氢键与水分子作用,离子型的亲水基团遇水开始解离,阴离子固定在高分子链上,阳离子为可移动离子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题与解决:
方案经济性: SAP可以是淀粉改性的高吸水性树脂;
优点:原料来源丰富,产品吸水倍率较高,通 常都在千倍以上。 缺点:吸水后凝胶强度低,长期保水性差,在 使用中易受细菌等微生物分解而失去吸水、保 水作用。但是污水处理后的水是要利用的,所 以保水性不予考虑,微生物在前面已除去。
所以,如可实行,则这种方法经济实惠。
基本结构
❖微观结构:
SAP的多孔网状结构
淀粉聚丙烯酸钠接枝聚合物模型图
吸水原理:
❖ 阶段1:吸水较慢。通过毛细管吸附和分散作用吸水。 阶段2:水分子通过氢键与树脂的亲水基团作用,亲水基
团离解, 离子之间的静电排斥力使树脂的网络扩张。
网络内外产生渗透压, 水份进一步渗入.
H2O
内外
交
联
吸水树脂的离子型网络
方案一: 在SAP外面通过化学键作用添加许多层特定 的分子筛,且分子筛成分中有可使金属离子 沉淀的离子。 作用:设定许多浓度梯度,降低可溶盐的浓 度,阻止沉淀盐进入。
问题与解决:
方案二:引入长链疏水性单体。可获得 耐温性,耐盐性更好的增稠剂。即由于 疏水缔合作用形成了一定强度的空间网 格结构。如将甲基丙烯酸十八酯引入常 规丙烯酸类增稠剂中,有效地提高了电 解质性能。
点
阶段3:随着吸水量的增大,网络内外的渗透压差
趋向于零;而网络扩张的同时,其弹性收缩力也在 增加,逐渐抵消阴离子的静电排斥,最终达到吸水 平衡。
吸水剂微球吸水过程的体积变化示意图
SAP的分类:
淀
接枝聚合物
粉
系
分类
接枝共聚物
纤维素系交联物
聚丙烯酸类 聚乙烯醇类
合成高分子系
等
SAP的优点:
SAP的优点
LOGO
泥沙
污水的处理流程:
微生物氧化法
机械搅拌沉淀
高温或加入强氧 化剂
有机杂质 固体物质
细菌,微生物
呈碱性
无机盐
弱酸中和
改性SAP
问题与解决:
由于高吸水性树脂是高分子电解质,水中盐类 物质的存在和pH值的变化都会显著影响树脂的 吸水能力。
问题:
怎么样减少污水中的无机盐进入SAP的网状结 构中?
问题与解决:
超强吸水材料
成型09-0ቤተ መጻሕፍቲ ባይዱ班 黎佐 200948030210
LOGO
超强吸水高分子材料综述
1 基本结构 2 吸水原理 3 分类和优点 4 在生活污水处理中的设想
基本结构
❖ 分子中具有强亲水性基团,如羟基、羧基,能够 与水分子形成氢键;
❖ 树脂具有交联结构;
❖ 聚合物内部具有较高的离子浓度;
❖聚合物具有较高的分子量 。
吸水能力高:
可达自身重量的 几百倍至几千倍。
普通吸水材料
吸水能力通常很 低,所吸水量最 多仅为自身重量 的20倍左右,
保水能力高:即
使受压也不易失 水 。而普通吸
水材料一旦受到 外力作用,则很 容易脱水,保水 性很差。
SAP的在污水处理中的应用设想:
细菌,寄生虫
有机杂质
沉淀盐
污水成分
固体颗粒
溶解盐