厂用35kV_10kV变电站电气主接线设计选择

合集下载

南方电网公司10kV和35kV标准设计V10应用手册

南方电网公司10kV和35kV标准设计V10应用手册

南方电网公司10kV和35kV标准设计第一局部应用手册名目前言近年来,随着南方电网公司标准化设计体系的不断完善,标准化设计应用范围的逐步扩大,10kV和35kV标准设计在配电网工程建设和治理中担当着越来越重要的作用,同时,配电网基建工程建设和治理水平的不断提升也对标准设计的推广应用提出了新的要求。

为使标准设计的体系架构更加完善,检索更加方便快捷,使用更加科学合理,在2021版标准设计的根底上,依据南方电网公司生产治理运行等部门的指导和要求,编制本钞票手册。

本手册以?南方电网公司标准设计和典型造价总体工作大纲?为指导,以南方电网公司10kV和35kV标准设计成果为依据,阐述10kV和35kV标准设计的框架和技术原那么,以及各方案和模块应用方式、步骤、案例等,要紧用于指导设计单位在基建工程中标准设计的应用。

标准设计的要紧依据为现行相关的国家政策、电力行业、南方电网的标准、规程标准,以及国家政策,设计单位在应用标准设计时应依据相关标准、技术标准和政策的变化更新及时正确修正设备材料选型等内容。

使用过程中碰到咨询题或错误,请及时相应至南方电网公司基建部。

第1章简介1.1内容提要本手册包含以下几局部:一是层级划分和模块设置,内容为标准设计框架结构;二是方案和模块索引,内容为标准设计命名原那么和名目索引;三是方案和模块选用,内容包括标准设计适用范围、应用方法和关注要点;四是附录,为模块特性汇总表。

1.2层级划分和模块设置10kV和35kV标准设计按电压等级和具体内容分35kV变电站、35kV架空线路、10kV配电站、10kV架空线路和10kV电缆线路五局部。

1.2.135kV变电站1.2.1.1层级划分1.2.1.2模块设置35kV变电站标准设计共含6个方案。

每个方案下设G1层模块,要紧包含配电装置场地模块及建筑物模块;G2层模块为配电装置模块;G3层模块为设备安装图模块;G4层模块为精细化施工工艺模块,35kV变电站标准设计不单独设置G4层模块,设计应用中参照主网G4层模块。

35kV_110kV变电站电气主接线部分设计

35kV_110kV变电站电气主接线部分设计

110kV/35kV变电站电气主接线设计摘要本文首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。

设计首先查阅了有关资料,收集与研究课题大量的资料,并翻译了相关的外文资料,然后对负荷分析进行了精确的计算与分析,从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV与35kV两个电压等级,用拟定方法进行比较从而确定主接线的连接方式,对主接线系统的做了设计,110KV侧选择了单母线分段接线方式,35KV单母线分段带旁路母线接线方式,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,确定了变压器用两台,容量为31500KVA,型号为SSZ9—31500/110,对无功功率补偿做了明确的计算,然后采用标幺值法对短路计算进行了分析与处理。

根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线和电压互感器,电流互感器进行了选型。

对主变压器进行整定计算与分析,对防雷部分进行了计算和分析,确定了防雷的方法,并做出了相应的原理图。

从而完成了110kV/35KV变电站电气部分的设计。

关键词:变电站;变压器;电气主接线AbstractIn this design, on the basis of the mandate given by the system and the load line and all the parameters, load analysis of trends. Design First check the relevant information collection and research topic a lot of information and foreign-language translation of the relevant information and then load analysis of the precise calculation and analysis, load growth from the establishment of the need to clarify, and then passed on The proposed substation and the general direction of Chuxian to consider and, through the load data analysis, security, economic and reliability considerations, identified 110 kV and 35kV two voltage levels, compared with developed methods to determine the main wiring connections , The main wiring system to do the design, 110 KV side of the single-choice sub-bus connection mode, 35 KV sub-bus with bypass bus connection mode, and then through the load calculation and determine the scope of the main electricity transformer Number, capacity and Models, identified by two transformers, the capacity for 31500 KVA, the model SSZ9-31500/110, the reactive power compensation to a clear, and per-unit value method used to calculate a short-circuit analysis and treatment. According to the most sustained work and short-circuit current calculation of the results, the high-voltage fuse, isolating switch, bus and voltage transformers, current transformers for the selection. The main transformer for setting calculation and analysis, part of the mine were calculated and analyzed to determine the mine's method, using AUTOCAD and make the corresponding schematic. Thus completing the 110 kV/35KV electrical substation part of the design.Key words:converting station;transformer substation;electrical wiring第1章绪论1.1 变电站的背景和地址情况1.1.1 变电站的背景随着时代的进步,电力系统与人类的关系越来越密切,人们的生产,生活都离不开电的应用,如何控制电能,使它更好的为人们服务,就需要对电力进行控制,避免电能的损耗和浪费,需要对变电站的电能进行降压,从而满足人们对电的需求,控制电能的损耗。

35110KV变电站设计规范

35110KV变电站设计规范

35〜110KV变电站设计规范第一章总则第1.0.1条为使变电所的设计认真执行国家的有关技术经济政策,符合安全可靠、技术先进和经济合理的要求,制订本规范。

第1.0.2条本规范适用于电压为35〜110kV,单台变压器容量为5000kVA及以上新建变电所的设计。

第1.0.3条变电所的设计应根据工程的5〜10年发展规划进行,做到远、近期结合,以近期为主,正确处理近期建设与远期发展的关系,适当考虑扩建的可能。

第1.0.4条变电所的设计,必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,结合国情合理地确定设计方案。

第1.0.5条变电所的设计,必须坚持节约用地的原则。

第1.0.6条变电所设计除应执行本规范外,尚应符合现行的国家有关标准和规范的规定。

第二章所址选择和所区布置第2.0.1条变电所所址的选择,应根据下列要求,综合考虑确定:一、靠近负荷中心;二、节约用地,不占或少占耕地及经济效益高的土地;三、与城乡或工矿企业规划相协调,便于架空和电缆线路的引入和引出;四、交通运输方便;五、周围环境宜无明显污秽,如空气污秽时,所址宜设在受污源影响最小处;六、具有适宜的地质、地形和地貌条件(例如避开断层、滑坡、塌陷区、溶洞地带、山区风口和有危岩或易发生滚石的场所),所址宜避免选在有重要文物或开采后对变电所有影响的矿藏地点,否则应征得有关部门的同意;七、所址标高宜在50年一遇高水位之上,否则,所区应有可靠的防洪措施或与地区(工业企业)的防洪标准相一致,但仍应高于内涝水位;八、应考虑职工生活上的方便及水源条件;九、应考虑变电所与周围环境、邻近设施的相互影响。

第2.0.2条变电所的总平面布置应紧凑合理。

第2.0.3条变电所宜设置不低于2.2m高的实体围墙。

城网变电所、工业企业变电所围墙的高度及形式,应与周围环境相协调。

第2.0.4条变电所内为满足消防要求的主要道路宽度,应为 3.5m。

主要设备运输道路的宽度可根据运输要求确定,并应具备回车条件。

35KV变站电气主接线设计

35KV变站电气主接线设计

35KV变站电气主接线设计引言:35kV变电站是电力系统的重要组成部分,它起到将高压输电线路的电能进行降压、分配和供应给用户的作用。

为了保证变电站的安全稳定运行,电气主接线设计是十分关键的一环。

本文将对35kV变电站电气主接线设计进行详细阐述。

一、设计依据:2.电站设计规范:DL/T5183-2024变电站工程电气设计规范3.设备选型:参考国内外类似变电站、设备厂商评价、性价比分析等综合考虑二、设计步骤:1.需求分析:了解变电站的运行需求,包括负荷需求、电力分配需求、电能质量要求等。

2.主接线图设计:根据变电站的功能布置、设备选型、负荷需求等,设计主接线图。

主接线图应满足以下要求:-各设备之间的连接合理,布置紧凑。

-确保每个设备的最大电流能够通过。

-考虑主变压器的容量和并联变压器的选取。

-考虑备用设备的串并联,保证可靠性。

3.主接线布置设计:确定设备的放置位置,遵循以下原则:-各设备之间的距离符合安全操作和维护的要求。

-保证设备的冷却通风良好。

-考虑设备的重量和重心,保证稳定性。

4.主接线回路计算:根据电压等级、负荷要求等进行主接线回路计算。

计算包括电缆选型、电缆截面积确定、电缆长度计算、电缆负载流计算等。

5.系统接地设计:根据设计图纸和电气设备布置要求进行系统接地设计,包括接地电阻计算,接地极数量和布置等。

6.设备连接设计:根据设备类型和工作要求,确定设备之间的电缆连接,考虑电缆长度、连接方式等。

7.安全与可靠性设计:根据标准和规范,设计接地保护装置、电流互感器、电压互感器、分段绝缘开关等设备的选择和布置。

三、设计要点:1.主接线图设计时要考虑最大电流负荷,以及备用线路的布置,确保变电站的可靠性和灵活性。

2.设备的放置位置要合理,不能影响设备的冷却和通风,且便于操作和维护。

3.电缆的选型要充分考虑电流载流量、电压降和线损等因素,并满足国家标准和工程要求。

4.系统接地设计要符合标准和规范,确保人员安全和设备的可靠性。

35KV变电站电气设备的选择

35KV变电站电气设备的选择

35KV变电站电气设备的选择3.3.1概述正确的选择电气设备是使电气主接线和配电装置达到安全、经济运行的重要条件。

在进行设备选择时,应根据工程的实际情况,在保证安全、可靠的前提下,积极而准确的采用新技术,并注意节约投资,选择合适的电气设备。

应满足正常运行、维修。

短路和过电压情况下的要求,并考虑长期的发展。

按当地环境条件检验核对。

应力求技术先进和经济合理,与整个工程的建设标准应协调一致;同类设备应尽量减少品种。

选用的新产品均应具有可靠的实验数据,并经正式鉴定合格,在特殊情况下,用未经正式鉴定的心产品时,应经上级批准。

选择的高电压电器,应能在长期工作条件下和发生过电压和过电流的情况下保持正常运行。

电气设备选择的一般要求:(1)应满足正常运行、检修以及短路和过电压情况下的工作要求。

即满足工作要求。

(2)应按当地环境进行校核。

即适应环境条件。

(3)应力求技术先进和经济合理。

即先进合理。

(4)应与整个工程的建设标准协调一致。

即整体协调。

(5)应适当考虑发展,留有一定裕量。

即适应发展。

3.3.2高压断路器的选择一.短路器选择的具体技术条件(1)电压:U max≥Ug;(2)电流:I N≥I max;(3)开断电流:I"≤I kd,其中I kd为断路器额定开断电流;(4)关合电流:i sh≤I gh;(5)动稳定:i sh≤i es;(6)热稳定:Q k≤I t2t,其中Q k=I∞2t 。

二.35KV侧断路器的选择及校验检验过程如下: (1)额定电压:U N ≥Ug ; U N =40.5KV , Ug=35KV 所以U N ≥Ug ,满足要求。

(2)额定电流:I N ≥I max ;I N =KA U P N 561.08.05.403103000005.1cos 305.13=⨯⨯⨯⨯=-θ其中P ——线路最大有功负荷,KW ; U N ——线路额定电压,KV ;cos θ——线路最大负荷时的功率因数。

浅谈35kV箱式变电站电气主接线的确定

浅谈35kV箱式变电站电气主接线的确定

浅谈35kV箱式变电站电气主接线的确定摘要:随着社会发展和城市化进程的加快,负荷密度越来越高,城市用地越来越紧张,城市配电网逐步由架空向电缆过渡,架杆方式安装的配电变压器越来越不适应人们的要求。

要使得35kV箱式变电站的总体设计科学合理,就必须选择合适的电气主接线。

关键词:箱式变电站;电气主接线;科学合理1 主接线的基本形式主接线的基本形式,就是主要电气设备常用的几种连接方式,概括为有母线的接线形式和无母线的接线形式两大类。

(1)具有母线的电气主接线①单母线接线:单母线接线是一种最原、最简单的接线方式。

②单母线分段接线③双母线及双母线分段接线③旁路母线接线方式(2)无母线的电气主接线①桥形接线:当具有两台变压器和两条线路时,在变压器线路接线的基础上,在其中间架一连接桥,则称为桥形接线②单元接线:发电机与变压器直接连接成一个单元,组成发电机。

2 箱式变电站对主接线的基本要求概况地说,对主接线的基本要求包括安全、可靠、灵活、经济四个方面安全包括设备安全及人身安全。

要满足这一点,必须按照国家标准和规范的规定,正确选择电气设备及正常情况下的监视系统和故障情况下的保护系统,考虑各种人身安全的技术措施。

可靠就是主接线应满足对不同负荷的不中断供电,且保护装置在正常运行时不误动、发生事故时不拒动,能尽可能的缩下停电范围。

为了满足可靠性要求,主接线应力求简单清晰。

电器是电力系统中最薄弱的元件,所以不应当不适当地增加电器的数目,以免发生事故。

灵活是用最少的切换,能适应不同的运行方式,适应调度的要求,并能灵活、简便、迅速地倒换运行方式,使发生故障时停电时间最短,影响范围最小。

因此,电气主接线必须满足调度灵活、操作方便的基本要求。

经济是指在满足了以上要求的条件下,保证需要的设计投资最少。

在主接线设计时,主要矛盾往往发生在可靠性与经济性之间。

欲使主接线灵活、可靠,必须要选用高质量的设备和现代化的自动装置,从而导致投资费用的增加。

某企业35kV变电所电气设计(一次部分)

某企业35kV变电所电气设计(一次部分)

某企业35kV变电所电气设计(一次部分)摘要本篇毕业设计的课题是“某企业35kV变电所电气设计”,主要是关于强电部分的设计。

本设计分别从主接线、短路电流计算、主要电气设备选择等几个方面对变电站进行了阐述,并绘制出电气主接线图、电气总平面布置图、防雷与接地图等相关图纸。

由于存在两条独立电源进线,本次设计采用两台主变压器,并根据给定的计算负荷,选定额定容量为8000kV A变压器SZ11-8000/35。

通过比较各种主接线方案的优缺点,最终确定35kV电压等级侧采用线变组接线方式;6kV电压等级侧采用单母分段式接线方式。

在绘制出电气主接线简图的基础上,分别选择主变压器高低侧短路时作为短路点,计算出短路电流,从而作为选择及校验主要电气设备的依据。

主要电气设备包括断路器、隔离开关、熔断器、电流互感器、电压互感器、母线、避雷器。

按正常工作条件下选择设备的额定电流、额定电压及型号,按短路情况下校验设备的热稳定、动稳定以及开关的开断能力。

在主要电气设备都选定的基础上,可以绘制出最终的电气主接线图、平面布置图、防雷与接地图。

关键词:主变压器,主接线方式,短路电流,电气设备AbstractThis grad uation thesis is about “Electric design for an enterprise”. It is mainly about the design of heavy current system. This design separately from the main connection, short-circuit current calculation, the main electrical equipment selection and so on several aspects of substation were introduced, and map out the main electrical wiring, electrical general layout, lightning protection and pick up the map and related drawings.Because there are two separate power lines, the design uses two main transformers, and according to the given load, rated capacity of up to 8000kVA transformers SZ11-8000/35 is selected. By comparing the various advantages and disadvantages of main wiring scheme, finalize 35kV voltage line transformer connection 6kV voltage single-segment connection. Draw on the basis of main electrical wiring diagram, as a short circuit when you choose high and low-side short circuit of main transformer, calculation of short circuit current, so as the basis for selection and check the main electrical equipment. Main electrical equipment including circuit breakers, disconnections, fuse, current transformers, voltage transformers, bus, lightning arrester. Under normal operating conditions the rated current, rated voltage and model of the device, by short circuit case calibration device of thermal stability, stability and the breaking capacity of the switch. Major electrical equipment were selected on the basis of, you can draw out the final electrical wiring diagram, floor plan, lightning protection and grounding.Key Words:The Main Transformer, the Electricity Lord Connects the Line, the Short-circuit Current, the Electrical Equipment目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1本课题的研究意义及目的 (1)1.2本课题的国内外研究现状 (1)1.3本课题主要资料 (2)1.4本文所做的工作与论文结构 (2)第2章电力负荷的分级和计算 (3)2.1负荷分级与供电要求 (3)2.1.1 负荷的定义 (3)2.1.2 负荷分级 (3)2.2电力负荷的计算 (3)2.2.1 负荷计算的目的 (3)2.2.2 负荷计算方法 (4)第3章电气主接线和变压器的选择 (6)3.1电气主接线的选择 (6)3.1.1 电气主接线的基本要求 (6)3.1.2 电气主接线的形式 (6)3.1.3 主接线方案的选择 (8)3.2变压器的选择 (9)3.2.1 变压器类型的选择 (9)3.2.2 变压器台数的选择 (9)3.2.3 变压器容量的选择 (9)第4章短路电流计算 (11)4.1短路电流计算的目的和意义 (11)4.2短路点的确定和短路电流计算方法 (11)4.3最大运行方式下短路电流 (12)4.4最小运行方式下短路电流 (14)第5章电气设备的选择 (17)5.1高压断路器的选择 (19)5.1.1 35kV进线断路器 (19)5.1.2 6kV进线断路器 (20)5.1.3 6kV出线断路器 (20)5.2电流互感器的选择 (20)5.2.1 35kV进线电流互感器 (21)5.2.2 6kV进线电流互感器 (21)5.2.3 6kV出线电流互感器 (22)5.3电压互感器的选择 (22)5.3.1 35kV线路侧电压互感器 (23)5.3.2 6kV线路侧电压互感器 (23)5.4高压熔断器的选择 (23)5.5接地开关的选择 (24)5.5.1 35kV侧接地开关 (24)5.5.2 6kV侧接地开关 (24)5.6避雷器的选择 (25)5.6.1 35kV侧避雷器 (25)5.6.2 6kV侧避雷器 (26)5.7母线的选择 (26)5.7.1 主变35kV母线 (27)5.7.2 主变6kV母线 (28)5.8电源进线和出线电缆的选择 (29)5.8.1 35kV电源进线 (29)5.8.2 6kV出线电缆 (30)5.9开关柜的选择 (31)5.9.1 35kV高压开关柜 (31)5.9.2 6kV高压开关柜 (32)第6章防雷与接地 (33)6.1防雷及过电压保护 (33)6.1.1 雷击的危害 (33)6.1.2 本变电所的防雷保护 (33)6.2接地 (36)6.1.1 接地的基本概念 (36)6.1.2 接地的分类 (36)6.1.3 本变电所接地装置布置 (37)结束语 (39)谢辞 (40)参考文献 (41)附录 (42)第1章绪论1.1 本课题的研究意义及目的进入21世纪后,我国电力仍将以较高的速度和更大的规模发展,电源和电网建设的任务仍很重。

35KV变站电气主接线设计

35KV变站电气主接线设计

35KV变站电气主接线设计一、引言35KV变电站是电力系统中起着至关重要作用的设备之一,它起着将输送来的高压电能转变为低压电能并分配到城市或工业用电等终端的作用。

而变电站的电气主接线设计则是保证变电站正常运行的基础,本文将对35KV变电站电气主接线的设计进行详细分析和阐述。

二、35KV变电站电气主接线设计的目标1.保证供电可靠性和连续性:变电站作为电力系统的关键设备,必须具备高可靠性和连续性,以确保稳定的供电。

因此,电气主接线设计必须满足这一目标,以最大程度地减少停电时间和减少设备故障。

2.符合安全规范和标准:电气主接线设计必须符合相关的安全规范和标准,保证人员和设备的安全。

例如,要合理选用绝缘材料,采取防火措施,确保电气设备正常运行。

3.提高电能利用率和经济性:电气主接线设计需要考虑电能的损耗和损耗降低的方法,以提高电能的利用率和经济性。

三、35KV变电站电气主接线设计的内容1.接地系统设计:电气主接线设计中接地系统的设计是非常重要的,它关系到变电站运行的安全和稳定。

接地系统设计应满足电气设备的接地要求,并在变电站中合理布置接地装置,以确保地电位的稳定和安全。

2.母线设计:35KV变电站的电气主接线中一个重要组成部分就是母线,它承担着输电、分配和联络电能的功能。

母线设计应考虑到电流负荷、电流冲击、短路电流等参数,并按照相关标准和规范进行设计。

3.断路器、隔离开关和接地刀闸的选择:电气主接线设计中需合理选择断路器、隔离开关和接地刀闸等设备,使其能够满足变电站的安全操作和维护需求。

4.保护与控制装置设计:35KV变电站电气主接线设计中还需设计相应的保护与控制装置,以提供对变电站的全面保护和控制。

设计中需考虑到过电压、过电流、短路、过负荷等各种故障的检测和处理。

5.电子测量与监控系统设计:在电气主接线设计中,应设计并配置相应的电子测量与监控系统,以便于对35KV变电站的运行状态进行实时监测和检测。

四、35KV变电站电气主接线设计的方法和步骤1.初步设计:根据变电站的电气负荷、母线参数、设备布置等情况,进行初步设计,确定变电站主接线的基本布局。

110kV35kV变电站电气主接线设计

110kV35kV变电站电气主接线设计

110kV/35kV变电站电气主接线设计摘要本文首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。

设计首先查阅了有关资料,收集与研究课题大量的资料,并翻译了相关的外文资料,然后对负荷分析进行了精确的计算与分析,从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV与35kV 两个电压等级,用拟定方法进行比较从而确定主接线的连接方式,对主接线系统的做了设计,110KV侧选择了单母线分段接线方式,35KV单母线分段带旁路母线接线方式,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,确定了变压器用两台,容量为31500KVA,型号为SSZ9—31500/110,对无功功率补偿做了明确的计算,然后采用标幺值法对短路计算进行了分析与处理。

根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线和电压互感器,电流互感器进行了选型。

对主变压器进行整定计算与分析,对防雷部分进行了计算和分析,确定了防雷的方法,并做出了相应的原理图。

从而完成了110kV/35KV变电站电气部分的设计。

关键词:变电站;变压器;电气主接线AbstractIn this design, on the basis of the mandate given by the system and the load line and all the parameters, load analysis of trends. Design First check the relevant information collection and research topic a lot of information and foreign-language translation of the relevant information and then load analysis of the precise calculation and analysis, load growth from the establishment of the need to clarify, and then passed on The proposed substation and the general direction of Chuxian to consider and, through the load data analysis, security, economic and reliability considerations, identified 110 kV and 35kV two voltage levels, compared with developed methods to determine the main wiring connections , The main wiring system to do the design, 110 KV side of the single-choice sub-bus connection mode, 35 KV sub-bus with bypass bus connection mode, and then through the load calculation and determine the scope of the main electricity transformer Number, capacity and Models, identified by two transformers, the capacity for 31500 KVA, the model SSZ9-31500/110, the reactive power compensation to a clear, and per-unit value method used to calculate a short-circuit analysis and treatment. According to the most sustained work and short-circuit current calculation of the results, the high-voltage fuse, isolating switch, bus and voltage transformers, current transformers for the selection. The main transformer for setting calculation and analysis, part of the mine were calculated and analyzed to determine the mine's method, using AUTOCAD and make the corresponding schematic. Thus completing the 110 kV/35KV electrical substation part of the design.Key words:converting station;transformer substation;electrical wiring目录第1章绪论 (1)1.1 变电站的背景和地址情况 (1)1.1.1 变电站的背景 (1)1.1.2 变电站地址概况 (1)1.2 变电站的意义 (1)1.3 本文研究内容 (2)第2章负荷分析计算 (3)2.1 电力负荷的概述 (3)2.1.1 电力负荷分类方法 (3)2.1.2 各主要电用户的用电特点 (3)2.1.3 电力系统负荷的确定 (3)2.2 无功功率补偿 (4)2.2.1 无功补偿的概念及重要性 (4)2.2.2 无功补偿装置类型的选择 (5)2.3 主变压器的选择 (8)2.3.1 负荷分析与计算 (8)2.3.2 主变压器选择 (10)第3章电气主接线设计 (12)3.1 变电站主接线的要求及设计原则 (12)3.1.1 变电站主接线基本要求 (12)3.1.2 变电站主接线设计原则 (13)3.2 110 kV侧主接线方案选取 (13)3.3 35kV侧主接线方案选取 (16)第4章短路计算 (18)4.1 短路计算的原因与目的 (18)4.2 短路计算的计算条件 (18)4.3 最大最小运行方式分析 (19)4.4 短路计算 (20)第5章开关设备的选择与校验 (23)5.1 电气设备选择的概述 (23)5.2 110kV侧断路器的选择 (25)5.3 35KV侧断路器的选择 (26)5.4 110kV隔离开关的选择 (27)5.5 35KV隔离开关的选择 (28)5.6 互感器的选择 (28)5.7 高压侧熔断器的选择 (30)5.8 母线选择及校验 (30)第6章变电站的继电保护 (33)6.1 继电保护的任务与要求 (33)6.2 继电保护的接线方式与操作方式 (33)6.3 主变压器保护规划与整定 (35)第7章防雷保护计算 (43)7.1 防雷保护 (43)7.2 防雷的装置与防雷计算 (44)第8章结论 (46)参考文献 (47)致谢 (48)附录Ⅰ (49)英文文献 (49)附录Ⅱ (61)第1章绪论1.1 变电站的背景和地址情况1.1.1 变电站的背景随着时代的进步,电力系统与人类的关系越来越密切,人们的生产,生活都离不开电的应用,如何控制电能,使它更好的为人们服务,就需要对电力进行控制,避免电能的损耗和浪费,需要对变电站的电能进行降压,从而满足人们对电的需求,控制电能的损耗。

35KV变电站设计

35KV变电站设计

35KV变电站设计35kV变电站设计1.总的部分本设计对应35kV配电装置采用户外软导线改进中型布置,架空出线;10kV配电装置采用户外软导线中型双列布置,架空出线;主变压器采用2台5MV A三相双绕组自冷式有载调压变压器,户外布置;配置2台容量为0.9Mvar无功补偿并联电容器组,户外布置组合成的方案。

1.1本设计的适用场合(1)规划为末端负荷站。

(2)35kV和10kV均采用架空出线。

(3)偏远地区。

1.2 对设计方案组合的说明35kV变电站设计户外站方案技术组合表1.3 主要技术指标主要技术指标2.电力系统部分2.1 电力系统本设计按照给定的主变压器及线路规模进行设计,在实际工程中,需要根据变电站所处系统情况具体设计。

各电压等级的设备短路电流按如下水平选择:(1)35kV母线的短路电流为:25kA。

(2)10kV母线的短路电流为:16kA。

2.2 系统继电保护及安全自动装置本设计不涉及系统继电保护具体配置,只根据工程规模,推荐组屏方案,配合土建专业进行二次设备的布置。

在实际工程设计阶段,需要根据变电站所处地区电力系统实际情况具体设计。

本设计35kV侧电气主接线为内桥接线,变电站按负荷变电站考虑,不设线路保护。

当考虑变电站有转供电的运行方式时,应增加35kV线路保护。

2.3 系统通信及站内通信本设计不涉及系统通信专业的具体内容,只根据工程规模配合土建专业进行二次设备室的布置。

在实际工程设计阶段,需要根据实际情况确定调度关系、通信方式,并进行通道安排。

(1)变电站监控系统应具有通信监控功能,不再另设通信监控系统。

(2)站内应设程控电话及市话各一部,不设站内总机。

(3)不单独设置通信电源。

2.4 系统调度自动化本设计不涉及调度自动化专业的具体内容,在实际工程中,只根据工程规模配合土建专业进行二次设备室的布置。

在实际工程设计阶段,需要根据实际情况确定调度关系、远动信息内容和通道要求,进行远动设备选型。

35KV变电站电气主接线设计【文献综述】

35KV变电站电气主接线设计【文献综述】

35KV变电站电⽓主接线设计【⽂献综述】毕业设计开题报告电⽓⼯程及其⾃动化35KV变电站电⽓主接线设计⼀、前⾔随着我国经济建设的⾼速发展,现代电⽹结构⽇趋复杂,电⽹容量不断扩⼤,电⽹实时信息传送量成倍增多,对电⽹运⾏的可靠性要求也越来越⾼,变电站起了⼗分重要的作⽤。

然⽽变电站电⽓接线系统在很⼤程度上直接影响到变电站电⽓系统的⼯作性能。

变电所电⽓主接线系指变电所的变压器以及输电线路怎样与电⼒系统相连接, 从⽽完成输配电任务。

因为电能⽣产的特点是发电、变电、输电和⽤电是在同⼀时刻完成的,所以主接线的好坏不仅直接关系着电⼒系统的安全、稳定、灵活和经济运⾏,也直接影响到⼯农业⽣产和⼈民⽣活。

因此电⽓主接线设计在满⾜国家有关技术经济政策的前提下,还应⼒争使其技术先进、经济合理、安全可靠。

⼆、正⽂⼀般情况下,对变、配电所主接线的基本要求如下:变、配电所主接线应根据变、配电所的实际情况和⽤电的需要,尽量做到简单,供电⽅式可靠,主设备齐全;设备选择合理,运⾏安全经济、灵活,并适当的考虑远景规划;便于维护检修,操作步骤简单、⽅便;处理故障时,能保证安全,便于执⾏规定的安全措施,年运⾏损失⼩。

为次需要进⾏35KV 变、配电站常⽤主接线类型的选择,⽤户常⽤主接线的选择,变压器的选择及防雷接地⽅式的选择。

1、35KV 变、配电站常⽤主接线类型(1)单元接线,⼜称线路变压器组接线(如图1)这种主接线的特点是: 接线简单,使⽤设备少,投资省,维护简单,操作⽅便,但检修要全部停电。

(2)桥形接线(图2a)(图2b)此接线⽅式适⽤于电压为35KV 及以上双电源运⾏的变电所,有外桥和内桥两种接线形式。

内桥适⽤于输电距离较长,故障⼏率较多,⽽变压器⼜不需经常切除时,其特点为:设备简单,投资省。

运⾏灵活,检修时操作稍显复杂且继电保护复杂。

外桥适⽤于出线较短,且变压器虽经济运⾏需经常切换或系统有穿越功率流经本⼚时,其特点较内桥来讲检修操作⽅便,当主变断路器外侧短路时,影响整个系统供电可靠性。

35kv变电站设计电气主接线选择(三)

35kv变电站设计电气主接线选择(三)

35kv变电站设计电气主接线选择(三)《电力工程技术》一书作为:全国电力职业教育规划教材、'十三五'普通高等教育规划教材,即大学电力课本教材,预订详询微信:dianli369,目录详见如下链接:《电力工程技术》一书目录,2016年9月中国电力出版社出版!3.1电气主接线的设计原则和要求变电站设计是否合理,供电和运行是否安全可靠,很大程度上取决于主结线的选择,因此,选择主结线应进行多方案的技术经济比较后决定。

变电站电气主接线系指变电所的变压器,输电线路怎样与电力系统相连接,从而完成输配电任务。

变电所的主接线是电力系统接线组成的一个重要组成部分。

主接线的确定,对电力系统的安全、稳定、灵活、经济运行以及变电所电气设备的选择、配电装置的布置、继电保护和控制方法的拟定将会产生直接的影响。

3.1.1 主接线的设计原则1、考虑变电所在电力系统中的地位和作用变电所在电力系统中的地位和作用是决定主接线的主要因素。

变电所是枢纽变电所、地区变电所、终端变电所、企业变电所还是分支变电所,由于它们在电力系统中的地位和作用不同,对主接线的可靠性、灵活性、经济性的要求也不同。

2、考虑近期和远期的发展规模变电所主接线设计应根据5~10年电力系统发展规划进行。

应根据负荷的大小和分布、负荷增长速度以及地区网络情况和潮流分布,并分析各种可能的运行方式,来确定主接线的形式以及所连接电源数和出线回数。

3、考虑负荷的重要性分级和出线回数多少对主接线的影响对一级负荷,必须有两个独立电源供电,且当一个电源失去后,应保证全部一级负荷不间断供电;对二级负荷,一般要有两个电源供电,且当一个电源失去后,能保证大部分二级负荷供电。

三级负荷一般只需一个电源供电。

4、考虑主变台数对主接线的影响变电所主变的容量和台数,对变电所主接线的选择将产生直接的影响。

通常对大型变电所,由于其传输容量大,对供电可靠性要求高,因此,其对主接线的可靠性、灵活性的要求也高。

35kV变电站电气主接线设计

35kV变电站电气主接线设计

35kV变电站电气主接线设计作者:陈伏虎来源:《中国科技博览》2015年第27期[摘要]文章阐述了电气变电站主接线的选择、设计、过流保护,满足供电要求的设计。

[关键词]变电站,变压器,继电保护,主接线中图分类号:TM645 文献标识码:A 文章编号:1009-914X(2015)27-0331-021.电气主接线的选择变电站电气主接线的选择,主要决定于变电站在电力系统中的地位、环境、负荷的性质、出线数目的多少、电网的结构等。

因此,全面分析有关影响因素,通过技术经济比较,合理地确定主接线方案。

变电站的电气主接线必须满足以下基本要求:1.1 保证供电的可靠性和电能质量主接线必须保证必要的可靠性,因事故被迫中断供电机会越少,影响范围越小,停电时间越短,则主接线可靠度就越高。

电压、频率和供电连续可靠是表征电能的质量基本指标,主接线在各种运行方式下都应满足这方面的要求。

1.2 具有一定的灵活性和方便性主接线应能适用各种运行方式,并能灵活地进行方式转换,不仅在正常运行时能安全可靠供电,而且在系统故障或设备检修及故障时,也能保证非故障非检修故障回路继续供电,并能灵活简便,迅速地倒换运行方式,使停电时间最短,影响范围最小。

1.3 具有经济性设计主接线时,欲使主接线可靠、灵活,将导致投资增加。

所以必须把技术与经济两者综合考虑,在满足供电可靠,运行灵活方便基础上,尽量使设备投资和运行费用最少。

一般应当从以下几方面考虑:①投资要省:主接线应简单明了,以节约开关电器数量,降低投资;要适当采用限制断路电流的措施,以便选用价廉的电器;二次控制与保护方式不应过于复杂,以利于运行和节约二次设备的投资。

②占地要少:主接线要为配电装置布置创造节约土地的条件,尽可能使占地面积减少。

③电能损耗要少:变电站中,正常运行时,电能损耗主要来自变压器,应经济合理地选择变压器的型式、容量和台数,尽量避免两次变压而增加电能损耗。

2 主接线设计电气主接线是变电站设计的主体。

35kv变电站设计—电气主接线10KV侧选择(四)

35kv变电站设计—电气主接线10KV侧选择(四)

35kv变电站设计—电气主接线10KV侧选择(四)3.3.2 10kV侧根据要求可以草拟以下三种方案:图3-5方案1单母分段带旁母图3-6 方案2单母分段表4-2两种方案进行比较方案项目方案1 单母分段带旁母接线方案2 单母分段可靠用断路器把母线分段后,对重要用户可从不同段引出两个回路, 保证不间断供电,可靠;检修出线断路器,可以不停电用断路器把母线分段后,对重要用户可从不同段引出两个回路,可靠,适合用于屋内布置,可采用手车式断路器,这样可保证进出线检修时不性检修,供电可靠性高中断供电灵活性当一回线路故障时,分段断路器自动将故障段隔离,保证正常段母线不间断供电,不致使重要用户停电当一回线路故障时,分段断路器自动将故障段隔离,保证正常段母线不间断供电,不致使重要用户停电,且扩建方便经济性占地面积大,多一旁路增加了投资占地面积小,但小车投资多方案三:桥式接线方式当有两台变压器和两条线路时,在变压器—线路接线的基础上,在其中间加一连接桥,则成为桥式接线,方案三所示:桥式接线按照连接桥断路器的位置,可以分为内桥和外桥接线两种接线。

桥式接线中,四个回路只有三台断路器,所以用的断路器数量最少,接线也最经济。

内桥式接线的特点是连接桥断路器在变压器侧,其它两台断路器接在线路上。

因此,线路的投入和切除比较方便,并且当线路发生短路故障时,仅故障线路的断路器调闸,不影响其他回路的运行。

但是,当变压器故障时,则与该变压器连接的两台断路器都要调闸,从而影响了一回未发生故障线路的运行。

此外,变压器的投入与切除的操作比较复杂,需要投入和切除与该变压器连接的两台断路器,也影响了一回未故障线路的运行。

鉴于变压器属于可靠性高的设备,故障率远较线路小,一般不经常切换,因此系统中应用内桥接线的较为普遍。

外桥接线的特点恰好与内桥式接线相反,连接桥断路器在线路侧,其他两台断路器接在变压器的回路中。

所以,当线路故障和进行投入与切除操作时,不影响其他回路运行,故外桥接线只适合于线路短,检修和倒闸操作频繁以及设备故障率较小,而变压器由于按照经济运行的要求需要经常切换的情况。

110kv降压变电站的电气主接线选择-4页文档资料

110kv降压变电站的电气主接线选择-4页文档资料

110kv降压变电站的电气主接线选择某变电所的电压等级为110kV,为一降压变电所,在系统中的地位比较重要,高压侧同时接收和变换功率,供35kV负荷和10kV负荷,属于地区一般变电所。

建设规模:(1)110kV进出线共六回,其中两回是与系统连接的双回线,每回送电容量为45MVA,其余四回为单电源出线,送电容量为5MVA。

(2)35kV出线共四回,其中两回出线每回送电容量为8MVA,另外两回出线,送电容量为7MVA、6MVA。

(3)10kV出线共十回,其中六回架空出线,每回输电容量为2MVA,四回电缆线路,每回输电容量为1.8MVA。

1 所用电接线设计和所用变压器的选择变电所的所用电是变电所的重要负荷,因此,在所用电设计时应按照运行可靠、检修和维护方便的要求,考虑变电所发展规划,妥善解决分期建设引起的问题,积极慎重地采用经过鉴定的新技术和新设备,使设计达到经济合理,技术先进,保证变电所安全,经济的运行。

所用变台数的确定:一般变电所装设一台所用变压器,对于枢纽变电所、装有两台以上主变压器的变电所中应装设两台容量相等的所用变压器,互为备用,如果能从变电所外引入一个可靠的低压备用电源时,也可装设一台所用变压器。

根据如上规定,本变电所选用两台容量相等的所用变压器。

所用变压器的容量应按所用负荷选择。

2 电气主接线的选择电气主接线的确定对电力系统整体及发电厂,变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备的选择配电装置选择,继电保护和控制方式的拟定有较大影响,因此,必须正确外理为各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案。

(1)设计的基本要求为:①满足对用户供电必要的可靠性和保证电能质量。

②接线应简单,清晰且操作方便。

③运行上要具有一定的灵活性和检修方便。

④具有经济性,投资少,运行维护费用低。

⑤具有扩建和可能性。

(2)设计主接线的原则:采用分段单母线或双母线的110kV~220kV配电装置,当断路点不允许停电检修时,一般需设置旁路母线。

35KV变电站电气主接线图

35KV变电站电气主接线图
2(TMY-80×10)专 业会签日期35%%P3×2.5%/10.5kV0.5 300/5 30VAAS12/185h/45P20 300/5 30VA不锈钢材DKSC-500/100kVA0.5 150/5 20VA5P20 150/5 20VA额定电压因数≥1.9HY5WZ-12.7/41UNE-10 0.5/6P0.1非线性电阻同右F12右ED同右右右右5P20 1500/5 30VA5P20 1500/5 30VA0.5 1500/5 30VAAS12/185h/4VS1-121600A 20kAUd%=12 YN,d11器同容同电线母I10kV IV 段同同3XRNP-10/1A 1000MVA0.1310/334注:图中虚线部分非本期建设范围。50.5 400/51250A 20kA三芯交联电力电缆接地刀及带电显示器10P20 800/5HY5WZ-12.7/413×240mm AS12/185h/4150/5 10P20 30VA右2左左30VAVS1-122(TMY-80×10)同5P20 1200/51250A 20kA30VAVS1-12AS12/185h/40.5 1200/5AS12/185h/4线2(TMY-80×10)同段母同IV同左左左左左10kV II 段下10kV III 段同总总同母IV受线受IV母线同同同同同器容线同母段线电I母IV同FNGR 10.5-600-10RW10-35 2A,1600MVA35/0.1kV 0.2进线(白庙332)进线(白庙332)Uo/U=26/35kVYJV22-35接地刀及带电显示器3×300mm 0.2s 800/510P20 800/5LCZ-351250A 20kASF60.5 800/510P20 800/5LCZ-35HY5WZ-42/121弹簧机构RW10-35 2A,1600MVACB干式A远期本期Uo/U=26/35kV0.5 600/5#3主变压器SZ9-20000/35接地刀及带电显示器HY5WZ-42/12110P20 600/510P20 600/5母线并联电容器同YJV22-353×240mm 2TMY-80×10LCZ-351250A 20kASF6弹簧机构弹簧机构弹簧机构RW10-35 2A,1600MVA35/0.1kV 0.20.2s 800/510P20 800/510P20 800/51250A 20kAUo/U=26/35kVHY5WZ-42/1210.5 800/5接地刀及带电显示器35/0.1kV 0.2LCZ-35干式LCZ-352YJV22-3523×300mm HY5WZ-42/121LCZ-3510P20 800/50.5 800/51250A 20kALCZ-3510P20 800/50.2s 800/5干式出线(方向预留)出线(方向预留)YJV22-353×300mm Uo/U=26/35kV接地刀及带电显示器21235kV III 段TMY-80×10进线(北仓站)进线(方向预留)远期本期#3变#2主变压器主同母线并联电容器同35kV II 段出线(方向预留)出线(方向预留)出线(方向预留)出线(方向预留)3453006kVAR/1062005.01.287068电气主接线图F初步左左左左段同分IVIII2(TMY-80×10)同同10kV I 段线同段母总同母受线同IVIV同左左左E12.7/41HY5WR2-1250A 20kA同VS1-12同同带电显示器接地刀及0.5 400/5AS12/185h/410P20 800/53×150mm YJV22-10-三芯电力电缆30VA2D出线(方向预留)出线(方向预留)TMY-80×10#3变主#1主变压器同进线(白庙326)进线(白庙326)远期本期母线并联电容器组35kV I 段C出线(水泥厂)出线(方向预留)BA678SF6SF635/0.1kV 0.2RW10-35 2A,1600MVAHY5WZ-42/121RW10-35 2A,1600MVA弹簧机构LCZ-3510P20 800/50.5 800/51250A 20kALCZ-3510P20 800/50.2s 800/53×300mm 接地刀及带电显示器YJV22-35Uo/U=26/35kVSF6干式弹簧机构弹簧机构HY5WZ-42/121接地刀及带电显示器0.5 800/5Uo/U=26/35kV1250A 20kA10P20 800/510P20 800/50.2s 800/535/0.1kV 0.2RW10-35 2A,1600MVA35/0.1kV 0.2LCZ-35SF6LCZ-35干式23×300mm 2YJV22-35HY5WZ-42/121LCZ-351250A 20kA0.5 800/510P20 800/5SF60.2s 800/510P20 800/5LCZ-35干式接地刀及带电显示器Uo/U=26/35kV3×300mm YJV22-352弹簧机构HY5WZ-42/12135/0.1kVCZ-35SF61250A 20kA0.5 800/510P20 800/5干式0.2s 800/510P20 800/5LCZ-35接地刀及带电显示器Uo/U=26/35kVYJV22-353×300mm 2弹簧机构弹簧机构YJV22-353×300mm Uo/U=26/35kV接地刀及带电显示器LCZ-3510P20 800/50.2s 800/510P20 800/50.5 800/51250A 20kALCZ-35HY5WZ-42/121RW10-35 2A,1600MVAHY5WZ-42/121RW10-35 2A,1600MVALCZ-3510P20 800/51250A 20kA0.5 800/5SF635/0.1kV 0.20.2s 800/510P20 800/5干式LCZ-35SF6干式Uo/U=26/35kV接地刀及带电显示器YJV22-353×300mm 235/0.1kV 0.22Ud=4%10.5±5%/0.4kV同下同下LXQ(D)II-10进线(白庙336)过渡出线(北仓312)出线(方向预留)出线(北仓312)出线(方向预留)进线(方向预留)过渡出线(方向预留)出线(方向预留)出线(方向预留)进线(北仓314)过渡进线(白庙327)准核审批比期日例图号设校核计程工设计阶段编辑部:ivpinfo@本图纸由浩辰ICAD软件提供技术支持网易 电气 中国电气行业网络家园;因为专业,所以完美网易 NETEASE ==QQ:447255935Email:xingxinsucai@ TEL:星欣设计图库QQ:396271936

KV35KV10KV电气主接线设计及变压器容量的选择

KV35KV10KV电气主接线设计及变压器容量的选择

目录第一章电气主接线设计及变压器容量的选择第1.1节主变台数和容量的选择 (1)第1.2节主变压器形式的选择 (1)第1.3节主接线方案的技术比较 (2)第1.4节站用变压器选择 (6)第1.5节 10KV电缆出线电抗器的选择 (6)第二章短路电流计算书第2.1节短路电流计算的目的 (7)第2.2节短路电流计算的一般规定 (7)第2.3节短路电流计算步骤 (8)第2.4节变压器及电抗的参数选择 (9)第三章电气设备选型及校验第3.1节变电站网络化解 (15)第3.2节断路器的选择及校验 (20)第3.3节隔离开关的选择及校验 (23)第3.4节熔断器的选择及校验 (24)第3.5节电流互感器的选择及校验 (29)第3.6节电压互感器的选择及校验 (29)第3.7节避雷器的选择及校验 (31)第3.8节母线和电缆 (33)设备选择表 (38)参考文献 (39)第一章电气主接线设计及主变压器容量选择第1.1节台数和容量的选择(1)主变压器的台数和容量,应根据地区供电条件、负荷性质、用电容量和运行方式等综合考虑确定。

(2)主变压器容量一般按变电所、建成后5~10年的规划负荷选择,并适当考虑到远期的负荷发展。

对于城网变电所,主变压器容量应与城市规划相结合。

(3)在有一、二级负荷的变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。

如变电所可由中、低压侧电力网取得跔容量的备用电源时,可装设一台主变压器。

(4)装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的一、二级负荷。

第1.2节主变压器型式的选择(1)110kV及10kV主变压器一般均应选用三相双绕组变压器。

(2)具有三种电压的变电所,如通过主变压器各侧绕组的功率均达到该变压器容量的15%以上,主变压器宜采用三相三绕组变压器。

(3)110kV及以上电压的变压器绕组一般均为YN连接;35kV采用YN连接或D连接,采用YN连接时,其中性点都通过消弧线圈接地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厂用35kV/10kV变电站电气主接线设计选择谭德亭(浙江福莱特玻璃镜业股份有限公司,浙江嘉兴 314001)摘要本文根据生产负荷性质等原始资料简述了厂用35kV/10kV变电站电气主接线设计选择的原则与特点,对厂用变电站电气主接线的设计选择过程进行了分析,并从经济性、可靠性、可持续发展性、操作简单性等方面来考虑,选择最优方案。

关键词:厂用变电站;电气主接线;设计选择On the Plant Substation Main ElectricalConnection with the 35kV/10kV Design OptionsTan Deting(Flat Glass and Mirror Co., Ltd, Zhejiang, Jiaxing, Zhejiang 314001)Abstract According to the nature of the production capacity of the plant with the raw data summarized 35kV/10kV main electric substation wiring design choice principle and characteristics of the plant substation main electrical connection with the design selection process was analyzed, and from an economic, reliable nature, sustainable development, operation simplicity, and so on to consider, choose the best program.Key words:plant substation main electrical connection with the design options1生产负荷性质设计原始资料为保证我公司生产项目的供电需要,需设计一座35kV降压终端变电站,通过10kV电缆线给熔窑、锡槽、退火、冷端、NH站、原料、公用工程等车间及生活供电,Ⅱ类负荷占31.2%,其余为Ⅲ类负荷,对于部分关键设备采用UPS供电。

距我公司待建变电站5km处有一110kV变电站,其电源引自两个发电厂。

根据我公司生产工艺要求,在生产过程中需要不间断供电,否则会对生产造成重大影响,为此考虑一回线路故障或检修时,由另一回线路供电的运行方式。

加上负载容量较大,因此设计由110kV变电站以35kV架空线路(两回,非同杆架设)向我公司待建的35kV变电站供电。

本变电站10kV母线到各出线终端均采用10kV 电缆供电,各馈线负荷如表1所示。

表1变电站10kV出线负荷表序号出线名称设备名称计算容量/kVA负载性质备注1 1#线TM11 干式变压器 1600 Ⅱ类熔化变2 1#线TM12 干式变压器 1600 Ⅱ类熔化变3 1#线TM13 干式变压器 1600 Ⅲ类锡退变(特殊负载采用UPS供电)4 1#线TM14 干式变压器 1600 Ⅲ类锡退变(特殊负载采用UPS供电)5 2#线TM21 干式变压器 1600 Ⅱ类熔化变6 2#线TM22 干式变压器 1600 Ⅱ类熔化变7 2#线TM23 干式变压器 1600 Ⅲ类锡退变(特殊负载采用UPS供电)8 2#线TM24 干式变压器 1600 Ⅲ类锡退变(特殊负载采用UPS供电)9 TM1 干式变压器 2500 Ⅱ类公用变10 TM2 干式变压器 2500 Ⅱ类公用变11 氢站1#-3# 整流变压器 1600/台Ⅲ类H站水电解整流变12 空压机1#-6# 空压机 630/台Ⅲ类H站水电解整流变13 深1#-6# 深加工变压器2000/台Ⅲ类预留该变电站站址地势平坦、地形开阔,交通运输方便。

地层简单,无洪水威胁,最热月平均气温为32.5℃,最冷月平均气温为-4℃,极端最高气温为39.4℃,极端最低气温为-9.8℃。

主导风向为东南风,最大风速为24m/s,地震裂度为7度。

2电气主接线设计选择(1)变电站35kV侧接线型式的确定按照《变电站设计技术规程》的有关规定,对电气主接线图的设计必须满足以下基本要求:①保证供电可靠性和电能质量的基本要求;②应力求接线简单,运行灵活和操作方便;③保证运行、维护和检修的安全和方便;④应尽量降低投资,节约运行费用;⑤满足扩建的要求,实现分期过渡;⑥设备先进、经济合理。

结合我公司项目实际以及上级110kV变电站的条件,本变电站35kV侧主接线考虑以下3种方案。

方案1采用单母线接线,如图1所示。

图1单母线接线采用单母线接线的优点是接线简单清晰,设备少,操作方便,便于扩建和采用成套配电装置。

缺点是不够灵活可靠,任一元件(母线及母线隔离开关等)故障或检修,均需使整个配电装置停电。

单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障的母线段分开后才能恢复非故障段的供电。

方案2采用单母线分段接线,如图2所示。

图2单母线分段接线单母线分段接线就是将一段母线用断路器分为两段,它的优点是接线简单,投资省,操作方便。

单母线分段接线可以减少母线故障的影响范围,提高供电的可靠性。

当一段母线有故障时,分段断路器在继电保护的配合下自动跳闸,切除故障,从而使非故障母线能够保持正常供电。

缺点是当一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期间内停电。

方案3采用外桥接线,如图3所示。

图3外桥接线外桥接线适用于线路较短和变压器按经济运行需要经常切换的情况。

其特点是当变压器发生故障或运行中需要切除时,只要断开本回路的断路器即可,不影响另一回路的工作。

当线路故障时,例如引出线1U 故障,断路器1DL 和3DL 都将断开,因而变压器1TM 也被切除。

为了恢复变压器1TM 的正常运行,必须在断开隔离开关1G 后,再接通断路器1DL 和3DL 。

以上3个方案,所需35kV 断路器和隔离开关数量如表2所示。

表2 35kV 断路器和隔离开关数量表方案比较单母线 接线单母线 分段接线外桥接线断路器台数 4 5 3 隔离开关总数 686上述三种方案从经济性来看,由于三种方案所选变压器型号和容量相同,占地面积基本相同,所以只比较设备,方案2所用设备最多,造价最高,故最不经济;方案3所用设备最少,造价最低,故最经济;方案1介于方案2和方案3之间较经济。

从可靠性来看,方案1中,任一元件(母线及母线隔离开关等)故障或检修,均需使整个配电装置停电,不能满足工厂负荷用电的要求。

方案2中,当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要负荷停电,可以满足生产负荷的要求,可靠性高。

方案3中,当线路发生故障时,需动作与之相连的两台断路器,从而影响一台未发生故障的变压器运行。

因此方案1、方案3可靠性均不如方案2。

从改变运行方式的灵活性来看:方案1因接线简单,所以投切变压器,倒闸操作最简便。

通过以上比较,可以发现方案1以设备少,较经济,倒闸操作简便为主要优点;方案2以供电可靠性高为主要优点;方案3以投资少,经济性好为主要优点。

根据我公司的生产性质和负载要求,需引入二路35kV 专线至厂内,每条线路按25000kVA或更高容量配备,保证生产线双回路供电,从而提高供电的可靠性。

由于考虑到用电经济性和整体项目的分批进行,一期上两台6300kVA 的主变,二期投产的时候再换成12500kVA 的主变。

基于以上考虑,最终选择单母线分段接线方式为本变电所的35kV 侧主接线。

(2)变电所10kV 侧接线型式的确定由于该变电所10kV 母线侧的馈线多达30余回,为此在保证供电可靠性的情况下,可考虑以下几种接线方式:1)双母线接线方式双母线接线方式如图4所示。

该接线方式具有供电可靠、检修方便、调度灵活或便于扩建等优点。

但这种接线所用设备多(特别是隔离开关)、配电装置复杂、经济性较差。

在运行中隔离开关作为操作电器,容易发生误操作,且对实现自动化不便。

尤其当母线系统故障时,须短时切除较多电源和线路,这对大部分负荷是不允许的。

图4 10kV 侧双母线接线方式2)单母线分段接线方式对于直接影响工厂产品质量和威胁窑炉安全的重要负载采用双回路送电,分别接在10kV 的Ⅰ段和Ⅱ段,车间变设联络柜,从而保证不中断供电。

这样在母线故障或检修时,不致对所有出线全部停电。

用断路器把母线分段后,重要负荷可从不同母线分段引出双回路供电,可提高供电的可靠性和灵活性。

当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电,保证重要负荷不停电。

单母线分段接线方式如图5所示。

图5 10kV 侧单母线分段接线方式母线分段后,当分段断路器DL接通运行时,任一段母线发生短路故障时,在继电保护作用下,分段断路器DL和接在故障段上的电源回路断路器便自动断开。

这时非故障段母线可以继续运行,缩小了母线故障的停电范围。

当分段断路器断开运行时,分段断路器除装有继电保护装置外,还装有备用电源自动投入装置。

采用分段断路器断开运行方式,有利于限制短路电流。

综合以上,对重要的负荷出线,在满足可靠性和灵活性的前提下,采用单母线分段接线方式比双母线接线经济,故本变电站10kV侧出线采用单母线分段接线的方式。

正常运行时,分段断路器处于断开位置,即两台变压器各带一段母线。

当负荷小于6300kVA(一期工程)或1台变压器故障、检修时,则断开该变压器低压侧断路器,合分段断路器,由一台主变向两段母线供电。

3结论变电所电气主接线是变电所电气设计的首要部分,也是构成整个工厂供配电系统的重要环节。

它直接影响工厂供配电系统运行的可靠性、灵活性,并对配电装置的布置、继电保护的配置、自动装置和控制方式的选择等起决定性作用。

因此,在确定主接线时,电气主接线要满足必要的供电可靠性、经济性、保证供电的电能质量,另外还要考虑工厂的远景规划,所选择的主接线方式应全面考虑各种情况,不但能适应各种运行方式,还应具有发展和扩建的可能性。

作者简介谭德亭(1971-),副教授/高级工程师,研究方向:电气自动控制、检测技术、高职教育。

(上接第45页)5结论根据清华大学的二电平四重化主电路结构,本文提出了五电平四重化主电路结构,并从该电路结构上以及数学模型上进行了分析,表明该电路结构不仅能够实现大容量的要求,且其得到的基波电压能够满足系统补偿要求;谐波含量少,最低次为11次谐波,且只占基波幅值的1%。

在对该主电路结构分析的基础上,本文通过Matlab/Simulink建立了四重化主电路仿真模型,得到了相关的仿真结果,仿真结果和理论计算的结果一致,也即该装置不仅能够消除大量的谐波,并且能够实时的对系统无功进行补偿,补偿效果良好。

相关文档
最新文档