杂环化合物
第十六章 杂环化合物
双烯合成。
O
OO
=
=
O+
O
△
O 90%
=
=
O 顺丁烯二酸酐
O
吡咯也可以与苯炔、丁炔二酸发生类似的反应
N-H
△
N-H +
C-COOH N-H +
△
C-COOH
N-H -COOH -COOH
噻吩芳香性强不发生反应
3. 吡咯的酸碱性
吡咯表面上 是个仲胺,但实 际上吡咯是一个 很弱的碱,碱性 比苯胺弱得多, 基本可以认为其 无碱性
S
+ (CH3CO)2O
H2PO4 或SnCl4
S
-COCH3 70%
2-乙酰基噻吩
呋喃、噻吩、吡咯进行烷基化反应很难得到一烷基取 代物。
呋喃、噻吩、吡咯亲电取代以α-位为主
2. 加成反应
呋喃、噻吩、吡咯分子中都有一个顺丁二烯型结构, 因此它们又具有不饱和性质:
稳定性增加
共振能
S
N
O
(KJ / mol)152 125.5 90.4 71.1 12.6
① 碱性和亲核性 碱性:叔胺 >> 吡啶 > 吡咯
叔胺
N
pKb: ~ 4
8.8
N
NH2
H
9.37
~ 14
碱性增强
+ HCl N
· Cl -
N+ H 吡啶盐酸盐
吡啶氮原子还可以作为亲核试剂与R-X、Br2等亲电 试剂反应形成吡啶盐
+ Br2 N
· Br N+ Br
② 亲电取代反应
亲电取代反应似硝基苯。
常见芳香性六元杂环化合物(单环、稠环)
《有机化学》杂环化合物
N H Pyrrole
吡咯
N
N H Imidazole
咪唑
N O Isoxazole
异噁唑
N N H Pyrazole
吡唑
S
Thiophene
噻吩
N
S Thiazole
噻唑
N S Isothiazole
异噻唑
4
六元环
含一个杂原子:
N Pyridine
吡啶
OБайду номын сангаас
Pyran
吡喃
含两个杂原子:
N N Pyridazine
在所有的杂环母核中,凡是具有共轭双键体系的五 元环和六元环,都具有芳香性。
五个原子分享六个π电子,电子离域使环上各碳原 子的电子云密度相对升高,这类杂环进行亲电性取 代比苯容易。
呋喃
噻吩
吡咯
11
六元杂环化合物:吡啶 •氮原子sp2杂化 •构成芳香体系的是π-π共轭。 •由于氮原子的电负性较强,使 环上碳原子的电子云密度相对 降低,亲电性取代反应比苯要 难,主要在间位。
N
300 oC
H2SO4, SO3 N 230 oC, 24 h
Br
N
-溴吡啶
SO3H
N
-吡啶磺酸
KNO3 + H2SO4
NO2
N
Fe, 300 oC
N -硝基吡啶
16
亲核取代比苯容易,主要发生在α位上。
了解
N
+ NaNH2 100℃
N
H2O NHNa
N NH2
当α 或 γ位上有易离去基时,较弱的亲核试剂就能 发生亲核取代反应。
代基的杂原子编号为1,并使另一个杂原子的编号
第十二章 杂环化合物
N S O3
S O 3H
NO2
(二)喹啉和异喹啉
N
N
1. 物理性质: 喹啉为无色油状液体,有特殊气体, 沸点238 ℃。异喹啉为无色油状液体,沸点243℃, 熔点26.5℃。它们微溶于水,易溶于有机溶剂。
2. 化学性质:
N O2 浓 H NO3
N
浓 H2S O4
+
N
N O2
N
浓 H 2S O4
N
+
N
H Cl
+
Cl
N H
+
N
B F3
+
B F3
N
+
N
S O3
+
N S O3
+
N
C H 3I
I
+
N
CH3
(2)亲电取代反应 比苯难进行亲电取代反应,主要取代 -位 H。
Br2 Br
N
浓HNO
300℃
N
3
浓H
2 SO 4
N O2
N
浓H
300℃,24h
N
4
2 SO 4
HgSO
S O 3H
N
220℃
C O OH
N
H2
Ni
N
N H
五、稠杂环化合物
(一)吲哚
N H
1. 物理性质:吲哚为白色晶体,熔点52℃,沸点 235℃。加热至沸点时,有分解现象。吲哚可溶于 热水、乙醇及乙醚,有极臭的气味,吲哚能使浸有 盐酸的松木片显红色。
2. 化学性质
+
N H
+
Br2
0℃ N H
有机化学 第二十章杂环化合物
2.加成反应 呋喃、吡咯催化氢化,失去芳香性,得到饱和 的杂环化合物:
四氢吡咯为有机碱,广泛存在于自然界中的某 些生物碱中。
四氢呋喃是重要的有机溶剂。
噻吩中含硫,会使一般的催化剂中毒,氢化时必 须采用特殊催化剂。
工业上通常用开链化合物合成四氢噻吩。四氢噻 吩氧化成四亚甲基砜(或环丁砜),它是一个重要的 溶剂。
(6 )取代呋喃、噻吩、吡咯的定位效应
一取代呋喃、噻吩及吡咯进一步取代,定位效 应应由环上杂原子的α定位效应及取代基共同决定。 例如,3位上有取代基,第二个基团进入环的1位或5 位(即α位),是1位还是5位又由环上原有取代基 的性质决定◦例如,噻吩-3-甲酸溴代,生成5-溴噻 吩-3-甲酸。羧基是间位定位基,因此第二个基团进 入5位即羧基的间位。
一、五元杂环
五元环中含两个或两个(至少有一个氮原子) 以上的杂原子的体系称唑(azole)。如果杂原子不 同,则按氧、硫、氮的顺序编号。
二、六元杂环 三、稠杂环
20.2 五元单杂环化合物
一、呋喃、噻吩、吡咯的物理性质和结构
呋喃、噻吩、吡咯是最重要的含一个杂原子的 五元杂环化合物。它们的重要性不在于它们的单体, 而是它们的衍生物。它们的衍生物不但种类繁多, 而且有些是重要的工业原料,有些具有重要的生理 作用。
叶绿素与蛋白质结合,存在于植物的叶和绿色 的茎中,叶绿素利用卟啉环的多共辗体系易吸收紫 外光,成为激发态,促进光合作用,使光能转变为 化学能。
血红素存在于哺乳动物的红血球中,它与蛋白 质结合成血红蛋白,血红素中的Fe2+具有空的d轨道, 可以可逆地络合氧,在动物体内起到输送氧气的作 用。一氧化碳会使人中毒,其原因之一是因为它与 血红蛋白结合的能力强于氧,从而阻止了血红蛋白 与氧的结合。
杂环化合物
吡咯 —无色液体,b.p. 130~131℃,有弱的苯胺气味 —松木片反应:遇盐酸浸湿的松木片呈红色
二、吡啶的物理性质
▪ 吡啶为具有特殊臭味的无色液体, b.p. 115.5℃, 密度 0.982, 可与水、乙醇、乙醚任意混合
▪ 化学性质稳定 可作溶剂(碱性)
三、五员杂环化合物的化学性质
1.亲电取代反应 反应活性顺序:吡咯>呋喃>噻吩>苯
(1) 卤化 呋喃、噻吩在温和条件下(如溶剂稀释及低温)反应 可得一卤代产物;
Br2, 0℃
O Br O O
Cl2
O
-40℃
+ O Cl Cl O Cl
80%
吡咯卤化常得四卤化物,唯有2-氯吡咯可直接卤化制
得。
Br
Br
Br N Br H
Br2, 0℃
AcONO2
O
-5~-30℃
HNO3/(CH3CO)2O
N H
H O NO2
N NO2 H
AcOPyridine
S
H
H
AcO O NO2
O NO2 35%
混酸
S NO2
(3)磺化
呋喃、噻吩和吡咯常用较温和的磺化试剂-吡 啶与三氧化硫加合物进行反应
SO3, CH2Cl2
N
r. t.
综上所述,五元、六元杂环化合物虽然都具有芳香性,
但其环上的电子云的密度是不同的,其电子云密度由高到 低的顺序是:
S
N
O
N
H
§16-4 杂环化合物的性质
一、呋喃、噻吩、吡咯的物理性质
▪ 呋喃 ▪ —无色液体,b.p. 31.36℃,有氯仿气味 —松木片反应:遇盐酸浸湿松木片呈绿色
有机化学---第17章 杂环化合物
NO2
+
NH2 OH
H2 C CH
CHO
N OH
有利于亲电取代反应的 发生,且主要发生在5, 8 -位。
有利于亲核取代反应的
活化环
N ..
碱性
发生, 且主要发生在2 - 位。
钝化环
39
(1) 碱性 与吡啶相似,具有弱碱性(pkb=9.15)。 (2) 亲电取代反应
NO2
H2SO4 220℃
0.136(0.143) 0.1370(0.147) 0.1714(0.182)
0.1361 0.1383 0.1370 C =C 0.134
0.1430 0.1417 0.1423 C C 0.154
Z Z = O、NH、S
结 论:
① 五元杂环化合物分子中的键长一定程度上发生了平
12
均化,且具有一定程度的不饱和性及环的不稳定性。
N SO3H
N
HNO3 H2SO4
N
+
Br
Br2 , H2SO4 Ag2SO4 ,
② 芳香性较弱,具有部分共轭二烯的性质,因而呋
喃及其衍生物容易进行Diles-Alder反应和一般的亲电
加成反应。
O
O
O
30℃
O H O H
18
+
O O
O
+
O
Br2
CH3 COOK CH3OH
H Br O
H Br
呋喃在Ni催化下,易于加氢生成四氢呋喃(THF) ——良好的溶剂和重要的有机合成原料。
的许多衍生物在医药上具有重要意义,特别是抗疟类
药物。 喹啉及其衍生物通常用Skraup合成法来合成。
杂环化合物定义
杂环化合物定义杂环化合物是一类含有至少一个杂原子(指不是碳原子的原子)的碳氢化合物。
它们的分子结构通常包括一个或多个环,并含有不同的杂原子,如氮、氧、硫等,这赋予了它们独特的化学性质和功能。
一、杂原子1.1 氮杂环化合物其中最常见的是咪唑和嘧啶。
在咪唑中,氮原子是在环上的。
它使它在一些细胞信号转导、 RNA 与 DNA 的生物合成中扮演重要角色。
而嘧啶含有两个氮原子,一个位于环中,另一个则连接着杂环。
1.2 氧杂环化合物这类化合物通常包括呋喃、吡咯烷酮、吡喃等。
多用于制药、农药、染料等领域。
1.3 硫杂环化合物例如噻吩和二恶硫。
其中噻吩可以作为一些染料、润滑油和药物的原料,因为它具有防腐和抗氧化的作用。
二、杂环的特点2.1 可通过不同的杂原子以及相对排列方式制造出种类繁多的化合物。
2.2 杂环化合物具有多种多样的化学和生物活性,因此成为了广泛应用的重要原料。
2.3 杂环亦能改变化合物的分子形状和分子间的各种不同相互作用,从而加强添加物的分子间相互作用力,其作用值得深入挖掘。
三、杂环的应用3.1 杂环化合物广泛应用于医药领域,如抗生素、抗肿瘤药物、心血管药物等的制造。
3.2 在新型材料的研究中,杂环化合物作为一种功能性的化合物,拥有广泛的应用前景。
3.3 杂环化合物也被用于新型铀和镎的萃取分离和控制核材料的制备。
结语杂环化合物是一类特别的有机化合物,以其多样的结构和广阔的应用领域而被广泛使用。
期望在未来,随着人们对其的进一步研究,可以开发出更为优异的化合物及其应用。
有机化学第十六章杂环
按照英文字母顺序排列取代基,并按照取代基的数目和位置进行编 号。
编号顺序
按照取代基的编号顺序进行编号,取代基的编号越小,优先级越高。
分类方法
1
根据杂环母核的环状结构分类:分为单环、双环 和多环杂环化合物。
2
根据杂环母核中杂原子的种类分类:分为含氧、 含氮、含硫和含磷等杂环化合物。
3
根据杂环母核中碳原子和杂原子的成键情况分类: 分为碳-碳键和碳-杂原子键杂环化合物。
杂环化合物的特点
01
02
03
稳定性
杂环化合物通常比相应的 碳环化合物更加稳定,因 为杂原子可以提供额外的 电子,增加环的稳定性。
芳香性
有些杂环化合物具有芳香 性,其特点是具有特殊的 电子分布和化学性质。
反应性
杂环化合物的反应性取决 于其结构和取代基的性质, 有些杂环化合物容易进行 亲电或亲核反应。
THANKS
感谢观看
随着科学技术的发展,杂环化合物在 未来的应用将更加广泛和深入。
同时,随着人们对环境保护和可持续 发展的重视,开发环境友好型的杂环 化合物合成方法和技术也将成为未来 的重要研究方向。
未来发展的方向包括开发新的杂环化 合物合成方法、研究杂环化合物的生 物活性与作用机制、探索杂环化合物 在其他领域的应用等。
杂环化合物的取代反应机理通常涉及亲核和亲电取代反应。
详细描述
杂环化合物的取代反应机理通常涉及亲核和亲电取代反应。在亲核取代反应中,亲核试剂进攻杂环上 的碳原子,形成负离子中间体;在亲电取代反应中,亲电试剂进攻杂环上的碳原子,形成正离子中间 体。这些中间体可以进一步发生重排或水解,最终形成取代产物。
05
在材料科学中的应用
杂环化合物在材料科学中也有广泛的应用,如高分子材料、功能材料和复合材料等。
第十二讲 杂环化合物
S
1 2 a
O
O
基本环环边编号
N O N H N
基本环
N N
N N
O
噻吩并[3,2b]吡咯
呋喃并[3,2b]吡喃
吡唑并[4,5d]恶唑
吡嗪并[2,3d]哒嗪
二、六元杂环化合物
(一)吡啶:
H H H N
吡啶分子 中的键
H H
吡啶分子 中的p轨道
N
吡啶分子中 的共轭体系
吡啶键长平均化程度较高,有芳香性。 吡啶环亲电取代比苯难。 取代基进入间位,且收率偏低。
O
O
O
O
O
O
O
O
O
O
α-吡喃 α-吡喃酮 γ-吡喃 γ-吡喃酮 香豆素
O
H
+
色酮
OH
O
O
γ -吡喃酮的徉盐是芳香体系。
CH=CHPh N PhCH=CH N CH=CHPh
羟醛缩合型
CH3 N H3C N CH3
PhLi
CH2Li N H3C N CH3
C H3I
CH2CH3 N H3C N CH3
烷基化反应
嘧啶的合成
由-二羰基化合物(或类似物)与1,1-二胺类 化合物合成
常用的1,1-二胺类化合物:
H2N O H2N
N
-甲基吡啶
COOH
N
H
N
-呋喃甲醛 3-呋喃甲醛
-吡啶甲酸 3-吡啶甲酸
-吡咯甲酰胺 2-吡咯甲酰胺
-吡啶甲酸 3-吡啶甲酸
互变异构
H N H3C N N H N
H3C
Br
H N N Br
N NH
第10章杂环化合物
第10章杂环化合物第10章杂环化合物§杂环化合物的分类和命名分类1、按照环的多少分类单杂环:常见的是五元杂环和六元杂环,环上的杂原⼦有⼀个或两个。
五元杂环:六元杂环:吡喃没有芳⾹性,⽣成盐后则具有芳⾹性。
稠杂环:由苯环与单杂环或两个以上单杂环稠合⽽成的。
命名常见的基础杂环多数是具有芳⾹性的,命名时作为杂环化合物的母核。
1、⾳译法中⽂名称采⽤⾳译法,⽤带⼝字旁的同⾳汉字表⽰。
对于⽆特定名称的杂环化合物,中国化学会1980年颁布的有机化学命名原则规定:采⽤“杂”字作介词,把杂环看作是相应的碳环母核中碳原⼦被杂原⼦置换后的衍⽣物来命名。
国外现在采⽤的Hantzsch-Widman系统,规范了10元以下⼀般杂环的词尾词⼲的书写格式。
为了正确表明取代基位置,需将杂环母核编号,编号规则主要有:(1)含⼀个杂环原⼦的单杂环,从杂原⼦开始编号。
有时也使⽤希腊字母,把靠近杂原⼦的位置叫做α位,其次是β位,再其次是γ位。
(2)含两个及以上相同杂环原⼦的单杂环,编号从连有氢原⼦的杂原⼦开始,并使另⼀杂原⼦所在位次保持最⼩。
(3)含两个及以上不同杂环原⼦的单杂环,编号从价数⼩杂原⼦开始,价数相同时则从原⼦序数⼩的开始。
因此,常见杂原⼦编号优先顺序为O、S、N。
⼀般常见的稠杂环有特定的编号,或是沿⽤习惯。
§五元杂环化合物结构和物理性质1、结构这三种杂环上的原⼦都是sp2杂化,为平⾯结构。
每个碳原⼦垂直于环平⾯的p轨道有⼀个电⼦,杂原⼦垂直于环平⾯的p轨道有⼆个电⼦。
三种杂环π电⼦数都是6个,符合休克尔规则,都具有⼀定的芳⾹性。
结构特点:杂原⼦sp2杂化,未成键电⼦对在2p轨道上,参与共轭。
从吡咯的共振式看出,杂原⼦氮上部分负电荷分布到了碳原⼦上。
杂原⼦共轭效应是推电⼦的,诱导效应是吸电⼦的。
由于6个π电⼦分布于5个原⼦上,整个环的π电⼦⼏率密度⽐苯⼤,是富电⼦芳环。
因⽽⽐苯环活泼,亲电取代反应⽐苯快得多。
第15章 杂环化合物
54
6
3
7
N2
81
异喹啉
isoquinoline
[命名] 音译名
(Imidazole)
H N
( Thiophene)
O
S
S
H
H
N
NN
N
N
吡咯 呋喃
(Pyrrole)(Furan)
噻吩 噻唑 咪唑 吡唑
( Thiazole)
(Pyrazole)
N N
N
吡啶Pyridine
喹啉Quinoline
异喹啉Isoquinoline
CH3COONO2
O
- 5~30oC
O NO2
(35%)
CH3COONO2
N H
OH-,5oC,Ac2O
N NO2 + H (83%)
NO2
N H
(7%)
当呋喃或吡咯环上连有吸电子基团时,环的稳定性
增 加,可用一般方法硝化。
O2N
N H
CCH3 O
HNO3 H2SO4
O2N
N H
CCH3 + O
N H
吡啶N
P
N
SP2
N 吡咯N
P
H
SP2
C
呋喃O(噻吩S)
P
P
SP2
SP2
“多π”芳杂环———六个电子由五个原子分配,每个碳 原子的电子云密度比苯环高,故亲电取代比苯容易。
H
O
S
N
2.33 10-30C.m 1.70 10-30C.m 6.03 10-30C.m
N原子
给电子共轭>> 吸电子诱导。
吡啶N:吸电子诱导+吸电子共轭
第十二章 杂环化合物
0.1431 0.1361
0.1362 O 0.70D
0.1423 0.1370
0.1714 S 0.51D
芳香性:苯 > 噻吩 > 吡咯 > 呋喃
N H
1.58D
键长
0.1429
0.1371
0.1383 N H
1.81D
8
2、吡咯、呋喃、噻吩的化学性质 (1) 亲电取代反应(Electrophilic Substitution)
N S
浓H2SO4,SO3
N S
1,2-唑取代 在4-位
Br
N
Br2
N AcOH-H2O
H
N N H
N
O2N N
HNO3,H2SO4
N
N
H
H
O2N NH 咪唑环取代在4-位
N
N 发烟H2SO4
S
HgSO4, 250℃ HO3S
N
噻唑环取代以5-位为主
S
25
唑的烷基化或酰基化通常发生在氮原子上。
N CH3I S
碱性:
NH O pKa -2.03
H N O 1.3
H N S 2.4
NH N H 2.5
1,2-唑与1,3-唑的亲电取代反应的活性顺序有:
H N N H 7.0
1,2-唑 1,3-唑
N>
N H
N >
N H
N>
N
S
O
N
> S
N O
24
亲电取代反应
N HNO3,H2SO4 O
O2N N
O
HO3S
H2S
O
NH
3
H2O
H 2S
杂环化合物
2、六元杂环的芳性
吡啶环与苯环很相似,成环六个原子都以SP2杂化, 处于同一平面中,每个原子各提供一个单电子,形 成π66,符合(4n+2)Huckel规则。氮原子上处于SP2 杂化轨道中的孤对电子未参与共轭或成键。
由于N的电负性比C强,
环上电子云密度比苯
N
低,吡啶的亲电取代 反应活性相当于硝基
苯。
(1)碱性 吡啶N上孤对电子处于Sp2杂化轨道中,未参与
共轭,显示一定的碱性,强于苯胺,弱于氨。
N
(2)亲电取代反应
Br
Br2
N
H2SO4
SO3H
•取代反应—亲电取代反应与硝基苯类似,发生 在位;较苯难磺化、硝化和卤化。
•吡啶不能起傅-克反应
(3)亲核取代反应
•与硝基苯相似:吡啶与强的亲核试剂起亲核取代反
HO
CH2OH
CH3 N VB6
杂环化合物在人们的现实生活中有着极其重要的 地位。绝大多数药物和半数以上的其它有机化合物 为杂环化合物。碳水化合物、叶绿素、血红素、吗 啡、黄连素、异烟肼、喜树碱、维生素等等,它们 分子中都含有杂环。
异喹啉 •异喹啉比较重要的衍生物——罂粟碱、黄连素
罂粟花
•下列杂环是本章讨论的基本结构。
•整个体系与苯环相似,但五元杂环为π65富电子体 系,与苯环的π66比较,显然五元杂环的电子云密 度更高。发生亲电取代反应呋喃的活性相当于苯 酚,吡咯的活性相当于苯胺。
O
•五元杂环化合物的共振能为: 呋喃 67KJ/mol 吡咯 88KJ/mol 噻吩 117KJ/mol
•从五元杂环化合物的NMR谱可以看出,环上H 受离域电子环流的影响,H的化学位移δ≈7,与苯 环上的H相当, 这也是它们具有芳香性的标志之一。
有机化学-第十七章 杂环化合物
氮杂-2,4,6-环庚三烯
二、命名 1、音译法命名:根据英文音义,用带口字旁的同音汉字
N H (pyrrole) 吡咯
O (furan) 呋喃
N
N (pyrimidine)
嘧啶
N
(quinoline) 喹啉
S (thiophene)
噻吩
N H (indole) 吲哚
N (pyridine)
吡啶
S
α-噻吩磺酸
呋喃和吡咯对及氧化剂都比较敏感,应使用特殊的试 剂乙酰硝酸酯进行硝化,使用吡啶三氧化硫进行磺化。
+
-
N SO3
SO3H
O
O
α-呋喃磺酸
O
CH3 C ONO2
N
(CH3CO)2O,-10℃
N
NO2
H
H
α-硝基吡咯
吡啶比苯难发生亲电取代反应,反应条件要求和硝基 苯差不多;在发生反应时取代基主要进入β-位。
1 α-呋喃甲醛
HO CH CH OH H2SO4
H CH C H Δ CHO
OH OH
+ 3H2O O CHO
糠醛是没有α-氢的醛,化学性质和苯甲醛相似。
浓 NaOH
+
O CHO
O CH2OH O COOH
2 卟啉化合物
卟啉化合物是一类广泛存在于自然界中的化合物,它
们的分子中都含有卟吩环。
2α314 NhomakorabeaNH
N
δ
β
N
HN
8
5
7
γ
6
卟吩环
CH CH2
吡咯的酸性极弱,介于醇和酚之间。
Δ + KOH(固)
有机化学杂环化合物
活性部位
02
由于杂原子的存在,亲核取代反应也可能发生在杂原子位置,
形成新的杂环化合物。
反应机理
03
亲核试剂首先与杂环化合物形成σ络合物,然后进行质子转移,
生成取代产物。
加成反应
01
电性影响
杂环化合物的电性受其杂原子的电负性和电子云密度影响,使得加成反
应在杂环化合物中具有特定的选择性。
02
加成位置
加成反应一般发生在杂环的电子云密度较高区域,通常是杂原子的邻位
配位化学:杂环化合物 中的非碳原子可提供孤 对电子,与金属离子形 成配位键,因此可作为 配体应用于配位化学和 金属有机化学中。
总之,杂环化合物是一 类具有丰富多样性结构 和性质的有机化合物, 其研究不仅有助于深化 对有机化学基本规律的 认识,还能为相关领域 提供广泛的应用前景。
02
五元杂环化合物
呋喃(furan)
嘧啶(pyrimidine)
结构特征
嘧啶是一个含有两个氮原子的六元杂环化合物,其分子内具有共轭 双键体系。
合成与应用
嘧啶类化合物可通过多种合成方法获得,如Pinner反应等。嘧啶及 其衍生物在生物医药领域具有广泛应用,如抗病毒药物、抗癌药物 等。
生物活性
许多嘧啶类化合物具有显著的生物活性,可作为核酸碱基的类似物 ,干扰核酸的合成与代谢,从而发挥治疗作用。
芳香性
呋喃具有芳香性,由于其分子中 含有一个氧原子,使得其电子云 密度分布较为均匀,呈现出特殊
的稳定性。
合成与应用
呋喃可以通过多种合成方法得到, 并在有机合成中作为重要的中间体 。它可以发生诸多反应,如亲电取 代反应、加成反应等。
物理性质
呋喃为无色液体,具有特殊的气味 ,微溶于水,易溶于有机溶剂。
第十四章 杂环化合物
异噁唑 isoxazole
(2) 含两个杂原子的五元单杂环
噻唑 thiazole
异噻唑 isothiazole
(2) 含两个杂原子的五元单杂环 Ø 母核确定后,编号从杂原子开始,选择杂原子顺 序为:
-O- > -S- > -NH- > -N=
Ø 同时使其他杂原子编号位次尽可能小; Ø 在此基础上,若有取代基,使其位次尽可能小。
吡啶-4-甲酸 2-甲基吡啶 2-methylpyridine pyridine-4-carboxylic acid γ-吡啶甲酸 γ-pyridinecarboxylic acid
(4) 含两个杂原子的六元单杂环
哒嗪 pyridazime
嘧啶 pyrimidine
吡嗪 pyrazine
(4) 含两个杂原子的六元单杂环 Ø 例:
N H
5、根据杂环中碳原子电子云密度: 富π电子杂芳环和缺π电子杂芳环 Ø 五元杂芳环富电子 Ø 六元含氮杂芳环缺电子
N
吡啶
O
呋喃
(二)杂环化合物的命名 命名原则: 按IUPAC命名原则规定,保留特定45个杂环化合物的 俗名和半俗名并作为命名的基础。以此原则为准,我 国多采用“音译法”,即按英文名称的读音,选用同 音口字旁的汉字(“口”字旁表示为杂环),对杂环 化合物进行命名。 注意:命名时需要记住母环名称,编号时不同的母环 有不同的编号方法。
Ø 具有生物活性的杂环骨架化合物:
一、杂环化合物的分类和命名 (一)杂环化合物的分类 1、根据环的大小: 五元杂环和六元杂环
N
吡啶
O
呋喃
2、根据环中所含杂原子种类:N、O、S
O
呋喃
N H
吡咯
第十二章杂环化合物
第⼗⼆章杂环化合物第⼗⼆章杂环化合物⼀、定义和分类分⼦中含有由碳原⼦和其它原⼦共同组成的环的化合物称为杂环化合物。
杂环中的⾮碳原⼦称为杂原⼦,最常见的杂原⼦有N 、O 、S 等。
象环醚、内酯、环酐及内酰胺等似乎也应属于杂环化合物。
但是,由于这些环状化合物容易开环形成脂肪族化合物,其性质⼜与相应的脂肪族化合物类似,因此,⼀般不放在杂环化合物中讨论。
本章讨论的是环系⽐较稳定,并且在性质上具有⼀定芳⾹性的杂环化合物。
根据环数的多少分为单杂环和多杂环;单杂环⼜可根据成环原⼦数的多少分为五元杂环及六元杂环等;多杂环稠杂环、桥杂环及螺杂环,其中以稠杂环较为常见。
⼆、命名杂环化合物的名称包括杂环母体及环上取代基两部分。
杂环母环的命名有⾳译法和系统命名法2种。
⾳译法:是⽤外⽂谐⾳汉字加“⼝”偏旁表⽰杂环母环的名称。
如呋喃等。
系统命名法:是把杂环看作杂原⼦转换了相应碳环中的碳原⼦,命名时以相应的碳环为母体,在碳环名称前加上杂原⼦的名称,称为“某(杂)某”。
如吡啶称为氮(杂)苯,喹啉称为1-氮(杂)萘。
杂环母环的编号规则(1)含1个杂原⼦的杂环,从杂原⼦开始⽤阿拉伯数字或从靠近杂原⼦的碳原⼦开始⽤希腊字母编号。
(2)如有⼏个不同的杂原⼦时,则按O 、S 、-NH-、-N=的先后顺序编号,并使杂原⼦的编号尽可能⼩。
(3)有些稠杂环母环有特定的名称和编号原则。
杂环的命名如下:2-硝基吡咯 4-甲基吡啶 2-甲基-5-苯基噻唑α-硝基吡咯γ-甲基吡啶3-甲基-8-羟基喹啉 1-甲基-7-氯异喹啉 1-甲基-2-巯基咪唑 2-呋喃甲醛(糠醛) 2-噻吩磺酸 3-吡啶甲酰胺α-呋喃甲醛α-噻吩磺酸β-吡啶甲酰胺N H NO 2N CH 3N S C 6H 5CH 3N CH 3CH 3N Cl N CH 3N SH O CHO S SO 3H N CONH 2三、五元杂环化合物(⼀)吡咯、呋喃和噻吩1、结构与芳⾹性吡咯环的4个碳原⼦和1个氮原⼦都以SP 2杂化轨道成键。
杂环化合物
s
+
2H2
MoS2
200℃,200大气压
S
2[O]
浓HNO3
OSO
环丁砜
吲哚(结构见表10-2)是结晶固体,熔点52℃, 沸点235℃。可溶于热水、乙醇及乙醚中。它存在于 煤焦油中,蛋白质腐败时也有吲哚产生。纯吲哚在浓 度极稀时,有花香味,用于香料工业中。
N
(CH3CO)2O,-10℃
H
+ H2O
N NO2 H 51% 2-硝基吡咯
浓HNO3,浓H2SO4
300℃,24h N
NO2
N
8%
3-硝基吡啶
(3)磺化 富电子的芳杂环较易磺化。
室温
+ H2SO4(浓)
S
缺电子芳杂环磺化较难:
SO3H + H2O
S 2―噻吩磺酸
发烟H2SO4
SO3H
HgSO4,220℃
N
N
3―吡啶磺酸
2. 氧化反应 吡咯等五元芳杂环:它们是富电子的,容易与氧化
剂作用。吡咯被氧化导致环的破裂和聚合物的形成。特 别是在酸性环境中,由于H+与氮、氧、硫上的孤对电子 结合,破坏了芳香结构,使环具有环烯的性质,氧化反 应就更容易发生。吡咯和呋喃不能用浓硝酸和浓硫酸进 行硝化和磺化,就是由于它们容易被硝酸和硫酸氧化破 环的缘故。
而沉淀下来,在分析化学中用于测定这些离子。
54
6
3
8-羟基喹啉的化学结构为:
7
8 OH
N 1
2
合成药物及合成染料中多有含杂环化合物;在生 物体内有着重要生理作用的血红素、叶绿素、核酸都 是含有氮的杂环化合物;一些植物色素、植物染料、 维生素和抗菌素也都是含有杂环化合物。查一查在自 然界分布极广数量上约占整个有机物的三分之一的杂 环化合物的几个实例及应用。
杂环化合物
吡
咯
的
结 构
N H
共轭效应是给电子的。 诱导效应是吸电子的。
N
孤电子对在p轨道上。
吡咯 结构: 吡咯N是sp2杂化,孤电子对参与共轭。 反应: 碱性较弱,环易发生亲电取代反应,环上相当于
有一个邻对位定位基。
呋喃、噻吩的结构与吡咯类似。
三. 呋喃、噻吩、吡咯的反应
1. 呋喃、噻吩、吡咯的亲电取代反应
(1)概述 *1 亲电取代反应的活性顺序为:
>
N H
O
>
S
>
>吡啶
*2 取代反应主要发生在α-C上;
*3 吡咯、呋喃对酸及氧化剂比较敏感, 选择试 剂时需要注意;
(2) 呋喃、噻吩、吡咯的硝化反应
呋喃, 噻吩和吡咯易氧化, 一般不用硝酸直接硝化; 通常用比较温和的非质子硝化试剂,如: 硝酸乙酰酯。 反应在低温下进行。
H
H
Na + C2H5OH S
+
S
S
四 含有一个杂原子的六元杂环体系
1. 吡啶的结构
N
=2.20D
孤电子对在 sp2杂化轨道 上。
共轭效应和诱导效应都是吸电子的
吡啶 结构: 吡啶N是sp2杂化,孤电子对不参与共轭。 反应: 碱性较强。环不易发生亲电取代反应但易发生亲核
取代反应。发生亲电取代反应时,环上N起间位定 位基的作用。
噻吩(thiophene)
4
3β
5
1
N H
2α
吡咯(pyrrole)
4
5
3
6
2
7
N H
1
苯并吡咯 吲哚 (indole)
43
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章杂环化合物§10.1 杂环化合物的分类和命名10.1.1 分类1、按照环的多少分类❖单杂环:常见的是五元杂环和六元杂环,环上的杂原子有一个或两个。
❒五元杂环:❒六元杂环:❒吡喃没有芳香性,生成盐后则具有芳香性。
❖稠杂环:由苯环与单杂环或两个以上单杂环稠合而成的。
10.1.2 命名常见的基础杂环多数是具有芳香性的,命名时作为杂环化合物的母核。
1、音译法中文名称采用音译法,用带口字旁的同音汉字表示。
对于无特定名称的杂环化合物,中国化学会1980年颁布的有机化学命名原则规定:采用“杂”字作介词,把杂环看作是相应的碳环母核中碳原子被杂原子置换后的衍生物来命名。
⏹国外现在采用的Hantzsch-Widman系统,规范了10元以下一般杂环的词尾词干的书写格式。
❖为了正确表明取代基位置,需将杂环母核编号,编号规则主要有:(1)含一个杂环原子的单杂环,从杂原子开始编号。
有时也使用希腊字母,把靠近杂原子的位置叫做α位,其次是β位,再其次是γ位。
(2)含两个及以上相同杂环原子的单杂环,编号从连有氢原子的杂原子开始,并使另一杂原子所在位次保持最小。
(3)含两个及以上不同杂环原子的单杂环,编号从价数小杂原子开始,价数相同时则从原子序数小的开始。
❒因此,常见杂原子编号优先顺序为O、S、N。
⏹一般常见的稠杂环有特定的编号,或是沿用习惯。
§10.2 五元杂环化合物10.2.1 结构和物理性质1、结构这三种杂环上的原子都是sp2杂化,为平面结构。
⏹每个碳原子垂直于环平面的p轨道有一个电子,杂原子垂直于环平面的p轨道有二个电子。
❖三种杂环π电子数都是6个,符合休克尔规则,都具有一定的芳香性。
❖结构特点:杂原子sp2杂化,未成键电子对在2p轨道上,参与共轭。
从吡咯的共振式看出,杂原子氮上部分负电荷分布到了碳原子上。
⏹杂原子共轭效应是推电子的,诱导效应是吸电子的。
⏹由于6个π电子分布于5个原子上,整个环的π电子几率密度比苯大,是富电子芳环。
因而比苯环活泼,亲电取代反应比苯快得多。
❖芳香性顺序:苯>噻吩>吡咯>呋喃,这与杂原子电负性顺序相反,从离域能数据也得出这一结论。
❖三种杂环都具有共轭二烯烃结构,芳香性最弱的呋喃可以顺利地进行双烯合成反应。
2、物理性质❖呋喃:无色液体,难溶于水,有氯仿的气味。
与盐酸浸过的松木片反应,显绿色。
❖吡咯:无色液体,有苯胺的气味,难溶于水。
与盐酸浸过的松木片反应,显红色。
❖噻吩:无色液体,不溶于水。
在硫酸存在下和吲哚醌作用,显蓝色。
10.2.2 质子化反应呋喃、噻吩、吡咯在酸的作用下可质子化,反应主要发生在α-C上。
⇨由于α-C的质子化反应,吡咯在强酸作用下会因聚合而被破坏。
在稀的酸性水溶液中,呋喃的质子化在氧上发生并导致水解开环。
10.2.3 亲电取代反应1、亲电取代的活性a、杂原子对环上电子的贡献为:N最多,O其次,S最少;b、亲电取代反应的活性为:吡咯>呋喃>噻吩>苯>吡啶。
c、由于呋喃、吡咯、噻吩环上的π电子云分布不匀,亲电取代反应主要发生在α-位上。
(1)芳香性对亲电取代的影响⏹噻吩、吡咯的芳香性较强,所以易取代而不易加成;⏹呋喃的芳香性较弱,更像二烯醚,亲电取代往往是通过加成-消除的方式进行的。
(2)环的稳定性对亲电取代的影响⏹吡咯在强酸性溶液中容易聚合或开环,因此亲电取代反应不能在强酸性溶液中进行。
⏹噻吩对酸不如吡咯和呋喃敏感,可以用硫酸磺化,用混酸硝化。
2、卤化反应①低温;②溶剂稀释等温和条件3、硝化反应①乙酰基硝酸酯作催化剂;②低温⏹应在较低的温度下,使用温和的硝化剂乙酰硝酸酯。
⏹呋喃比较特殊,先生成稳定的或不稳定的2,5-加成产物,然后加热或用吡啶除去乙酸,得到硝化产物。
原因:呋喃芳香性较弱。
4、磺化反应①吡咯、呋喃:吡啶与三氧化硫的加合物作磺化剂;②噻吩:R.T.下硫酸直接磺化吡咯、呋喃不太稳定,所以须用温和的磺化试剂磺化,常用吡啶与三氧化硫的加合化合物作磺化试剂。
噻吩和硫酸在室温下就能顺利地进行磺化,生成的噻吩磺酸能溶于硫酸中。
常用这个反应除去苯中的噻吩,苯和噻吩的沸点接近,不能用蒸馏的方法分离。
5、Friedel—Crafts酰基化反应呋喃、噻吩的酰化反应在α-C上发生,呋喃要用较温和的催化剂SnCl4、BF3等。
噻吩的酰化反应可以用酸催化。
吡咯的酰化反应,不用催化剂就顺利进行,既能在α-C上发生,又能在N上发生。
但在α-C 上发生比在N上发生容易。
10.2.4 亲电取代反应中的基团定位效应1、β位有取代基(1)β位有第二类定位基,后续基团进入不相邻的α位;(2)β位有第一类定位基,后续基团进入相邻的α位。
2、α位有取代基(1)当Z=O时,不论呋喃的α位是何种类型定位基,则后续基团均进入另一α位。
(2)当Z=N、S时,α位有第二类定位基,后续基团进入不相邻的β位;α位有第一类定位基,则后续基团进入另一α位。
10.2.5 加成反应1、催化加氢反应活性与芳香顺序相反:呋喃>吡咯>噻吩。
噻吩可以停留在二氢化物阶段,也不能用钯催化,因为噻吩能使钯催化剂中毒。
2、双烯合成呋喃、吡咯、噻吩都含有共轭二烯结构,理论上都应该能发生Diels-Alder反应。
芳香性最弱的呋喃很容易进行双烯合成反应,和顺丁烯二酸酐加成,主要生成内式异构体。
吡咯一般不发生双烯合成。
噻吩基本上不发生双烯加成,即使在个别情况下生成也是一个不稳定的中间体,直接失硫转化为别的产物。
10.2.6 吡咯的特殊性质1、酸碱性(1)弱碱性吡咯的碱性极弱,原因是氮上的未共用电子对参与了环的共轭体系,减弱了与H+的结合能力。
碱性:吡咯<苯胺。
(2)弱酸性吡咯氮原子上的氢有微弱的酸性。
⏹酸性:乙醇<吡咯<苯酚❖酸碱性应用:A、吡咯能与固体氢氧化钾加热成为钾盐:B、吡咯与格氏试剂作用生成吡咯卤化镁和烷烃:2、活泼芳环的性质(1)与重氮盐偶联(2)Reimer-Tiemann反应(3)Kolbe反应10.2.7 呋喃、吡咯、噻吩的制法1、呋喃的制备呋喃很容易由呋喃甲醛脱羰基制得2、吡咯的制备吡咯可用呋喃与氨在高温下反应得到。
吡咯还可以用乙炔和甲醛经丁炔二醇合成。
3、噻吩噻吩可用丁烷与硫、丁烯与二氧化硫在高温下反应得到。
§10.3 六元杂环化合物六元杂环化合物中重要的有吡啶、嘧啶和吡喃等。
其中吡啶是重要的有机碱,嘧啶是组成核糖核酸的重要生物碱母体。
10.3.1 吡啶的结构和物理性质 1、结构吡啶是含有一个氮原子的六元杂环化合物,分子中的成键情况和苯相似:由于环上氮原子的吸电子作用,使吡啶成为缺电子芳环。
2、物理性质⏹ 吡啶为有特殊臭味的无色液体;⏹ 熔点-42℃,沸点115.5℃,相对密度0.982; ⏹ 可以和水混溶,能溶解许多有机物和无机物;⏹ 由于吡啶的性质比较稳定,在有机合成中常用作溶剂和反应介质。
10.3.2 吡啶的化学性质❖ 吡啶碱性较强,可看作3°胺;❖ 环不易发生亲电取代反应但易发生亲核取代反应。
1、亲电取代反应吡啶环上氮原子为吸电子基,故吡啶环属于缺电子的芳杂环。
⇨ 吡啶亲电取代反应的特点:杂原子的共轭效应和诱导效应都是吸电子的;未成键电子对在sp 2杂化轨道上,不参与共轭。
a、吡啶环上杂原子N的定位效应和硝基相似,可以看作是一个间位定位基,亲电取代反应主要在β-位上。
b、反应比苯难,条件要求很高;不能发生傅-克烷基化、酰基化反应。
c、硝化、磺化、卤化必须在强烈条件下才能发生:(1)卤化反应吡啶氯代要用AlCl3催化且要加热,苯氯代用FeCl3催化不用加热;(2)磺化反应吡啶磺化要用发烟H2SO4并要加热,苯磺化用浓H2SO4即可顺利进行;(3)硝化反应⏹吡啶环上有推电子基团时,反应活性增高。
2、氧化和还原(1)吡啶环对氧化剂稳定,一般不被酸性高锰酸钾或重铬酸钾氧化。
(2)和氧化剂作用时,通常是侧链烃基被氧化成羧基。
(3)用过氧化氢氧化,可得N-氧化吡啶,N-氧化吡啶较容易发生亲电取代,取代基主要进入γ-位。
(4)吡啶比苯容易还原,用钠加乙醇、催化加氢均使吡啶还原为六氢吡啶。
3、亲核取代反应亲核取代反应是吡啶环特有的反应,取代基进入α-位。
⇨原因:吡啶环电子几率密度低(和苯相比) 。
吡啶与固体氨基钠一起加热,生成2-氨基吡啶。
4、吡啶的碱性吡啶分子中氮原子上有一对未共用电子没有参加共轭,可以和质子结合,碱性比苯胺稍强,但比氨弱。
碱性强弱的顺序:①②因此,吡啶可以和无机酸生成盐。
吡啶在结构上属于环状叔胺,因此可以和卤代烃作用生成季铵盐,加热到290~300℃后,可发生重排反应。
有时,N-烷基化可用活泼亚甲基化合物与I2来完成。
氮上的未共用电子对还可以结合SO3,生成吡啶三氧化硫。
§10.4 喹啉和异喹啉10.4.1 结构及其物理性质1、结构喹啉和异喹啉都是由一个苯环和一个吡啶环稠和而成的。
分子中所有原子都在同一平面内,具有芳香性。
2、物理性质喹啉为无色油状液体,沸点238℃,常用作高沸点溶剂;异喹啉为低熔点固体,熔点26℃。
10.4.2 化学性质喹啉分子中吡啶环上碳原子的电子云密度,低于与之并联的苯环,异喹啉也存在类似情况。
⏹喹啉的亲电取代反应发生在电子云密度较大的苯环上,取代基主要进入5-或8-位。
⏹亲核取代则主要发生在吡啶环的2-或4-位。
⏹受到并联的苯环影响,喹啉的碱性比吡啶稍弱。
1、亲电取代反应:反应比吡啶容易,取代基进入5,8-位。
2、亲核取代反应:取代基进入α-位3、氧化反应:用强氧化剂氧化喹啉时,苯环破裂4、还原反应:发生在吡啶环上10.4.3 喹啉和异喹啉的合成1、Skraup法原料为苯胺和甘油,将原料与脱水剂浓硫酸、氧化剂硝基苯共热制得。
【反应历程】选择不同的苯胺衍生物为原料,可以合成不同的喹啉衍生物。
2、Doebner-Miller反应用不同的α,β-不饱和醛、酮代替甘油,也能合成不同的喹啉衍生物,这一反应称为Doebner-Miller反应。
实际操作为一次投料,但反应是分步进行的。