数学九年级期末考试题答案

合集下载

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。

九年级数学上册期末考试卷(附答案解析)

九年级数学上册期末考试卷(附答案解析)

九年级数学上册期末考试卷(附答案解析)一、选择题(每小题3分,共24分)1.(3分)如图,点D是△ABC的边BC上任一点,AB=4,AD=2,∠DAC=∠B.若△ABD的面积为a,则△ACD的面积为()A.a B.a C.a D.a2.(3分)如果Rt△ABC的各边长都扩大为原来的3倍,那么锐角A的正弦、余弦值是()A.都扩大为原来的3倍B.都缩小为原来的C.没有变化D.不能确定3.(3分)如图,点A、B、C、D、E都是⊙O上的点,=,∠D=128°,则∠B的度数为()A.128°B.126°C.118°D.116°4.(3分)用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9 B.(x﹣4)2=9 C.(x+8)2=23 D.(x﹣8)2=95.(3分)将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为()A.y=2(x+2)2﹣1 B.y=2(x+2)2﹣5C.y=2(x﹣4)2﹣1 D.y=2(x﹣4)2﹣56.(3分)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tan B=()A.2B.2C.D.7.(3分)如图,在长为30m,宽20m的矩形田地中开辟两条宽度相等的道路,已知剩余田地的面积为551m2,求道路的宽度.设道路的宽度为xm,则可列方程()A.(20+x)(30+x)=551 B.(20﹣x)(30﹣x)=551C.20×30﹣20x﹣30x=551 D.20×30﹣20x﹣30x﹣x2=5518.(3分)二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:x…﹣2 ﹣1 0 2 4 5 …y…﹣7 ﹣2 1 1 ﹣7 ﹣14 …下列说法正确的是()A.抛物线的开口向上B.当x>1时,y随x的增大而增大C.二次函数的最大值是2D.抛物线与x轴只有一个交点二.填空题(每小题3分,共18分)9.(3分)若关于x的一元二次方程k2x2+(4k﹣1)x+4=0有两个不同的实数根,则k的取值范围是.10.(3分)如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.11.(3分)如图,若二次函数y=ax2+bx+c(a≠0)的图象的对称轴为直线x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则下列结论:①abc>0;②二次函数的最大值为a+b+c;③a﹣b+c<0;④b2﹣4ac<0;⑤当y>0时,﹣1<x<3.⑥3a+c=0;其中正确的结论有.12.(3分)如图,正方形ABCD中,扇形ABC与扇形BCD的弧交于点E,AB=2cm,则图中阴影部分的面积为cm2.(不求近似值)13.(3分)抛物线y=ax2+bx+c经过点A(0,﹣3),B(2,﹣3),C(﹣2,5),则该抛物线上纵坐标为5的另一个点D的坐标是.14.(3分)车从甲地驶往乙地,行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的反比例函数关系如图所示.若列车要在 2.5h内到达,则速度至少需要提高到km/h.三、解答题(共78分)15.(4分)计算:﹣12022﹣+|﹣2|.16.(6分)如图,数学兴趣小组成员在热气球A上看到正面为横跨河流两岸的大桥BC,并测得B,C两点的角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:,,)17.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.18.(10分)由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?19.(6分)如图,△ABC是等腰三角形,AB=AC,AD⊥BC,以AD为直径作⊙O,分别交AB、AC于点E、F,连接EF.判断EF和BC的位置关系,并证明.20.(12分)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.21.(10分)如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x 轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.22.(6分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?23.(14分)已知抛物线y=﹣x2+bx+c(b、c为常数),若此抛物线与某直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线的函数解析式和顶点D的坐标;(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,H1A2取得最小值时,求n的值.参考答案与解析一、选择题(每小题3分,共24分)1.【分析】首先证明△CAD∽△CBA,得,从而,即可得出答案.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△CAD∽△CBA,∴,∴,∵△ABD的面积为a,∴S△CAD=a,故选:C.2.【分析】根据相似三角形的判定方法可得新三角形与Rt△ABC是相似的,从而可得锐角A 的大小是不变的,即可解答.【解答】解:∵Rt△ABC的各边长都扩大为原来的3倍后,所得的三角形与Rt△ABC是相似的,∴锐角A的大小是不变的,∴锐角A的正弦、余弦值是没有变化,故选:C.3.【分析】连接AC、CE,根据圆内接四边形的性质求出∠CAE,根据圆心角、弧、弦之间的关系定理求出∠ACE,根据圆内接四边形的性质计算,得到答案.【解答】解:连接AC、CE,∵点A、C、D、E都是⊙O上的点,∴∠CAE+∠D=180°,∴∠CAE=180°﹣128°=52°,∵=,∴∠ACE=∠AEC=×(180°﹣52°)=64°,∵点A、B、C、E都是⊙O上的点,∴∠AEC+∠B=180°,∴∠B=180°﹣64°=116°,故选:D.4.【分析】将常数项移动方程右边,方程两边都加上16,左边化为完全平方式,右边合并即可得到结果.【解答】解:x2+8x+7=0,移项得:x2+8x=﹣7,配方得:x2+8x+16=9,即(x+4)2=9.故选:A.5.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【解答】解:将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为:y=2(x﹣1+3)2﹣3+2,即y=2(x+2)2﹣1;故选:A.6.【分析】先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tan B的值即可计算.【解答】解:∵CA是∠BCD的平分线,∴∠DCA=∠ACB,又∵AD∥BC,∴∠ACB=∠CAD,∴∠DAC=∠DCA,∴DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,∵AB⊥AC,∴DE⊥AC(等腰三角形三线合一的性质),∴点F是AC中点,∴AF=CF,∴EF是△CAB的中位线,∴EF=AB=2,∵==1,∴DF=EF=2,在Rt△ADF中,AF==4,则AC=2AF=8,tan B===2.故选:B.7.【分析】由道路的宽度为xm,可得出剩余田地部分可合成长为(30﹣x)m,宽为(20﹣x)m的矩形,根据剩余田地的面积为551m2,即可得出关于x的一元二次方程,此题得解.【解答】解:∵道路的宽度为xm,∴剩余田地部分可合成长为(30﹣x)m,宽为(20﹣x)m的矩形.依题意得:(20﹣x)(30﹣x)=551.故选:B.8.【分析】根据给出的自变量x与函数值y的对应值逐一分析解答即可.【解答】解:∵抛物线经过点(﹣2,﹣7),(4,﹣7),则对称轴为x=1,设抛物线的解析式为y=a(x﹣1)2+k,代入点(0,1)和(﹣1,﹣2)得,,解得,∴抛物线的解析式为y=﹣(x﹣1)2+2,∵a=﹣1,∴抛物线开口向下,故A不符合题意;∵对称轴为x=1,∴当x>1时,y随x的增大而减小,故B不符合题意;∵抛物线的顶点坐标为(1,2),开口向下,∴二次函数的最大值为2,故C符合题意;∵抛物线开口向下,顶点为(1,2),∴抛物线与x轴有两个交点,故D不符合题意.故选:C.二.填空题9.答案为:且k≠0.10.(3分)如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为(1,2)或(﹣1,﹣2).【分析】根据位似变换的性质计算即可.【解答】解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).11.答案为:②⑤⑥.12.答案为:π.13.答案为:(4,5).14.答案为:240.三、解答题(共78分)15.(4分)计算:﹣12022﹣+|﹣2|.【分析】这里,先算﹣12022=﹣1,=4,|﹣2|=2﹣,再进行综合运算.【解答】解:﹣12022﹣+|﹣2|=﹣1﹣4+2﹣=﹣3﹣.16.(6分)如图,数学兴趣小组成员在热气球A上看到正面为横跨河流两岸的大桥BC,并测得B,C两点的角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:,,)【分析】过A作AD⊥BC,交CB延长线于点D,证△ACD是等腰直角三角形,则CD=AD,再由锐角三角函数定义得BD=AD,则AD﹣AD=75,求出AD的长,即可解决问题.【解答】解:过A作AD⊥BC,交CB延长线于点D,如图所示:则∠ACD=45°,∠ABD=53°,在Rt△ACD中,tan∠ACD=,∴CD===AD,在Rt△ABD中,tan∠ABD=,∴BD=≈=AD,由题意得:AD﹣AD=75,解得:AD=300(m),∵此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,∴此时热气球(体积忽略不计)附近的温度约为:20℃﹣×0.6℃=18.2℃,答:此时热气球(体积忽略不计)附近的温度约为18.2℃.17.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.【分析】(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线;(2)AB是直径;故只需证明BC与半径相等即可;(3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN •MC;代入数据可得MN•MC=BM2=8.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴=,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴=.∴BM2=MN•MC.又∵AB是⊙O的直径,=,∴∠AMB=90°,AM=BM.∵AB=8,∴BM=4 .∴MN•MC=BM2=32.18.(10分)由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?【分析】(1)设这两次价格上调的平均增长率为x,利用经过两次上调价格后的价格=原价×(1+这两次价格上调的平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,根据每天该口罩的销售额为315元,即可得出关于m的一元二次方程,解之即可得出m的值,再结合要让顾客获得更大的优惠,即可得出每包应该降价3元.【解答】解:(1)设这两次价格上调的平均增长率为x,依题意得:10(1+x)2=16.9,解得:x1=0.3=30%,x2=﹣2.3(不符合题意,舍去).答:这两次价格上调的平均增长率为30%.(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,依题意得:(10﹣m)(30+5m)=315,整理得:m2﹣4m+3=0,解得:m1=1,m2=3.又∵要让顾客获得更大的优惠,∴m的值为3.答:每包应该降价3元.19.(6分)如图,△ABC是等腰三角形,AB=AC,AD⊥BC,以AD为直径作⊙O,分别交AB、AC于点E、F,连接EF.判断EF和BC的位置关系,并证明.【分析】先利用等腰三角形的性质得到∠EAD=∠FAD,则根据圆周角定理得到=,再利用垂径定理的推理得到AD⊥EF,于是可判断EF∥BC.【解答】解:EF∥BC.理由如下:∵AB=AC,AD⊥BC,∴AD平分∠BAC,即∠EAD=∠FAD,∴=,∵AD为直径,∴AD⊥EF,而AD⊥BC,∴EF∥BC.20.(12分)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.【分析】(1)由题意可知b=0,再将(2,2)代入y=ax2+bx﹣2即可求解析式;(2)①求出A(,0),B(﹣,0),再由2[c+2+(c+2)2]=4(c+2),即可求c;②由题意可得m=﹣,k<0,再由m>6,可得﹣<k<0,联立,得到AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,与x轴的交点P (﹣,0),与y轴的交点为N(0,b),由∠PNO=∠AMO,可得k'=m=﹣,则有线段AB的垂直平分线为y=﹣x++,所以N点纵坐标为n=+,即可求<n<.【解答】解:(1)∵顶点在y轴上,∴b=0,∵抛物线y=ax2+bx﹣2经过(2,2),∴4a﹣2=2,∴a=1,∴y=x2﹣2;(2)①当k=0时,y=c,联立,∴A(,c),B(﹣,c),∵△ABP为等腰直角三角形,∴P点在AB的垂直平分线上,∴P点在抛物线的顶点(0,﹣2)处,∵AB=2,AP=BP=,∴2[c+2+(c+2)2]=4(c+2),∴c=﹣1;②∵c=1,∴y=kx+1,∴m=﹣,由题意可知,k<0,∵m>6,∴﹣<k<0,联立,∴x2﹣kx﹣2=0,∴x A+x B=k,∴AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,∴与x轴的交点P(﹣,0),与y轴的交点为N(0,b),∵PN⊥AB,∴∠PNO=∠AMO,∴=,∴k'=m=﹣,∴y=﹣x+b,∴线段AB的垂直平分线为y=﹣x++,∴N点纵坐标为n=+,∴<n<.21.(10分)如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x 轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.【分析】(1)把A点的坐标代入函数解析式,即可求出答案;(2)解由两函数解析式组成的方程组,求出方程组的解,即可得出B点的坐标,求出C点的坐标,再根据三角形面积公式求即可;(3)根据图象即可求出答案.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1,即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)连接OA、OB,∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由解得,,∴由图象可得:点B的坐标为(﹣1,﹣2),∴;(3)由图象可知不等式组的解集为1<x≤2.22.(6分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?【分析】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.【解答】解:(1)利用列表法得出所有可能的结果,如下表:1 2 3 45 5 10 15 206 6 12 18 247 7 14 21 288 8 16 24 32由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为P甲=.(4分)(2)这个游戏对双方不公平,因为甲获胜的概率P甲=,乙获胜的概率P乙=,,所以,游戏对双方是不公平的.(6分)23.(14分)已知抛物线y=﹣x2+bx+c(b、c为常数),若此抛物线与某直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线的函数解析式和顶点D的坐标;(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,H1A2取得最小值时,求n的值.【分析】(1)用待定系数法求函数的解析式即可;(2)过点P作PG∥y轴交AC于点G,设P(t,﹣t2+2t+3),则G(t,t+1),S△PAC=﹣(t ﹣)2+当t=时,△PAC的面积最大值为,此时P(,);(3)由题意可知H1在抛物线y=﹣x2﹣2x+3上,再由H1A2=(t﹣)2+,可得当t=时,A2有最小值,求出n的值即可.H1【解答】解:(1)将A(﹣1,0),C(2,3)两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(2)设AC的直线解析式为y=kx+b,∴,解得,∴y=x+1,过点P作PG∥y轴交AC于点G,设P(t,﹣t2+2t+3),则G(t,t+1),∴PG=﹣t2+t+2,∴S△PAC=×3×(﹣t2+t+2)=﹣(t﹣)2+,∴当t=时,△PAC的面积最大值为,此时P(,);(3)点H(n,t)为抛物线上的一个动点,点H1与H点关于y轴对称,∴H1(﹣n,t),H1在抛物线y=﹣x2﹣2x+3上,∴t=﹣n2﹣2n+3,∴H1A2=(n+1)2+t2=t2﹣t+4=(t﹣)2+,∴当t=时,H1A2有最小值,∴=﹣n2+2n+3,解得n=1+.。

人教版九年级数学期末考试综合复习测试题(含答案)

人教版九年级数学期末考试综合复习测试题(含答案)

人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。

2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)

2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)

人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。

九年级数学上册期末考试及答案【完整】

九年级数学上册期末考试及答案【完整】

九年级数学上册期末考试及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列各式中,正确的是( )A 3=-B .3=-C 3=±D 3±2.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( ) A .﹣2B .﹣4C .2D .43.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣344.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩5.若α,β是方程2x 2x 20180+-=的两个实数根,则2α3αβ++的值为( ) A .2015B .2016-C .2016D .20196.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3B .c <﹣2C .c <14D .c <17.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( )A .30B .36︒C .60︒D .72︒二、填空题(本大题共6小题,每小题3分,共18分)116.2.分解因式:ab 2﹣4ab+4a=________.3.33x x -=-,则x 的取值范围是__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311xx x x +=--2.已知关于x 的一元二次方程x 2+x +m ﹣1=0. (1)当m =0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m 的取值范围.3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点. (1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集;(3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G . (1)证明:ADG DCE ∆∆≌; (2)连接BF ,证明:AB FB =.5.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.6.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、C6、B7、D8、C9、B 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、42、a (b ﹣2)2.3、3x ≤4、425、6、(,6)三、解答题(本大题共6小题,共72分)1、x=32、(1)x 1x 2(2)m <543、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)4、(1)略;(2)略.5、(1)40,补图详见解析;(2)108°;(3)16.6、(1)到2020年底,全省5G 基站的数量是6万座;(2)2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.。

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.方程x2-2x-24=0的根是( )A.x1=6,x2=4 B.x1=6,x2=-4C.x1=-6,x2=4 D.x1=-6,x2=-42.一个不透明的袋子中装有2个白球和3个黑球,这些球除了颜色外无其他差别,从中摸出3个球,下列事件属于必然事件的是( )A.至少有1个球是白色球B.至少有1个球是黑色球C.至少有2个球是白色球D.至少有2个球是黑色球3.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.16x2-6x+21,有以下结论:①当x>5时,y随x的增大而4.对于二次函数y=12增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中正确结线y=12论的个数为( )A.1 B.2C.3 D.4⏜的长是5.如图,四边形ABCD内接于⊙O,⊙O的半径为3.若∠D=120°,则AC( )πA.πB.23C .2πD .4π6.如图,在△AOB 中,OA =4,OB =6,AB =2√7,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(-4,2)B .(2√3,-4)或(-2√3,4)C .(-2√3,2)或(2√3,-2)D .(2,-2√3)或(-2,2√3)7.如图,AB 是O 的直径,ACD CAB ∠=∠ 2AD = 4AC =,则O 的半径为( )A .B .C .D8.如图,四边形ABCD 中,60A ∠=︒ //AB CD DE AD ⊥交AB 于点E ,以点E 为圆心 、DE 为半径且6DE =的圆交CD 于点F ,则阴影部分的面积为( )A .6π-B .12π-C .6πD .12π 9.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .3(1)6210x x -= B .3(1)6210x -=C .(31)6210x x -=D .36210x =10.如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A ,B 是圆上的两点,O 为圆心,∠AOB =120°,小强从点A 走到点B ,走便民路比走观赏路少走( )A .(6π-6√3)米B .(6π-9√3)米C .(12π-9√3)米D .(12π-18√3)米二、填空题:本题共6个小题,每小题3分,共18分。

人教版九年级上册数学期末考试试卷附答案

人教版九年级上册数学期末考试试卷附答案

人教版九年级上册数学期末考试试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.一元二次方程x 2+2x=0的根是()A .x=0或x=﹣2B .x=0或x=2C .x=0D .x=﹣23.抛物线y=2(x+3)2+5的顶点坐标是()A .(3,5)B .(﹣3,5)C .(3,﹣5)D .(﹣3,﹣5)4.关于x 的方程kx2+2x ﹣1=0有实数根,则k 的取值范围是()A .k≥﹣1B .k≥﹣1且k≠0C .k≤﹣1D .k≤1且k≠05.下列说法正确的是()A .“购买1张彩票就中奖”是不可能事件B .“概率为0.0001的事件”是不可能事件C .“任意画一个三角形,它的内角和等于180°”是必然事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次6.下列函数中,变量y 是x 的反比例函数的是()A .21y x =B .1y x -=-C .23y x =+D .11y x=-7.将抛物线2y x =向左平移2单位,再向上平移3个单位,则所得的抛物线解析式为()A .()223y x =++B .()223y x =-+C .()223y x =+-D .()223y x =--8.如图,△ABC 内接于⊙O ,∠BAC =30°,BC =6,则⊙O 的直径等于()A .10B .C .D .129.方程()()135x x +-=的解是()A .121,3x x ==-B .124,2x x ==-C .121,3x x =-=D .124,2=-=x x 10.正六边形的半径为6cm ,则该正六边形的内切圆面积为()A .248cm πB .236cm πC .224cm πD .227cm π二、填空题11.反比例函数3y x=-中,在每个象限内y 随x 的增大而_______________.12.圆的内接四边形ABCD ,已知∠D=95°,∠B=__________.13.关于x 的一元二次方程220x x a ++=的一个根为1,则方程的另一根为______.14.写出点(-1,3)关于原点对称的点的坐标______________15.反比例函数6y x=当自变量2x =-时,函数值是________.16.若(m-2)22m x --mx+1=0是一元二次方程,则m 的值为______.17.已知点P 在半径为5的⊙O 外,如果设OP =x ,那么x 的取值范围是___________.18.写出经过点(-1,1)的反比例函数的解析式________.19.若二次函数y =x 2﹣2x+k 的部分图象如图所示,则关于x 的一元二次方程x 2﹣2x+k =0的解一个为x 1=3,则方程x 2﹣2x+k =0另一个解x 2=_____.三、解答题20.(1)23(1)9x -=(2)2320x x -+=21.如图,已知⊙O ,用尺规作⊙O 的内接正四边形ABCD .(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)22.如图所示,在⊙O 中直径AB 垂直于弦CD ,垂足为E ,若BE=2cm ,CD=6cm .求⊙O 的半径.23.y 是x 的反比例函数,且当2x =时,13y =-,请你确定该反比例函数的解析式,并求当6y =时,自变量x 的值.24.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现:若每箱以50元的价格出售,平均每天销售80箱,价格每提高1元,平均每天少销售2箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式;25.一对姐弟中只能有一人参加夏季夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.试用列表法或树状图分析这种方法对姐弟俩是否公平.26.如图,已知抛物线2y ax bx c =++(0a ≠)与x 轴交于点A (1,0)和点B (﹣3,0),与y 轴交于点C ,且OC OB =.求此抛物线的解析式.27.已知:如图,在△ABC 中,BC=AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .⑴求证:点D 是AB 的中点;⑵判断DE与⊙O的位置关系,并证明你的结论;⑶若⊙O的直径为18,cosB=13,求DE的长.28.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求出反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)根据图象,直接写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.参考答案1.C2.A3.B4.A 5.C 6.B 7.A 8.D 9.B 10.D 11.增大12.85°13.-314.(1,-3)15.3-【详解】当2x =-时,632y ==--,故答案为:3-.16.﹣2【分析】一元二次方程是指:只含有一个未知数,且未知数最高次数为2次的整式方程,据此即可得答案.【详解】根据定义可得:22220m m ⎧-=⎨-≠⎩,解得:m=-2.17.x >5【详解】解:根据点在圆外的判断方法,由点P 在半径为5的⊙O 外,可得OP >5,即x >5.故答案为:x >5.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.18.1y x=-【详解】解:设反比例函数的解析式为()0ky k x=≠,把点(-1,1)代入反比例函数的解析式,可得k=-1,所以反比例函数的解析式为1y x =-,故答案为:1y x=-.19.-1【分析】利用抛物线与x 轴的交点问题,利用关于x 的一元二次方程x 2-2x+k=0的解一个为x 1=3得到二次函数y=x 2-2x+k 与x 轴的一个交点坐标为(3,0),然后利用抛物线的对称性得到二次函数y=x 2-2x+k 与x 轴的另一个交点坐标为(-1,0),从而得到方程x 2-2x+k=0另一个解.【详解】解:∵关于x 的一元二次方程x 2﹣2x+k =0的解一个为x 1=3,∴二次函数y =x 2﹣2x+k 与x 轴的一个交点坐标为(3,0),∵抛物线的对称轴为直线x =1,∴二次函数y =x 2﹣2x+k 与x 轴的另一个交点坐标为(﹣1,0),∴方程x 2﹣2x+k =0另一个解x 2=﹣1.故答案为﹣1.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.20.(1)121,1x x ==;(2)121,2x x ==【详解】试题分析:(1)利用直接开平方法解方程即可;(2)利用因式分解法解方程即可.试题解析:(1)()2319,x -=()213x -=,()1x -=,121,1x x ==;(2)2320,x x -+=()()120x x --=,121,2x x ==.21.答案见解析.【详解】试题分析:画圆的一条直径AC ,作这条直径的中垂线交⊙O 于点BD ,连结ABCD 就是圆内接正四边形ABCD .试题解析:如图所示,四边形ABCD 即为所求:考点:正多边形和圆;作图—复杂作图.22.134cm 【分析】连接OD ,设半径为r ,由垂径定理求得DE 的长,在RT △OED 中,根据勾股定理列出方程,解方程求得r 即可.【详解】解:连接OD ,设半径为r ,∵AB ⊥CD ,CD=6cm ,∴CE=DE=3cm ,∵BE=2cm ,∴OE=r-2,∴在Rt △OED 中,r²=3²+(r-2)²,解得:r=134,即⊙O 的半径为134cm .【点睛】本题考查垂径定理、勾股定理,熟练掌握垂径定理是解答的关键.23.23y x =-,19x =-【详解】解:设反比例函数的解析式为k y x=,∵当2x =时,13y =-,2.3k ∴=-∴该反比例函数的解析式为2.3y x=-当6y =时,则有263x-=,解得:1.9x =-24.(1)2180y x =-+(2)222607200w x x =-+-【分析】(1)根据题意易得:平均每天销售量(y )与销售价x (元/箱)之间的函数关系式为()80250y x =--,化简即可;(2)根据销售利润w (元)=每箱的销售利润×每天的销售量,得到函数解析式即可.(1)(1)由题意得:()80250y x =--,化简得:2180y x =-+;(2)由题(1)可知:()40w x y =- ()()402180x x =--+化简得:222607200w x x =-+-.【点睛】本题考查了二次函数的简单应用.解题的关键是正确理解题意,确定变量,明确其中的数量关系,建立函数模型.25.不公平,理由见解析.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及抽取的两张卡片上的数字之和是5的倍数的情况与抽取的两张卡片上的数字之和是3的倍数的情况,再利用概率公式求得其概率,比较概率的大小,即可知这种方法对姐弟俩是否公平.【详解】解:画树状图得:∵共有16种等可能的结果,抽取的两张卡片上的数字之和是5的倍数有4种情况,抽取的两张卡片上的数字之和是3的倍数有5中情况,∴P (姐姐参加)=416=14,P (弟弟参加)=516,∴不公平.【点睛】本题考查的是游戏公平性的判断及利用列表法或树状图法求概率,理解题意,利用列表法或树状图法求解是解题关键.26.223y x x =--+【分析】根据题意易得点C 坐标,利用待定系数法求解析式将A (1,0)、B (﹣3,0),C (0,3)代入抛物线2y ax bx c =++即可求解.【详解】解:∵点B (﹣3,0),∴3OB =,∵OC OB =,∴3OC =,即点C (0,3),将A (1,0)、B (﹣3,0),C (0,3)代入抛物线2y ax bx c =++,得:00933a b c a b c c =++⎧⎪=-+⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为:223y x x =--+.27.(1)见解析;(2)相切,证明见解析;(3)42【详解】(1)证明:连接CD ,∵BC为直径,∴∠BDC=90°,∴CD⊥AB,又∵AC=BC,∴AD=BD,∴点D是AB的中点.(2)DE是⊙O的切线.证明:连接OD,∵OB=OC,AD=BD∴DO是△ABC的中位线,∴DO//AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(3)∵AC=BC,∴∠B=∠A,∴cosB=cosA=1 3,在Rt△BDC中,∵cosB=13BDBC=,BC=18,∴BD=6,∴AD=6,在Rt△ADE中∵cosA=13AEAD=,∴AE=2,∴=28.(1)2 yx =(2)P的坐标为(﹣2,0)或(8,0)(3)1<x<211【分析】(1)先把点A (1,a )代入y=-x+3中求出a 得到A (1,2)然后把A 点坐标代入y=k x中求出k 得到反比例函数的表达式;(2)先确定C (3,0),设P (x ,0),利用三角形面积公式得到12×|3-x|×2=5,解方程可得到P 的坐标;(3)先解方程组23y x y x ⎧=⎪⎨⎪=-+⎩得B (2,1),然后在第一象限内写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.(1)把点A (1,a )代入y =﹣x+3,得a =2,∴A (1,2),把A (1,2)代入反比例函数y =k x ,∴k =1×2=2;∴反比例函数的表达式为2y x=;(2)当y =0时,﹣x+3=0,解得x =3,∴C (3,0),设P (x ,0),∴PC =|3﹣x|,∴S △APC =12×|3﹣x|×2=5,∴x =﹣2或x =8,∴P 的坐标为(﹣2,0)或(8,0);(3)解方程组23y x y x ⎧=⎪⎨⎪=-+⎩得12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,∴B (2,1),∴当x >0时,一次函数的值大于反比例函数的值的x 的取值范围为:1<x <2.。

九年级上册数学期末试卷【含答案】

九年级上册数学期末试卷【含答案】

九年级上册数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则下列哪个选项一定成立?A. a + c > b + cB. a c > b cC. ac > bcD. a/c > b/c (c ≠ 0)2. 下列哪个数是实数?A. √-1B. 3/0C. 2.5D. √-93. 已知一组数据的平均数为10,方差为4,则这组数据中不可能出现的值为?A. 6B. 12C. 8D. 144. 下列哪个函数是奇函数?A. y = x²B. y = |x|C. y = x³D. y = x² + 15. 在直角坐标系中,点P(2, -3)关于原点的对称点是?A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)二、判断题(每题1分,共5分)1. 若 a > b,则 1/a < 1/b。

()2. 任何两个奇数之和都是偶数。

()3. 方程x² + 1 = 0 有实数解。

()4. 一组数据的众数可以不止一个。

()5. 在直角坐标系中,所有关于y轴对称的点的横坐标互为相反数。

()三、填空题(每题1分,共5分)1. 若a² = b²,则 a = ______ 或 a = ______。

2. 两个连续奇数的平均数是 ______。

3. 函数 y = 2x + 3 的图像是一条 ______。

4. 若一组数据从小到大排列为 2, 4, 5, 7, 9,则这组数据的中位数是 ______。

5. 在直角坐标系中,点 (3, -2) 的第四象限的对称点是 ______。

四、简答题(每题2分,共10分)1. 简述有理数的定义。

2. 什么是算术平方根?如何计算一个数的算术平方根?3. 解释一次函数的图像特点。

4. 什么是众数?如何找出一组数据的众数?5. 简述坐标轴上点的坐标特征。

九年级期末考试(数学)试题含答案

九年级期末考试(数学)试题含答案

九年级期末考试(数学)(考试总分:120 分)一、单选题(本题共计8小题,总分24分)1.(3分)下列成语描述的事件是随机事件的是( )A.海枯石烂B.画饼充饥C.瓜熟蒂落D.守株待兔2.(3分)窗花剪纸是我国传统民间艺术。

在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(3分)已知关于x的一元二次方程(a+3)x2-2x+a2-9=0有一个根为x=0,则a的值为( )A.0B.±3C.3D.-3x2+1先向左平移2个单位,再向下平移3个单位,得到的抛物线4.(3分)把抛物线y=25的解析式为( )(x−2)2+4A.y=25(x+2)2−2B.y=25(x+2)2−4C.y=25(x−2)2+2D.y=255.(3分)如图,在⊙O中,AE是直径,半径OC⊙弦AB于点D,连接BE,若AB=2√7,CD=1,则BE的长是( )A.5B.6C.7D.86.(3分)如图,将⊙ABC绕点C顺时针方向旋转40°,得⊙A′B′C.若AC⊙A′B′,则⊙A等于( )A.50°B.60°C.70°D.80°的图象过矩形OABC的顶点B,OA,OC分别在x轴、y 7.(3分)如图,反比例函数y=kx轴的正半轴上,矩形OABC的对角线OB,AC交于点E(1,2),则k的值为( )A.4B.8C.-4D.-88.(3分)如图,在四边形ABCD中,AD∥BC,⊙A=45°,⊙C=90°,AD=4cm,CD=3cm.动点M,N同时从点A出发,点M以√2cm/s的速度沿AB向终点B运动,点N以2cm/s 的速度沿折线AD—DC向终点C运动.设点N的运动时间为t(s),⊙AMN的面积为S(cm2),则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.二、填空题(本题共计8小题,总分24分)9.(3分)方程2x2-5=-6x化一般式为______.10.(3分)在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,小刚从中任意抽取一张卡纸,抽到的图形是中心对称图形的概率为______.11.(3分)已知抛物线y=x2-2x-3,则它的顶点坐标是______.12.(3分)在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则a+b=______.13.(3分)一个圆锥的侧面积是底面积的4倍,则这个圆锥的侧面展开图的中心角的度数为______.14.(3分)若a,b是一元二次方程x2-2020x-2021=0的两根,则a2-2021a-b=______.15.(3分)如图,半径为2的⊙O中有弦AB,以AB为折痕对折,劣弧恰好经过圆心O,则弦AB的长度为______.16.(3分)如图,在Rt⊙ABC中,⊙C=90°,AC=8,BC=6,将⊙ABC绕点C旋转,得到⊙A′B′C,点A的对应点为A′,P为A'B'的中点,连接BP.在旋转的过程中,线段BP长度的最大值为______.三、解答题(本题共计9小题,总分72分)17.(8分)解一元二次方程(1).2(x+1)2=3(x+1);(2).2x2-9x+8=0.18.(6分)如图,⊙ABC是⊙O的内接三角形,⊙BAC的外角平分线AP交⊙O于点P,连接PB,PC.求证:PB=PC.19.(6分)如图,⊙ABC是直角三角形,⊙C=90°,将⊙ABC绕点B逆时针旋转60°至⊙DEB,点E落在AB上.DE延长线交AC所在直线于点F.(1).求⊙AFE的度数;(2).求证:AF+EF=DE.20.(6分)“黄冈名师课堂”'是集黄冈众多名师的网络课堂,自上线以来受到了广大师生,家长和社会各界的好评.经统计,2020年10月在线听课的学生为66250人次,12月在线听课学生增加至95400人次。

九年级数学上册期末考试题及答案【免费】

九年级数学上册期末考试题及答案【免费】

九年级数学上册期末考试题及答案【免费】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. ﹣3的绝对值是()A. ﹣3B. 3C. -D.2.已知x+ =6, 则x2+ =()A. 38B. 36C. 34D. 323. 抛物线y=3(x﹣2)2+5的顶点坐标是()A. (﹣2, 5)B. (﹣2, ﹣5)C. (2, 5)D. (2, ﹣5)4.当1<a<2时, 代数式|a-2|+|1-a|的值是()A. -1B. 1C. 3D. -35. 下列各组数中, 能作为一个三角形三边边长的是()A. 1, 1, 2B. 1, 2, 4C. 2, 3, 4D. 2, 3, 56.一个等腰三角形的两条边长分别是方程的两根, 则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或97.如图, 某小区计划在一块长为32m, 宽为20m的矩形空地上修建三条同样宽的道路, 剩余的空地上种植草坪, 使草坪的面积为570m2.若设道路的宽为xm, 则下面所列方程正确的是()A. (32﹣2x)(20﹣x)=570B. 32x+2×20x=32×20﹣570C. (32﹣x)(20﹣x)=32×20﹣570D. 32x+2×20x﹣2x2=5708.如图, 是函数上两点, 为一动点, 作轴, 轴, 下列说法正确的是( )①;②;③若, 则平分;④若, 则A. ①③B. ②③C. ②④D. ③④9.根据圆规作图的痕迹, 可用直尺成功找到三角形外心的是()A. B.C. D.10.如图, 在矩形纸片ABCD中, AB=3, 点E在边BC上, 将△ABE沿直线AE折叠, 点B恰好落在对角线AC上的点F处, 若∠EAC=∠ECA, 则AC的长是()A. B. 6 C. 4 D. 5二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: __________.2. 分解因式: __________.3. 已知二次函数y=x2, 当x>0时, y随x的增大而_____(填“增大”或“减小”).4.如图, 中, 为的中点, 是上一点, 连接并延长交于, , 且, , 那么的长度为__________.5. 如图, M、N是正方形ABCD的边CD上的两个动点, 满足, 连接AC交BN于点E, 连接DE交AM于点F, 连接CF, 若正方形的边长为6, 则线段CF的最小值是__________.6. PM2.5是指大气中直径小于或等于0.0000025m的颗粒物, 将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 先化简, 再求值: , 其中满足.3. 如图, 在平面直角坐标系中, 抛物线y=ax2+2x+c与x轴交于A(﹣1, 0)B (3, 0)两点, 与y轴交于点C, 点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M, 使△BDM的周长最小, 求出点M的坐标;(3)试探究:在拋物线上是否存在点P, 使以点A, P, C为顶点, AC为直角边的三角形是直角三角形?若存在, 请求出符合条件的点P的坐标;若不存在, 请说明理由.4. 如图, AD是△ABC的外接圆⊙O的直径, 点P在BC延长线上, 且满足∠PAC=∠B.(1)求证: PA是⊙O的切线;(2)弦CE⊥AD交AB于点F, 若AF•AB=12 , 求AC的长.5. 某初中学校举行毛笔书法大赛, 对各年级同学的获奖情况进行了统计, 并绘制了如下两幅不完整的统计图, 请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有来自七年级, 有来自八年级, 其他同学均来自九年级, 现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛, 请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.6. 东东玩具商店用500元购进一批悠悠球, 很受中小学生欢迎, 悠悠球很快售完, 接着又用900元购进第二批这种悠悠球, 所购数量是第一批数量的1.5倍, 但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同, 且全部售完后总利润不低于25%, 那么每套悠悠球的售价至少是多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、C3、C4、B5、C6、A7、A8、B9、C10、B二、填空题(本大题共6小题, 每小题3分, 共18分)12. ;3、增大.4、3 2;5、36.2.5×10-6三、解答题(本大题共6小题, 共72分)1、32 x=2、3.3.(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M 的坐标为(0, 3);(3)符合条件的点P的坐标为(, )或(, ﹣),4.(1)略;(2)AC=2 .5.(1)答案见解析;(2).6、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是35元.。

2023年人教版九年级数学下册期末考试题(含答案)

2023年人教版九年级数学下册期末考试题(含答案)

2023年人教版九年级数学下册期末考试题(含答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.13-的绝对值是( ) A .3 B .3- C .13 D .13- 2.如果y,那么y x 的算术平方根是( )A .2B .3C .9D .±33.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=24.在△ABC 中,AB=10,,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个6.如果关于x 的一元二次方程2310kx x -+=有两个实数根,那么k 的取值范围是( )A .94kB .94k -且0k ≠C .94k 且0k ≠D .94k - 7.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x <3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤8.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.149.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=23,则线段CD的长是()A.2 B3C.32D33210.如图,点A,B在双曲线y=3x(x>0)上,点C在双曲线y=1x(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A .2B .22C .4D .32二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23a a ⋅=______________.2.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_______.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为__________.5.如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B '处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C '处,EF 为折痕,连接AC '.若CF =3,则tan B AC ''∠=__________.6.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.三、解答题(本大题共6小题,共72分)1.解方程:311(1)(2)x x x x -=--+2.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.3.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)4.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、A4、C5、A6、C7、A8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a 52、(y ﹣1)2(x ﹣1)2.3、-124、55°5、146、25三、解答题(本大题共6小题,共72分)1、原方程无解.2、(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.3、(1)略 (2)23π-4、(1)略;(2)112.5°.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。

2022-2023学年人教版九年级数学第一学期期末测试题含答案

2022-2023学年人教版九年级数学第一学期期末测试题含答案

第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题。

(每题5分,共45分)1.在下列图形中,是中心对称图形的是( )A.B.C.D.2.下列事件属于必然事件的是( )A.打开电视,正在播放新闻B.我们班的同学将会有人成为航天员C.实数0<a ,则02<aD.新疆的冬天不下雪3.若关于x 的一元二次方程01)12=++-x x k (有两个实数根,则k 的取值范围是( ) A.45≤k B.45>kC.45<k 且1≠kD.45≤k 且1≠k4.用配方法解方程0982=++x x ,变形后的结果正确的是 A.9)4(2-=+x B.7)4(2-=+x C.25)4(2=+xD.7)4(2=+x5.二次函数3)1(2+-=x y 的图象的顶点坐标是 A.)3,1(-B.)3,1(C.)3,1(--D.)3,1(-6.如图,在圆O 中,所对的圆周角50=∠ACB ,若P 为上一点,55=∠AOP ,则=∠POB ( ) A.30B.45 C.55D.60第6题图 第7题图7.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形生日礼帽.如图,圆锥帽底面半径为cm 9,母线长为cm 36,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为( ) A.2648cm ΠB.2432cm ΠC.2324cm ΠD.2216cm Π8.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )A.B. C. D.9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A.10890)1050)(20180=--+xx ( B.10890)1018050)(20=---x x (C.180902050)108050(=⨯---x xD.108902050)1050)(180=⨯--+xx (二、 填空题。

四川省达州市通川区2025届九年级数学第一学期期末考试试题含解析

四川省达州市通川区2025届九年级数学第一学期期末考试试题含解析

四川省达州市通川区2025届九年级数学第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.如图,在ABC 中,点D ,E 分别为AB ,AC 边上的点,且//DE BC ,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是( )A .AD AE AB EC = B .AG AE GF BD = C .OD AE OC AC = D .AG AC AF EC= 2.已知关于x 的方程20ax bx c ++=,若0a b c ++=,则该方程一定有一个根为( )A .-1B .0C .1D .1或-13.已知y=(m +2)x |m|+2是关于x 的二次函数,那么m 的值为( )A .﹣2B .2C .±2D .04.若气象部门预报明天下雨的概率是65%,下列说法正确的是( )A .明天一定会下雨B .明天一定不会下雨C .明天下雨的可能性较大D .明天下雨的可能性较小5.下列一元二次方程中有两个不相等的实数根的方程是( )A .2(1)0x -=B .22190x x +-=C .240x +=D .210x x ++=6.抛物线y =x 2﹣2x+3的顶点坐标是( )A .(1,3)B .(﹣1,3)C .(1,2)D .(﹣1,2)7.掷一枚质地均匀的硬币6次,下列说法正确的是( )A .必有3次正面朝上B .可能有3次正面朝上C .至少有1次正面朝上D .不可能有6次正面朝上8.如图,在4×4的网格中,点A,B,C,D,H均在网格的格点上,下面结论:①点H是△ABD的内心②点H是△ABD的外心③点H是△BCD的外心④点H是△ADC的外心其中正确的有()A.1个B.2个C.3个D.4个9.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长是()A.45B.34C.23D.1210.袋子中有4个黑球和3个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机从袋中摸出一个球,摸到白球的概率为( )A.37B.34C.17D.1311.如图,DE是ABC的中位线,则ADE与ABC的面积的比是()A.1:2B.1:3C.1:4D.1:912.如图,,PA PB 分别与O 相切于,A B 点,C 为O 上一点,66P ∠=︒,则C ∠=( )A .57︒B .60︒C .63︒D .66︒二、填空题(每题4分,共24分)13.如图,ABC ∆中,点D 在AC 边上.若ABC ADB ∆∆,3AB =,4AC =,则AD 的长为______.14.已知O 的半径3,cm 点P 在O 内,则OP _________3cm (填>或=,<)15.若⊙O 是等边△ABC 的外接圆,⊙O 的半径为2,则等边△ABC 的边长为__.16.对于任何实数a ,b ,c ,d ,我们都规定符号的意义是a c b dad bc =-,按照这个规定请你计算:当2310x x -+=时,12x x +-31x x -的值为________.17.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .18.如图,在正方形ABCD 中,对角线AC 、BD 交于点O ,E 是BC 的中点,DE 交AC 于点F ,则tan ∠BDE =______.三、解答题(共78分)19.(8分)如图,一次函数y=kx+b 与反比例函数y=(x >0)的图象交于A (m ,6),B (n ,3)两点. (1)求一次函数的解析式;(2)根据图象直接写出kx+b ﹣>0时x 的取值范围.(3)若M 是x 轴上一点,且△MOB 和△AOB 的面积相等,求M 点坐标.20.(8分)已知抛物线y =x 2+(1﹣2a )x ﹣2a (a 是常数).(1)证明:该抛物线与x 轴总有交点;(2)设该抛物线与x 轴的一个交点为A (m ,0),若2<m ≤5,求a 的取值范围;(3)在(2)的条件下,若a 为整数,将抛物线在x 轴下方的部分沿x 轴向上翻折,其余部分保持不变,得到一个新图象G ,请你结合新图象,探究直线y =kx +1(k 为常数)与新图象G 公共点个数的情况.21.(8分)如图,在△ABC 中,点O 为BC 边上一点,⊙O 经过A 、B 两点,与BC 边交于点E ,点F 为BE 下方半圆弧上一点,FE ⊥AC ,垂足为D ,∠BEF =2∠F .(1)求证:AC 为⊙O 切线.(2)若AB =5,DF =4,求⊙O 半径长.22.(10分)在Rt ABC ∆中,90,1ACB AC ∠=︒= , 记ABC α∠=,点D 为射线BC 上的动点,连接AD ,将射线DA 绕点D 顺时针旋转α角后得到射线DE ,过点A 作AD 的垂线,与射线DE 交于点P ,点B 关于点D 的对称点为Q ,连接PQ .(1)当ABD ∆为等边三角形时,① 依题意补全图1;②PQ 的长为________;(2)如图2,当45α=︒,且43BD =时, 求证:PD PQ =; (3)设BC t =, 当PD PQ =时,直接写出BD 的长. (用含t 的代数式表示)23.(10分)学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.24.(10分)某苗圃用花盆培育某种花苗,经过试验发现,每盆植人3株时,平均每株盈利3元.在同样的栽培条件下,若每盆增加1株,平均每株盈利就减少0.5元,要使每盆的盈利为10元,且每盆植入株数尽可能少,每盆应植入多少株?25.(12分)已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式;26.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C (1,0),tan ∠BAC =34. (1)写出点B 的坐标;(2)在x 轴上找一点D ,连接BD ,使得△ADB 与△ABC 相似(不包括全等),并求点D 的坐标; (3)在(2)的条件下,如果点P 从点A 出发,以2cm /秒的速度沿AB 向点B 运动,同时点Q 从点D 出发,以1cm /秒的速度沿DA 向点A 运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t .问是否存在这样的t 使得△APQ 与△ADB 相似?如存在,请求出t 的值;如不存在,请说明理由.参考答案一、选择题(每题4分,共48分) 1、C 【分析】由//DE BC 可得到DEO ∽CBO ,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】解:A.∵//DE BC , ∴AD AE AB AC= ,故不正确; B. ∵//DE BC , ∴AG AE GF EC = ,故不正确; C. ∵//DE BC ,∴ADE ∽ABC ,DEO ∽CBO ,DE AE BC AC ∴=,DE OD BC OC= . OD AE OC AC∴= ,故正确; D. ∵//DE BC ,∴ AG AE AF AC= ,故不正确; 故选C .【点睛】本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.2、C【分析】由题意将0a b c ++=变形为c a b =--并代入原方程左边,再将方程左边因式分解即可.【详解】解:依题意得c a b =--,原方程化为20ax bx a b +--=,即(1)(1)(1)0a x x b x +-+-=,∴(1)()0x ax a b -++=,∴1x =为原方程的一个根.故选:C .【点睛】本题考查一元二次方程解的定义.注意掌握方程的解是使方程左右两边成立的未知数的值.3、B 【解析】试题解析:(2)2my m x =++是关于x 的二次函数, 202,m m +≠⎧∴⎨=⎩解得: 2.m =故选B.4、C【分析】根据概率的意义找到正确选项即可.【详解】解:气象部门预报明天下雨的概率是65%,说明明天下雨的可能性比较大,所以只有C 合题意. 故选:C .【点睛】此题主要考查了概率的意义,关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生. 5、B【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【详解】A 、△=0,方程有两个相等的实数根;B、△=4+76=80>0,方程有两个不相等的实数根;C、△=-16<0,方程没有实数根;D、△=1-4=-3<0,方程没有实数根.故选:B.6、C【分析】把抛物线解析式化为顶点式可求得答案.【详解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴顶点坐标为(1,2),故选:C.【点睛】本题考查了抛物线的顶点坐标的求解,解题的关键是熟悉配方法.7、B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】解:掷硬币问题,正、反面朝上的次数属于随机事件,不是确定事件,故A,C,D错误.故选:B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、C【分析】先利用勾股定理计算出AB=BC,AD=CD,AC=得到∠ABC=∠ADC=90°,则CB⊥AB,CD⊥AD,根据角平分线定理的逆定理可判断点C不在∠BAD的角平分线上,则根据三角形内心的定义可对①进行判断;由于HA=HB=HC=HD=义可对②③④进行判断.【详解】解:∵AB=BC AD=CD,AC=∴AB2+BC2=AC2,CD2+AD2=AC2,∴△ABC和△ADC都为直角三角形,∠ABC=∠ADC=90°,∵CB⊥AB,CD⊥AD,而CB≠CD,∴点C不在∠BAD的角平分线上,∴点H不是△ABD的内心,所以①错误;∵HA=HB=HC=HD=22125+=,∴点H是△ABD的外心,点H是△BCD的外心,点H是△ADC的外心,所以②③④正确.故选:C.【点睛】本题考查了三角形的内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心和勾股定理.9、C【分析】根据相似三角形的判定定理求出△ABP∽△PCD,再根据相似三角形对应边的比等于相似比的平方解答.【详解】∵△ABC为等边三角形,∴∠B=∠C=60°,又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60°,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BP AB CD PC=,∵AB=BC=3,BP=1,∴PC=2,∴132 CD=,∴CD=23,故选C.【点睛】本题考查了等边三角形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.10、A【分析】根据题意,让白球的个数除以球的总数即为摸到白球的概率.【详解】解:根据题意,袋子中有4个黑球和3个白球,∴摸到白球的概率为:33 347=+;故选:A.【点睛】本题考查了概率的基本计算,摸到白球的概率是白球数比总的球数.11、C【分析】由中位线可知DE∥BC,且DE=12BC;可得△ADE∽△ABC,相似比为1:2;根据相似三角形的面积比是相似比的平方,即得结果.【详解】解:∵DE是△ABC的中位线,∴DE∥BC,且DE=12 BC,∴△ADE∽△ABC,相似比为1:2,∵相似三角形的面积比是相似比的平方,∴△ADE与△ABC的面积的比为1:4.故选C.【点睛】本题要熟悉中位线的性质及相似三角形的判定及性质,牢记相似三角形的面积比是相似比的平方.12、A【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,最后根据圆周角定理解答.【详解】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°-90°-90°-66°=114°,由圆周角定理得,∠C=12∠AOB=57°,故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半是解题的关键.二、填空题(每题4分,共24分)13、94 【分析】根据相似三角形对应边成比例即可求得答案. 【详解】~ABC ADB ∆∆,AB AC AD AB∴=, 3AB =,4AC =,343AD ∴= , 解得:94AD = 故答案为:94【点睛】本题考查了相似三角形的性质,找准对应边是解题的关键.14、<【分析】根据点与圆的位置关系,即可求解.【详解】解:O 的半径为3,cm 点P 在O 内,3OP cm ∴<.故答案为:<.【点睛】本题考查的是点与圆的位置关系.15、23【解析】试题解析:如图:连接OA 交BC 于D ,连接OC ,ABC 是等边三角形,O 是外心,30,2,OCD OC ∴∠== 11,2OD OC == 3,CD BD ∴==2 3.BC =故答案为2 3.16、1【分析】先解2310x x -+=变形为231x x -=-,再根据a c b d ad bc =-,把12x x +- 31x x -转化为普通运算,然后把231x x -=-代入计算即可.【详解】∵2310x x -+=,∴231x x -=-,∵a c b dad bc =-, ∴12x x +- 31x x -=(x +1)(x -1)-3x (x -2)= x 2-1-3x 2+6x=-2x 2+6x -1=-2(x 2-3x )-1=-2×(-1)-1=1.故答案为1.【点睛】本题考查了信息迁移,整式的混合运算及添括号法则,17、【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147. 考点:概率公式.18、1 3【分析】设AD=DC=a,根据勾股定理求出AC,易证△AFD∽△CFE,根据相似三角形的性质,可得:AF AD CF CE==2,进而求得CF,OF的长,由锐角的正切三角函数定义,即可求解. 【详解】∵四边形ABCD是正方形,∴∠ADC=90°,AC⊥BD,设AD=DC=a,∴AC,∴OA=OC=OD=2a,∵E是BC的中点,∴CE=12BC=12a,∵AD∥BC,∴△AFD∽△CFE,∴AF ADCF CE==2,∴CF=13ACa,∴OF=OC﹣CF,∴tan∠BDE=OFOD13,故答案为:1 3 .【点睛】本题主要考查相似三角形的判定和性质定理以及正切三角函数的定义,根据题意,设AD=DC=a,表示出OF,OD 的长度,是解题的关键.三、解答题(共78分)19、(1)一次函数的解析式为y=﹣3x+9;(2)1<x<2;(3)点M的坐标为(3,0)或(﹣3,0).【解析】(1)首先求出A、B两点坐标,再利用待定系数法即可解决问题;(2)观察图象,一次函数的图象在反比例函数的图象上方,写出x的取值范围即可;(3)设直线AB交x轴于P,则P(3,0),设M(m,0),由S△AOB=S△OBM,可得S△AOP-S△OBP=S△OBM,列出方程即可解决问题.【详解】(1)∵点A(m,6)、B(n,3)在函数图象上,∴m=1,n=2,∴A点坐标是(1,6),B点坐标是(2,3),把(1,6)、(2,3)代入一次函数y=kx+b中,得,解得.∴一次函数的解析式为y=-3x+9;(2)观察图象可知,kx+b->0时x的取值范围是1<x<2;(3)设直线AB交x轴于P,则P(3,0),设M(m,0),∵S△AOB=S△OBM,∴S△AOP-S△OBP=S△OBM,∴,解得m=±3,∴点M的坐标为(3,0)或(-3,0).【点睛】本题考查一次函数与反比例函数的交点、待定系数法、一元一次不等式等知识,解题的关键是熟练掌握待定系数法,学会利用图象解决问题,学会构建方程解决问题.20、(1)见解析;(2)1<a≤52;(3)新图象G公共点有2个.【分析】(1)令抛物线的y值等于0,证所得方程的△>0即可;(2)将点A坐标代入可求m的值,即可求a的取值范围;(3)分k>0和k<0两种情况讨论,结合图象可求解.【详解】解:(1)设y=0,则0=x2+(1﹣2a)x﹣2a,∵△=(1﹣2a)2﹣4×1×(﹣2a)=(1+2a)2≥0,∴x2+(1﹣2a)x﹣2a=0有实数根,∴该抛物线与x轴总有交点;(2)∵抛物线与x轴的一个交点为A(m,0),∴0=m2+(1﹣2a)m﹣2a,∴m=﹣1,m=2a,∵2<m≤5,∴2<2a≤5,∴1<a≤52;(3)∵1<a≤52,且a为整数,∴a=2,∴抛物线解析式为:y=x2﹣3x﹣4,如图,当k>0时,若y=kx+1过点(﹣1,0)时,直线y=kx+1(k为常数)与新图象G公共点有3个,即k=1,当0<k<1时,直线y=kx+1(k为常数)与新图象G公共点有4个,当k>1时,直线y=kx+1(k为常数)与新图象G公共点有2个,如图,当k<0时,若y=kx+1过点(4,0)时,直线y=kx+1(k为常数)与新图象G公共点有3个,即k=﹣14,当﹣14<k<0时,直线y=kx+1(k为常数)与新图象G公共点有4个,当k<﹣14时,直线y=kx+1(k为常数)与新图象G公共点有2个,【点睛】本题考查了二次函数与一次函数相结合的综合题:熟练掌握二次函数的性质;会利用根的判别式确定抛物线与x轴的交点个数;理解坐标与图形性质,会利用分类讨论的方法解题;要会利用数形结合的思想把代数和几何图形结合起来,利用数形结合的方法是解题的关键.21、(1)见解析;(2)25 8【分析】(1)连结OA,根据已知条件得到∠AOE=∠BEF,根据平行线的性质得到OA⊥AC,于是得到结论;(2)连接OF,设∠AFE=α,则∠BEF=2α,得到∠BAF=∠BEF=2α,得到∠OAF=∠BAO=α,求得∠AFO=∠OAF =α,根据全等三角形的性质得到AB=AF=5,由勾股定理得到AD22AF DF=3,根据圆周角定理得到∠BAE =90°,根据相似三角形的性质即可得到结论.【详解】解(1)证明:连结OA,∴∠AOE=2∠F,∵∠BEF=2∠F,∴∠AOE=∠BEF,∴AO∥DF,∵DF⊥AC,∴OA⊥AC,∴AC为⊙O切线;(2)解:连接OF,∵∠BEF=2∠F,∴设∠AFE=α,则∠BEF=2α,∴∠BAF=∠BEF=2α,∵∠B=∠AFE=α,∴∠BAO=∠B=α,∴∠OAF=∠BAO=α,∵OA=OF,∴∠AFO=∠OAF=α,∴△ABO≌△AFO(AAS),∴AB=AF=5,∵DF=4,∴AD=22AF DF=3,∵BE是⊙O的直径,∴∠BAE=90°,∴∠BAE=∠FDA,∵∠B=∠AFD,∴△ABE∽△DFA,∴ABDF=BEAF,∴54=BE5,∴BE=254,∴⊙O半径=25 8.【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.22、(1)①见解析,②2PQ =. (2)见解析;(3)222t BD t +=. 【分析】(1)①根据题意补全图形即可;②根据旋转的性质和对称的性质易证得PAD PQD ≅,利用特殊角的三角函数值即可求得答案;(2)作PF BQ ⊥于F ,AH PF ⊥于H ,证得四边形ACFH 是矩形,求得AH CF =,再证得ADC AHP ∆≅∆,求得1CF AH ==,再求得2132DF DQ ==,即可证得结论. (3)设CD x =,则21AD x =+,证得ABC PDA =,求得2211t x PD t ++=,再作DM ⊥AB ,PN ⊥DQ ,利用面积法求得21BD AC t x DM AB t +==+,继而求得211tx AM t +=+,再证得~Rt ADM Rt DPN ,求得1tx DN t -=,根据BD DQ =得12tx t x t-+=,即可求得答案. 【详解】(1)解:①补全图形如图所示:②∵ABD ∆为等边三角形,∴60B ADC ∠=∠=︒,BD AD =,根据旋转的性质和对称的性质知:60B ADP ∠=∠=︒,BD QD =,∴18060PDQ ADC ADP ∠=︒-∠-∠=︒,AD QD =,在PAD 和PQD 中,60AD QD ADC PDQ PD PD =⎧⎪∠=∠=︒⎨⎪=⎩,∴PAD PQD ≅,∴PA PQ =,∵ABD ∆为等边三角形,90,1ACB AC ∠=︒=, ∴123sin 60332AC AD ===︒, 在Rt PAD 中,60ADP ∠=︒,∴23tan 60323PA AD =︒==,∴2PQ PA ==.(2)作PF BQ ⊥于F ,AH PF ⊥于H ,∵PA AD ⊥,∴90PAD ︒∠=,由题意可知145︒∠=,∴2901451︒︒∠=-∠==∠,∴PA AD =,∴90ACB ︒∠=,∴90ACD ︒=∠,∵,AH PF PF BQ ⊥⊥,∴90AHP AHF PFC ︒∠=∠=∠=,∴四边形ACFH 是矩形,∴90,CAH AH CF ︒∠==,∵90CAH DAP ︒∠=∠=,∴3490DAH DAH ︒∠+∠=∠+∠=,∴34∠=∠,又∵90ACD AHP ︒∠=∠=,∴ADC AHP ∆≅∆,∴1AH AC ==,∴1CF AH ==, ∵41,132BD BC ==,,B Q 关于点D 对称, ∴13CD BD BC =-=,43DQ BD ==, ∴2132DF CF CD DQ =-==, ∴F 为DQ 中点,∴PF 垂直平分DQ ,∴PQ PD =;(3)∵1AC BC t ==,,AC ⊥BD ,∴AB ==设CD x =,则AD ==∵AC ⊥BD ,AP ⊥AD ,∴∠ACB =∠PAD 90=︒,又∵∠ABC =∠PDA α=,∴ABC PDA =, ∴BC AB AD PD=,= ∴211x PD t +=,作DM ⊥AB ,PN ⊥DQ ,∵PD PQ =,∴12DN NQ DQ ==,∵1122BD AC AB DM =, ∴21BD AC t x DM AB t +==+, ∴()2222221111t x tx AM AD DM x t t ++=-=+-=++,∵180BAD ABD BDA PDN PDA BDA ∠+∠+∠=∠+∠+∠=︒,又∵∠AB D =∠PDA α=,∴BAD PDN ∠=∠,∴~RtADM Rt DPN , ∴AD AM PD DN=, ∴2222111111t x tx tPD AM tx t DN ADt x ++--+===+,∵BD DQ =,∴12tx t x t-+=, 解得:22t x t+=, ∴22222t t BD t x t t t++=+=+=.【点睛】本题是三角形综合题,主要考查了三角形的旋转,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,构造出全等三角形、相似三角形、直角三角形是解本题的关键.23、(1)30;(2)作图见解析;(3)240;(4)23. 【解析】试题分析:(1)由D 选项的人数及其百分比可得总人数;(2)总人数减去A 、C 、D 选项的人数求得B 的人数即可;(3)总人数乘以样本中B 选项的比例可得;(4)画树状图列出所有等可能结果,根据概率公式求解可得.试题解析:解:(1)本次调查的学生人数为6÷20%=30; (2)B 选项的人数为30﹣3﹣9﹣6=12,补全图形如下:(3)估计“了解”的学生约有600×1230=240名; (4)画树状图如下: 由树状图可知,共有6种等可能结果,其中两人恰好是一男生一女生的有4种,∴被选中的两人恰好是一男生一女生的概率为46=23. 点睛:本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、4株【分析】根据已知假设每盆花苗增加x 株,则每盆花苗有(3)x +株,得出平均单株盈利为(30.5)x -元,由题意得(3)(30.5)10x x +-=求出即可。

九年级数学上册期末试卷及答案【完整版】

九年级数学上册期末试卷及答案【完整版】

九年级数学上册期末试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. 2 C. D.2.若点A(1+m, 1﹣n)与点B(﹣3, 2)关于y轴对称, 则m+n的值是()A. ﹣5B. ﹣3C. 3D. 13.若点, , 都在反比例函数的图象上, 则, , 的大小关系是()A. B. C. D.4.为考察甲、乙、丙、丁四种小麦的长势, 在同一时期分别从中随机抽取部分麦苗, 获得苗高(单位: cm)的平均数与方差为: = =13, = =15: s甲2=s丁2=3.6, s乙2=s丙2=6.3.则麦苗又高又整齐的是()A. 甲B. 乙C. 丙D. 丁5.一个整数815550…0用科学记数法表示为8.1555×1010, 则原数中“0”的个数为()A. 4B. 6C. 7D. 106. 对于二次函数,下列说法正确的是()A. 当x>0, y随x的增大而增大B. 当x=2时, y有最大值-3C.图像的顶点坐标为(-2, -7)D. 图像与x轴有两个交点7.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 18.如图, AB是⊙O的直径, BC与⊙O相切于点B, AC交⊙O于点D, 若∠ACB=50°, 则∠BOD等于()A. 40°B. 50°C. 60°D. 80°9.如图, 四边形ABCD内接于⊙O, 点I是△ABC的内心, ∠AIC=124°, 点E 在AD的延长线上, 则∠CDE的度数为()A. 56°B. 62°C. 68°D. 78°10.两个一次函数与, 它们在同一直角坐标系中的图象可能是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: =______________.2. 分解因式: a2b+4ab+4b=_______.3. 若二次根式有意义, 则x的取值范围是__________.4.如图, 在Rt△ACB中, ∠ACB=90°, ∠A=25°, D是AB上一点, 将Rt △ABC沿CD折叠, 使点B落在AC边上的B′处, 则∠ADB′等于______.5. 如图所示, 直线a经过正方形ABCD的顶点A, 分别过正方形的顶点B.D作BF⊥a于点F, DE⊥a于点E, 若DE=8, BF=5, 则EF的长为__________.6. 如图抛物线y=x2+2x﹣3与x轴交于A, B两点, 与y轴交于点C, 点P是抛物线对称轴上任意一点, 若点D.E、F分别是BC.BP、PC的中点, 连接DE, DF, 则DE+DF的最小值为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:=12. 在平面直角坐标系中, 已知点, 直线经过点. 抛物线恰好经过三点中的两点.(1)判断点是否在直线上. 并说明理由;(2)求,a b的值;(3)平移抛物线, 使其顶点仍在直线上, 求平移后所得抛物线与轴交点纵坐标的最大值.3. 正方形ABCD的边长为3, E、F分别是AB.BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°, 得到△DCM.(1)求证: EF=FM(2)当AE=1时, 求EF的长.4. 已知是的直径, 弦与相交, .(Ⅰ)如图①, 若为的中点, 求和的大小;(Ⅱ)如图②, 过点作的切线, 与的延长线交于点, 若, 求的大小.5. 学校开展“书香校园”活动以来, 受到同学们的广泛关注, 学校为了解全校学生课外阅读的情况, 随机调查了部分0次1次2次3次4次及以上学生在一周内借阅图书的次数, 并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数人数7 13 a 10 3请你根据统计图表中的信息, 解答下列问题:______, ______.该调查统计数据的中位数是______, 众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生, 根据调查结果, 估计该校学生在一周内借阅图书“4次及以上”的人数.6. 俄罗斯世界杯足球赛期间, 某商店销售一批足球纪念册, 每本进价40元, 规定销售单价不低于44元, 且获利不高于30%. 试销售期间发现, 当销售单价定为44元时, 每天可售出300本, 销售单价每上涨1元, 每天销售量减少10本, 现商店决定提价销售. 设每天销售量为y本, 销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时, 商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时, 商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.D2.D3.B4.D5.B6.B7、B8、D9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、.2.b(a+2)23.4、40°.5.136.三、解答题(本大题共6小题, 共72分)1.x=12、(1)点在直线上, 理由见详解;(2)a=-1, b=2;(3)3.(1)略;(2)5 2.4.(1)52°, 45°;(2)26°5、17、20;2次、2次;;人.6、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时, 商店每天获利2400元;(3)将足球纪念册销售单价定为52元时, 商店每天销售纪念册获得的利润w元最大, 最大利润是2640元.。

九年级数学上册期末考试卷【及答案】

九年级数学上册期末考试卷【及答案】

九年级数学上册期末考试卷【及答案】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 估计5 ﹣的值应在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间2.已知是二元一次方程组的解, 则的算术平方根为()A. ±2B.C. 2D. 43. 关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定4.对于反比例函数, 下列说法不正确的是A. 图象分布在第二、四象限B.当时, 随的增大而增大C. 图象经过点(1,-2)D.若点, 都在图象上, 且, 则5. 一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.若, 则的值是()A. 4B. 3C. 2D. 17.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 18.如图, 在中, , , 为边上的一点, 且.若的面积为, 则的面积为()A. B. C. D.9.如图, 在矩形AOBC中, A(–2, 0), B(0, 1).若正比例函数y=kx的图象经过点C, 则k的值为()A. –B.C. –2D. 210.如图, 正五边形内接于⊙, 为上的一点(点不与点重合), 则的度数为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 16的算术平方根是____________.2. 分解因式: 4ax2-ay2=____________.3. 已知二次函数y=x2, 当x>0时, y随x的增大而_____(填“增大”或“减小”).4. 如图, 点, , , 在上, , , , 则________.5. 如图, C为半圆内一点, O为圆心, 直径AB长为2 cm, ∠BOC=60°, ∠BCO=90°, 将△BOC绕圆心O逆时针旋转至△B′OC′, 点C′在OA上, 则边BC扫过区域(图中阴影部分)的面积为_________cm2.6. 菱形的两条对角线长分别是方程的两实根, 则菱形的面积为__________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 先化简, 再求值: , 其中m= +1.3. 如图, 在口ABCD中, 分别以边BC, CD作等腰△BCF, △CDE, 使BC=BF, CD=DE, ∠CBF=∠CDE, 连接AF, AE.(1)求证: △ABF≌△EDA;(2)延长AB与CF相交于G, 若AF⊥AE, 求证BF⊥BC.4. 如图, AB为⊙O的直径, C为⊙O上一点, ∠ABC的平分线交⊙O于点D, DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系, 并说明理由;(2)过点D作DF⊥AB于点F, 若BE=3 , DF=3, 求图中阴影部分的面积.(1)求每次运输的农产品中A, B产品各有多少件;(2)由于该农户诚实守信, 产品质量好, 加工厂决定提高该农户的供货量, 每次运送的总件数增加8件, 但总件数中B产品的件数不得超过A产品件数的2倍, 问产品件数增加后, 每次运费最少需要多少元.6. 现代互联网技术的广泛应用, 催生了快递行业的高度发展, 据调查, 长沙市某家小型“大学生自主创业”的快递公司, 今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件, 现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件, 那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能, 请问至少需要增加几名业务员?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、A4、D5、A6、D7、B8、C9、A10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、42.a(2x+y)(2x-y)3、增大.4.70°5、4π6、24三、解答题(本大题共6小题, 共72分)1、95 x=2、33.(1)略;(2)略.4.(1)DE与⊙O相切, 理由略;(2)阴影部分的面积为2π﹣.5、(1)每次运输的农产品中A产品有10件, 每次运输的农产品中B产品有30件, (2)产品件数增加后, 每次运费最少需要1120元.6、(1)该快递公司投递总件数的月平均增长率为10%;(2)该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务, 至少需要增加2名业务员.。

2023年人教版九年级数学下册期末考试卷及答案【完整】

2023年人教版九年级数学下册期末考试卷及答案【完整】

2023年人教版九年级数学下册期末考试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.8.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,90BAC∠=︒,3AD=,则CE的长为()A.6 B.5 C.4 D.339.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.1910.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23⨯=______________.2.因式分解:a 3-ab 2=____________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 2+1.3.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、B6、A7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1.2、a (a+b )(a ﹣b )3、24、125.5、136、454353x y x y +=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1) 65°;(2) 25°.4、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.5、(1)50;(2)见解析;(3)16.6、(1)120件;(2)150元.。

2023年人教版九年级数学下册期末考试卷及答案【完美版】

2023年人教版九年级数学下册期末考试卷及答案【完美版】

2023年人教版九年级数学下册期末考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.8的相反数的立方根是( ) A .2B .12C .﹣2D .12- 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5) 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33 9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________.2.分解因式:244m m ++=___________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =+.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、D5、B6、B7、B8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、()22m+3、0或14、125、6、4 9三、解答题(本大题共6小题,共72分)1、x=32.3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、河宽为17米5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。

2022—2023年部编版九年级数学下册期末考试及答案【学生专用】

2022—2023年部编版九年级数学下册期末考试及答案【学生专用】

2022—2023年部编版九年级数学下册期末考试及答案【学生专用】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab = 2.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100993.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++.其中正确的有( )A .5个B .4个C .3个D .2个8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.因式分解:2()4()a a b a b ---=_______.3.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =__________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.已知关于x的一元二次方程:x2﹣2x﹣k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)给k取一个负整数值,解这个方程.3.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、C5、D6、B7、B8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、()()()22 a b a a-+-3、30°或150°.4、255.5、4π6、3三、解答题(本大题共6小题,共72分)1、x=12、(1)k>﹣3;(2)取k=﹣2, x1=0,x2=2.3、(1)略;(2)结论:四边形ACDF是矩形.理由略.4、(1)略;(2)4.95、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h的学生人数约为720.6、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019—2020学年度第一学期期末考试 九年级数学试题参考答案及评分标准
一、选择题:(本大题共10个小题,每小题3分,共30分。

在每个小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号涂在答题卡上)
二、填空题:(本大题共8个小题,每小题3分,共24分。

把答案写在答题卡上) 11. -1 12. -3 13. y=2(x+2)2
﹣2 14. 1 15. x (x ﹣1)=2070 16. 17. (8,10) 18. 6
三、解答题:(第19题10分,第20题12分,共22分)
19.解:(1)∵关于x 的一元二次方程x 2+3x+1﹣m=0有两个不相等的实数根,
∴△=b 2
﹣4ac=32
﹣4(1﹣m )>0,------------------ 2分 即5+4m >0,解得:m >﹣.
∴m 的取值范围为m >﹣. ----------------- 5分 (2)∵m 为负整数,且m >﹣,
∴m=﹣1. ----------------- 7分 将m=﹣1代入原方程得:x 2+3x+2=(x+1)(x+2)=0, 解得:x 1=﹣1,x 2=﹣2.
故当m=﹣1时,此方程的根为x 1=﹣1和x 2=﹣2.------ 10分
20. 解:(1)y=-2x 2+8x-4
=-2(x-2)2
+4. ------------------------- 4分
∴抛物线的顶点坐标为(2,4),对称轴为直线x=2. ------------ 6分 (2)令y=0得-2(x-2)2
+4=0,(x-2)2
=2,
∴x-2=2±,
∴x 1=22+,x 2=22-.
∴与x 轴的交点坐标为A (22+,0),B(22-,0). ------ 10分
∴S △ABC =
2
1
×[(22+)-(22-)] ×4=24. ------------ 12分 四、解答题:(第21题12分,第22题12分,共24分) 21. 解:(1)连结BC
∵∠BAC=90°,
∴BC 为⊙O 的直径,即BC=,---------- 2分
在Rt △ABC 中 ∴AB=
BC=1; ----------- 6分
(2)设所得圆锥的底面圆的半径为r ,
根据题意得2πr=, ----------- 10分
解得r=,
故圆锥的底面圆的半径为米。

---------- 12分
22.解:(1)△A 1B 1C 1如图所示;------------ 3分
(2)△A 2B 2C 2如图所示;------------ 7分 (3)如图,旋转中心为(,﹣1)。

------ 12分
五、解答题:(第23题12分,第12题12分,共24分)
23.解:(1)设人行通道的宽度为x 米,------------------------- 1分
则两块矩形绿地的长为(21﹣3x )(米),宽为(10﹣2x )(米), 根据题意得:(21﹣3x )(10﹣2x )=90,----------- 3分 解得:x 1=10(舍去),x 2=2, ----------- 5分
答:人行通道的宽度为2米; --------------------------- 6分
(2)设人行通道的宽为y 米时,每块绿地的宽与长之比等于3:5,---------- 7分
根据题意得:(10﹣2y ):=3:5, ---------------------- 9分 解得:y =,

>3, ---------------------- 11分
∴不能改变人行横道的宽度使得每块绿地的宽与长之比等于3:5.------ 12分
24. 解:(1)∵共有6种等可能结果,其中落回到圈A 的只有1种情况,
∴落回到圈A 的概率P 1=;--------------------- 3分
(2)列表如下: --------------------- 6分
由上表可知,一共有36种等可能的结果,落回到圈A 的有:
(1,5),(2,4),(3,3),(4,2),(5,1),(6,6),-------------- 8分 ∴最后落回到圈A 的概率P 2=, ------------- 10分 ∴小亮与小明落回到圈A 的可能性一样. -------------- 12分 六、解答题:(本题满分12分) 25.解:(1)连接OE ,
∵OA =OE ,∴∠A =∠AEO ,
∵BF =EF ,∴∠B =∠BEF ,------------------ 2分 ∵∠ACB =90°,∴∠A+∠B =90°, ∴∠AEO+∠BEF =90°,∴∠OEG =90°,
∴EF 是⊙O 的切线; ------------------ 4分
(2)∵∠AED =90°,∠A =30°,
∴ED =AD ,
∵∠A+∠B =90° ∴∠B =∠BEF =60°, ∵∠BEF+∠DEG =90°,∴∠DEG =30°,
∵∠ADE+∠A =90°,∴∠ADE =60°,------------ 6分 ∵∠ADE =∠EGD+∠DEG ,∴∠DGE =30°, ∴∠DEG =∠DGE ,
1
2
3
4
5
6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
∴DG=DE,∴DG=DA;------------------- 8分
(3)∵AD是⊙O的直径,∴∠AED=90°,
∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,
∵阴影部分的面积=×r× r﹣=2﹣π.---------- 10分解得:r2=4,即r=2,
即⊙O的半径的长为2. ----------------------------- 12分七、解答题:(本题满分14分)
26.解:(1)设此函数的解析式为y=a(x+h)2+k,
∵函数图象顶点为M(﹣2,﹣4),
∴y=a(x+2)2﹣4, ------------------- 2分
又∵函数图象经过点A(﹣6,0),
∴0=a(﹣6+2)2﹣4
解得a=,
∴此函数的解析式为y=(x+2)2﹣4,
即y=x2+x﹣3; ------------------- 4分
(2)∵点C是函数y=x2+x﹣3的图象与y轴的交点,
∴点C的坐标是(0,﹣3),
又当y=0时,有y=x2+x﹣3=0,
解得x1=﹣6,x2=2, ------------------- 6分
∴点B的坐标是(2,0),
则S△ABC=|AB|•|OC|=×8×3=12; ------------------- 8分
(3)假设存在这样的点P,过点P作PE⊥x轴于点E,交AC于点F.
设E(x,0),则P(x, x2+x﹣3),
设直线AC的解析式为y=kx+b,
∵直线AC过点A(﹣6,0),C(0,﹣3),
∴,解得,
∴直线AC 的解析式为y=﹣x ﹣3,------------------ 10分 ∴点F 的坐标为F (x ,﹣x ﹣3),
则|PF|=﹣x ﹣3﹣(x 2
+x ﹣3)=﹣x 2
﹣x ,
∴S △APC =S △APF +S △CPF =
|PF|•|AE|+|PF|•|OE|
= |PF|•|OA|=(﹣x 2﹣x )×6 =﹣x 2
﹣x=﹣(x+3)2
+

∴当x=﹣3时,S △APC 有最大值,
此时点P 的坐标是P (﹣3,﹣).-------------- 14分。

相关文档
最新文档