新人教版九年级数学上册期中考试试题44436

合集下载

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。

人教版九年级上册数学期中考试试卷及答案解析

人教版九年级上册数学期中考试试卷及答案解析

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列四个图形中,既是轴对称图形又是中心对称图形的有()A .1个B .2个C .3个D .4个2.若关于x 的一元二次方程2420x x a -+=有两个相等的实数根,则a 的值为()A .2B .-2C .4D .-43.下列函数:①23y =;②22y x =;③(35)y x x =-;④(12)(12)y x x =+-,是二次函数的有()A .1个B .2个C .3个D .4个4.下列语句中正确的是()A .长度相等的两条弧是等弧B .平分弦的直径垂直于弦C .相等的圆心角所对的弧相等D .经过圆心的每一条直线都是圆的对称轴5.当0ab >时,2y ax =与y ax b =+的图象大致是()A .B .C .D .6.用配方法解下列方程时,配方有错误的是()A .22990x x --=化为()21100x -=B .22740x x --=化为2781416x ⎛⎫-=⎪⎝⎭C .2890x x ++=化为()2+4=25x D .23-420x x -=化为221039x ⎛⎫-=⎪⎝⎭7.如图,将ABC ∆绕着点C 按顺时针方向旋转20︒,B 点落在'B 位置,A 点落在'A 位置,若''AC A B ⊥,则BAC ∠的度数是()A .50︒B .60︒C .70︒D .80︒8.如图,在⊙O 中,半径OC 与弦AB 垂直于点D ,且AB =8,OC =5,则CD 的长是A .3B .2.5C .2D .19.如图,正方形ABCD 的边长为5,点E 是AB 上一点,点F 是AD 延长线上一点,且BE =DF .四边形AEGF 是矩形,则矩形AEGF 的面积y 与BE 的长x 之间的函数关系式为()A .=5−B .=5−2C .=25−D .=25−210.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①ac >0;②当x≥1时,y 随x 的增大而减小;③2a+b=0;④b 2-4ac <0;⑤4a-2b+c >0,其中正确的个数是()A .1B .2C .3D .411.如图,O 是ABC 的外接圆,连结OA 、OB ,且点C 、O 在弦AB 的同侧,若50ABO ∠= ,则ACB ∠的度数为()A .50B .45C .40D .3012.关于x 的一元二次方程9x 2-6x+k=0有两个不相等的实根,则k 的范围是()A .k 1<B .k 1>C .k 1≤D .k 1≥二、填空题13.⊙O 的半径为3cm ,点O 到点P 10cm,则点P_________.14.某工厂第一年的利润是40万元,第三年的利润是y 万元,则y 与平均年增长率x 之间的函数关系式是___________.15.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA ⊥AB ,AD=1,,则BC 的长为____.16.如图,平面直角坐标系中,□OABC 的顶点A 坐标为(6,0),C 点坐标为(2,2),若经过点P(1,0)的直线平分□OABC 的周长,则该直线的解析式为_______________.三、解答题17.按要求解下列一元二次方程(1)24870x x +-=(用配方法)(2)2+52=0x x -(用公式法)18.如图,AB =AC ,AB 是⊙O 的直径,⊙O 交BC 于点D ,DM ⊥AC 于点M.求证:DM 与⊙O 相切.19.要建一个如图所示的面积为300m2的长方形围栏,围栏总长50m,一边靠墙(墙长25m).(1)求围栏的长和宽;(2)能否围成面积为400m2的长方形围栏?如果能,求出该长方形的长和宽,如果不能请说明理由.20.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?21.如图,在△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)请探究旋转角等于多少度时,四边形ABDF为菱形,证明你的结论;(3)在(2)的条件下,求CD的长.22.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△C ;平移△ABC ,若A 的对应点的坐标为(0,-4),画出平移后对应的△;(2)若将△C 绕某一点旋转可以得到△,请直接写出旋转中心的坐标;(3)在轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标.23.如图,四边形ABCD 内接于O ,AD ,BC 的延长线交于点E ,F 是BD 延长线上一点,1602CDE CDF ∠=∠=︒.()1求证:ABC 是等边三角形;()2判断DA ,DC ,DB 之间的数量关系,并证明你的结论.24.二次函数2y x bx c =++的图象经过点(1,-8),(5,0).(1)求b ,c 的值;(2)求出该二次函数图象的顶点坐标和对称轴.25.已知抛物线2y x bx c =++的图象如图所示,它与x 轴的一个交点的坐标为()1,0A -,与y轴的交点坐标为()0,3C -.(1)求抛物线的解析式及与x 轴的另一个交点B 的坐标;(2)根据图象回答:当x 取何值时,0y <?(3)在抛物线的对称轴上有一动点P ,求PA PB +的值最小时的点P 的坐标.参考答案1.C 【解析】试题解析:∵从左往右第二个图形不是中心对称图形,但是轴对称图形;第一、三、四个既是中心对称又是轴对称图形,∴四个图形中既是中心对称图形又是轴对称图形的有三个,故选C .2.A 【分析】根据一元二次方程根的判别式,即可求出a 的值.【详解】解:∵一元二次方程2420x x a -+=有两个相等的实数根,∴2(4)4120a ∆=--⨯⨯=,解得:2a =;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是掌握当△=0时,一元二次方程有两个相等的实数根.3.C 【分析】根据二次函数的定义,对每个函数进行判断,即可得到答案.【详解】解:①23y =是二次函数,正确;②22y x =不是二次函数,错误;③(35)y x x =-整理得253y x x =-+,是二次函数,正确;④(12)(12)y x x =+-整理得214y x =-,是二次函数,正确;∴一共有3个二次函数;故选择:C.【点睛】本题考查了二次函数的定义,解题的关键是掌握二次函数的定义.4.D 【详解】分析:根据垂径定理及逆定理以及圆的性质来进行判定分析即可得出答案.详解:A 、在同圆或等圆中,长度相等的两条弧是等弧;B 、平分弦(不是直径)的直径垂直于弦;C 、在同圆或等圆中,相等的圆心角所对的弧相等;D 、经过圆心的每一条直线都是圆的对称轴;故选D .点睛:本题主要考查的是圆的一些基本性质,属于基础题型.理解圆的性质是解决这个问题的关键.5.D 【分析】根据选项中的二次函数图象和一次函数图象,判断a 和b 的正负,选出正确的选项.【详解】A 选项,抛物线开口向上,0a >,一次函数过一、三、四象限,0a >,0b <,不满足0ab >,故错误;B 选项,抛物线开口向上,0a >,一次函数过一、二、四象限,0a <,0b >,不满足ab>0,故错误;C 选项,抛物线开口向下,0a <,一次函数过一、三、四象限,0a >,0b <,不满足ab>0,故错误;D 选项,抛物线开口向下,0a <,一次函数过二、三、四象限,0a <,0b <,满足ab>0,正确故选:D .【点睛】本题考查二次函数图象和一次函数图象与各项系数的关系,解题的关键是掌握根据函数图象判断各项系数正负的方法.6.C 【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案.【详解】A 、由原方程,得22990x x --=,等式的两边同时加上一次项系数2的一半的平方1,得()21100x -=;故本选项正确;B 、由原方程,得22740x x --=,等式的两边同时加上一次项系数−7的一半的平方,得,2781416x ⎛⎫-= ⎪⎝⎭,故本选项正确;C 、由原方程,得2890x x ++=,等式的两边同时加上一次项系数8的一半的平方16,得(x +4)2=7;故本选项错误;D 、由原方程,得3x 2−4x =2,化二次项系数为1,得x 2−43x =23等式的两边同时加上一次项系数−43的一半的平方169,得221039x⎛⎫-=⎪⎝⎭;故本选项正确.故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7.C【分析】由旋转可知∠BAC=∠A’,∠A’CA=20°,据此可进行解答.【详解】解:由旋转可知∠BAC=∠A’,∠A’CA=20°,由AC⊥A’B’可得∠BAC=∠A’=90°-20°=70°,故选择C.【点睛】本题考查了旋转的性质.8.C【解析】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2,∴x=2,∴CD=2,故选C.点睛:本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.9.D【解析】∵BE=DF,BE=x(已知);∴DF=x;又∵AD=AB=5(已知),AF=AD+DF,AE=AB=BE(由图可得);∴AF=5+x,AE=5-x;∴S 长方形AEGF =AE ╳AF =(5+x)(5-x)=25-x 2;故选D 。

人教版九年级上册数学期中考试试卷带答案详解

人教版九年级上册数学期中考试试卷带答案详解

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.关于函数y =-(x +2)2-1的图象叙述正确的是()A .开口向上B .顶点(2,-1)C .与y 轴交点为(0,-1)D .图象都在x 轴下方2.下列图形中,既是中心对称图形,又是轴对称图形的是()A .B .C .D .3.自行车车轮要做成圆形,主要是根据圆的以下哪个特征()A .圆是轴对称图形B .圆是中心对称图形C .圆上各点到圆心的距离相等D .直径是圆中最长的弦4.用配方法解方程2x 4x 10-+=,下列变形正确的是A .2(x 2)4-=B .2(x 4)4-=C .2(x 2)3-=D .2(x 4)3-=5.如表中列出了二次函数y =ax 2+bx +c 的x 、y 的一些对应值,则一元二次方程ax 2+bx +c =0的一个解x 1的范围是()x …-3-2-101…y…-11-5-111…A .-3<x 1<-2B .-2<x 1<-1C .-1<x 1<0D .0<x 1<1.6.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x .应列方程是()A .300(1+x )=507B .300(1+x )2=507C .300(1+x )+300(1+x )2=507D .300+300(1+x )+300(1+x )2=5077.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是()A .55°B .60°C .65°D .70°8.已知x 1、x 2是关于x 的方程x 2-ax -1=0的两个实数根,下列结论一定正确的是A .x 1≠x 2B .x 1+x 2>0C .x 1⋅x 2>0D .11x +21x >09.如图,AB 是O 的直径,点C ,D 在O 上,若DCB 110∠= ,则AED ∠的度数为A .15B .20C .25D .3010.如图,二次函数2y ax bx c =++的图象经过点()A 1,0-,点()B 3,0,交y 轴于点C ,给出下列结论:a ①:b :c 1=-:2:3;②若0x 4<<,则5a y 3a <<-;③对于任意实数m ,一定有2am bm a 0++≤;④一元二次方程2cx bx a 0++=的两根为1-和13,其中正确的结论是A .①②③④B .①③C .①③④D .②③④二、填空题11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是_____.12.方程(1)0-=x x 的解______.13.关于x 的一元二次方程(k+1)x 2﹣2x+1=0有两个实数根,则k 的取值范围是_____14.如图,直径为10cm 的⊙O 中,两条弦AB ,CD 分别位于圆心的异侧,AB ∥CD ,且2CDAC =,若AB =8cm ,则CD 的长为_____cm .15.某架飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y =60t -32t 2,这架飞机着陆后滑行最后150m 所用的时间是_______s .16.如图,点C 是半圆AB上一动点,以BC 为边作正方形BCDE 使BC在正方形内,连OE ,若AB 4cm =,则OD 的最大值为______cm .三、解答题17.如图,某工程队在工地利用互相垂直的两面墙AE 、AF ,另两边用铁栅栏围成一个长方形场地ABCD ,中间再用铁栅栏分割成两个长方形,铁栅栏总长180米,已知墙AE 长90米,墙AF 长为60米.()1设BC x =米,则CD 为______米,四边形ABCD 的面积为______米2;()2若长方形ABCD 的面积为4000平方米,问BC 为多少米?18.求抛物线2y x 2x 1=-+与直线y 2=交点的坐标.19.如图,在平面直角坐标系中,ABC 的三个顶点都在格点上,点A 的坐标为()3,4,点B 的坐标为()5,4,点C 的坐标为()1,2,请解答下列问题:()1画出ABC 关于y 轴对称的111A B C ,使点1A 与A 对应,点1B 与B 对应;()2画出ABC 绕原点O 顺时针旋转90 后得到的222A B C ,使点2A 与A 对应,点2B 与B 对应;()3若111A B C 和222A B C 关于某直线对称,请直接写出该直线的解析式______;()4直接写出ABC 外接圆圆心的坐标______20.如图,半圆O 的直径为AB ,D 是半圆上的一个动点(不与点A ,B 重合),连接BD 并延长至点C ,使CD =BD ,连接AC ,过点D 作DE ⊥AC 于点E .(1)请猜想DE 与⊙O 的位置关系,并说明理由;(2)当AB =4,∠BAC =45°时,求DE 的长.21.如图,已知抛物线1L :213y x x 22=--,1L 交x 轴于A ,B(点A 在点B 左边),交y 轴于C ,其顶点为D ,P 是1L 上一个动点,过P 沿y 轴正方向作线段PQ //y 轴,使PQ t =,当P 点在1L 上运动时,Q 随之运动形成的图形记为2L .()1若t 3=,求点P 运动到D 点时点Q 的坐标,并直接写出图形2L 的函数解析式;()2过B 作直线l //y 轴,若直线l 和y 轴及1L ,2L 所围成的图形面积为12,求t 的值.22.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y =−x +26.(1)求这种产品第一年的利润W 1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W 2至少为多少万元.23.已知△ABC 为等边三角形,P 是直线AC 上一点,AD ⊥BP 于D ,以AD 为边作等边△ADE (D ,E 在直线AC 异侧).(1)如图1,若点P 在边AC 上,连CD ,且∠BDC=150°,则ADBD=;(直接写结果)(2)如图2,若点P 在AC 延长线上,DE 交BC 于F 求证:BF=CF ;(3)在图2中,若∠PBC=15°,,请直接写出CP 的长.24.已知二次函数2y ax bx c =++的图象对称轴为1x 2=,图象交x 轴于A ,B ,交y 轴于()C 0,3-,且AB 5=,直线y kx b'(k 0)=+>与二次函数图象交于M ,N(M 在N 的右边),交y 轴于P .()1求二次函数图象的解析式;()2若b'5=-,且CMN 的面积为3,求k 的值;()3若b'3k =-,直线AN 交y 轴于Q ,求CPCQ的值或取值范围.参考答案1.D 【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【详解】由二次函数y=﹣(x+2)2﹣1可知:a=﹣1<0,所以开口向下,顶点坐标为(﹣2,﹣1),所以抛物线图象都在x轴下方;令x=0,则y=﹣5,所以与y轴交点为(0,﹣5).故选D.【点睛】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,抛物线与坐标轴的交点以及二次函数的增减性.2.C【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C【解析】【分析】利用车轮中心与地面的距离保持不变,坐车的人感到非常平稳进行判断.【详解】因为圆上各点到圆心的距离相等,所以车轮中心与地面的距离保持不变,坐车的人感到非常平稳,所以自行车车轮要做成圆形.故选C.【点睛】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).4.C【解析】【分析】在本题中,把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【详解】把方程x2﹣4x+1=0的常数项移到等号的右边,得到:x2﹣4x=﹣1方程两边同时加上一次项系数一半的平方,得到:x2﹣4x+4=﹣1+4配方得:(x﹣2)2=3.故选C.【点睛】本题考查了解一元二次方程﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.C【解析】【分析】根据函数的增减性:函数在[﹣1,0]上y随x的增大而增大,可得答案.【详解】当x=﹣1时,y=﹣1,x=1时,y=1,函数在[﹣1,0]上y随x的增大而增大,得一元二次方程ax2+bx+c=0(a≠0)的一个近似解在﹣1<x1<0.故选C.【点睛】本题考查了图象求一元二次方程的近似根,两个函数值的积小于零时,方程的解在这两个函数值对应的自变量的中间.6.B【解析】根据年利润平均增长率,列出变化增长前后的关系方程式进行求解.【详解】设这两年的年利润平均增长率为x,列方程为:300(1+x)2=507故选:B.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是怎么利用年利润平均增长率列式计算.7.C【解析】分析:根据旋转的性质和三角形内角和解答即可.详解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.点睛:此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.8.A【解析】【分析】根据方程的系数结合根的判别式,可得出△=a2+4>0,进而可得出x1≠x2,此题得解.【详解】∵△=(﹣a)2﹣4×1×(﹣1)=a2+4>0,∴方程x2﹣ax﹣1=0有两个不相等的实数根,∴x1≠x2.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.B 【解析】试题解析:连接AC ,如图,∵AB 为直径,∴∠ACB =90°,∴1109020ACD DCB ACB ∠=∠-∠=︒-︒=︒,∴20AED ACD ∠=∠=︒.故选B .点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.10.C 【分析】由抛物线上的两点坐标可以求出y=ax 2+bx+c 中a 、b 、c 之间的倍数关系,可以用含有a 的代数式表示b 、c ,再用带入求值法判定其它选项,具体见详解.【详解】解:∵二次函数y=ax 2+bx+c 的图象经过点A (﹣1,0),点B (3,0),∴抛物线解析式为y=a (x+1)(x ﹣3),即y=ax 2﹣2ax ﹣3a ,∴b=﹣2a ,c=﹣3a ,∴a :b :c=﹣1:2:3,故①正确;当x=4时,y=a (x+1)(x ﹣3)=a•5•1=5a ,y=ax 2﹣2ax ﹣3a=a[(x ﹣1)2﹣4]=a (x ﹣1)2﹣4a ,∴当0<x <4时,则5a <y <﹣4a ,所以②错误;∵y=ax 2﹣2ax ﹣3a=a[(x ﹣1)2﹣4]=a (x ﹣1)2﹣4a ,∴顶点坐标为(1,﹣4a ),∵抛物线开口向下,c=﹣3a ,∴抛物线向下平移﹣4a 个单位,则抛物线顶点为(1,0),∴平移后的解析式为:y′=ax 2+bx+c+4a=ax 2+bx ﹣3a+4a=ax 2+bx+a≤0,故③正确;∵b=﹣2a ,c=﹣3a ,∴方程cx 2+bx+a=0化为﹣3ax 2﹣2ax+a=0,整理得3x 2+2x ﹣1=0,解得x 1=﹣1,x 2=13,所以④正确.故选C .【点睛】本题考查二次函数图象与系数的关系,带入求值是解答关键..11.(3,﹣2)【解析】【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【详解】解:平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点睛】本题主要考查了平面直角坐标系内点的坐标位置关系,难度较小.12.10x =,21x =【详解】依题意得:x =0或x ﹣1=0,∴x =0或x =1.故答案是x =0或x =1.13.k≤0且k≠﹣1.【分析】根据一元二次方程的定义和判别式的意义得到k+1≠0且△=(﹣2)2﹣4(k+1)≥0,然后求出两个不等式的公共部分即可.【详解】解:根据题意得k+1≠0且△=(﹣2)2﹣4(k+1)≥0,解得k≤0且k≠﹣1.故答案为k≤0且k≠﹣1.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一元二次方程的定义.14.【解析】【分析】过O 作OE ⊥AB 于E ,交⊙O 于M ,反向延长OE 交CD 于G ,交⊙O 于N ,则AE=12AB=4,连接AN ,AO ,AM ,则MN 为⊙O 的直径,根据平行线的性质得到MN ⊥CD ,推出AN=CD ,根据勾股定理即可得到结论.【详解】过O 作OE ⊥AB 于E ,交⊙O 于M ,反向延长OE 交CD 于G ,交⊙O 于N ,则AE=12AB=4,连接AN ,AO ,AM ,则MN 为⊙O 的直径,∵AB ∥CD ,∴MN ⊥CD ,∴ 12CN CD =,∵ 2CD AC =,∴ CD AN =,∴AN=CD ,在Rt△AOE中,==3,∴ME=5-3=2,在Rt△AEM中,=,∵MN为⊙O的直径,∴∠MAN=90°,∴AN==∴CD=AN=故答案为【点睛】本题考查了勾股定理,垂径定理,正确的作出辅助线构造直角三角形是解题的关键.15.10【解析】【分析】由于飞机着陆,不会倒着跑,所以当y取得最大值时,t也取得最大值,求得t的取值范围,然后解方程即可得到结论.【详解】当y取得最大值时,飞机停下来,则y=60t-32t2=-32(t-20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当y=600-150=450时,即60t-32t2=450,解得:t=10,t=30(不合题意舍去),∴滑行最后的150m所用的时间是20-10=10,故答案是:10.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.16.2+【解析】【分析】通过旋转观察如图可知当DO ⊥AB 时,DO 最长,设DO 与⊙O 交于点M ,连接CM ,先证明△MED ≌△MEB ,得MD =BM .再利用勾股定理计算即可.【详解】通过旋转观察如图可知当DO ⊥AB 时,DO 最长,设DO 与⊙O 交于点M ,连接CM .∵∠MCB =12∠MOB =12×90°=45°,∴∠DCM =∠BCM =45°.∵四边形BCDE 是正方形,∴C 、M 、E 共线,∠DEM =∠BEM .在△EMD 和△EMB 中,∵DE BC MED MEB ME ME =⎧⎪∠=∠⎨⎪=⎩,∴△MED ≌△MEB ,(SAS ),∴DM =BM,∴OD 的最大值.故答案为:.【点睛】本题考查了正方形的性质、圆周角定理等知识,解题的关键是OD 取得最大值时的位置,学会通过特殊位置探究得出结论,属于中考常考题型.17.(1)()1802x -,()x 1802x -(2)BC 50=米,长方形的面积为4000平方米【解析】【分析】(1)根据铁栅栏总长为180米可得CD 的长,再根据矩形的面积公式可得四边形的面积;(2)根据题意列出关于x 的一元二次方程,解之求得x 的值,再依据两面墙的长度取舍即可得.【详解】(1)设BC =x 米,则CD =(180﹣2x )米.四边形ABCD 的面积为x (180﹣2x )米2.故答案为:(180﹣2x ),x (180﹣2x );(2)由题意,得:x (180﹣2x )=4000整理,得:x 2﹣90x +2000=0解得:x =40或x =50.当x =40时,180﹣2x =100>90,不符合题意,舍去;当x =50时,180﹣2x =80<90,符合题意.答:BC =50米,长方形的面积为4000平方米.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题意表示出解题所需线段的长度,并依据矩形的面积公式列出关于x 的方程.18.()12,()12-【解析】【分析】函数图象的交点坐标对应的是两个函数解析式联立成方程组的解.【详解】联立y =x 2﹣2x +1和y =2,可得:x 2﹣2x +1=2,化简可得:x 2﹣2x ﹣1=0.解方程,得:x 1,x 2=1故抛物线y =x 2﹣2x +1与直线y =2交点的坐标为(,2),(12).【点睛】本题考查了二次函数的性质以及函数图象交点的意义和求法.19.(1)见解析;(2)见解析;(3)y=x ;(4)()4,1【解析】【分析】(1)根据关于y 轴对称的点的坐标特征写出A 1,B 1与C 1点的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A 、B 、C 的对应点A 2、B 2、C 2,从而得到△A 2B 2C 2;(3)利用所画图形可得到△A 1B 1C 1和△A 2B 2C 2关于第一、三象限的角平分线对称;(4)作AB 和AC 的垂直平分线,它们的交点P 为△ABC 外接圆圆心,然后写出P 点坐标即可.【详解】(1)如图,△A 1B 1C 1为所作;(2)如图,△A 2B 2C 2为所作;(3)△A 1B 1C 1和△A 2B 2C 2关于直线y =x 对称;(4)△ABC 外接圆圆心的坐标为(4,1).故答案为:y =x ,(4,1).【点睛】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.也考查了旋转变换.20.(1)DE 与O 相切;(2【分析】(1)先证明OD 为△ABC 的中位线得到OD ∥AC ,再利用DE ⊥AC 得到OD ⊥DE ,然后根据切线的判定方法可确定DE 为⊙O 的切线;(2)作OF ⊥AC 于F ,如图,证明四边形ODEF 为矩形得到OF =DE ,再证明△OAF 为等腰直角三角形得到OF ,从而得到DE 的长.【详解】(1)DE 与⊙O 相切.理由如下:连接OD .∵CD =BD ,OA =OB ,∴OD 为△ABC 的中位线,∴OD ∥AC .∵DE ⊥AC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OF ⊥AC 于F ,如图,易得四边形ODEF 为矩形,∴OF =DE .∵∠BAC =45°,∴△OAF 为等腰直角三角形,∴OF =22OA ,∴DE【点睛】本题考查了圆的切线的判定:过半径的外端与半径垂直的直线为圆的切线.21.(1)21322y x x =-+;(2)4【解析】【分析】(1)Q 点运动的图形,相当于抛物线向上平移t 个单位,如下图:即:L 2的图象为:y =12x 2﹣x ﹣32+t 即可求解;(2)直线l 和y 轴及L 1,L 2所围成的图形面积=平行四边形DD ′B ′B 面积+平行四边形DD ′CO 的面积,即:S =D ′D •(x B ﹣x C )即可求解.【详解】y =12x 2﹣x ﹣32=12(x ﹣1)2﹣2,故:B (3,0),D (1,2)(1)Q 点运动的图形,相当于抛物线向上平移t 个单位,如下图:即:L2的图象为:y=12x2﹣x﹣32+t,t=3,L2的函数解析式为:y=12x2﹣x+32;(2)L2的图象为:y=12x2﹣x﹣32+t,直线l和y轴及L1,L2所围成的图形面积=平行四边形DD′B′B面积+平行四边形DD′CO的面积,即:S=D′D•(x B﹣x D)+D′D•(x D﹣x C)=D′D•(x B﹣x C)=t•3=12,故t=4.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.22.(1)W1=−x2+32x−236(2)该产品第一年的售价是16元(3)该公司第二年的利润W2至少为88万元.【解析】【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用二次函数的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.(2)由题意:20=﹣x2+32x﹣236.解得:x1=x2=16.答:该产品第一年的售价是16元.(3)由题意:∵销售量无法超过12万件,0≤﹣x+26≤12,解得:14≤x≤26.∵第二年产品售价不超过第一年的售价,∴x≤16,∴14≤x≤16,W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150=−(−15.5)2+240.25.∵14≤x≤16,∴x=14时,W2有最小值,最小值=88(万元).答:该公司第二年的利润W2至少为88万元.【点睛】本题考查了二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题,属于中考常考题型.23.(1)233(2)证明见解析(3【分析】(1)由题意可证△ABD≌△ACE,可得BD=CE,∠ABD=∠ACE,即可求∠EDC=60°,∠EDC=90°,则可得ADBD的值;(2)过点CM∥BD交DE于点M,连接CE,由题意可证△ABD≌△ACE,可得BD=CE,∠AEC=∠ADB=90°,可求∠DEC=∠EMC=30°,可得MC=EC=BD,则可证△BDF≌△CMF,可得BF=CF;(3)作∠ABG=∠BAD,交AD于点G,由题意可求∠ABG=∠BAG=15°,可得∠BGD=30°,BG=AG,则可得BG=2BD,GD=BD,BD+2BD,根据勾股定理可求BD=1,,即可求AP的长,则可求CP的长.【详解】(1)如图:连接CE∵△ABC,△ADE是等边三角形,∴AB=AC,AD=AE,∠DAE=∠BAC=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵∠ADB=90°,∠BDC=150°,∠ADE=60°,∴∠EDC=60°,∵∠BDC=∠BPC+∠ACD=∠BAC+∠ABD+∠ACD=60°+∠ACE+∠ACD=60°+∠ECD=150°∴∠ECD=90°,∴tan∠EDC=32EC BD DE AD==,∴233 ADBD=;(2)如图:过点CM∥BD交DE于点M,连接CE∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ADE=∠AED,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(ASA),∴BD=CE,∠AEC=∠ADB=90°,∵∠BDE=∠ADB+∠ADE,∠DEC=∠AEC-∠AED,∴∠BDE=150°,∠DEC=30°,∵MC∥BD,∴∠DMC=∠BDE=150°,∴∠EMC=30°,∴∠DEC=∠EMC,∴MC=CE,∴BD=CM,且∠BDE=∠CMD,∠BFD=∠CFM,∴△BDF≌△CMF(AAS),∴CF=BF,(3)如图:作∠ABG=∠BAD,交AD于点G∵∠ABC=60°,∠PBC=15°,AD⊥BD,∴∠DAB=15°,∵∠ABG=∠BAD,∴∠ABG=∠BAG=15°,∴∠BGD=30°,BG=AG,∴BG=2BD,BD,∴AD=BD+2BD,在Rt△ABD中,AB2=BD2+AD2.)2=)2BD2+BD2.∴BD=1,∴∵∠BAD=15°,∠BAC=60°,∴∠DAP=45°,且AD⊥BD,∴AD=2,∵-),∴..【点睛】本题考查了三角形综合题,全等三角形的性质和判定,解直角三角形的应用,添加恰当的辅助线构造全等三角形是本题的关键.24.(1)211y x x 322=--(2)k=2(3)CP 3CQ 2≥【解析】【分析】(1)由图象对称轴为x =12,AB =5,知:A (﹣2,0)、B (3,0),把C 点坐标代入二次函数即可求解;(2)S △CMN =12•HN •x M =6,用韦达定理求解即可;(3)求出x N =21252k k +--,分2k ﹣5>0时和2k ﹣5<0两种情况,求出点Q 坐标即可求解.【详解】(1)由图象对称轴为x =12,AB =5,知:A (﹣2,0)、B (3,0),设(2)(3)y a x x =+-,把()03C -,代入二次函数表达式得:-3=-6a ,∴a =12,∴y =1(2)(3)2x x +-,即211322y x x =--.故函数表达式为:y =12x 2﹣12x ﹣3…①;(2)∵b′=﹣5,∴直线MN 表达式为:y =kx ﹣5…②.设:N (x 1,y 1),M (x 2,y 2),将①、②联立并整理得:x 2﹣(2k +1)x +4=0,则:x 1+x 2=2k +1,x 1•x 2=4,直线C (0,﹣3)、M (x 2,y 2)所在的直线方程为:y =2233y x x +⋅-,过N 点做直线HM ∥y 轴,交MC 于H ,则H (x 1,21233y x x +⋅-).∵S △CMN =12•HN •x M =6,整理得:x 1•y 2﹣x 2y 1+3x 1﹣3x 2=6,把y 1=3x 1﹣5,y 2=3x 2﹣5,代入上式整理得:x 2﹣x 1=3,即:(x 1+x 2)2﹣4x 1x 2=9,k =2或k =-3(舍去);(3)b′=﹣3k ,直线y =kx +b =kx ﹣3k …③,将①、③方程联立并整理得:x 2﹣(2k +1)x +(6k ﹣6)=0,△=4k 2﹣20k +25=(2k ﹣5)2>0,x N =21252k k +--.①当2k ﹣5>0时,x N =3,则N (3,0),而Q (0,0),P (0,﹣3k ),C (0,﹣3),则:CP=3k﹣3,CQ=3,∴CPCQ=k﹣1,即:CPCQ>32;②当2k﹣5<0时,x N=2k﹣2,则N(2k﹣2,2k2﹣5k),则AN所在的直线方程为:y=25252k x k-+-(),则:Q(0,2k﹣5),而C(0,﹣3),P(0,﹣3k),则:CP=3k﹣3,CQ=2k﹣2,∴CPCQ=32.故:CPCQ≥32.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试卷一、单选题1.下列图案中,不是轴对称图形的是()A .B .C .D .2.用配方法解方程x 2+2x ﹣1=0,原方程应变形为()A .(x+1)2=0B .(x ﹣1)2=2C .(x+1)2=2D .(x ﹣1)2=53.若方程x 2+kx ﹣2=0的一个根是﹣2,则k 的值是()A .﹣1B .1C .2D .﹣24.顶点(﹣5,﹣1),且开口方向、形状与函数y =13x 2的图象相同的抛物线是()A .2153y x =-B .21(5)13y x =-+C .21(5)13y x =--D .21(5)13y x =+-5.菱形ABCD 的一条对角线长为6,边AB 的长是方程x 2﹣7x+12=0的一个根,则菱形ABCD 的周长为()A .16B .12C .16或12D .246.新能源汽车越来越受消费者喜爱,我国新能源汽车近几年销量逐年增加,2018年销量为95万辆,到2020年销量为120万辆,设年平均增长率为x ,可列方程为()A .952(1)x -=120B .952(1)x +=120C .1202(1)x -=95D .95(1+2x )=1207.抛物线y =x 2+4x ﹣m 2+2(m 是常数)与坐标轴交点的个数为()A .0B .1C .3D .2或38.如图,将Rt ∆ABC 以直角顶点C 为旋转中心顺时针旋转使点A 刚好落在AB 上(即:点A’),若∠A=55︒则图中∠1=()A .110︒B .102︒C .105︒D .125︒9.已知二次函数y =ax 2+bx+c (a≠0)图象上部分点的坐标(x ,y)的对应值如表所示,则方程ax 2+bx+2.32=0的根是()A .0或4B .1或5C 4D 210.如图,二次函数y =ax 2+bx 的图象经过点P ,若点P 的横坐标为﹣1,则一次函数y =(a ﹣b )x+b 的图象大致是()A .B .C .D .二、填空题11.已知坐标系中点()2,A a -和点(),3B b 关于原点中心对称,则a b +=__________.12.将二次函数y =﹣(x ﹣1)2的图象沿x 轴向左平移2个单位,得到的函数表达式为___.13.若关于x 的方程(k ﹣1)x 2+2x ﹣1=0有两个实数根,则k 的取值范围是___.14.已知抛物线y =x 2+bx+c 的部分图象如图所示,当y >0时,x 的取值范围是___.15.将边长为3的正方形ABCD 绕点C 顺时针方向旋转45°到FECG 的位置(如图),EF与AD相交于点H,则HD的长为___.(结果保留根号)16.已知矩形的周长为18cm,绕它的一边旋转成一个圆柱,则旋转成的圆柱的最大侧面积为___m2.17.如图,抛物线y=ax2+bx+c(a≠0)经过点(2,0),对称轴为直线x=﹣1.下列结论:①abc>0;②8a+c=0;③对于任意实数m,总有a(m2﹣1)+b(m+1)≥0;④对于a的每一个确定值,若一元二次方程ax2+bx+c=P(P为常数,且P>0)的根为整数,则P的值有且只有三个,其中正确的结论是___.三、解答题18.解方程:2x2﹣5x+1=019.已知二次函数y=x2﹣2mx+m2+2(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移个单位长度后,得到的函数的图象与x轴只有一个公共点.20.在正方形网格中,建立如图所示的平面直角坐标系xOy, ABC的三个顶点都在格点上,点A的坐标(4,4),若将 ABC绕点O逆时针旋转90°.(1)画出旋转后的 111A B C;(2)点1A坐标为,1B坐标为,1C坐标为.21.甲、乙两人同解方程组515410ax yx by+=⎧⎨-=-⎩①②,由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=⎩,乙看错了方程②中的b,得到方程组的解为54xy=⎧⎨=-⎩.(1)求a,b的值;(2)若关于x的一元二次方程a2x﹣bx+m=0两实数根为1x,2x,且满足71x﹣2x=6,求实数m的值.22.观察下列两个三位数的乘积,其中百位上的数字都是901×999,902×998,903×997,……,998×902,999×901.解决以下问题:(1)根据上面的规律填空,912×;(2)若某个三位数中,十位上的数字与个位上的数字组成的两位数为x,则这个三位数可以表示为,当x取何值时,以上两个三位数的乘积最大.23.如图,隧道的截面由抛物线和长方形构成,长方形的长OA为12m,宽OB为4m,建立直角坐标系,抛物线可用y=﹣16x2+bx+c表示.(1)求抛物线的函数关系式和拱顶D到地面OA的距离;(2)一辆货运汽车载集装箱后高为6m,宽为4m,若隧道内设双向行车道,那么这辆货车能否安全通过?24.某经销商销售一种产品,这种产品的成本价为10元/千克,物价部门规定这种产品的销售价不高于18元/千克,同时公司要保证获得的利润不低于20%,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?(3)当售价为多少时,公司能获得最大利润,最大利润是多少?25.已知抛物线y=ax2+bx+c(a≠0)经过A(4,0)、B(﹣1,0)、C(0,4)三点.(1)求抛物线的函数解析式;(2)如图1,点D是直线AC上方的抛物线的一点,DN⊥AC于点D,DM//y轴交AC于点M ,求 DMN 周长的最大值及此时点D 的坐标;(3)如图2,点P 为抛物线第一象限上的点,连接OP 与直线AC 相交于点Q ,若:COQ AOQ S S △△=3:5,求点P 的坐标.参考答案1.C 【详解】试题分析:A 、是轴对称图形,故错误;B 、是轴对称图形,故错误;C 、不是轴对称图形,故正确;D 、是轴对称图形,故错误.故选C .考点:轴对称图形.2.C 【分析】方程移项后,利用完全平方公式配方得到结果,即可作出判断.【详解】解:方程移项得:x 2+2x =1,配方得:x 2+2x+1=2,则方程变形为(x+1)2=2.故选:C .3.B 【解析】将x =﹣2代入方程即可求出k 的值.【详解】解:将x =﹣2代入x 2+kx ﹣2=0,∴4﹣2k ﹣2=0,∴k =1,故选:B .4.D 【分析】根据抛物线的顶点和开口方向、形状与函数y =13x 2的图象相同,可得出抛物线解析式为21(5)13y x =+-.【详解】解:∵抛物线的顶点为(﹣5,﹣1),∴抛物线解析式为2(5)1y a x =+-;∵开口方向、形状与函数y =13x 2的图象相同,∴13a =,抛物线解析式为:21(5)13y x =+-;故选:D .5.A 【分析】先利用因式分解法解方程得到x 1=3,x 2=4,再根据菱形的性质可确定边AB 的长是4,然后计算菱形的周长.【详解】(x ﹣3)(x ﹣4)=0,x ﹣3=0或x ﹣4=0,所以x 1=3,x 2=4,∵菱形ABCD 的一条对角线长为6,∴边AB的长是4,∴菱形ABCD的周长为16.故选A.6.B【分析】根据平均增长率问题列出方程即可.【详解】∵2018年销量为95万辆,到2020年销量为120万辆,年平均增长率为x,(1)x+=120∴952故选B.7.D【解析】先计算判别式的值可判断抛物线与x轴的交点个数,而抛物线与y轴一定有一个交点,于是可判断抛物线y=x2+4x﹣m2+2的图象与坐标轴的交点个数.【详解】解:y=x2+4x﹣m2+2∵△=42−4×(﹣m2+2)=4m2+8>0,∴抛物线与x轴有2个公共点,∵x=0时,y=x2+4x﹣m2+2=﹣m2+2,∴抛物线与y轴的交点为(0,﹣m2+2),当﹣m2+2=0时,即m=时,抛物线与坐标轴交于原点,此时抛物线y=x2+4x﹣m2+2(m 是常数)与坐标轴交点的个数为2个,∴抛物线y=x2+4x﹣m2+2的图象与坐标轴的交点个数为3或2个.故选:D.【点睛】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),Δ=b2−4ac决定抛物线与x轴的交点个数:Δ=b2−4ac>0时,抛物线与x轴有2个交点;Δ=b2−4ac=0时,抛物线与x轴有1个交点;Δ=b2−4ac<0时,抛物线与x轴没有交点.8.C解:根据旋转图形可得:AC=A′C ,则∠CA′A=∠A=55°,则∠A′CA=70°,即选择的角度为70°,所以∠BCB′=70°,根据∠ACB=90°,∠A=55°可得∠B=35°,根据旋转可得:∠B′=∠B=35°,根据三角形外角的性质可得:∠1=∠B′+∠BCB′=35°+70°=105°.故选C 9.C 【解析】【分析】利用抛物线经过点(0,0.32)得到0.32c =,根据抛物线的对称性得到抛物线的对称轴为直线2x =,抛物线经过点2)-,由于方程2 2.320ax bx ++=变形为20.322ax bx ++=-,则方程2 2.320ax bx ++=的根理解为函数值为2-所对应的自变量的值,所以方程2 2.320ax bx ++=的根为1x =,24x =【详解】解:由抛物线经过点(0,0.32)得到0.32c =,所以二次函数解析式为20.32y ax bx =++,因为抛物线经过点(0,0.32)、(4,0.32),所以抛物线的对称轴为直线2x =,而抛物线经过点2)-,所以抛物线经过点(42)-,方程2 2.320ax bx ++=变形为20.322ax bx ++=-,所以方程20.322ax bx ++=-的根理解为函数值为2-所对应的自变量的值,所以方程2 2.320ax bx ++=的根为1x =24x =故选:C .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.10.D 【解析】先求出a <0,b <0,再求出a ﹣b <0,最后判断函数图象即可.【详解】解:由二次函数的图象可知,a <0,b <0,当x =﹣1时,y =a ﹣b <0,∴y =(a ﹣b )x+b 的图象在第二、三、四象限,故选:D .【点睛】本题主要考查二次函数图象上点的坐标特征,一次函数的图象和性质,由二次函数图象得出a ﹣b <0是解题的关键.11.-1【解析】【分析】直接利用关于原点对称点的性质,得出a ,b 的值,即可得出答案.【详解】解:∵坐标系中点A (-2,a )和点B (b ,3)关于原点中心对称,∴b=2,a=-3,则a+b=2-3=-1.故答案为:-1.【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.12.y =﹣2(1)x +【解析】【分析】根据平移的规律左加右减计算即可.【详解】∵二次函数y =﹣2(1)x -的图象沿x 轴向左平移2个单位,∴得到的函数表达式为y =﹣2(12)x -+即y =﹣2(1)x +.故答案为:y =﹣2(1)x .【点睛】本题考查了二次函数的平移问题,熟练掌握平移规律是解题的关键.13.k≥0且k≠1【解析】【分析】由关于x 的方程(k−1)x 2+2x−1=0有两个实数根,知22−4×(k−1)×(−1)≥0且k−1≠0,解之即可.【详解】解:∵关于x 的方程(k−1)x 2+2x−1=0有两个实数根,∴22−4×(k−1)×(−1)≥0且k−1≠0,解得k≥0且k≠1,故答案为:k≥0且k≠1.【点睛】本题主要考查根的判别式和一元二次方程的定义,一元二次方程ax 2+bx +c =0(a≠0)的根与△=b 2−4ac 有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.14.x <﹣1或x >3##x >3或x <﹣1【解析】【分析】根据函数图象和二次函数的性质,可以得到该抛物线与x 轴的另一个交点,从而可以得到当y >0时,x 的取值范围.【详解】解:由图象可得,该抛物线的对称轴为直线x =1,与x 轴的一个交点为(﹣1,0),故抛物线与x 轴的另一个交点为(3,0),故当y >0时,x 的取值范围是x <﹣1或x >3,故答案为:x <﹣1或x >3.【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.15.﹣3【解析】【分析】先根据正方形的性质得到CD=3,∠CDA=90°,再利用旋转的性质得CF=,根据正方形的性质得∠CFE=45°,则可判断△DFH为等腰直角三角形,从而计算CF﹣CD即可得出答案.【详解】解:∵四边形ABCD为正方形,∴CD=3,∠CDA=90°,∵边长为3的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD=﹣3.故答案为:﹣3.【点睛】本题考查了旋转的性质,正方形的性质,熟练掌握旋转的性质是解题的关键.16.812π##40.5π【解析】【分析】设矩形的长是a,宽为9-a,旋转形成的圆柱侧面积得到关于a的二次函数,根据二次函数的性质确定最大值即可.【详解】解:设矩形的长为a,宽为9-a,∵旋转形成的圆柱侧面积是S=2πa(9﹣a)=﹣2π(a﹣92)2+812π,∴当a=92时,侧面积有最大值为812π,故答案为:81 2π【点睛】本题考查了二次函数的应用,熟练列出二次函数并掌握求二次函数最值的方法是解题的关键.17.①②③④【解析】【分析】由抛物线y=ax2+bx+c(a≠0)经过点(2,0),对称轴为直线x=﹣1,可得28b ac a=⎧⎨=-⎩,由图可知a<0,即有b=2a<0,c=﹣8a>0,可判断①;由c=﹣8a可判断②;把a(m2﹣1)+b(m+1)变形为a(m+1)2,可判断③;根据抛物线y=ax2+bx+c与直线y=p(P为常数,且p>0)交点横坐标为整数,对称轴是x=﹣1,且抛物线y=ax2+bx+c(a≠0)经过点(2,0),可判断④.【详解】解:∵抛物线y=ax2+bx+c(a≠0)经过点(2,0),对称轴为直线x=﹣1,∴04212a b cba=++⎧⎪⎨=-⎪⎩,解得28b ac a=⎧⎨=-⎩,∴抛物线y=ax2+bx+c为y=ax2+2ax﹣8a,由图可知:a<0,∴b=2a<0,c=﹣8a>0,∴abc>0,故①正确;由c=﹣8a得8a+c=0,故②正确;∵a(m2﹣1)+b(m+1)=a(m2﹣1)+2a(m+1)=a(m+1)(m﹣1)+2a(m+1)=a(m+1)(m﹣1+2)=a(m+1)2,且a<0,(m+1)2≥0,∴a(m+1)2≤0,即a(m2﹣1)+b(m+1)≤0,故③正确;∵抛物线y =ax 2+bx+c 与直线y =p (p 为常数,且p >0)交点横坐标为整数,对称轴是x =﹣1,且抛物线y =ax 2+bx+c (a≠0)经过点(2,0),∴交点横坐标可能是﹣1,0或﹣2,1或﹣3,∴P 的值有且只有三个,故④正确;故答案为:①②③④.【点睛】本题考查二次函数图象的性质的综合应用,涉及图象上点坐标的特征、函数与方程的关系等知识,解题的关键是掌握二次函数的图象性质,利用数形结合解决问题.18.【解析】【分析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【详解】解:∵2x 2-5x=-1,∴25122x x -=-,∴2525125216216x x -+=-+,即2517()416x -=,则54x -=,∴.19.(1)证明见解析,(2)2【解析】(1)计算判别式的值得到△=﹣8,然后根据判别式的意义得到结论;(2)设抛物线沿y 轴向下平移k (k >0)个单位长度后得到的函数图象与x 轴只有一个公共点,利用抛物线的平移规律得到平移后的抛物线解析式为y =x 2﹣2mx+m 2+2﹣k ,然后根据判别式的意义得到△=(﹣2m )2﹣4(m 2+1﹣k )=0,从而解关于k 的方程即可.【详解】解:(1)证明:△=(﹣2m )2﹣4(m 2+2)所以不论m为何值,该函数图象与x轴没有公共点;(2)设抛物线沿y轴向下平移k(k>0)个单位长度后得到的函数图象与x轴只有一个公共点,则平移后的抛物线解析式为y=x2﹣2mx+m2+2﹣k,△=(﹣2m)2﹣4(m2+2﹣k)=0,解得k=2,即把该函数图象沿y轴向下平移2个单位长度后得到的函数图象与x轴只有一个公共点.故答案为:2.20.(1)见解析;(2)1A(-4,4),,1B(-1,1),1C(-1,3).【分析】(1)分解坐标,构造全等三角形即可;(2)根据全等三角形的性质,得到线段长,根据点所在象限,确定坐标即可.【详解】解:(1)画图如下:(2)根据作图,得1A(-4,4),,1B(-1,1),1C(-1,3).【点睛】本题考查了旋转,坐标的确定,三角形的全等,熟练掌握旋转的性质,灵活运用三角形的全等是解题的关键.21.1)a=7,b=-2;(2)-5.【分析】(1)根据题意,-12-b=-10是正确的,5a-20=15是正确的,求解即可;(2)代入a ,b 的值得到72x +2x+m =0,运用根与系数关系定理,综合计算即可.【详解】(1)∵甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=⎩,乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=-⎩,∴-12-b=-10是正确的,5a-20=15是正确的,解得a=7,b=-2;(2)把a=7,b=-2代入一元二次方程a 2x ﹣bx+m =0得到72x +2x+m =0,∵一元二次方程a 2x ﹣bx+m =0两实数根为1x ,2x ,∴1x +2x =27-即71x +72x =-2,1x 2x =7m 即m=71x ×2x ,∵71x ﹣2x =6,∴71x =6+2x ,∴6+2x +72x =-2,解得2x =-1,71x =5,∴m=-5.【点睛】本题考查了二元一次方程组的解,一元二次方程根与系数关系定理,正确理解方程组的解,灵活运用根与系数关系定理是解题的关键.22.(1)988;(2)900x +;50x =【解析】【分析】(1)根据已知数据可得两个数的后两位数字加起来是100,即可得解;(2)根据三位数的表示方法计算即可;【详解】(1)由题可得:两个数的后两位数字加起来是100,∴1001288-=,∴912988⨯,故答案是:988.(2)某个三位数中,十位上的数字与个位上的数字组成的两位数为x ,则这个三位数可以表示为900x +,则第二个两位数的后两位是100x -,第二个数是900100x +-,设两个三位数的乘积为y ,则,()()()290090010050902500y x x x =++-=--+,∵0a <,∴50x =时,y 有最大值,∴当50x =时,1001005050x -=-=,∴950950⨯最大.故答案是900x +.【点睛】本题主要考查了数字规律和二次函数的应用,准确计算是解题的关键.23.(1)y =﹣16x 2+2x+4,拱顶D 到地面OA 的距离为10m ;(2)能安全通过;【解析】【分析】(1)根据题意得出点B (0,4)、C (12,4),再利用待定系数法求解可得;(2)根据题意求出x =6﹣4=2时的函数值,比较可得;【详解】解:(1)根据题意将点B (0,4)、C (12,4)代入解析式得:411441246c b c =⎧⎪⎨-⨯++=⎪⎩,解得:24b c =⎧⎨=⎩,∴y =﹣16x 2+2x+4=﹣16(x ﹣6)2+10,∴拱顶D 到地面OA 的距离为10m ;(2)∵隧道内设双向行车道,故每条车到宽6m ,货运汽车宽为4m ,x=6﹣4=2,代入解析式得y=﹣16(2﹣6)2+10=﹣16×16+10=223>6,∴如果隧道内设双向行车道,那么这辆货车能安全通过;【点睛】本题考查了二次函数的应用:构建二次函数模型解决实际问题,利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.24.(1)y与x之间的函数关系式y=−2x+60(10≤x≤18);(2)该经销商想要每天获得150元的销售利润,销售价应定为15元;(3)当销售价为18元时,每天的销售利润最大,最大利润是192元.【解析】【分析】(1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;(2)根据销售利润=销售量×每一件的销售利润,找出等量关系列一元二次方程求出x,再根据x的取值范围即可确定x的值;(3)根据销售利润=销售量×每一件的销售利润,得到w和x的关系,利用二次函数的性质得最值即可.【详解】解:(1)设函数关系式y=kx+b,把(10,40),(18,24)代入得:1040 1824k bk b+=⎧⎨+=⎩,解得:260 kb=-⎧⎨=⎩,∴y与x之间的函数关系式y=−2x+60(10≤x≤18);(2)由题意知:(x−10)(−2x+60)=150,整理得:−2x2+80x−600=150,解得:x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.(3)W=(x−10)(−2x+60)=−2x 2+80x−600=−2(x−20)2+200,对称轴x =20,在对称轴的左侧W 随着x 的增大而增大,∵10≤x≤18,∴当x =18时,W 最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是192元.【点睛】本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键,结合实际情况利用二次函数的性质解决问题.25.(1)234y x x =-++;(2)DMN周长的最大值为,(2,6)D ;(3)P ⎝⎭【解析】【分析】将(4,0)A 、(1,0)B -、(0,4)C 代入2y ax bx c =++中,建立方程组求解即可;(2)延长DM 交x 轴于点H ,通过分析证明DMN是等腰直角三角形,得到1)DMN C DM =△,用待定系数法求得直线AC 的解析式,设2(,34)D m m m -++,点4(),M m m -+,求得DM 的表达式,配方求得DM 最大值,分析得到周长的最大值和点D 的坐标;(3)过点Q 作QE x ⊥轴于点E ,由面积比求得35CQ AQ =,由平行线段分线段成比例得到35OE CQ AE AQ ==,从而知道点Q 的横坐标,代入直线AC 求得纵坐标,用待定系数法求得直线OQ 的解析式,与抛物线建立方程组即可求得点P 的坐标.【详解】解:(1)∵抛物线2(0)y ax bx c a =++≠经过A(4,0)、B(﹣1,0)、C(0,4)三点∴将(4,0)A 、(1,0)B -、(0,4)C 代入2y ax bx c =++中得:164004a b c a b c c ++=⎧⎪-+=⎨⎪=⎩解得:134a b c =-⎧⎪=⎨⎪=⎩∴抛物线的解析式为:234y x x =-++(2)如图1,延长DM 交x 轴于点H ∵(4,0)A 、(0,4)C ∴4OA OC ==又∵90AOC ∠= ,∴45OCA OAC ∠=∠=∵//DM y 轴∴90AHM ∠= ,45AMH ACO ∠=∠= ∴=45DMN AMH ∠=∠∵DN AC⊥∴90DNM ∠=∴45NDM ∠=∴DMN 是等腰直角三角形∴=2DN MN =设直线AC 的解析式为(0)y kx b k =+≠将(4,0)A 、(0,4)C 两点坐标代入得:404k b b +=⎧⎨=⎩解得:14k b =-⎧⎨=⎩∴直线AC 的解析式为:4y x =-+设2(,34)D m m m -++,则点4(),M m m -+∴()22234(4)424DM m m m m m m =-++--+=-+=--+∴当2m =时,DM 取的最大值2,此时(2,6)D ∵DMN 为等腰直角三角形∴1)22DMN C DN MN DM DM DM DM DM=++++=+△∴DMN 周长的最大值为:1)+=,此时(2,6)D (3)如图2:过点Q 作QE x ⊥轴于点E∵:=3:5COQ AOQ S S △△∴35CQ AQ =∵QE x ⊥轴∴90AQE ∠=o又∵90ACO ∠=∴//QE CO ∴35OECQAE AQ ==又∵4OA =∴32OE =,即32Q x =∵点Q 在直线AC 上∴35+4=22Q y =-∴35(,)22Q 设直线OQ 的解析式为:(0y mx m =≠)将点Q 代入得:53m =∴直线OQ 的解析式为:53y x =又∵点P 是直线OQ 与抛物线的交点∴25334y x y x x ⎧=⎪⎨⎪=-++⎩∴234120x x --=234120x x --=即()60x -=或20x +=解得:122,33x x -==又∵P 为抛物线第一象限上的点∴点P的横坐标为:=3P x∴510=339P y +⨯=∴P ⎝⎭【点睛】本题考查待定系数法求一次函数和二次函数解析式、等腰直角三角形性质、相似三角形的判定和性质,二次函数的最值求法等知识点,能够数形结合分析是解题关键.。

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、单选题1.下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2.若关于x 的一元二次方程kx 2+2x–1=0有实数根,则实数k 的取值范围是A .k≥–1B .k>–1C .k≥–1且k≠0D .k>–1且k≠03.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是()A .20︒B .70︒C .30︒D .90︒4.下列运算正确的是()AB .2-=C .=D 5.如图,矩形ABCD 的对角线交于点O ,若30ACB ∠=︒,2AB =,则OC 的长为()A .2B .3C .D .46.为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下列叙述正确的是()A .25000名学生是总体B .1200名学生的身高是总体的一个样本C .每名学生是总体的一个个体D .以上调查是全面调查7.如图,PA 、PB 为⊙O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交⊙O 于点D .下列结论不一定成立的是()A .BPA △为等腰三角形B .AB 与PD 相互垂直平分C .点A 、B 都在以PO 为直径的圆上D .PC 为BPA △的边AB 上的中线8.已知一次函数y=(a+1)x+b 的图象如图所示,那么a 的取值范围是()A .1a >B .1a <-C .1a >-D .0a <9.如图,等腰直角三角形ABC 的直角顶点C 与平面直角坐标系的坐标原点O 重合,AC ,BC 分别在坐标轴上,AC=BC=1,△ABC 在x 轴正半轴上沿顺时针方向作无滑动的滚动,在滚动过程中,当点C 第一次落在x 轴正半轴上时,点A 的对应点A 1的横坐标是()A .2B .3C .D .10.如图,二次函数y=ax 2+bx+c(a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴是直线x=-1,点B 的坐标为(1,0).下面的四个结论:①AB=4;②b 2-4ac>0;③ab<0;④a-b+c<0,其中正确的结论有()A .1个B .2个C .3个D .4个二、填空题11.在网络上搜索“奔跑吧,兄弟”,能搜索到与之相关的结果为35800000个,将35800000用科学记数法表示为______.12.已知一组数据:18,17,13,15,17,16,14,17,则这组数据的中位数与众数分别是__________.13.若分式231a a +-有意义,则a 的取值范围是_____.14.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为__________.15.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC+PD 的最小值为____16.如图,在矩形ABCD 中,AD =8,AB =4,将矩形ABCD 折叠,使点A 与点C 重合,折痕为MN .给出以下四个结论:①△CDM ≌△CEN ;②△CMN 是等边三角形;③CM =5;④BN =3.其中正确的结论序号是_____.三、解答题17.解方程:(1)()()313x x --=.(2)23220x x --=.18.先化简,再求值:22322(2)42x x x x x x --+÷+---,其中1322x -=--.19.防疫期间,某公司购买AB 、两种不同品牌的免洗洗手液,若购买A 种10件,B 种5件,共需130元;若购A 种5件,B 种10件,共需140元.(1)AB 、两种洗手液每件各多少元?(2)若购买AB 、两种洗手液共100件,且总费用不超过900元,则A 种洗手液至少需要购买多少件?20.某经销商销售一种产品,这种产品的成本价为10元/件,规定销售价不低于成本价,且不高于35元,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)满足一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)若经销商想要每天获得550元的利润,销售价应该定为多少?(3)设每天的销售利润为w (元),当销售价为多少元时,每天获得的利润最大,最大利润是多少?21.如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点,且∠DBC =∠A =60°,连接OE 并延长与⊙O 相交于点F ,与BC 相交于点C .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6cm ,求弦BD 的长.22.ABC 与CDE △都是等边三角形,连接AD 、BE .(1)如图①,当点B 、C 、D 在同一条直线上时,则BCE ∠=______度;(2)将图①中的CDE △绕着点C 逆时针旋转到如图②的位置,求证:AD BE =.23.已知抛物线28(0)y ax bx a =++≠经过点A(-3,-7),B(3,5),顶点为点E ,抛物线的对称轴与直线AB 交于点C .(1)求直线AB 的解析式和抛物线的解析式.(2)在抛物线上A ,E 两点之间的部分(不包含A ,E 两点),是否存在点D ,使得2DAC DCE S S =△△?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点A ,E ,P ,Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.24.如图所示,二次函数y=-mx 2+4m 的顶点坐标为(0,2),矩形ABCD 的顶点B ,C 在x 轴上,A 、D 在抛物线上,矩形ABCD 在抛物线与x 轴所围成的图形内,且点A 在点D 的左侧.(1)求二次函数的解析式;(2)设点A 的坐标为(x ,y),试求矩形ABCD 的周长p 关于自变量x 的函数解析式,并求出自变量x 的取值范围;(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.25.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A 逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.参考答案1.A【解析】【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,也是中心对称图形,故本选项符合题意;B.不是轴对称图形,是中心对称图形,故本选项不合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点睛】本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.2.C【解析】【详解】解:∵一元二次方程kx2﹣2x﹣1=0有两个实数根,∴△=b2﹣4ac=4+4k≥0,且k≠0,解得:k≥﹣1且k≠0.故选C.【点睛】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.3.A【解析】【分析】连接AC,如图,根据圆周角定理得到90∠=,70BAC︒∠=∠=,然后利用互余计ACB ADB︒∠的度数.算ABC【详解】连接AC,如图,的直径,∵BC是O∴90∠=,BAC︒∵70∠=∠=,ACB ADB︒∴907020∠=-=.ABC︒︒︒故答案为20︒.故选A.【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.4.D【解析】【分析】根据二次根式运算法则逐项计算即可.【详解】解:A.B.=C.18,原选项错误,不符合题意;D.=故选:D.【点睛】本题考查了二次根式的运算,解题关键是熟练掌握二次根式的运算法则,准确进行计算.5.A【解析】【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB=4,再根据矩形的对角线互相平分解答.【详解】解:在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴OC=OA=12AC=2.故选:A.6.B【详解】A、总体是25000名学生的身高情况,故A错误;B、1200名学生的身高是总体的一个样本,故B正确;C、每名学生的身高是总体的一个个体,故C错误;D、该调查是抽样调查,故D错误.故选:B.7.B【分析】连接OB,OC,令M为OP中点,连接MA,MB,证明Rt△OPB≌Rt△OPA,可得BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,可推出BPA△为等腰三角形,可判断A;根据△OBP与△OAP为直角三角形,OP为斜边,可得PM=OM=BM=AM,可判断C;证明△OBC≌△OAC,可得PC⊥AB,根据△BPA为等腰三角形,可判断D;无法证明AB与PD相互垂直平分,即可得出答案.【详解】解:连接OB,OC,令M为OP中点,连接MA,MB,∵B,C为切点,∴∠OBP=∠OAP=90°,∵OA=OB,OP=OP,∴Rt△OPB≌Rt△OPA,∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,∴BPA△为等腰三角形,故A正确;∵△OBP与△OAP为直角三角形,OP为斜边,∴PM=OM=BM=AM∴点A、B都在以PO为直径的圆上,故C正确;∵∠BOC=∠AOC,OB=OA,OC=OC,∴△OBC≌△OAC,∴∠OCB=∠OCA=90°,∴PC⊥AB,∵△BPA为等腰三角形,∴PC为BPA△的边AB上的中线,故D正确;无法证明AB与PD相互垂直平分,故选:B.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,圆的性质,掌握知识点灵活运用是解题关键.8.C【解析】【分析】根据一次函数y=(a+1)x+b的图象所经过的象限来判断a+1的符号,从而求得a的取值范围.【详解】根据图示知:一次函数y=(a+1)x+b的图象经过第一、二、三象限,∴a+1>0,即a>-1;故选C.【点睛】本题考查了一次函数的图象.此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.9.D【解析】【详解】解:如图,∵AC=BC=1,∠AOB=90°∴OA′=B 2C 3=1,AB=A′B 2,∠A 1C 3B 2=∠AOB=90°,∴点A 1的横坐标为故选D .10.C【解析】【分析】利用二次函数对称性以及结合24b ac -的符号与x 轴交点个数关系,再利用数形结合分别分析得出答案.【详解】∵抛物线对称轴是直线x =﹣1,点B 的坐标为(1,0),∴A(﹣3,0),∴AB =4,故选项①正确;∵抛物线与x 轴有两个交点,∴24b ac ->0,故选项②正确;∵抛物线开口向上,∴a >0,∵抛物线对称轴在y 轴左侧,∴a ,b 同号,∴ab >0,故选项③错误;当x =﹣1时,y =a ﹣b+c 此时最小,为负数,故选项④正确;综上①②④正确故选:C【点睛】本题主要考查了二次函数图象与系数的关系,熟练运用二次函数的图象与性质,正确判断a b c-+的符号是解题关键.11.3.58×107【解析】【分析】根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数)进行书写即可.【详解】35800000用科学记数法表示为3.58×107.故答案是:3.58×107.【点睛】考查了科学记数法的表示方法(a×10n),解题关键是确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.12.16.5,17【解析】【分析】根据众数和中位数的定义求解即可,中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】将18,17,13,15,17,16,14,17从小到大排列为:13,14,15,16,17,17,17,18其中17出现的次数最多,则众数为17,中位数为:161716.5 2+=.故答案为:16.5;17【点睛】本题考查了求众数和中位数,理解众数和中位数的定义是解题的关键.13.a≠1根据题意得:a−1≠0,解得:a≠1.故答案是:a≠114.2400240081.2x x-=【解析】【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【详解】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x棵,根据题意可得:2400240081.2x x-=,故答案为:2400240081.2x x-=.15.5【解析】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1,∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°∴BC=BC′=4,根据勾股定理可得:=.故答案为5.【点睛】本题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD的值最小是解题的关键.【解析】【分析】由矩形的性质和折叠的性质可得AB=CE=4,AM=CM,AD=BC=8,AB=CD=4,CM=CN,可证△CDM≌△CEN,由勾股定理可求CM=5,BN=3,即可判断①③④是正确的,由等边三角形的判定可判断②是错误的.【详解】解:∵四边形ABCD是矩形∴AD∥BC,AD=BC=8,AB=CD=4,∴∠AMN=∠MNC,∵折叠∴AB=CE=4,∠AMN=∠NMC,AM=CM∴∠MNC=∠CMN,∴CM=CN,且CE=CD∴Rt△CDM≌Rt△CEN(HL)∴CN=CM,∵MC2=MD2+CD2,∴MC2=(8﹣MC)2+16,∴MC=5,∴CN=5,∴BN=BC﹣CN=3故①③④正确∵MD=AD﹣AM=3,且MC=5,∴MD≠12MC,即∠MCD≠30°∴∠MCN≠60°∴△CMN不是等边三角形故②错误故答案是:①③④【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,勾股定理,等边三角形的判定,熟练运用这些性质进行推理是本题的关键.17.(1)120,4x x ==;(2)121133x x -==【解析】【分析】(1)原方程运用因式分解法求解即可;(2)原方程运用公式法求解即可.【详解】解:(1)()()313x x --=2433x x -+=,240x x -=,()40x x -=,∴120,4x x ==;(2)23220x x --=,0==> ,x =,∴121133x x -==.【点睛】此题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解答此题的关键.18.124x +,10【解析】【分析】先根据分式的混合运算顺序及运算法则化简代数式,再将x 的值代入求值即可.【详解】解:原式()()2234222222x x x xx x x x ⎛⎫---+=÷- ⎪+---⎝⎭()()326222x x x x x --=÷+--()()()322223x x x x x --=⋅+--()122x =+124x =+,当13222x -=-=时,原式10=.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19.(1)A 种洗手液每件8元,B 种洗手液每件各10元;(2)50件【解析】【分析】(1)设A 种洗手液每件x 元,B 种洗手液每件各y 元,根据题意列出二元一次方程组,解方程组即可求解;(2)设A 种洗手液购买m 件,根据题意列出不等式,从中找到最小整数解即可.【详解】解:(1)设A 种洗手液每件x 元,B 种洗手液每件各y 元,根据题意得105130510140x y x y +=⎧⎨+=⎩解得:810x y =⎧⎨=⎩答:A 种洗手液每件8元,B 种洗手液每件各10元;(2)设A 种洗手液购买m 件,则B 种洗手液购买()100m -件,根据题意可得()810100900m m +-≤,解得:50m ≥.答:A 种洗手液至少需要购买50件.【点睛】本题主要考查二元一次方程组和不等式,读懂题意列出方程组及不等式是关键.20.(1)2140y x =-+;(2)15元/件;(3)销售价为35元/件时,每天获得的利润最大,最大利润1750元【解析】【分析】(1)由图可知,一次函数的图象经过(20,100)和(30,80)两点,利用待定系数法可求得k 、b 的值;(2)利用“(售价-进价)×销售数量=销售利润”可以解决售价问题;(3)探究W 与x 之间的函数关系,利用函数解决W 的最值问题即可.【详解】解:(1)设()0y kx b k =+≠.∵图象经过(20,100)和(30,80)两点,∴201003080k b k b +=⎧⎨+=⎩,解得,2140k b =-⎧⎨=⎩.∴2140y x =-+.(2)由题意得,()()102140550x x --+=.解得,1215,65x x ==.∵1035x ≤≤,∴265x =(不合题意,舍去).∴若想要每天获得550元的利润,销售价应该定为15元/件.(3)()()()21021402401800W x x x =--+=--+.∴W 是关于x 的二次函数.∵20a =-<,抛物线开口向下,∴当x<40时,y 随x 的增大而增大.又∵1035x ≤≤,∴当35x =时,W 最大=1750.∴当销售价为35元/件时,每天获得的利润最大,最大利润1750元.【点睛】本题考查用待定系数法求一次函数解析式、二次函数的性质和应用等知识点.熟知待定系数法的流程是基础,掌握二次函数的性质是求最值的关键.21.(1)证明见解析;(2)弦BD的长为【解析】【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,12BF BD=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【详解】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,12BF BD=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,∠DBC=∠A=60°,BC⊥OB,∴OC=12,∵△OBC的面积=12OC•BE=12OB•BC,∴BE=612 OB BCOC⨯⨯==∴BD =2BE =即弦BD 的长为【点睛】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.22.(1)120;(2)证明见解析.【解析】【分析】(1)根据CDE △是等边三角形及点B 、C 、D 在同一条直线上即可求解;(2)证明BCE ACD ∆∆≌即可求解.【详解】解:(1)∵CDE △是等边三角形,∴60DCE ∠=︒,∵点B 、C 、D 在同一条直线上,∴180BCE DCE ∠∠+=︒,∴180120BCE DCE ∠∠=︒-=︒(2)∵ABC 与CDE △都是等边三角形,∴BC=AC ,CE=CD ,∠ACB=∠DCE=60︒,∴∠ACB+∠ACE=∠DCE +∠ACE ,∴∠BCE=∠ACD ,在BCE 与ACD △中,BC AC BCE ACD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()BCE ACD SAS ∆∆≌,∴BE=AD .【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质;解题的关键是熟练掌握全等三角形的判定方法.23.(1)y=2x-1,y=-x 2+2x+8;(2)存在,D(-1,5);(3)点P 的坐标为2)或,2)或(6,-16)或(-4,-16)【解析】【分析】(1)设直线AB 的解析式为y kx m =+,把点()37A --,,()35B ,代入,即可得直线AB 的解析式,把点()37A --,,()35B ,代入抛物线()280y ax bx a =++≠,即可得抛物线的解析式;(2)把抛物线228y x x =-++化为顶点式2(1)9y x =--+,设点()228D m m m -++,,()11C ,,过点D 作y 轴的平行线交直线AB 于点M ,则()21M m m -,,即可得2218DAC S m -+= ,44DCE S m =- ,根据2DAC DCE S S =△△解得1m =-,即可得;(3)设点()P x y ,,当以点A ,E ,P ,Q 为顶点的四边形是平行四边形时,分三种情况讨论:①当AE 为对角线时,根据中点坐标公式可得点Q 坐标为()22x y ---,,解得2y =,当2y =时,2282x x -++=,解得1x =1x =AP 为对角线时,根据中点坐标公式可得点Q 坐标为()416x y --,,解得16y =,当16y =时,22816x x -++=,方程无解,舍去;③当PE 为对角线时,根据中点坐标公式可得点Q 坐标为()416x y ++,,解得16y =-,当16y =-时,22816x x -++=-,解得6x =或4x =-;即可得.【详解】解:(1)设直线AB 的解析式为y kx m =+,把点()37A --,,()35B ,代入,得7353k m k m -=-+⎧⎨=+⎩,解得:21k m =⎧⎨=-⎩,∴直线AB 的解析式为21y x =-,把点()37A --,,()35B ,代入抛物线()280y ax bx a =++≠,得79385938a b a b -=-+⎧⎨=++⎩,解得12a b =-⎧⎨=⎩,∴抛物线的解析式为228y x x =-++.(2)2228(1)9y x x x =-++=--+ ,∴顶点()19E ,,设点()228D m m m -++,,()11C ,,过点D 作y 轴的平行线交直线AB 于点M ,则()21M m m -,,()221282142182DAC S m m m m =⨯-++-+⨯=-+ ,()181442DCE S m m =⨯⨯-=- ,2DAC DCES S = ()2218244m m ∴-+=-,解得1m =-或5(m =舍去),∴存在点()15D -,,使得2DAC DCES S =△△(3)()37A --,,()19E ,,设点()P x y ,,当以点A ,E ,P ,Q 为顶点的四边形是平行四边形时,分三种情况讨论:①当AE 为对角线时,根据中点坐标公式可得点Q 坐标为()22x y ---,,点Q 在x 轴上,2y ∴=,当2y =时,2282x x -++=,解得1x =+1x =∴点P 坐标为()1或()12,②当AP 为对角线时,根据中点坐标公式可得点Q 坐标为()416x y --,,点Q 在x 轴上,16y ∴=,当16y =时,22816x x -++=,方程无解,舍去,③当PE 为对角线时,根据中点坐标公式可得点Q 坐标为()416x y ++,,点Q 在x 轴上,16y ∴=-,当16y =-时,22816x x -++=-,解得6x =或4x =-∴点P 坐标为()616-,或()416--,,综上所述,点P 的坐标为()1或()12或()616-,或()416--,.【点睛】本题考查了二次函数,一次函数,平行四边形,解题的关键是掌握并灵活运用这些知识点.24.(1)2122y x =+;(2)p=-x 2-4x+4,其中-2<x <2;(3)不存在,证明见解析.【解析】【分析】(1)由顶点坐标(0,2)可直接代入y=﹣mx 2+4m ,求得m=12,即可求得抛物线的解析式;(2)由图及四边形ABCD 为矩形可知AD ∥x 轴,长为2x 的据对值,AB 的长为A 点的总坐标,由x 与y 的关系,可求得p 关于自变量x 的解析式,因为矩形ABCD 在抛物线里面,所以x 小于0,大于抛物线与x 负半轴的交点;(3)由(2)得到的p 关于x 的解析式,可令p=9,求x 的方程,看x 是否有解,有解则存在,无解则不存在,显然不存在这样的p .【详解】解:(1)∵二次函数y=﹣mx 2+4m 的顶点坐标为(0,2),∴4m=2,即m=12,∴抛物线的解析式为:y=﹣12x2+2;(2)∵A点在x轴的负方向上坐标为(x,y),四边形ABCD为矩形,BC在x轴上,∴AD∥x轴,又∵抛物线关于y轴对称,∴D、C点关于y轴分别与A、B对称.∴AD的长为2x,AB长为y,∴周长p=2y+4x=2(﹣12x2+2)﹣4x=﹣(x+2)2+8.∵A在抛物线上,且ABCD组成矩形,∴x<2,∵四边形ABCD为矩形,∴y>0,即x>﹣2.∴p=﹣(x+2)2+8,其中﹣2<x<2.(3)不存在,证明:假设存在这样的p,即:9=﹣(x+2)2+8,此方程无解,所以不存在这样的p.【点睛】本题考查的二次函数与几何矩形相结合的应用,比较综合,只要熟练二次函数的性质,数形结合,此题算是中档题,考点还是比较基础的,数形结合得出是解题关键.25.(1)①见解析;②DE=297;(2)DE的值为【解析】【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE =x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中,DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=29 7,∴DE=29 7;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=综上所述,DE的值为.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.。

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。

2024-2025学年人教版九年级数学上册期中测评卷(21-23章)

2024-2025学年人教版九年级数学上册期中测评卷(21-23章)

2024-2025学年人教版九年级数学上册期中测评卷(21-23章)1.下列是一元二次方程的是()A.B.C.D.2.函数的图像经过点,则m的值为()A.1B.7C.5D.43.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.若抛物线与x轴有两个交点,则a的取值范围是()A.B.C.且D.5.如果将方程配方成的形式,则的值为()A.B.10C.5D.96.关于函数的图像和性质,下列说法错误的是()A.函数图像开口向上B.当时,y随x的增大而增大C.函数图像的顶点坐标是D.函数图像与x轴没有交点7.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长为()A.11B.12C.11或13D.138.已知方程的两根分别是,则的值为()A.18B.19C.20D.219.如图所示为长20米、宽15米的矩形空地,现计划要在中间修建三条等宽的小道,其余面积种植绿植,种植面积为400平方米,若设小道的宽为米,则根据题意,列方程为()A.B.C.D.10.将方程化为一般式,其结果是__________.11.若m是方程的根,则的值等于________.12.已知关于x的方程没有实数根,则k的取值范围是________.13.将二次函数的图像先向右平移2个单位长度,再向下平移4个单位长度,所得到的函数解析式为__________.14.已知抛物线与的形状相同,开口方向相反,且经过点,则其解析式为________.15.超市搞促销活动,将某商品经过两次降价,售价由86元降至52元,若两次降价的百分率相同均为x,可列方程为_________.16.解方程:(1)(2)17.已知关于x的一元二次方程.求证:无论m取何值,这个方程总有实数根.18.已知抛物线的顶点坐标为,且经过点.(1)求函数解析式.(2)当时,求函数的最大值.19.冬季易引发流感,刚开始有2人患流感,经过两轮传染共有288人患病,求每轮传染中平均一个人传染几个人?20.某商品售价为每件60元,每周可卖出300件,为提高利润,商家决定涨价销售,经过一段时间发现,每涨价5元,每周少卖50件,已知商品的进价为每件40元,当售价定为多少时利润最大?求最大利润.21.如图为抛物线,图像经过点.直线与抛物线交于B,C两点,点A,B在x轴上.(1)求抛物线与直线的函数解析式.(2)求的面积.。

2024--2025学年人教版九年级数学上册期中数学模考训练卷

2024--2025学年人教版九年级数学上册期中数学模考训练卷

2024-2025学年第一学期九年级期中数学模考训练卷一、选择题(共6小题,每小题3分,共18分)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2 .3.4.5 .A.30° B.45° C.60° D.70°6 . 抛物线y=ax2+bx+c的顶点为(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为()①若点P(﹣3,m),Q(3,n)在抛物线上,则m<n;②c=a+3;③a+b+c<0;④方程ax2+bx+c=3有两个相等的实数根.78.9 .10.如图,在平面上将△ABC绕点则∠CBC′的度数为.11.如图,抛物线y=ax2+bx+c的对称轴是直线x=1,12在13.为的中点,连接14 .,(1)求证:EF=BC;(2)若∠ABC=60°,∠ACB=25°,求∠FGC的度数.15 .(1)AOB绕点O顺时针旋转90°后得到并写出点1B的坐标(______,______A可以看成由点A经一次平移得到,平移距离为(2)1(3)y轴上找一点P,使得PA PB+最小,最小值为16.如图,在Rt△ABC中,∠C=90°,BD(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.17. 已知二次函数223y x x =−−的图象与x 轴交于A 、B 两点,与y 轴交于点C ,求:18(1) (2) B (3)19.某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个. (1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?20.如图,点A、B、C在⊙O上,AB为直径,∠BAC的平分线交⊙O于点D,((21BE.(1)(2)观察图(1),猜想并推理可以得到以下结论:结论1,AF和CE之间的位置关系是______;结论2,AF和CE之间的数量关系是______.(3)探究与发现:①如图(2),若点E在CA延长线上时,(2)中的两个结论是否仍然成立,说明理由.AF=,请直接写出AB的长.②如图(2),若1AE=,622 .如图,△ABC内接于⊙O,AB为直径,∠BAC=60°,延长BA至点P使AP=AC,作CD平分∠ACB交AB于点E,交⊙O于点D.连结PC,BD.(((623.(((参考解答一、选择题(共6小题,每小题3分,共18分)1.B 2 .D 3.B. 4.A 5 .C. 6 . C.7∴∴∵为∴∴∴∴,∴EF=BC;(2)解:∵AB=AE,∠ABC=60°,∴∠BAE=180°﹣60°×2=60°,∴∠FAG=∠BAE=60°.∵△ABC ≌△AEF , ∴∠F =∠C =25°,∴∠FGC =∠FAG +∠F =60°+25°=85°. 15 .解:(1)如图,11A OB △即为所求,点1B (2(316.(∵BD ∴∠∵OB =∴∠∴∠∴OD ∵∠C =90°, ∴∠ODA =90°, ∴AC 为⊙O 的切线;(2∵∠C∴∠C∴GC在Rt∵OG∴BE17.∴(C令y∴(A(2∴AB∴S四、解答题(共3小题,每小题8分,共24分)÷=(名),18.(1)解:调查总人数为1640%40故答案为:40;C组人数为40168124−−−=(名),故补全条形统计图如图所示:(2(319.解(2(-2x (3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800−+−x x ,当752b x a=−=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.20.(1)证明:如图,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵∴∵∴∴(∴∴∴==,∵∴∠BOD=60°,∴OF=16,DF=8,∴S△DOF=×=32,S 扇形DOB ==,∴S 阴影=32﹣.五、解答题(共2小题,每小题9分,共18分)21(2)∴AB =∴BE =∴∠∴∠在△AB BE∠∴△∴AF =∵∠BAC +∠BCE =90°, ∴∠BAC +∠BAF =90°, ∴∠CAF =90°, 即AF CE ⊥;故答案为 AF CE ⊥;AF CE =;(3)①当点E 在CA 的延长线上时(2)中的两个结论仍然成立 理由:由正方形ABCD 得AB BC =,90ABC ∠=°,45ACB BAC ∠=∠=°. ∵90EBF ∠=°, ∴∠即∠在△∠∴△∴∠∴∠即AF ②AB ∴CE ∵AE ∴AC ∴AB22 .解:(1)连接OC , ∵∠BAC =60°,且OA =OC , ∴∠OCA =∠OAC =60°.∵AP=AC,且∠P+∠PCA=∠BAC=60°,∴∠P=∠PCA=30°.∴∠PCO=∠PCA+∠ACO=90°.∴PC为切线;(2)连结AD.∵∴∴∴∴=∴=(∴.∴∴6,∴﹣六、综合题(共1小题,12分)23.解:(1)∵y=(x+m)2+k的顶点坐标为(1,﹣4),∴y=(x﹣1)2﹣4,令y=0得0=(x﹣1)2﹣4,∴(∴∵=当当(x轴下方的部分沿x轴翻折后解析式为y=﹣(x﹣1)2+4(﹣1<x<3),令x+b=﹣(x﹣1)2+4,Δ=13﹣4b,当13﹣4b=0时,解得b=,直线与图象y=﹣(x﹣1)2+4(﹣1<x<3)有1个交点,∴b>满足题意.>。

人教版数学九年级上册期中考试数学试卷及答案

人教版数学九年级上册期中考试数学试卷及答案

人教版九年级上册期中考试数学试卷一、选择题(以下每题只有一个答案是正确的,请把正确答案的代号填在相应的表格里,每小题3分,共30分)1.(3分)下列方程中,是一元二次方程的是()A.x2+2x+y=1B.x2+﹣1=0C.x2=0D.(x+1)(x+3)=x2﹣12.(3分)抛物线y=3(x﹣2)2+3的顶点坐标为()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(3分)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)将抛物线y=2x2向左平移1个单位,再向下平移2个单位,得到的抛物线是()A.y=2(x+1)2+2B.y=2(x﹣1)2+2C.y=2(x﹣1)2﹣2D.y=2(x+1)2﹣2 5.(3分)方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=0,x2=2C.x=0D.x=26.(3分)用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2=B.3(x﹣1)2=C.(3x﹣1)2=1D.(x﹣1)2=7.(3分)若A(﹣3,y1),B(﹣1,y2),C(2,y3)为二次函数y=x2﹣2x﹣3的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y28.(3分)贞丰县享有“中国花椒之乡”的赞誉,其中以北盘江镇顶坛花椒的品质最为出名.据统计,2014年贞丰北盘江镇花椒总产量约为4000吨,经种植技术和管理水玉提高后,2016年的总产量增长到6000吨,设平均每年的年平均增长率均为x,则下列方程正确的是()A.6000(1+x)2=4000B.4000(1+x)2=6000C.4000(1﹣x)2=6000D.6000(1﹣x)2=40009.(3分)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.10.(3分)如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有()A.1个B.2个C.3个D.4个二、填空题(本大题共10小题,第小题3分,共30分)11.(3分)把方程x(x+3)﹣2x+1=5x﹣1化成一般形式为:.12.(3分)方程(x+2)2﹣9=0的解为:.13.(3分)抛物线y=﹣2(x﹣1)2+3可以通过抛物线y=向平移个单位、再向平移个单位得到,其对称轴是.14.(3分)中心对称图形的旋转角是.15.(3分)方程x2+3x+1=0的根的情况是:.16.(3分)设x1、x2是方程2x2﹣x﹣1=0的两个根,则x1+x2=,x1•x2=.17.(3分)若y=(n2+n)x是二次函数,则n=.18.(3分)如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).19.(3分)请写出一个开口向下,对称轴为直线x=1,且与y轴的交点坐标为(0,2)的抛物线的解析式.20.(3分)如图是一个三角形点阵图,从上向下有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点,容易看出,10是三角点阵中前4行的点数和,则300个点是前行的点数和.三、解答题(本大题共8大题,共60分)21.(15分)解下列方程(1)x2﹣5x﹣6=0(2)2(x﹣3)2=8(3)4x2﹣6x﹣3=0(4)(2x﹣3)2=5(2x﹣3)22.(9分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.23.(10分)阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即|a|=问:(1)这种分析方法涌透了数学思想.(2)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.(3)猜想与|a|的大小关系.(4)尝试用从以上探究中得到的结论来解决下面的问题:化简(﹣3≤x≤5).24.(14分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)若使商场平均每天赢利1200元,则每件衬衫应降价多少元?(2)若想获得最大利润,每件衬衫应降价多少元?最大利润为多少元?25.(12分)已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.参考答案与试题解析一、选择题(以下每题只有一个答案是正确的,请把正确答案的代号填在相应的表格里,每小题3分,共30分)1.(3分)(2014秋•抚顺期末)下列方程中,是一元二次方程的是()A.x2+2x+y=1B.x2+﹣1=0C.x2=0D.(x+1)(x+3)=x2﹣1【分析】根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程,运用定义对每个方程进行分析,再作出准确的判断.【解答】解:A:含有两个未知数,不是一元二次方程;B:含有分母,是分式方程,不是整式方程,所以不是一元二次方程;C:符合一元二次方程的定义,是一元二次方程;D:化简后不含二次项,不是一元二次方程;故本题选C.【点评】本题考查的是一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程.2.(3分)(2012秋•东阳市期末)抛物线y=3(x﹣2)2+3的顶点坐标为()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【分析】根据抛物线顶点式解析式写出顶点坐标即可.【解答】解:抛物线y=3(x﹣2)2+3的顶点坐标为(2,3).故选B.【点评】本题考查了二次函数的性质,熟练掌握二次函数顶点式解析式是解题的关键.3.(3分)(2015•呼和浩特一模)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】中心对称图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合;轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合;据此判断出既是轴对称图形,又是中心对称图形的是哪个即可.【解答】解:∵选项A中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项A不正确;∵选项B中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形,∴选项B正确;∵选项C中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项C不正确;∵选项D中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但它不是轴对称图形,∴选项D不正确.故选:B.【点评】(1)此题主要考查了中心对称图形问题,要熟练掌握,解答此题的关键是要明确:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.(2)此题还考查了轴对称图形,要熟练掌握,解答此题的关键是要明确:轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.4.(3分)(2016秋•贞丰县校级期中)将抛物线y=2x2向左平移1个单位,再向下平移2个单位,得到的抛物线是()A.y=2(x+1)2+2B.y=2(x﹣1)2+2C.y=2(x﹣1)2﹣2D.y=2(x+1)2﹣2【分析】求出抛物线平移后的顶点坐标,然后利用顶点式写出即可.【解答】解:∵抛物线y=2x2向左平移1个单位,再向下平移2个单位后的顶点坐标为(﹣1,﹣2),∴得到的抛物线是y=2(x+1)2﹣2.故选D.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定抛物线解析式求解更简便.5.(3分)(2013秋•重庆期末)方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=0,x2=2C.x=0D.x=2【分析】利用因式分解法解方程.【解答】解:x(x﹣2)=0,x=0或x﹣2=0,所以x1=0,x2=2.故选B.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).6.(3分)(2009•呼和浩特)用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2=B.3(x﹣1)2=C.(3x﹣1)2=1D.(x﹣1)2=【分析】本题考查分配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:原方程为3x2﹣6x+1=0,二次项系数化为1,得x2﹣2x=﹣,即x2﹣2x+1=﹣+1,所以(x﹣1)2=.故选D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.7.(3分)(2016秋•贞丰县校级期中)若A(﹣3,y1),B(﹣1,y2),C(2,y3)为二次函数y=x2﹣2x﹣3的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y2【分析】根据二次函数图象上点的坐标特征,将A(﹣3,y1),B(﹣1,y2),C(2,y3)分别代入二次函数的关系式,分别求得y1,y2,y3的值,最后比较它们的大小即可.【解答】解:∵A(﹣3,y1),B(﹣1,y2),C(2,y3)为二次函数y=x2﹣2x﹣3的图象上的三点,∴y1=9+6﹣3=12,即y1=12,y2=1+2﹣3=0,即y2=0,y3=4﹣4﹣3=﹣3,即y3=﹣3,∵﹣3<0<12,∴y3<y2<y1.故选C.【点评】本题考查了二次函数图象上点的坐标特征.经过图象上的某点,该点一定在函数图象上.8.(3分)(2016秋•贞丰县校级期中)贞丰县享有“中国花椒之乡”的赞誉,其中以北盘江镇顶坛花椒的品质最为出名.据统计,2014年贞丰北盘江镇花椒总产量约为4000吨,经种植技术和管理水玉提高后,2016年的总产量增长到6000吨,设平均每年的年平均增长率均为x,则下列方程正确的是()A.6000(1+x)2=4000B.4000(1+x)2=6000C.4000(1﹣x)2=6000D.6000(1﹣x)2=4000【分析】设平均年增长的百分率为x,根据增长后=增长前的×(1+增长率),即可得到2015年的产量是4000(1+x),2016年的产量是4000(1+x)2,由题意得出题中的等量关系列出方程即可.【解答】解:设平均年增长的百分率为x,由题意得4000(1+x)2=6000故选B.【点评】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.9.(3分)(2015•潮阳区一模)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c 的图象大致为()A.B.C.D.【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数开口向上,一次函数经过一、三象限,故C选项错误;当a<0时,二次函数开口向下,一次函数经过二、四象限,故A选项错误;故选:D.【点评】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.10.(3分)(2013•黔西南州)如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:(1)图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,正确;(2)图象与y轴的交点在1的下方,所以c<1,错误;(3)∵对称轴在﹣1的右边,∴﹣>﹣1,又∵a<0,∴2a﹣b<0,正确;(4)当x=1时,y=a+b+c<0,正确;故错误的有1个.故选:A.【点评】本题主要考查二次函数图象与系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共10小题,第小题3分,共30分)11.(3分)(2016秋•贞丰县校级期中)把方程x(x+3)﹣2x+1=5x﹣1化成一般形式为:x2﹣4x+2=0.【分析】把方程经过整理化成ax2+bx+c=0(a≠0)的形式即可.【解答】解:x(x+3)﹣2x+1=5x﹣1,x2+3x﹣2x+1﹣5x+1=0,x2﹣4x+2=0,故答案为:x2﹣4x+2=0.【点评】此题主要考查了一元二次方程的一般形式,关键是掌握任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.12.(3分)(2016秋•贞丰县校级期中)方程(x+2)2﹣9=0的解为:x1=1,x2=﹣5.【分析】直接开平方法求解可得.【解答】解:(x+2)2=9,∴x+2=±3,∴x=﹣2±3,即x1=1,x2=﹣5,故答案为:x1=1,x2=﹣5.【点评】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键.13.(3分)(2016秋•贞丰县校级期中)抛物线y=﹣2(x﹣1)2+3可以通过抛物线y=y=﹣2x2向右平移1个单位、再向上平移3个单位得到,其对称轴是x=1.【分析】确定出y=﹣2(x﹣1)2+3的顶点坐标,再根据顶点的变化确定出平移方法,然后根据二次函数的性质分别写出开口方向,对称轴,顶点坐标和最值即可.【解答】解:∵y=﹣2(x﹣1)2+3的顶点坐标为(1,3),y=﹣2x2的顶点坐标为(0,0),∴二次函数y=﹣2(x﹣1)2+3的图象是由抛物线y=﹣3x2向右平移1个单位,再向上平移3个单位得到的;对称轴是直线x=1,故答案为:y=﹣2x2,右,1,上,3,x=1.【点评】本题考查了二次函数的图象与几何变换,二次函数的性质,根据两个函数图象的顶点坐标确定平移方法更简便.14.(3分)(2016秋•贞丰县校级期中)中心对称图形的旋转角是180°.【分析】利用中心对称图形的定义解答即可;【解答】解:中心对称图形的旋转角是180°,故答案为:180°.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.15.(3分)(2016秋•贞丰县校级期中)方程x2+3x+1=0的根的情况是:有两个不相等的实数根.【分析】求出根的判别式的值即可得.【解答】解:∵b2﹣4ac=32﹣4×1×1=5>0∴有两个不相等的实数根,故答案为:有两个不相等的实数根.【点评】本题考查利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.16.(3分)(2016秋•贞丰县校级期中)设x1、x2是方程2x2﹣x﹣1=0的两个根,则x1+x2=,x1•x2=﹣.【分析】根据一元二次方程根与系数的关系计算即可.【解答】解:∵x1、x2是方程2x2﹣x﹣1=0的两个根,∴x1+x2=,x1•x2=﹣,故答案为:,﹣.【点评】本题考查了一元二次方程根与系数的关系,设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=﹣,x1x2=.17.(3分)(2016秋•贞丰县校级期中)若y=(n2+n)x是二次函数,则n=2.【分析】根据二次函数定义可得n2﹣n=2,且n2+n≠0,再解即可.【解答】解:由题意得:n2﹣n=2,且n2+n≠0,解得:n=2,故答案为:2.【点评】此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a ≠0)的函数,叫做二次函数.18.(3分)(2008秋•安庆期末)如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号)①③②.【分析】抛物线的形状与|a|有关,根据|a|的大小即可确定抛物线的开口的宽窄.【解答】解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.【点评】抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽.19.(3分)(2016秋•贞丰县校级期中)请写出一个开口向下,对称轴为直线x=1,且与y 轴的交点坐标为(0,2)的抛物线的解析式y=﹣x2+2x+2.【分析】可设抛物线解析式为y=ax2+bx+c,由开口向下可取a的值为﹣1,由对称轴可求得b,由过(0,2)可求得c,可求出答案.【解答】解:设抛物线解析式为y=ax2+bx+c,∵开口向下,∴可取a=﹣1,∵对称轴为直线x=1,∴﹣=1,解得b=2,∵与y轴的交点坐标为(0,2),∴c=2,∴抛物线解析式为y=﹣x2+2x+2,故答案为:y=﹣x2+2x+2.【点评】本题主要考查二次函数的性质,掌握a决定抛物线的开口方向、a和b决定对称轴、c与y轴的交点有关是解题的关键.20.(3分)(2016秋•贞丰县校级期中)如图是一个三角形点阵图,从上向下有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点,容易看出,10是三角点阵中前4行的点数和,则300个点是前24行的点数和.【分析】由于第一行有1个点,第二行有2个点…第n行有n个点…,则前n行共有(1+2+3+4+5+…+n)个点,然后求它们的和,前n行共有个点,则=300,然后解方程得到n的值;【解答】解:设三角点阵中前n行的点数的和为300,则有n(n+1)=300整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=﹣25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.故答案为:24.【点评】此题主要考查了一元二次方程的应用以及规律型:图形的变化,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本大题共8大题,共60分)21.(15分)(2016秋•贞丰县校级期中)解下列方程(1)x2﹣5x﹣6=0(2)2(x﹣3)2=8(3)4x2﹣6x﹣3=0(4)(2x﹣3)2=5(2x﹣3)【分析】(1)因式分解法求解可得;(2)直接开平方法求解可得;(3)公式法求解可得;(4)因式分解法求解可得.【解答】解:(1)原方程可化为:(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,∴x=6或x=﹣1;(2)方程两边同除以2,得:(x﹣3)2=4,∴x﹣3=±2,∴x﹣3=2或x﹣3=﹣2;∴x1=5,x2=1;(3)∵a=4,b=﹣6,c=﹣3∴△=b2﹣4ac=(﹣6)2﹣4×4×(﹣3)=84>0,∴x===,∴x1=,x2=;(4)移项,得:(2x﹣3)2﹣5(2x﹣3)=0,∴(2x﹣3)〔(2x﹣3)﹣5〕=0,∴2x﹣3=0或2x﹣8=0,∴x=或x=4.【点评】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键.22.(9分)(2014•黑龙江)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.【分析】(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.【解答】解:(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).【点评】此题主要考查了旋转的性质以及图形的平移等知识,根据题意得出对应点坐标是解题关键.23.(10分)(2016秋•贞丰县校级期中)阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即|a|=问:(1)这种分析方法涌透了分类讨论数学思想.(2)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.(3)猜想与|a|的大小关系.(4)尝试用从以上探究中得到的结论来解决下面的问题:化简(﹣3≤x≤5).【分析】(1)根据数学上的分类讨论思想得出即可;(2)利用利用分类讨论得出即可;(3)利用化简结果得出即可;(4)利用(2)中所求进而化间得出即可.【解答】解:(1)分类讨论;(2)当a>0时,如a=5则,故此时展开后是它本身,当a=0时,,故此时是零,当a<0时,如a=﹣6,则,故此时的展开后是它的相反数,∴综合起来一个数的绝对值要分三种情况,=;(3);(4)(﹣3≤x≤5)=|x﹣5|+|x+3|=5﹣x+x+3=8.【点评】此题主要考查了二次根式的化简求值,正确化简二次根式利用分类讨论得出是解题关键.24.(14分)(2016秋•贞丰县校级期中)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)若使商场平均每天赢利1200元,则每件衬衫应降价多少元?(2)若想获得最大利润,每件衬衫应降价多少元?最大利润为多少元?【分析】(1)设每件衬衫应降价x元,根据每件的利润×销售量=平均每天的盈利,列方程求解即可;(2)根据:总利润=单件利润×销售量列出函数关系式,配方成二次函数顶点式可得函数最值情况.【解答】解:(1)设每件衬衫应降价x元,则依题意,得:(40﹣x)(20+2x)=1200,整理,得,﹣2x2+60x+800=1200,解得:x1=10,x2=20,答:若商场平均每天赢利1200元,每件衬衫应降价10元或20元;(2)设每件衬衫降价x元时,商场平均每天赢利最多为y,则y=(40﹣x)(20+2x)=﹣2x2+60x+800=﹣2(x2﹣30x)+800=﹣2(x﹣15)2+1250∵﹣2(x﹣15)2≤0,∴x=15时,赢利最多,此时y=1250元,答:每件衬衫降价15元时,商场平均每天赢利最多.【点评】主要考查你对一元二次方程的应用,求二次函数的解析式及二次函数的应用等考点的理解,根据题意准确抓住相等关系式并加以应用是关键.25.(12分)(2016秋•秀峰区校级期中)已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.【分析】(1)把A、D两点坐标代入二次函数y=x2+bx+c,解方程组即可解决.(2)利用轴对称找到点P,用勾股定理即可解决.(3)根据三角形面积公式,列出方程即可解决.【解答】解:(1)因为二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),所以,解得.所以一次函数解析式为y=x2+2x﹣3.(2)∵抛物线对称轴x=﹣1,D(﹣2,﹣3),C(0,﹣3),∴C、D关于x轴对称,连接AC与对称轴的交点就是点P,此时PA+PD=PA+PC=AC===3.(3)设点P坐标(m,m2+2m﹣3),令y=0,x2+2x﹣3=0,x=﹣3或1,∴点B坐标(1,0),∴AB=4=6,∵S△P AB∴•4•|m2+2m﹣3|=6,∴m2+2m﹣6=0,m2+2m=0,∴m=0或﹣2或1+或1﹣.∴点P坐标为(0,﹣3)或(﹣2,﹣3)或(1+,3)或(1﹣,3).【点评】本题考查待定系数法确定二次函数解析式、轴对称﹣最短问题,解题关键是熟练掌握待定系数法求抛物线解析式,学会利用对称解决最短问题,用方程的思想去思考问题,属于中考常考题型.。

2024年最新人教版初三数学(上册)期中试卷及答案(各版本)

2024年最新人教版初三数学(上册)期中试卷及答案(各版本)

2024年最新人教版初三数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最大的数是()A. 3B. 0C. 1D. 22. 一个等边三角形的周长是15cm,那么它的边长是()A. 3cmB. 5cmC. 7.5cmD. 10cm3. 下列哪一个数是有理数()A. √3B. πC. 1/2D. √14. 下列哪一个图形是正方体()A. 长方体B. 球体C. 圆柱体D. 正方体5. 下列哪一个数是无理数()A. 1/3B. √4C. 0.333D. √2二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 任何两个实数的积都是实数。

()3. 0是正数。

()4. 1是质数。

()5. 任何两个奇数的和都是偶数。

()三、填空题5道(每题1分,共5分)1. 一个等差数列的第1项是1,公差是2,第10项是______。

2. 一个等比数列的第1项是2,公比是3,第4项是______。

3. 下列数列的前5项是2, 4, 8, 16, 32,下一个数是______。

4. 下列数列的前5项是1, 3, 5, 7, 9,下一个数是______。

5. 下列数列的前5项是1, 4, 9, 16, 25,下一个数是______。

四、简答题5道(每题2分,共10分)1. 解释什么是等差数列?2. 解释什么是等比数列?3. 解释什么是无理数?4. 解释什么是函数?5. 解释什么是几何图形?五、应用题:5道(每题2分,共10分)1. 一个等差数列的第1项是3,公差是2,求第10项。

2. 一个等比数列的第1项是2,公比是3,求第6项。

3. 下列数列的前5项是2, 4, 8, 16, 32,求下一个数。

4. 下列数列的前5项是1, 3, 5, 7, 9,求下一个数。

5. 下列数列的前5项是1, 4, 9, 16, 25,求下一个数。

六、分析题:2道(每题5分,共10分)1. 给出一个等差数列的前5项,然后给出一个等比数列的前5项,比较它们的特点。

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.若关于x 的方程(m ﹣1)x 2=﹣m 是一元二次方程,则m 不可能取的数为()A .0B .1C .±1D .0和12.下列抛物线中,开口最大的是()A .y 2B .y =2112x -+C .y =2(1)x -D .y =﹣2(1)x +3.下列一元二次方程中,有实数根的是()A .2x=﹣2B .2x -x C .2x x+1=0D .(x+1)(x+2)=﹣14.已知A (1,y1)、B (﹣2,y 2)、C ,y 3)在函数y =x 2的图象上,则y 1、y 2、y 3的大小关系是()A .1y <3y <2yB .1y <2y <3yC .2y <1y <3y D .2y <3y <1y 5.下列说法中,正确的是()A .弦是直径B .相等的弦所对的弧相等C .圆内接四边形的对角互补D .三个点确定一个圆6.抛物线y =ax 2+bx+c (a≠0)的部分图象如图所示,则下面结论中不正确的是()A .ac <0B .2a+b =0C .b 2<4acD .方程ax 2+bx+c =0的根是﹣1,37.如图,在⊙O 中,AB 是直径,OD ⊥AC 于点E ,交⊙O 于点D ,则下列结论错误的是()A.AD=CD B.C.BC=2EO D.EO=DEAD DC8.如图,在△ABC中,∠C=90°,AC=BC2,将△ABC绕点A逆时针方向旋转60°到△AB'C'的位置,则图中阴影部分的面积是()A2B3C.32D.239.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此变换进行下去,若点P(17,m)在这种连续变换的图象上,则m的值为()A.2B.﹣2C.﹣3D.310.如图,将△ABC绕点B顺时针旋转50°得△DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()A.AB=DB B.∠CBD=80°C.∠ABD=∠E D.△ABC≌△DBE二、填空题11.若关于x的方程x2=P的两根分别为m+1和m﹣1,则P的值为_____.12.已知抛物线y=(x﹣m)2+3,当x>1时,y随x的增大而增大,则m的取值范围是_____.13.如图,△ABC是⊙O的内接三角形,BC是直径,∠B=54°,∠BAC的平分线交⊙O 于D,则∠ACD的度数是_____.14.如图,PA,PB分别切半径为2的⊙O于A,B两点,BC为直径,若∠P=60°,则PB 的长为_____.15.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D为AC中点,E为AB上的动点,将ED绕点D逆时针旋转90°得到FD,连CF,则线段CF的最小值为_____.三、解答题16.用适当的方法解下列方程(1)(x﹣1)2=2(1﹣x)(2)()(y)=17.如图所示,在正方形网格中,△ABC 的顶点坐标分别为(﹣1,0),(﹣2,﹣2),(﹣4,﹣1).请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 绕着某点按顺时针方向旋转得到△A′B'C',请直接写出旋转中心的坐标和旋转角度.(2)画出△ABC 关于点A 成中心对称的△AED ,若△ABC 内有一点P (a ,b ),请直接写出经过这次变换后点P 的对称点坐标.18.已知▱ABCD 边AB ,AD 的长是关于x 的方程x 2﹣mx+4=0的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?(2)若AB ,那么▱ABCD 的周长是多少?19.已知二次函数y =21322x x +-,解答下列问题:(1)用配方法求其图象的顶点坐标;(2)填空:①点A (m ,52),B (n ,52)在其图象上,则线段AB 的长为____;②要使直线y =b 与该抛物线有两个交点,则b 的取值范围是______.20.如图,在△ABC 中,AB =AC ,∠BAC =120°,点O 在BC 上,⊙O 经过点A ,点C ,且交BC 于点D ,直径EF ⊥AC 于点G .(1)求证:AB 是⊙O 的切线;(2)若AC =8,求BD 的长.21.某商场销售一种商品,进价为每件15元,规定每件商品售价不低于进价,且每天销售量不低于90件经调查发现,每天的销售量y(件)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:每个商品的售价x(元)…304050…每天的销售量y(件)…1008060…(1)填空:y与x之间的函数关系式是______.(2)设商场每天获得的总利润为w(元),求w与x之间的函数关系式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?22.如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.(1)探究DB'与EC'的数量关系,并结合图2给予证明;(2)填空:①当旋转角α的度数为_____时,则DB'∥AE;②在旋转过程中,当点B',D,E在一条直线上,且AD2时,此时EC′的长为_____.23.如图,已知直线y=x+4交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)求抛物线解析式;(2)点C(m,0)是x轴上异于A、O点的一点,过点C作x轴的垂线交AB于点D,交抛物线于点E.的最大值;①当点E在直线AB上方的抛物线上时,连接AE、BE,求S△ABE②当DE=AD时,求m的值.参考答案1.B【解析】根据一元二次方程定义可得:m﹣1≠0,求出m的取值范围即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选B.【点睛】本题考查一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.2.B 【分析】根据二次函数中|a|的绝对值越大,开口越小,|a|的绝对值越小,开口越大,即可得答案.【详解】∵|﹣12|<|﹣1|=|1|,∴函数y =212x +1的开口最大,故选B .【点睛】本题主要考查的是二次函数的图象和性质,掌握抛物线的开口方向和开口大小与a 的关系是解题的关键.3.B 【分析】根据根的判别式逐一判断即可得答案.【详解】A.∵x 2+2=0,∴△=0﹣4×2=﹣8<0,故该选项无实数根,B.∵x 2﹣x ,∴x 2﹣x =0,∴△=>0,故该选项有实数根,C.∵x 2x+1=0,∴△=2﹣4=﹣2<0,故该选项没有实数根,D.∵(x+1)(x+2)=﹣1,∴x 2+3x+3=0,∴△=9﹣12=﹣3<0,故该选项没有实数根.故选B .【点睛】本题考查一元二次方程根的判别式,对于一元二次方程y=ax2+bx+c(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;熟练掌握根的判别式与根的个数的关系是解题关键.4.A【分析】先判断函数的对称轴及开口方向,然后根据开口向上时,横坐标离对称轴越远,函数值越大,据此可解.【详解】∵函数y=x2,1>0,∴对称轴是y轴,开口向上,∴横坐标离y轴越远,函数值越大,∵|1|<|<|﹣2|∴1y<3y<2y故选A.【点睛】本题考查二次函数的性质,抛物线开口向上时,横坐标离对称轴越远,函数值越大;抛物线开口向下时,横坐标离对称轴越近,函数值越大;熟练掌握二次函数的性质是解题关键. 5.C【分析】利用圆的有关性质及定义逐一判断后即可确定正确的选项.【详解】A.直径是弦,但弦不一定是直径,故错误,不符合题意,B.相等的弦对的弧不一定相等,故错误,不符合题意,C.圆内接四边形的对角互补,正确,符合题意,D.不在同一直线上的三点确定一个圆,故错误,不符合题意,故选C.【点睛】本题考查圆的有关性质及定义,熟练掌握相关性质及定义是解题关键.6.C 【分析】根据图象的开口方向及与y 轴的交点可得a 、c 的符号,根据对称轴可确定b 的符号,可对A 、B 进行判断,根据图象与x 轴的交点可C 、D 进行判断,即可得答案.【详解】∵图象开口向下,与y 轴交于y 轴正半轴,∴a <0,c>0,∴ac<0,故A 正确,∵对称轴x =1=﹣2ba,∴b =﹣2a ,∴2a+b =0,故B 正确,∵图象与x 轴的一个交点坐标为(3,0),对称轴为x=1,∴b 2﹣4ac >0,即b 2>4ac ,另一个交点为(﹣1,0),∴方程ax 2+bx+c =0的根是﹣1,3,故C 错误,D 正确,故选C .【点睛】本题考查了二次函数图象与系数的关系.二次函数y=ax 2+bx+c (a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.7.D 【分析】由垂径定理得出 ADDC =,AE =CE ,得出AD =CD ,可得出OE 是△ABC 的中位线,根据中位线的性质可得BC =2OE ;只有当AD =AO 时,EO =DE ,即可得出答案.【详解】∵AB 是直径,OD ⊥AC ,∴ ADDC =,AE =CE ,故选项B 正确,不符合题意,∴AD =CD ,故选项A 正确,不符合题意,∵OA =OB ,∴OE 是△ABC 的中位线,∴BC =2OE ,故选项C 正确,不符合题意,∵只有当AD =AO 时,EO =DE ,∴选项D 错误,符合题意,故选D .【点睛】本题考查垂径定理及三角形中位线的性质,垂直于弦的直径,平分弦并且平分这条弦所对的两条弧;三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握垂径定理是解题关键.8.B 【分析】由等腰直角三角形的性质可求AB =2,由旋转的性质可得AB =AB',∠BAB'=60°,可得△ABB'是等边三角形,由图中阴影部分的面积=S △AB'B 即可得答案.【详解】过A 作AD ⊥B′B ,∵∠C =90°,AC =BC ,∴AB =AC =2,∵将△ABC 绕点A 逆时针方向旋转60°到△AB'C'的位置,∴AB =AB',∠BAB'=60°,∴△ABB'是等边三角形,∴B′B=AB=2,∵AD ⊥B′B ,∴BD=12B′B=1,∴AD=,∴图中阴影部分的面积=S △AB'B =12B′B·AD ,故选B.【点睛】本题考查旋转的性质及等边三角形的判定与性质,正确得出对应边、对应角与旋转角是解题关键.9.D【分析】根据题意和题目中的函数解析式,可以得到点A1的坐标,从而可以求得OA1的长度,然后根据题意,即可得到点P(17,m)中m的值和x=1时对应的函数值相等,即可得答案.【详解】∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4……,∴OA1=A1A2=A2A3=A3A4 (4)∵点P(17,m)在这种连续变换的图象上,17÷4=4……1,∴点P(17,m)在C5上,∴x=17和x=1时的函数值相等,∴m=﹣1×(1﹣4)=﹣1×(﹣3)=3,故选D.【点睛】本题考查二次函数的性质及旋转的性质,得出x=17和x=1时的函数值相等是解题关键. 10.C【分析】利用旋转的性质得△ABC≌△DBE,BA=BD,BC=BE,∠ABD=∠CBE=50°,∠C=∠E,再由A、B、E三点共线,由平角定义求出∠CBD=80°,由三角形外角性质判断出∠ABD>∠E.【详解】解:∵△ABC绕点B顺时针旋转50°得△DBE,∴AB=DB,BC=BE,∠ABD=∠CBE=50°,△ABC≌△DBE,故选项A、D一定成立;∵点C的对应点E恰好落在AB的延长线上,∴∠ABD+∠CBE+∠CBD=180°,.∴∠CBD=180°-50°-50°=80°,故选项B一定成立;又∵∠ABD=∠E+∠BDE,∴∠ABD>∠E,故选项C错误,故选C.【点睛】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.1【分析】根据一元二次方程根与系数的关系可得m+1+m﹣1=0,即可求出m的值,进而可求出P值.【详解】∵关于x的方程x2=P的两根分别为m+1和m﹣1,∴m+1+m﹣1=0,解得:m=0,即m﹣1=﹣1,所以:P=(﹣1)2=1,故答案为1【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的两个根为x1、x2,则x1+x2=ba ,x1·x2=ca;熟练掌握韦达定理是解题关键.12.m≤1【分析】先求得抛物线的对称轴,再由条件可求得关于m的不等式,即可得答案.【详解】∵y=(x﹣m)2+3,∴对称轴为x=m,∵a=1>0,∴抛物线开口向上,∴在对称轴右侧y随x的增大而增大,∵当x>1时,y随x的增大而增大,∴m≤1,故答案为:m≤1.【点睛】此题主要考查了利用二次函数增减性以及利用数形结合确定对称轴大体位置,根据二次函数解析式得出对称轴为x=m是解题关键.13.81°【分析】根据圆周角定理得到∠BAC=90°,∠D=∠B=54°,根据角平分线的定义、三角形内角和定理计算即可.【详解】∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠DAC=45°,∵∠D和∠B都是 AC所对的圆周角,∠B=54°,∴∠D=∠B=54°,∴∠ACD=180°﹣∠DAC﹣∠D=180°﹣45°﹣54°=81°,故答案为:81°【点睛】本题主要考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.14.【解析】【分析】连接AC,根据PA,PB是切线,∠P=60°,判断出△ABP是正三角形,根据切线的性质可得∠CBP为90°,进而得出∠ABC=30°,由BC是直径可得∠BAC-90°,根据含30°角的直角三角形的性质可得AC的长,利用勾股定理求出AB的长即可.【详解】如图所示:连接AC,∵PA,PB是切线,∴PA=PB.又∵∠P=60°,∴AB=PB,∠ABP=60°,又CB⊥PB,∴∠ABC=30°,∵BC是直径,BC=4,∴∠BAC=90°,∴AC=12BC=2,∴PB=.故答案为【点睛】本题考查切线长定理、切线的性质及含30°角的直角三角形的性质,从圆外一点可引圆的两条切线,它们的切线长相等,这一点与圆心的连线平分两条切线的夹角;圆的切线垂直于过切点的半径;30°角所对的直角边等于斜边的一半;熟练掌握相关性质及定理是解题关键. 15.4【分析】如图所示,过F作FH⊥AC于H,则∠A=∠DHF=90°,由“AAS”可证△ADE≌△HFD,可得HF=AD=4,当点H与点C重合,线段CF的最小值为4.【详解】如图所示,过F作FH⊥AC于H,则∠A=∠DHF=90°,∵AC=8,D为AC中点,∴AD=4,由旋转可得,DE=DF,∠EDF=90°,∴∠ADE+∠FDH=90°,∠FDH+∠DFH=90°,∴∠ADE=∠DFH,且DE=DF,∠A=∠DHF=90°,∴△ADE≌△HFD(AAS),∴HF=AD=4,∴当点H与点C重合,此时CF=HF=4,∴线段CF的最小值为4,故答案为:4【点睛】本题考查旋转的性质及全等三角形的判定与性质,根据全等三角形的判定与性质得出HF的长是解题关键.16.(1)x1=1,x2=﹣1;(2)y1﹣2,y2+2.【分析】(1)利用因式分解法求解可得;(2)整理成一般形式后,利用公式法法求解可得.【详解】(1)(x﹣1)2=2(1﹣x)(x﹣1)2=﹣2(x﹣1),(x﹣1)2+2(x﹣1)=0,(x﹣1)(x+1)=0,x﹣1=0或x+1=0,解得:x1=1,x2=﹣1.(2)()(y)=y2﹣y﹣2=0∴±2,∴y 1﹣2,y 2+2.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、公式法、配方法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.17.(1)旋转中心坐标为(2,﹣3),旋转角为90°;(2)作图见解析,(﹣a ﹣2,﹣b ).【分析】(1)作线段BB′,线段AA′的垂直平分线交于点K ,点K 即为所求.连接AK 、A′K ,可得∠AKA′=90°,即可得旋转角度数;(2)分别作出C ,B 的对应点E ,D 即可,利用中点坐标公式求出对称点的坐标即可.【详解】(1)如图,作线段BB′,线段AA′的垂直平分线交于点K ,点K 即为所求.∴旋转中心坐标为K (2,﹣3),连接AK 、A′K ,由网格的特点可知:∠AKA′=90°,∴旋转角为90°.(2)如图,△ADE 即为所求,设点P 关于点A 的对称点为P′(x ,y ),∵A (-1,0),P (a ,b ),点A 为PP′的中点,∴12x a +=-,02y b +=,解得:x=-2-a ,y=-b ,∴点P (a ,b )经过这次变换后点P 的对称点坐标为(﹣a ﹣2,﹣b ).【点睛】本题考查旋转的性质及坐标变换,正确得出对应点、对应边并熟记中点坐标公式是解题关键. 18.(1)m=﹣4;(2)2.【分析】(1)根据菱形的性质得出AB=AD,根据根的判别式得出关于m的方程,求出m即可;(2)根据根与系数的关系求出AD,再根据平行四边形的性质得出另外两边的长度,求出周长即可.【详解】(1)∵四边形ABCD是菱形,∴AB=AD,∴方程x2﹣mx+4=0有两个相的等实数根,∴△=(﹣m)2﹣4×1×4=0,解得:m=±4,即方程为x2﹣4x+4=0或x2+4x+4=0,解得:x=2或x=﹣2,∵边长不能为负数,∴x=2,即AB=AD=2,∴m=﹣4;(2)∵▱ABCD边AB,AD的长是关于x的方程x2﹣mx+4=0的两个实数根,AB=2,2AD=4,解得:AD =,∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC =,∴▱ABCD +2+2=.【点睛】本题考查了菱形的性质、一元二次方程根的判别式及根与系数的关系,对于一元二次方程y=ax 2+bx+c(a≠0),判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;若一元二次方程ax 2+bx+c=0(a ,b ,c 是常数且a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a ;熟练掌握韦达定理是解题关键.19.(1)(﹣1,﹣2);(2)①6;②b >﹣2.【分析】(1)根据配方法可以求得该函数图象的顶点坐标;(2)①把y=52代入二次函数解析式,可求得m 、n 的值,从而可以求得线段AB 的长;②根据二次函数的顶点坐标及直线y =b 与该抛物线有两个交点,即可求得b 的取值范围.【详解】(1)∵二次函数y =22131(1)2222x x x +-=+-,∴该函数图象的顶点坐标为(﹣1,﹣2);(2)①∵点A (m ,52),B (n ,52)在其图象上,∴52=21322x x +-,解得,x 1=﹣4,x 2=2,∴m =﹣4,n =2或m =2,n =﹣4,∵|﹣4﹣2|=|2﹣(﹣4)|=6,∴线段AB 的长为6,故答案为:6②∵该函数图象的顶点坐标为(﹣1,﹣2),直线y =b 与该抛物线有两个交点,∴b 的取值范围为b >﹣2,故答案为:b >﹣2.【点睛】此题主要考查了二次函数的性质及二次函数图象上点的坐标特征、配方法求其顶点坐标,熟练掌握二次函数的性质是解题关键.20.(1)详见解析;(2)BD =833.【分析】(1)连接OA ,由等腰三角形的性质得出∠B =∠C =30°,∠OAC =∠C =30°,求出∠OAB =120°﹣30°=90°,得出AB ⊥OA ,即可得出AB 是⊙O 的切线;(2)由垂径定理得出AG =CG =12AC =4,由直角三角形的性质得出OG =3AG =3,得出OA =2OG =833,BO =2OA =2OD ,即可得出BD =OA =833.【详解】(1)如图,连接OA ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵OA =OC ,∴∠OAC =∠C =30°,∴∠OAB =∠BAC-∠OAC=120°﹣30°=90°,∴AB ⊥OA ,∴AB 是⊙O 的切线.(2)解:∵直径EF ⊥AC ,∴AG=CG=12AC=4,∵∠OAC=30°,∴OG=3AG=433,∴OA=2OG=3,∵∠OAB=90°,∠B=30°,∴BO=2OA=2OD,∴BD=OA=83 3.【点睛】本题考查切线的判定、垂径定理及含30°角的直角三角形的性质,过半径的外端并且垂直于这条半径的直线是圆的切线;垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;熟练掌握相关定理及性质是解题关键.21.(1)y=﹣2x+160;(2)w=﹣2x2+190x﹣2400;(3)当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.【分析】(1)根据表格所给数据即可求得一次函数解析式;(2)根据总利润等于销售量乘以单件利润即可求解;(3)根据二次函数的性质即可求解.【详解】(1)设每天的销售量y(件)与每个商品的售价x(元)满足的一次函数关系为:y=kx+b,把(30,100)、(40,80)代入得:30100 4080k bk b+=⎧⎨+=⎩解得:2160 kb=-⎧⎨=⎩,∴y与x之间的函数关系式是y=﹣2x+160.故答案为y=﹣20x+160(2)∵每天销售量不低于90件,∴-20x+160≤90,解得:x≤35,∵售价不低于进价,∴x≥15,∴15≤x≤35,w=(x﹣15)(﹣2x+160)=﹣2x2+190x﹣2400(15≤x≤35).答:w与x之间的函数关系式为w=﹣2x2+190x﹣2400(15≤x≤35).(3)w=﹣2x2+190x﹣2400=﹣2(x﹣47.5)2+2112.5∵15≤x≤35,﹣2<0,∴图象在对称轴左侧,w随x的增大而增大,∴当x=35时,w最大为1800.答:当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式及求二次函数的最值,熟练掌握二次函数的性质是解题关键.22.(1)DB'=EC',证明详见解析;(2)①60°-1.【分析】(1)由旋转的性质可得∠DAE=∠B'AC'=90°,AB'=AC',利用“SAS”可证明△ADB'≌△AEC',可得DB'=EC';(2)由平行线的性质和直角三角形的性质可求解;(3)由全等三角形的性质可得∠ADB'=∠AEC',B'D=C'E,由等腰直角三角形的性质可得B'C'AB'=4,DE AD=2,由勾股定理可求EC'的长.【详解】(1)DB'=EC',理由如下:∵AB=AC,D、E分别是AB、AC边的中点,∴AD=AE,由旋转可得,∠DAE=∠B'AC'=90°,AB'=AC',∴∠DAB'=∠EAC',且AB'=AC',AD=AE∴△ADB'≌△AEC'(SAS),∴DB′=EC′,(2)①∵DB′∥AE,∴∠B'DA=∠DAE=90°,∵AD=12AB,AB=AB',∴AD=12AB',∴∠AB'D=30°,∴∠DAB'=60°,∴旋转角α=60°,故答案为60°,②如图,当点B',D,E在一条直线上,∵AD=,∴AB'=,∵△ADE,△AB'C'是等腰直角三角形,∴B'C'=AB'=4,DE=AD=2,由(1)可知:△ADB'≌△AEC',∴∠ADB'=∠AEC',B'D=C'E,∵∠ADB'=∠DAE+∠AED,∠AEC'=∠AED+∠DEC',∴∠DEC'=∠DAE=90°,∴B'C'2=B'E2+C'E2,∴16=(2+EC')2+C'E2,∴CE﹣1,7﹣1.【点睛】本题考查旋转的性质、等腰直角三角形的性质及全等三角形的判定与性质,正确得出旋转后的对应边、旋转角并熟练掌握全等三角形的判定定理是解题关键.23.(1)y=﹣x2﹣3x+4;(2)①S△ABE最大值为8;②m=2.【分析】(1)直线y=x+4交x轴于点A,交y轴于点B,则点A、B的坐标分别为:(﹣4,0)、(0,4),可得c值,把A点坐标代入y=﹣x2+bx+c求出b的值,即可得答案;(2)①S△ABE=12×ED×OA=2ED=﹣2m2﹣8m,即可求解;②根据A、B坐标可得∠BAO=45°,即可得出AD2AC2|(m+4)|,根据AD=DE列方程求出m的值即可.【详解】(1)∵直线y=x+4交x轴于点A,交y轴于点B,∴当x=0时,y=4,当y=0时,x=-4,∴点A(-4,0)、点B(0,4),∴c=4,将点A的坐标代入抛物线表达式并解得:-(-4)2-4x+4=0,解得:b=﹣3,故抛物线的表达式为:y=﹣x2﹣3x+4;(2)如图,连接EA、EB,①∵C(m,0),CE⊥x轴,D、E分别在AB和抛物线上,∴点E、D的坐标分别为:(m,﹣m2﹣3m+4)、(m,m+4),∵点E在直线AB上方的抛物线上,∴DE=(﹣m2﹣3m+4)﹣(m+4)=﹣m2﹣4m,∴S △ABE =12×ED×OA =2ED =﹣2m 2﹣8m=-2(m+2)2+8,∵﹣2<0,∴当m=-2时,S △ABE 有最大值8.②∵OA=OB=4,∠AOB=90°,∴∠BAO=45°,∵∠ACE=90°,∴AD =AC =|m+4|,∵AD=DE ,∴2244m m --=+解得:m=或m=-4,∵m=-4时,点C 与点A 重合,不符合题意,∴m=.【点睛】本题考查待定系数法求二次函数解析式、二次函数图象上点的坐标特征、求二次函数的最值及等腰直角三角形的性质,熟练掌握二次函数的性质是解题关键.。

2024年人教版初三数学上册期中考试卷(附答案)

2024年人教版初三数学上册期中考试卷(附答案)

2024年人教版初三数学上册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是?A. P'(2,3)B. P'(2,3)C. P'(2,3)D. P'(2,3)3. 下列哪个选项是平行四边形的性质?A. 对角线相等B. 对角线互相垂直C. 对角线互相平分D. 对角线互相平行4. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cC. y = ax^2 + bx + dD. y = ax^3 + bx + d5. 下列哪个选项是圆的面积公式?A. A = πr^2B. A = 2πrC. A = πrD. A = 2πr^2二、判断题5道(每题1分,共5分)1. 一个等腰三角形的底角是60度,则顶角也是60度。

()2. 一个数的平方根只有一个。

()3. 任何两个圆都是相似的。

()4. 两个相似的三角形,它们的对应边长之比相等。

()5. 一个二次函数的图像是一个抛物线。

()三、填空题5道(每题1分,共5分)1. 勾股定理中,斜边的长度是直角边的长度的平方和的平方根。

2. 在平面直角坐标系中,点P(x,y)关于y轴的对称点是P'( , )。

3. 平行四边形的对角线互相_________。

4. 二次函数的一般形式是y = ________。

5. 圆的面积公式是A = ________。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述二次函数的一般形式。

4. 简述圆的面积公式。

5. 简述两个相似的三角形的性质。

五、应用题:5道(每题2分,共10分)1. 一个直角三角形的两条直角边分别是3cm和4cm,求斜边的长度。

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、单项选择题(每小题3分,共30分)1.不是中心对称图形的是()A .长方形B .平行四边形C .扇形D .线段2.一元二次方程2810x x --=配方后可变形为()A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=3.二次函数2(2)1y x =+-的图像大致为()A .B .C .D .4.国旗上的五角星是旋转对称图形,它至少需要旋转多少度后才能与自身重合?()A .360°B .60°C .45°D .72°5.如图,⊙O 是△ABD 的外接圆,AB =AD ,点C 在⊙O 上,若∠C =76°,则∠ABD 的度数是()A .104°B .38°C .40°D .76°6.底面直径为6cm 的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高为().A .5cm B .3cm C .8cm D .4cm7.设A (-1,1y )、B (1,2y )、C (3,3y )是抛物线211(22y x k =--+上的三个点,则1y 、2y 、3y 的大小关系是()A.1y<2y<3y B.2y<1y<3y C.3y<1y<2y D.2y<3y<1y8.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对9.下列说法中:①平分弦的直径垂直于弦;②直角所对的弦是直径;③相等的弦所对的弧相等;④等弧所对的弦相等;⑤圆周角等于圆心角的一半;⑥2-5+7=0两根之和为5,其中正确命题的个数为()A.0个B.1个C.2个D.3个10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示经过原点,给出以下四个结论:①abc=0,②a+b+c>0,③2a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.二次函数y=x2﹣4x﹣3的顶点坐标是______________.12.方程x2-22x-3=0有_____个实数根.13.把抛物线y=x2先向右平移2个单位长度,再向上平移3个单位长度,平移后的抛物线的解析式是______________.14.在某次聚会上每两个人都握了一次手,所有人共握手28次.设有x人参加这次聚会,则列出方程是__________________15.如图,半圆O与等腰直角三角形ABC的两腰CA、CB分别切于D、E两点,直径FG在AB上,若-1,则BE的长为__________________.16.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为________.三、解答题17.已知关于x的一元二次方程x2-(k—1)x-6=0的一个根为3,求k的值及另一个根.18.如图,AB是⊙O的直径,点C在上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D,若∠AOC=80°,求∠ADB的度数.19.在Rt△POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.求证:MA=MB;20.如图,已知在△ABC 中,∠A=90°,(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P 的面积.21.如图,直线y x m =+和抛物线2y x bx c =++都经过点()1,0A ,()3,2B .()1求m 的值和抛物线的解析式;()2求不等式2x bx c x m ++>+的解集.(直接写出答案)22.已知关于x 的一元二次方程x 2-2(1-m )x +m 2的两实数根为x 1,x 2.(1)求m 的取值范围;(2)设=(1+2)2,当m 为何值时,y 有最小值,求y 的最小值.23.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润w (元)与销售单价x (元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)如果该文具的销售单价高于进价且不超过30元,请你计算最大利润.24.如图在RtΔABC 中,∠C =90°,以AC 为直径作⊙O ,交AB 于D ,过O 作OE ∥AB ,交BC 于E .(1)求证:ED 是⊙O 的切线;(2)如果⊙O 的半径为1.5,ED =2,求AB 的长.(3)在(2)的条件下,求△ADO 的面积.25.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G四个点为顶点的四边形是平行四边形?如果存在,写出所有满足条件的F点坐标(请直接写出点的坐标,不要求写过程);如果不存在,请说明理由.参考答案1.C2.C3.D4.D5.B6.D7.C8.B9.B10.C11.(2,-7)12.两13.y=(x-2)2+314.12x (x ﹣1)=28.15.1.16.142π-17.k 的值为2,另一个根为-2.18.50°19.证明见解析.20.(1)作图见解析;(2)3π21.(1)m=-1,y=x 2-3x+2;(2)x <1或x >3.22.(1)m ≤12;(2)当m =12时,y 取最小值1.23.(1)w=-10x 2+700x-10000;(2)当单价为35元时,该文具每天的利润最大;(3)2000.24.(1)答案见解析;(2)5;(3)1.08.25.(1)(1,0)A -,(3,0)B ,1y x =--.(2)94.(3)1(1,0)F ,2(3,0)F -,3(4+F ,4(4-F .。

人教版九年级上册数学期中试卷及答案

人教版九年级上册数学期中试卷及答案

人教版九年级上册数学期中考试试题一、选择题(每小题4分,共40分.每小题有四个选项,其中只有一个选项正确)1.已知点)21(,A ,点A 关于原点的对称点是1A ,则点1A 的坐标是()A.)(2,1-- B.)(1,2- C.)(1,2-D .)(2,1-2.下面的图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.方程x 2=4的解是()A .2=x B .2-=x C .4,121==x x D .2,221-==x x 4.一元二次方程0122=++x x 的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根5.用配方法解方程0562=--x x ,下列配方结果正确的是()A .11)6(2=-x B .14)3(2=-x C .14)3(2=+x D .4)3(2=-x 6.已知△ABC 和△D EF 关于点O 对称,相应的对称点如图1所示,则下列结论正确的是()A.AO =BOB.BO =EOC.点A 关于点O 的对称点是点DD.点D 在BO 的延长线上7.对抛物线6)7(2-+-=x y 描述正确的是()A.开口向下,顶点坐标是(7,-6)B.开口向上,顶点坐标是(-7,6)图1C.开口向下,顶点坐标是(-7,-6)D.开口向上,顶点坐标是(-7,-6)8.已知点(-1,y 1),(4,y 2),(5,y 3)都在抛物线y =(x-3)2+k 上,则y 1,y 2,y 3的大小关系为()A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 1>y 2>y 3D.y 1>y 3>y 29.已知抛物线y =ax 2+bx +c 和y =max 2+mbx +mc ,其中a ,b ,c ,m 均为正数,且m ≠1.则关于这两条抛物线,下列判断正确的是()A.顶点的纵坐标相同B.对称轴相同C.与y 轴的交点相同D .其中一条经过平移可以与另一条重合10.已知二次函数y =ax 2+bx +c 的图象如图2,则下列判断正确是()A.a <0,b >0,c >0B.a <0,b <0,c <0C.a <0,b <0,c >0D.a >0,b <0,c >0二、填空题(本大题有6小题,每小题4分,共24分)11.抛物线1322-+=x x y 的对称轴是.12.如图3,AB 是⊙O 的直径,CD 为⊙O 的一条弦,且CD ⊥AB 于点E ,已知CD=4,AE=1,则⊙O 的半径为.13.抛物线y=x 2+8x+20与x 轴公共点的的个数情况是有个公共点.14.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是s =60t -1.5t 2,则飞机着陆后从开始滑行到完全停止所用的时间是秒.15.把抛物线y=(x-9)2+5向左平移1个单位,然后向上平移2个单位,则平C A (图2)OxyAB ADAE O A(图3)yx-143-O移后抛物线的解析式为16.如图4,已知二次函数c bx ax y ++=2的图像过(-1,0),(0,43-)两点,则化简代数式4)1(4)1(22-+++-aa a a =.三、解答题(本大题有9小题,共86分)17.(满分8分)解方程x 2+4x -5=0.18.(满分8分)如图5,已知A (-2,3),B (-3,2),C (-1,1).(1)画出△ABC 关于原点O 对称的△A 1B 1C 1;(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2,并写出C 2的坐标.19.(满分8分)用一条长40cm 的绳子怎样围成一个面积为75cm 2的矩形?能围成一个面积为101cm 2的矩形吗?如能,说明围法;如不能,说明理由.20.(满分8分)如图6,AB 是⊙O 的弦,半径OC 、OD 分别交AB 于点E 、F ,AE=BF ,请找出线段OE 与OF 的数量关系,并给予证明.21.(满分8分)已知抛物线的顶点为(1,4),与y 轴交点为(0,3)D C OFE BA 图6(图5)y xO123123-3-2-1-1-2-3ABC(图4)(1)求该抛物线的解析式,并画出此函数的图像;(2)观察图像,写出当y <0时,自变量x 的取值范围。

2023-2024学年人教新版九年级上册数学期中复习试卷(含解析)

2023-2024学年人教新版九年级上册数学期中复习试卷(含解析)

2023-2024学年人教新版九年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.如图是湖州市某日的天气预报,该天最高气温比最低气温高( )A.7℃B.﹣70℃C.3℃D.﹣3℃2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.3.下列运算正确的是( )A.a8÷a4=a2B.4a5﹣3a5=1C.a3•a4=a7D.(a2)4=a6 4.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B,C两点,连结AC,BC.若∠1=40°,则∠ABC的大小为( )A.20°B.40°C.70°D.80°5.已知x=﹣1是一元二次方程x2﹣m=0的一个解,则m的值是( )A.1B.﹣2C.2D.﹣16.将抛物线y=(x﹣1)2向上平移3个单位长度,再向右平移4个单位长度,所得到的抛物线为( )A.y=(x+3)2+3B.y=(x﹣3)2+5C.y=(x+5)2+3D.y=(x﹣5)2+37.如图,直径为AB的⊙O中,=2,连接BC,则∠B的度数为( )A.35°B.30°C.20°D.15°8.在△ABC中,D、E分别是AB、AC的中点,若DE=3,则BC的长为( )A.3B.4C.6D.249.在同一平面直角坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是( )A.B.C.D.10.如图,已知直线y=kx+2k交x、y轴于A、B两点,以AB为边作等边△ABC(A、B、C 三点逆时针排列),D、E两点坐标分别为(﹣6,0)、(﹣1,0),连接CD、CE,则CD+CE的最小值为( )A.6B.5+C.6.5D.7二.填空题(共6小题,满分18分,每小题3分)11.某市去年前三季度全市生产总值约21630亿元,把数21630用科学记数法表示为 .12.已知二次函数y=﹣(x﹣1)2+2,当t<x<5时,y随x的增大而减小,则t的范围是 .13.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),则该圆弧所在圆的圆心坐标是 .14.一组数据:5,5,5,5,5,计算其方差的结果为 .15.四边形ABCD内接于⊙O,若∠B=85°,则∠D= °.16.一年级共有87名学生,其中58名是三好学生,63名是少先队员,49名既是三好学生又是少先队员.那么,不是少先队员又不是三好学生的人数是 .三.解答题(共9小题,满分72分)17.计算:(1)(﹣1)2﹣+(3﹣)+|﹣1|;(2)+|﹣3|﹣(π﹣3.14)0+(﹣1)2021.18.先化简,再求值:[4(x﹣2)2+12(x+2)(x﹣2)﹣8(x﹣3)(x﹣2)]÷[4(x﹣2)].其中x为最小的正整数.19.如图,在Rt△ABC中,∠C=90°.(1)请在线段BC上找一点D,使点D到边AC、AB的距离相等(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=6,BC=8,则CD的长度为 .20.2023年3月15日,我国在酒泉卫星发射中心使用长征十一号运载火箭,成功发射试验十九号卫星.2023年,中国航天已开启“超级模式”,继续探秘星辰大海:实践二十三号卫星发射升空、“圆梦乘组”出舱首秀、中国空间站准备选拔国际航天员……某校为了培养学生对航天知识的学习兴趣,开展了航天知识知识竞赛,赛后发现所有学生的成绩均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取了200名学生的竞赛成绩作为样本进行整理,并绘制了如下统计表.组别分数段(成绩为x分)频数组内学生的平均竞赛成绩/分A50≤x<602055B60≤x<706065C70≤x<807072D80≤x<904085E90≤x≤1001098(1)本次所抽取的这200名学生的竞赛成绩的中位数落在 组;(2)求本次所抽取的这200名学生的平均竞赛成绩;(3)若成绩在80分以上(包括80分)的为“优”等,估计该校参加这次竞赛的2000名学生中成绩为“优”等的有多少人?21.如图,在△ABC中,AB=AC,AD为BC边上的中线,E为AD的中点,将线段BE绕着点E顺时针旋转180°到EF,连接AF,CF.(1)求证:四边形ADCF为矩形;(2)若AD=BC,AB=,求BF的长.22.某商店销售某种品牌的蜂蜜,购进时的价格是30元/千克.根据市场调查:在一段时间内,销售单价x(元/千克)与销售量y(千克)之间满足的关系如图所示.(1)求y关于x的函数关系式;(2)要使该商店销售这种蜂蜜获得11250元的销售利润且让利于顾客,则该蜂蜜的销售单价应定为多少元?23.如图,AB是⊙O的直径,点C为⊙O上一点,D为的中点,过D作DF⊥AB于点E,交⊙O于点F,交弦BC于点G,连接CD,BF.(1)求证:△BFG≌△DCG;(2)若AC=10,BE=8,求BF的长.24.如图,抛物线y=﹣x2﹣2x+3与x轴相交于A、B两点(点A在点B的左侧),交y轴于点C,点D为该抛物线的顶点,连接AC.(1)如图1,连接DA、DC,求点D的坐标和△ACD的面积;(2)如图2,点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC 于点E,过点P作PF⊥AC,垂足为F,当△PEF周长最大时,在x轴上存在一点Q,使|QP﹣QD|的值最大,请求出这个最大值以及点P的坐标;(3)当(2)题中|QP﹣QD|取得最大值时,点M为直线x=﹣2上的一点,在平面直角坐标系中是否存在点N,使得点D、Q、M、N为顶点的四边形为菱形,若存在,请直接写出点N的坐标,若不存在,请说明理由.25.如图,直线y=2交y轴于点A,点B(m,2)(其中m>0)在直线y=2上运动.以线段AB为斜边向下作Rt△ABC.(1)若m=5,且点C恰好落在x轴上,则点C的坐标为 ;(2)若有且仅有一个点C恰好落在x轴上.①此时m的值为 ;②如图2,以AB为直径作半圆,将线段AB绕点A顺时针旋转,使点B落在x轴正半轴上,则半圆里未被线段AB扫过的部分(即弓形AMH)面积为 ;(3)若点C不会落在x轴上,则m的取值范围为 .参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:根据题意得:5﹣(﹣2)=5+2=7(℃).故选:A.2.解:A、是轴对称图形,也是中心对称图形,故本选项正确;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:A.3.解:A.a8÷a4=a4,故本选项不合题意;B.4a5﹣3a5=a5,故本选项不合题意;C.a3•a4=a7,故本选项符合题意;D(a2)4=a8,故本选项不合题意;故选:C.4.解:由题意得:AC=AB,∴∠ABC=∠ACB,∵l1∥l2,∠1=40°,∴∠BAC=∠1=40°,∵∠ABC+∠ACB+∠BAC=180°,∴∠ABC+∠ABC+40°=180°,解得:∠ABC=70°.故选:C.5.解:将x=1代入x2﹣m=0,∴m=1,故选:A.6.解:将抛物线y=(x﹣1)2向上平移3个单位长度,再向右平移4个单位长度,所得到的抛物线为:y=(x﹣1﹣4)2+3,即y=(x﹣5)2+3.故选:D.7.解:如图,连接OC,∵=2,∴∠BOC=2∠AOC.又∵∠AOC+∠BOC=180°.∴∠AOC=60°.∴∠B=∠AOC=30°.故选:B.8.解:∵D,E分别是△ABC的边AB和AC的中点,∴DE是△ABC的中位线,∵DE=3,∴BC=2DE=6.故选:C.9.解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选:D.10.解:∵点B在直线y=kx+2k上,∴k(x+2)=0,∴x+2=0.,∴x=﹣2∴A(﹣2,0),∵E(﹣1,0),D(﹣6,0),在x轴上方作等边△AOF,∵∠CAB=∠FAO=60°,∴∠CAB+∠BAF=∠BAF+∠FAO,即∠CAF=∠BAO,又∵CA=BA,AF=AO,∴△AOB≌△AFC(SAS),∴∠AFC=∠AOB=90°,∴点C的轨迹为定直线CF,作点E关于直线CF的对称点E',连接CE',CE=CE',∴CD+CE=CD+CE',∴当点D、C、E'在同一条直线上时,DE'=CD+CE的值最小,∵AF=AO=2,∠FAO=60°,∠AFG=90°,∴AG=4,EG=3,EE'=2×AF=3,即E'(,),∴(CD+CE)的最小值=DE'==7二.填空题(共6小题,满分18分,每小题3分)11.解:21630=2.163×104.故答案为:2.163×104.12.解:抛物线的对称轴为直线x=1,因为a=﹣1<0,所以抛物线开口向下,所以当x>1时,y的值随x值的增大而减小,因为t<x<5时,y随x的增大而减小,所以1≤t<5.故答案为:1≤t<5.13.解:由题意建立直角坐标系,如图,∵该圆弧所在圆的圆心是弦AC、AB的垂直平分线的交点O′,∴该圆弧所在圆的圆心坐标是(1,0).故答案为:(1,0).14.解:=×(5+5+5+5+5)=5,S2=×[(5﹣5)2+(5﹣5)2+(5﹣5)2+(5﹣5)2+(5﹣5)2]=0,故答案为:0.15.解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵∠B=85°,∴∠D=180°﹣85°=95°,故答案为:95.16.解:是三好学生而不是少先队员的人数是:58﹣49=9人;是少先队员而不是三好学生的人数是:63﹣49=14人;则只是三好学生和只是少先队员的人数是:9+14=23人.∴既不是少先队员又不是三好学生的人数有:87﹣49﹣23=15人.故答案为:15.三.解答题(共9小题,满分72分)17.解:(1)(﹣1)2﹣+(3﹣)+|﹣1|=1﹣2+3﹣+﹣1=1;(2)+|﹣3|﹣(π﹣3.14)0+(﹣1)2021=3+(3﹣)﹣1﹣1=3+3﹣﹣1﹣1=4﹣.18.解:原式=(x﹣2)+3(x+2)﹣2(x﹣3)=x﹣2+3x+6﹣2x+6=2x+10,当x=1时,原式=2+10=12.19.解:(1)如图所示:所以点D为所求;(2)过点D作DE⊥AB于E,设DC=x,则BD=8﹣x,在Rt△ABC中,∠C=90°,AC=6,BC=8,由勾股定理得AB==10,∵点D到边AC、AB的距离相等,∴AD是∠BAC的平分线,又∵∠C=90°,DE⊥AB,∴DE=DC=x,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=6,∴BE=4,在Rt△DEB中,∠DEB=90°,由勾股定理得DE2+BE2=BD2,即x2+42=(8﹣x)2,解得x=3.答:CD的长度为3.故答案为:3.20.解:(1)由题意知,中位数为第100、101位数据的平均值,∵20+60=80<100,20+60+70=150>100,∴中位数落在C组,故答案为:C.(2)由题意知,本次所抽取的这200名学生的平均竞赛成绩为:(分),答:本次所抽取的这200名学生的平均竞赛成绩为72.1分.(3)(人),答:估计该校参加这次竞赛的2000名学生中成绩为“优”等的有500人.21.(1)证明:∵AB=AC,AD为BC边上的中线,∴BD=CD,AD⊥BC,∵将线段BE绕着点E顺时针旋转180°到EF,∴BE=EF,∠BEF=180°,∴点B,点E,点F三点共线,∵点E为AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(SAS),∴AF=DB,∠AFB=∠FBD,∴AF=BD=CD,AF∥CD,∴四边形ADCF是平行四边形,∵AD⊥BC,∴四边形ADCF是矩形;(2)解:∵AD=BC,BD=CD,,∴AD=2BD,∵AD⊥BC,∴AB2=AD2+BD2∴,解得:BD=1或BD=﹣1(不符合题意,舍去),∴BC=AD=2BD=2,∵四边形ADCF是矩形,∴CF=AD=2,∠FCD=90°,∴.∴BF的长为.22.解:(1)设y与x的函数解析式为y=kx+b(k≠0),将(60,400),(50,500)代入y=kx+b,得:,解得:,∴y与x的函数解析式为y=﹣10x+1000(30≤x≤100);(2)依题意得:(x﹣30)(﹣10x+1000)=11250,整理得:x2﹣130x+3600=0,解得:x1=40,x2=90(不符合题意,舍去).答:销售单价应定为每千克40元.23.解:(1)∵D是的中点,∴=,∵AB为⊙O的直径,DF⊥AB,∴=,∴=,∴BF=CD,又∵∠BFG=∠DCG,∠BGF=∠DGC,∴△BFG≌△DCG(AAS);(2)如图,连接OD交BC于点M,∵D为的中点,∴OD⊥BC,∴BM=CM,∵OA=OB,∴OM是△ABC的中位线,∴OM=AC=5,∵=,∴=,∴OE=OM=5,∴OD=OB=OE+BE=5+8=13,∴EF=DE==12,∴BF===4;24.解:(1)如图1中,连接OD.∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4,∴点D(﹣1,4),令y=0,得到x2+2x﹣3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),令x=0,得到y=3,∴C(0,3),∴S△ADC=S△AOD+S△COD﹣S△AOC=×3×4+×3×1﹣×3×3=3.(2)如图2中,延长PE交OA于H.∵OA=OC=3∠AOC=90°,∴∠OAC=∠ACO=45°,∵PE∥y轴,∴∠AHE=90°,∴∠AEH=∠PEF=45°,∵PF⊥AC,∴∠AEF=90°,∴△PEF是等腰直角三角形,∴PE的值最大时,△PEF的周长最大,设P(m,﹣m2﹣2m+3),∵直线AC的解析式为y=x+3,∴E(m,m+3),∴PE=﹣m2﹣2m+3﹣m﹣3=﹣m2﹣3m=﹣(m+)2+,∵﹣1<0,∴m=﹣时,△PEF的周长最大,此时P(﹣,),∵D(﹣1,4),∴PD==,∵|QP﹣QD|≤PD,∴|QP﹣QD|≤,∴|QP﹣QD|的最大值为,此时P,D,Q共线,∵直线PD的解析式y=x+,令y=0,得到x=﹣9,∴Q(﹣9,0).(3)如图3中,由(2)可知,Q(﹣9,0),D(﹣1,4),则DQ==4.当DQ是菱形的边时,DM=DQ=4,设M(﹣2,t),则12+(4﹣t)2=80,解得t=4±,∴M1(﹣2,4+),M2(﹣2,4﹣),∵DN与MQ互相平分,∴N1(﹣10,),N2(﹣10,﹣),当点N在直线DM的右侧时,同法可得N(6,8+)或(6,8﹣),当DQ是菱形的对角线时,设M(﹣2,n),∵MQ=MD,∴72+n2=12+(4﹣n)2,∴n=﹣5,∴M3(﹣2,﹣5),∵DQ与MN互相平分,∴N3(﹣8,9),综上所述,满足条件的点N的坐标为(﹣10,)或(﹣10,﹣)或(﹣8,9)或(6,8+)或(6,8﹣).25.解:(1)∵直线y=2交y轴于点A,点B(m,2)(其中m>0)在直线y=2上运动.∴A(0,2),当m=5时,B(5,2),设C(c,0),∵△ABC为直角三角形,线段AB为斜边,AB=5﹣0=5,∴AC2=c2+22=c2+4,BC2=(c﹣5)2+22=c2﹣10c+29,AC2+BC2=AB2,即c2+4+c2﹣10c+29=52,整理得:c2﹣5c+4=0,解得:c=1或c=4.∴C(1,0)或(4,0),故答案为:(1,0)或(4,0);(2)①若有且仅有一个点C落在x轴上,设C(c,0),A(0,2),B(m,2),∵△ABC为直角三角形,线段AB为斜边,AB=m,∴AC2=c2+22=c2+4,BC2=(m﹣c)2+4,AC2+BC2=AB2,∴c2+4+(m﹣c)2+4=m2,整理得:2c2﹣2mc+8=0,当c有且仅有一个解满足上述关于c的二元一次方程,则Δ=(﹣2m)2﹣4×2×8=0,解得m=士4,∵m>0,∴m=4.即若有且仅有一个点C恰好落在x轴上,此时m=4,故答案为:4;②如图2,设半圆的圆心为G,连接GH,BH,过点G作GN⊥AB′于N,∵AB'=AB=4,AO=2=AB',∴∠AOB'=90°,∴AB∥OB',∴∠OB'A=∠BAH=30°,∵AB为直径,∴∠AHB=90°,∴GH=AG=BG=AB=2,BH=AB=2,∠ABH=60°,∴∠AGH=120°,AH=2,∵GN⊥AB′,∠AHB=90°,∴GN∥BH,∵AG=BG,∴GN是三角形AHB的中位线,∴GN=BH=1,∴S弓形AMH=S扇形AGH﹣S△AGH=﹣×2×1=﹣,故答案为:﹣;(3)设C(c,0),A(0,2),B(m,2),由(2)②得关于c的方程2c2﹣2mc+8=0,若点C不会落在x轴上,则Δ=(﹣2m)2﹣4×2×8<0,解得﹣4<m<0或0<m<4,∵m>0,∴0<m<4.故答案为:0<m<4.。

2023-2024学年全国初中九年级上数学人教版期中试卷(含答案解析)

2023-2024学年全国初中九年级上数学人教版期中试卷(含答案解析)

20232024学年全国初中九年级上数学人教版期中试卷一、选择题1. 下列选项中,哪个是正确的?A. 1/2 + 1/4 = 3/8B. 1/2 1/4 = 1/8C. 1/2 × 1/4 = 1/8D. 1/2 ÷ 1/4 = 22. 下列选项中,哪个是正确的?A. (x + 2)^2 = x^2 + 4x + 4B. (x + 2)^2 = x^2 + 2x + 4C. (x + 2)^2 = x^2 + 4x + 8D. (x + 2)^2 = x^2 + 2x + 83. 下列选项中,哪个是正确的?A. 3x 5 = 4x + 2 的解是 x = 7B. 3x 5 = 4x + 2 的解是 x = 7C. 3x 5 = 4x + 2 的解是 x = 3D. 3x 5 = 4x + 2 的解是 x = 34. 下列选项中,哪个是正确的?A. (a + b)(a b) = a^2 b^2B. (a + b)(a + b) = a^2 + 2ab + b^2C. (a b)(a b) = a^2 2ab + b^2D. (a + b)(a b) = a^2 + 2ab b^25. 下列选项中,哪个是正确的?A. 5^3 = 125B. 5^3 = 150C. 5^3 = 100D. 5^3 = 75二、填空题6. 请计算下列表达式的值:2^4 × 3^2 5^2 = ________。

7. 请计算下列表达式的值:(x + 2)(x 3) = ________。

8. 请计算下列表达式的值:3x 2y = 7,当 x = 2,y = 3 时,该表达式的值为 ________。

9. 请计算下列表达式的值:(a + b)(a b) = ________。

10. 请计算下列表达式的值:5^2 ÷ 2^3 = ________。

三、解答题11. 解答下列方程:2x 3 = 7。

2024—2025学年人教版九年级上册数学期中考试模拟试卷【含答案】

2024—2025学年人教版九年级上册数学期中考试模拟试卷【含答案】

2024—2025学年人教版九年级上册数学 期中考试模拟试卷一、单选题1.在平面直角坐标系中,点(﹣6,5)关于原点的对称点的坐标是( )A .(6,5)B .(﹣6,5)C .(6,﹣5)D .(﹣6,﹣5)2.在Rt ABC △中,90C Ð=°,D 为AC 上一点,CD =动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A ®®匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为()s t ,正方形DPEF 的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段AB 的长是( )A .6B .8C .D .3.对于一元二次方程230x x c -+=,当94c =时,方程有两个相等的实数根.若将c 的值在94的基础上减小,则此时方程根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定4.如图,△ABC 是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .5.如图,在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC =10,BD =9,则△ADE 的周长为( )A .19B .20C .27D .306.下列函数是二次函数的是( )A .21y x x =+B .1(1)2y x x =-C .21y x =--D .()21y x x =+7.已知二次函数y=2x 2﹣12x +19,下列结果中正确的是( )A .其图象的开口向下B .其图象的对称轴为直线x=﹣3C .其最小值为1D .当x <3时,y 随x 的增大而增大8.如图,二次函数2y ax bx c =++的图象与x 轴相交于A ,()1,0B 两点,对称轴是直线1x =-,下列说法正确的是( )A .0a <B .当1x >-时,y 的值随着x 的值增大而减小C .点A 的坐标为()2,0-D .420a b c -+<9.二次函数()20y ax bx c a =++¹的部分图像如图所示,图像过点()1,0-,对称轴为直线2x =,下列结论:(1)40a b +=;(2)93a c b +>;(3)8720a b c ++>;(4)若点()13,A y -,点21,2B y æö-ç÷èø、点37,2C y æöç÷èø在该函数图像上,则132y y y <<;(5)若方程()()153a x x +-=-的两根为1x 和2x ,且12x x <,则1215x x <-<<.其中正确的结论有( )A .2个B .3个C .4个D .5个10.对于下列结论:①二次函数y=6x 2,当x >0时,y 随x 的增大而增大;②关于x 的方程a (x+m )2+b=0的解是x 1=﹣2,x 2=1(a 、m 、b 均为常数,a≠0),则方程a (x+m+2)2+b=0的解是x 1=﹣4,x 2=﹣1;③设二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c 的取值范围是c≥3.其中,正确结论的个数是( )A .0个B .1个C .2个D .3个二、填空题11.二次函数21(3)22y x =+-的图象是由函数212y x =的图象先向 (左、右)平移 个单位长度,再向 (上、下)平移 个单位长度得到的.12.如图,已知二次函数()20y ax bx c a =++¹的图象与x 轴交于点()1,0A -,与y 轴的交点B 在()0,2-和()0,1-之间(不包括这两点),对称轴为直线1x =.下列结论:①0abc >;②420a b c ++>;③244ac b a -<-;④113a <<;⑤bc >.其中正确结论有 (填写所有正确结论的序号).13.关于x 的一元二次方程2410kx x +-=有两个不相等的实数根,则k 的取值范围是 .14.某种商品原价每件售价为400元,经过连续两次降价后,每件售价为288元,设平均每次降价的百分率为x ,则可列方程为 .15.已知抛物线248y x x =+-与直线l 交于点(5,)A m -,(),3B n -(0n >).若点()P x y , 在抛物线上且在直线l 下方(不与点A ,B 重合),则点P 的纵坐标的取值范围为 .三、计算题16.解方程:(1)()()2121x x -=-(2)22520x x --=四、作图题17.如图,正方形网格中,每个小方格都是边长为1的正方形△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC 向上平移5个单位长度,画出平移后的△A 1B 1C 1;(2)将△A 1B 1C 1绕坐标原点O 顺时针方向旋转90°,出旋转后的△A 2B 2C 2.五、解答题18.台风“杜苏芮”牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款3000元,第三天收到捐款4320元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到的捐款的增长速度,第四天该单位能收到多少捐款?19.一块长方形铁皮长为4dm ,宽为3dm ,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm ,根据题意列出方程,并化成一般形式.20.已知关于x 的一元二次方程2320kx x --=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为小于2的整数,且方程的根都是整数,求k 的值.21.如图,长方形ABCG 与长方形CDEF 全等点B ,C ,D 和点C ,G ,F 分别在同一条直线上,其中4AB CD ==,8BC DE ==.连接对角线AC ,CE .(1)在图①中,连接AE ,直接判断ACE △形状是______;直接写出AE 的值______;(2)如图②,将图①中的长方形CDEF 绕点C 逆时针旋转,当CF 平分ACE Ð时,求此时点E 到直线AC 的距离.(3)如图③,将图①中的长方形CDEF 绕点C 逆时针旋转到某一个位置,连接AE ,连接DG 并延长交AE 于点M ,取AG 的中点N ,连接MN ,直接写出MN 长的最小值______;22.如图,已知点()()1,04,0A B -,,点C 在y 轴的正半轴上,且90ACB Ð=°,抛物线2y ax bx c =++经过A 、B 、C 三点,其顶点为M(1)求抛物线2y ax bx c =++的解析式;(2)试判断直线CM 与以AB 为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N ,使得4BCN S =V ?如果存在,那么这样的点有几个?如果不存在,请说明理由.23.已知抛物线()220y ax x c a =++¹经过点()0,1,对称轴是直线1x =.(1)求抛物线的解析式;(2)若点(),s t 在该抛物线上,且12s -<<;求t 的取值范围;(3)若设m 是抛物线与x 轴的一个交点的横坐标,记629140m M -=,比较M 的大小.1.C【分析】根据关于原点对称的点,横、纵坐标都互为相反数即可得出答案.【详解】点P (﹣6,5)关于原点对称点的坐标是(6,﹣5),故选:C .【点睛】本题考查了在平面直角坐标系中,关于原点对称的点的特征,关于原点对称的点,横、纵坐标都互为相反数;关于x 轴对称的点,y 互为相反数,x 不变;关于y 轴对称的点,x 互为相反数,y 不变,关于谁对称谁不变,另一个互为相反数.2.A【分析】本题考查了二次函数图象,求二次函数解析式,在Rt ABC △中,CD =,PC t =则22222S PD t t ==+=+,求得BC 的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在Rt ABC △中,CD =,PC t =则22222S PD t t ==+=+,当6S =时,262t =+,解得:2t =(负值已舍去),∴2BC =,∴抛物线经过点()2,6,∵抛物线顶点为:()4,2,设抛物线解析式为:()242S a t =-+,将()2,6代入,得:()26242a =-+,解得:1a =,∴()242S t =-+,当18y =时,()218420t t =-+=,(舍)或8t =,∴826AB =-=,故选:A .3.C【分析】根据一元二次方程根的判别式求解即可得.【详解】解:由题意可知:1a =,3b =-,当94c =时,24940b ac c D =-=-=,当94c<时,∴24940b ac cD=-=->,∴该方程有两个不相等的实数根,故C正确.故选:C.【点睛】本题考查一元二次方程利用根的判别式判断根的情况,解题的关键是熟练运用根的判别式进行求解.4.B【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=1 2BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=12x2;当2<x≤4时,如图2,易得PD=CD=4-x,根据三角形面积公式得到y=-12x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=12•x•x=212x;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=2122x x-+,故选B.5.A【分析】先由△ABC 是等边三角形得出AC=AB=BC 根据图形旋转的性质得出AE=CD ,BD=BE ,由∠EBD=60°,BE=BD 即可判断出△BDE 是等边三角形,故DE=BD ,即可求出结果【详解】解:∵△ABC 是等边三角形,∴AC=AB=BC=10,∵△BAE 是△BCD 逆时针旋转60°得出,∴AE=CD ,BD=BE ,∠EBD=60°,∴AE+AD=AD+CD=AC=10,∵∠EBD=60°,BE=BD ,∴△BDE 是等边三角形,∴DE=BD=9,∴△AED 的周长=AE+AD+DE=AC+BD=19.故答案为19【点睛】此题重点考查学生对于图形旋转的理解,抓住旋转前后图形边角的关系是解题的关键6.B【分析】根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数进行分析.【详解】解:A 、含有分式,不是二次函数,故此选项不符合题意;B 、2111(1)=222y x x x x =--,是二次函数,故此选项正确;C 、是一次函数,故此选项不符合题意;D 、3y x x =+是三次函数,故此选项不符合题意;故选:B .【点睛】本题主要考查了二次函数定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,解题关键是注意二次项系数不为0.7.C【分析】根据二次函数的性质对各选项分析判断即可解答.【详解】∵二次函数y=2x 2﹣12x+19=2(x ﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x >3时,y 随x 的增大而增大,当x <3时,y 随x 的增大而减小;所以C 选项正确.故选C .【点睛】本题考查了二次函数的性质,熟记性质是解题的关键.8.D【分析】本题主要考查了二次函数的图象与系数的关系,抛物线与x 轴的交点.抛物线开口向上则0a >,即可判断A ;又0a >,对称轴是直线1x =-,从而当1x >-时,y 的值随着x 的值增大而增大,故可判断B ;又(1,0)A ,对称轴是直线1x =-,则(3,0)B -,故可判断C ;结合(3,0)A -,(1,0)B ,抛物线开口向上,从而当2x =-时,420y a b c =-+<,进而可以判断D .【详解】解:Q 抛物线开口向上,0a \>,故A 错误;Q 开口向上,对称轴是直线1x =-,\当1x >-时,y 的值随着x 的值增大而增大,故B 错误.(1,0)B Q ,对称轴是直线1x =-,(3,0)A \-,故C 错误.结合(3,0)A -,(1,0)B ,抛物线开口向上,\当2x =-时,420y a b c =-+<.故D 正确.故选:D .9.B【分析】①正确,根据对称轴公式计算即可.②错误,利用x =-3时,y <0,即可判断,③正确.由图像可知抛物线经过(-1, 0)和(5, 0)列出方程组求出a 、b 即可判断.④错误,利用函数图像即可判断.⑤正确,利用二次函数与二次不等式关系即可解决问题.【详解】①正确:∵-22b a= ,所以4a +b =0.故①正确.②错误:∵x =-3时, y <0,∴9a - 3b +c <0,∴9a +c <3b ,故②错误.③正确,由图像可知抛物线经过(- 1,0)和(5,0) ,∴ a -b +c = 025a + 5b +c = 0解得b = -4a ,c = -5a ,∴8a +7b +2c =8a -28a -10a =-30a ,∵a <0,∴8a + 7b +2c >0 ,故③正确.④错误,∵点A (-3,y 1)、点B (-12,y 2)、点C (72,y 3)∵3.5-2= 1.5,2-(-0.5)=2.5 ,∴1.5< 2.5点C 离对称轴的距离近,∴y 3>y 2,∵a <0 , -3< -0.5<2,∴y 1<y 2∴y 1<y 2<y 3,故④错误.⑤正确.∵a <0 ,∴(x +1)(x -5)=-3a >0 ,即(x +1)(x -5)>0 ,故x <-1或x >5 ,故⑤正确.∴正确的有三个,故选B .【点睛】本题考查抛物线和x 轴交点的问题以及二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图像信息解决问题,属于中考常考题型.10.D【分析】①根据二次函数的性质即可得出抛物线y=6x 2的对称轴为y 轴,结合a=6>0即可得出当x >0时,y 随x 的增大而增大,结论①正确;②将x=﹣2和1代入一元二次方程可得出x+m 的值,再令x+m+2=该数值可求出x 值,从而得出结论②正确;③由“当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0”可得出当x=1时y=0且抛物线的对称轴≥2,解不等式即可得出b≤﹣4、c≥3,结论③正确.综上即可得出结论.【详解】∵在二次函数y=6x 2中,a=6>0,b=0,∴抛物线的对称轴为y 轴,当x>0时,y 随x 的增大而增大,∴①结论正确;∵关于x 的方程a (x+m )2+b=0的解是x 1=-2,x 2=1,∴x+m=-2+m 或1+m ,∴方程a (x+m+2)2+b=0中,x+m+2=-2+m 或x+m+2=1+m ,解得:x 1=-4,x 2=-1,∴②结论正确;∵二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴1022b c b ++=ìïí-ïî?解得:b≤-4,c≥3,∴结论③正确.故选D【点睛】此题重点考查学生随函数图象和性质理解,熟练掌握图象性质是解题的关键.11. 左 3 下2【分析】本题主要考查二次函数与几何变换,图象平移时函数表达式变化的特征是:图象向左平移()0n n >个单位,函数表达式中x 加上n ;图象向右平移()0n n >个单位,函数表达式中x 减去n ;图象向下平移()0m m >个单位,函数表达式中y 加上m ;图象向上平移()0m m >个单位,函数表达式中y 减去m ;根据以上平移规律,对题中的二次函数表达式进行分析,即可得出答案.【详解】解:由“左加右减”的原则将函数212y x =的图象向左平移3个单位,所得二次函数的解析式为:()2132y x =+;由“上加下减”的原则将函数()2132y x =+的图象向下平移2个单位,所得二次函数的解析式为:()21322y x =+-.故答案为:左,3,下,2.12.①③⑤【分析】此题主要考查图象与二次函数系数之间的关系,涉及了数形结合思想的应用.根据对称轴为直线1x =及图象开口向下,与y 轴的交点,可判断出a 、b 、c 的符号,从而判断①;求出图象与轴的另一个交点为()3,0,则可判断②;利用函数的最小值:2414ac b a-<-,可判断③;根据方程20ax bx c ++=的两根为121,3x x =-=,可得,32c b a a =-=-,可判断④⑤的正误.【详解】解:①∵函数开口方向向上,∴0a >;∵对称轴为直线1x =,∴12b a-=,∴20b a =-<,∵抛物线与y 轴交点在轴负半轴,∴0c <,∴0abc >,故①正确;②∵图象与x 轴交于点()1,0A -,对称轴为直线1x =,∴图象与轴的另一个交点为()3,0,当2x =时,420y a b c =++<,故②错误;③∵二次函数的图象与y 轴的交点在()0,1-的下方,对称轴在x 轴右侧,且0a >,∴函数的最小值:2414ac b a-<-,∴244ac b a -<-,故③正确;④∵图象与x 轴交于点()1,0A -,()3,0,∴方程20ax bx c ++=的两根为121,3x x =-=,∴132,133b c a a-=-+==-´=-,∴3c a =-,2b a =-,∴,32c b a a =-=-,∵图象与y 轴的交点B 在()0,2-和()0,1-之间,∴21c -<<-,∴1233a <<;故④错误;∵,32c b a a =-=-,∴32c b -=-,∵0c <,∴23b c c =>,故⑤正确.故答案为:①③⑤.13.1k >-且0k ¹【分析】此题考查了一元二次方程的定义,一元二次方程的判别式,解题的关键是熟练掌握一元二次方程的定义,一元二次方程的判别式.由一元二次方程的定义可得0k ¹,由一元二次方程2410kx x +-=有两个不相等的实数根,可得判别式240b ac D =->,解不等式求解即可.【详解】解:∵2410kx x +-=是一元二次方程,∴0k ¹,又∵一元二次方程2410kx x +-=有两个不相等的实数根,∴240b ac D =->,即()24410k -´->,解得:1k >-,综上所述,k 的取值范围是1k >-且0k ¹.故答案为:1k >-且0k ¹.14.()24001288x -=【分析】设平均每次降价的百分率为x ,利用经过连续两次降价后的价格=原价×(1-降价率)2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设平均每次降价的百分率为x ,依题意得:400(1-x )2=288.故答案为:400(1-x )2=288.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.123y -£<-【分析】先求出点A 和点B 的坐标,确定直线l 的函数表达式,配合二次函数的图像求解即可;【详解】解:分别将(5,)A m - 、(),3B n - 代入248y x x =+-得:()()m =-+´--=-254583n n +-=-2483 ,解得:11n = ,25n =-(舍)∴(5,3)A --,(1,3)B -∴直线l 的表达式为:=3y -()y x x x =+-=+-2248212Q ∴y 的最小值为:12-y 的取值范围为:123y -£<-故答案为:123y -£<-【点睛】本题考查了二次函数的性质、二次函数图像与表达式的关系;熟练配合函数图像将复杂问题直观化是解决问题的关键.16.(1)121,3x x ==;(2)12x x ==【分析】(1)解一元二次方程,用因式分解法求解;(2)解一元二次方程,用公式法求解.【详解】解:(1)()()2121x x -=-()()21210x x ---=()()1120x x ---=1=0x -或120x --=121,3x x \==(2)22520x x --=2,5,2a b c ==-=-Q 224(5)42(2)410b ac \D =-=--´´-=>∴x \=1x \【点睛】本题考查解一元二次方程,掌握解方程的步骤因式分解的方法及求根公式,正确计算是解题关键.17.(1)见解析;(2)见解析.【分析】(1)利用点平移的坐标规律写出点A 1、B 1、C 1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A 1、B 1、C 1的对应点A 2、B 2、C 2即可.【详解】(1)解:如图,△A 1B 1C 1为所作;(2)解:如图,△A 2B 2C 2为所作;【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.18.(1)捐款增长率为20%(2)第四天该单位能收到5184元捐款【分析】(1)设捐款增长率为x ,根据“第一天收到捐款3000元,第三天收到捐款4320元,第二天、第三天收到捐款的增长率相同”列方程,解方程即可得到答案;(2)用第三天收到的捐款乘以()120%+即可得到答案.【详解】(1)设捐款增长率为x ,根据题意列方程得,23000(1)4320x ´+=,解得10.2x =,2 2.2x =-(不合题意,舍去);答:捐款增长率为20%.(2)第四天收到捐款为:()4320120%5184´+=(元),答:第四天该单位能收到5184元捐款.【点睛】此题考查了一元二次方程的应用,根据题意找到等量关系列出方程是解题的关键.19.241460x x -+=.【分析】首先表示出无盖长方体盒子的底面长为(4-2x )dm ,宽为(3-2x )dm 再根据长方形的面积可得方程()()14232432x x --=´´.【详解】由题意得:无盖长方体盒子的底面长为()42x dm -,宽为()32x dm -,由题意得,()()14232432x x --=´´整理得:241460x x -+=.【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是根据题意表示出无盖长方体盒子的长与宽.20.(1)98k >-且0k ¹(2)1k =-【详解】解:(1)2(3)4(2)9+8k k D =--´-=,∵一元二次方程2320kx x --=有两个不相等的实数根,∴9+800k k >ìí¹î∴98k >-且0k ¹.(2)∵k 为不大于2的整数,∴1k =-,1k =∴当1k =-时,方程2320x x ---=2-都是整数;当1k =时,方程2320x x --=综上所述,1k =-.21(3)2【分析】(1)由矩形ABCG 与矩形CDEF 全等得AC CE =,然后证明出90ACE Ð=°,再由勾股定理得AC =AE =;(2)由CF 平分ACE Ð结合等腰三角形“三线合一”得:CF AE ^,4AF EF ==,再由等面积法得点E 到直线AC (3)过点E 作AG 的平行线交DG 的延长线于H ,连接EG ,先证明HME GMA V V ≌得AM ME =,再由中位线定理得12MN GE =,再由在矩形CDEF 绕点C 逆时针旋转过程中GE的范围为:CE CG GE CE CG -££+得GE 的最小值为4,故MN 的最小值为2-.【详解】(1)Q 矩形ABCG 与矩形CDEF 全等,AC CE \=,ACB ECF Ð=Ð,90ACB ACG Ð+Ð=°Q ,90ECF ACG \Ð+Ð=°,90ACE \Ð=°,∴ACE △是等腰直角三角形,222AE AC CE \=+,QAC =,AE\=;(2)当CF平分ACEÐ时,AC CE=Q,由等腰三角形“三线合一”得:CF AE^,4AF EF==,\设点E到直线AC的距离为d,则由等面积法:1122ACES EF CF AC d =×=×V,d\=\此时点E到直线AC(3)如图,过点E作AG的平行线交DG的延长线于H,连接EG,HE AGQ∥,H MGA\Ð=Ð,CG CD=Q,CGD CDG\Ð=Ð,90AGC CDEÐ=Ð=°Q,90MGA CGD\Ð+Ð=°,90CDG HDEÐ+Ð=°,MGA HDE\Ð=Ð,HDE H\Ð=Ð,HE ED AG\==,在HMEV与GMAV中,HME GMAH MGAHE AGÐ=ÐìïÐ=Ðíï=î,(AAS)HME GMA\V V≌,AM ME\=,AGQ的中点为N,12MN GE \=,MN GE ∥,Q 在矩形CDEF 绕点C 逆时针旋转过程中GE 的范围为:CE CG GE CE CG -££+,44GE \-££+,GE \的最小值为4,MN \的最小值为2.【点睛】本题是矩形旋转变换综合题,主要考查了矩形的性质、旋转的性质、矩形全等的性质、全等三角形的判定与性质、等面积法求高、中位线定理,过点E 作AG 的平行线交DG 的延长线于H 、构造HME GMA V V ≌是本题的关键.22.(1)213++222y x x =-.(2)直线CM 与以AB 为直径的圆相切.(3)((()12321212,3N N N +---,,.【分析】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,相似三角形的判定和性质,二次函数的性质,直线与的位置关系,平行线的性质.(1)Rt ACB V 中,OC AB ^,利用相似三角形能求出OC 的长,即可确定C 点坐标,再利用待定系数法能求出该抛物线的解析式.(2)证明CM 垂直于过点C 的半径即可.(3)先求出线段BC 的长,根据BCN △的面积,可求出BC 边上的高,那么做直线l ,且直线l 与直线BC 的长度正好等于BC 边上的高,那么直线l 与抛物线的交点即为符合条件的N 点.【详解】(1)解:Rt ACB V 中,14OC AB AO BO ^==,,,∴ACO ABO V V ∽.∴CO AO OB CO =,∴24OC OA OB =×=.∴2OC =.∴点()0,2C .∵抛物线2y ax bx c =++经过A 、B 两点,∴设抛物线的解析式为:()()+14y a x x =-,将C 点代入上式,得:()()20+104a =-,解得1=2a -.∴抛物线的解析式:()()1x+142y x =--,即213++222y x x =-.(2)直线CM 与以AB 为直径的圆相切,理由如下:如图,设抛物线的对称轴与x 轴的交点为D ,连接CD .由于A 、B 关于抛物线的对称轴对称,则点D 为Rt ABC V 斜边AB 的中点,32CD AB =.由(1)知:22131325++2=22228y x x x æö=---+ç÷èø,则点325,28M æöç÷èø,259288ME =-= .而32CE OD ==,2OC =,∴ME CE OD OC =::.又∵90MEC COD Ð=Ð=°,∴COD CEM V V ∽.∴CME CDO Ð=Ð.∴9090CME CDM CDO CDM DCM Ð+Ð=Ð+Ð=°Ð=°,.∵CD 是D e 的半径,∴直线CM 与以AB 为直径的圆相切.(3)由()()4,00,2B C 、得:BC =则:11422BCN S BC h h h =×=´==V ,过点B 作BF BC ^,且使BF h =F 作直线l BC P 交x 轴于G .Rt BFGV中,sin sinBGF CBOÐ=Ð=1 2 -,sin4BG BF BGF=¸Ð==.∴()0,0G或()8,0.易知直线BC:122y x=-+,则可设直线l:12y x b=-+,将G点坐标代入,得:0b=或4b=,则:直线l:12y x=-142y x=-+;联立抛物线的解析式,得:21213++222y xy x xì=-ïïíï=-ïî或214213++222y xy x xì=-+ïïíï=-ïî.解得:2y1xì=+ïí=-ïî2y1xì=-ïí=-ïî或2y3x=ìí=î∴抛物线上存在点N,使得S4BCN=V,这样的点有3个:((()12321212,3N N N+---,,23.(1)221y x x=-++(2)22t-<£(3)当1m=M>;当1m=M<【分析】本题主要考查了求二次函数解析式,二次函数图象的性质,二次函数与x轴的交点问题:(1)把()0,1代入解析式可得1c=,再根据对称轴计算公式可得1a=-,据此可得答案;(2)根据(1)所求可得当1x£时,y随x的增大而增大;当1x>时,y随x的增大而减小,分别求出当1s=-时,当1s=时,t得值即可得到答案;(3)先根据题意得到2210m m -++=,即221m m =+,再把221m m =+整体代入分子中把分子进行降次求解即可.【详解】(1)解:把()0,1代入()220y ax x c a =++¹中得1c =.∵对称轴是直线1x =,∴212a-=,解得1a =-.∴抛物线的解析式为221y x x =-++.(2)解:∵由(1)知:221y x x =-++.∵对称轴是直线1x =,∴当1x £时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小,当1x =时,y 有最大值为212112-+´+=,∵点(),s t 在该抛物线上,且12s -<<,∴当1s =-时,2t =-;当2s =时,1t =;∴22t -<£;(3)解:∵m 是抛物线与x 轴的一个交点的横坐标,∴2210m m -++=,即221m m =+.∴629140m M -=()32911402m -+=()()2021212914m m -++=()()20214412914m m m -+++=()()129140214214m m m =++++éù-ëû()()1252911402m m +-+=22422529140m m ++-=()242122529140m m +++-=702929140m +-=2m =,∵221m m =+,∴m =∴2m =∴当1m =时,M > 当1m =M <.。

2024年最新人教版九年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中试卷及答案一、选择题(每题1分,共5分)1. 下列函数中,哪一个是一次函数?A. y = 2x^2B. y = 3x + 1C. y = x^3D. y = √x2. 下列图形中,哪一个不是中心对称图形?A. 正方形B. 等边三角形C. 圆D. 矩形3. 下列各数中,无理数是?A. √9B. √16C. √3D. √14. 下列等式中,正确的是?A. (a + b)^2 = a^2 + b^2B. (a b)^2 = a^2 b^2C. (a + b)(a b) = a^2 b^2D. (a + b)(a + b) = a^2 + 2ab + b^25. 下列哪个比例尺表示的范围最大?A. 1:1000B. 1:100C. 1:10D. 1:1二、判断题(每题1分,共5分)1. 两条平行线上的任意两点到第三条直线的距离相等。

()2. 任何两个实数都可以比较大小。

()3. 两个负数相乘,结果是正数。

()4. 一元二次方程的解一定是实数。

()5. 对角线互相垂直的四边形一定是矩形。

()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。

2. 已知一组数据的方差是9,那么这组数据的标准差是_______。

3. 一次函数y = 2x + 1的图象经过_______象限。

4. 若平行线l1:3x + 4y + 7 = 0,l2:3x + 4y 5 = 0,则两平行线的距离是_______。

5. 一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长是_______cm。

四、简答题(每题2分,共10分)1. 请简要说明平行线的性质。

2. 什么是二次根式?请举例说明。

3. 如何判断一个多项式是否有整数解?4. 请解释比例尺的意义。

5. 简述三角形的中位线定理。

五、应用题(每题2分,共10分)1. 某商店举行打折活动,原价200元的商品打8折,现价是多少元?2. 一辆汽车以60km/h的速度行驶,行驶了2小时后,行驶的距离是多少?3. 一个长方体的长、宽、高分别是10cm、6cm、4cm,求它的体积。

人教版九年级上册数学期中考试试卷带答案

人教版九年级上册数学期中考试试卷带答案

人教版九年级上册数学期中考试试题一、单项选择题(每小题3分,共30分)1.方程x 2﹣2x+1=0的根是()A .﹣1B .1C .0D .22.方程:①x 2=0,②12﹣2=0,③2x 2+3x=(1+2x )(2+x ),④3x 2﹣2x=0,⑤x 3﹣8x 2+1=0中,一元二次方程的个数是()A .1个B .2个C .3个D .4个3.下列图形中,为轴对称图形的是()A .B .C .D .4.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 长的最小值为()A .5B .4C .3D .25.圆内接四边形ABCD ,∠A ,∠B ,∠C 的度数分别为60o 、80o 、120o ,则∠D 的度数为()A .60o B .80o C .100o D .120o6.如图,已知:AB 是O 的直径,C 、D 是 BE上的三等分点,60AOE ∠= ,则COE ∠是()A .40B .60C .80D .1207.如图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=52°,则∠DAC 的大小为()A .128oB .104oC .64oD .52o8.如图,PA 、PB 是⊙O 的两条切线,切点是A 、B .如果OP=2,PA=3,那么OA 的长度为()A .1B .2C .3D .49.关于x 的二次函数,y=mx 2+(2m+1)x+m 的图象与x 轴有交点,则m 的取值范围是()A .m <﹣14B .m≥﹣14且m≠0C .m=﹣14D .m >﹣14且m≠010.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A .6cmB .35cmC .8cmD .53cm二、填空题11.抛物线y=﹣3x 2﹣2x ﹣8与x 轴没有交点,因为其判别式b 2﹣4ac______________0(填写>、<或者=),相应二次方程﹣3x 2﹣2x ﹣8=0_________实数根.(填写有或者无)12.如图,将平行四边形ABCD 绕O 点旋转180°后,A 点旋转到_________点,B 点旋转到____________________点,线段AB 旋转到线段______.13.如图,⊙O 中,A =A ,若∠B=70°,则∠A=_________°.14.如图,PA ,PB 分别是⊙O 的切线,A ,B 为切点,AC 是⊙O 的直径,已知∠BAC=35°,∠P 的度数为________°15.如图AD 、AE 和BC 分别切⊙0于D 、E 、F ,如果AD =20,则△ABC 的周长为.16.如图,正六边形ABCDEF 中,它的外接圆半径为6,正六边形的边长为______,边心距为________,面积为______.三、解答题17.解方程:2320x x -+=.18.如图在一块直角三角形铁皮废料的内部剪下一个长方形盒盖ABCD,其中AB和BC 分别在两直角边上,设AB=x cm,BC满足关系式:﹣125x+12,长方形盒盖的面积为y cm2,则x的取值为多少时?y可以取得最大值,最大值是多少?19.如图,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,并且CD=6m,EM=9m,求⊙O的半径.20.已知:如图,在Rt△ABC中,∠A=30°,∠B=60°.(1)作Rt△ABC的外接圆⊙O,圆心为O(要求:尺规作图,保留作图痕迹)(2)连接圆心O和C点,求证:△BOC是等边三角形.21.如图,AB、CD分别为两圆的弦,AC、BD为两圆的公切线且相交于点P.若PC=2,DB=6,∠APB=90°.(1)求△PAB的周长.(2)求△PAB与△PCD的面积之比.22.如图,把图中的△ABC经过一定的变换得到△A′B′C′如果图中△ABC上的点P的坐标为(a,b).(1)求出P′的坐标.(2)画出△ABC关于原点对称的图形△DEF.23.在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k﹣5)x﹣(k+4)的图象交x轴于点A(x1,0)、B(x2,0),且x1>x2,x1x2+(x1+x2)+1=8.(1)求二次函数的解析式;(2)设函数的图象与y轴的交点为点C,求△AOC的面积.24.如图,⊙C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.(1)求证:AB为⊙C直径.(2)求⊙C的半径及圆心C的坐标.25.如图,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB.点C、E、D 分别在OA、OB、弧AB上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.参考答案1.B2.B3.B4.C5.C6.C7.C8.A9.B10.B11.<无12.C D CD13.4014.70°15.40.16.63354317.11x =,22x =18.当x=52m 时,y 取得最大值,最大值为15.19.⊙O 的半径为5.20.(1)详见解析;(2)详见解析.21.(1)8+42;(2)△PAB 与△PCD 的面积之比是4:1.22.(1)P′(﹣a ﹣2,﹣b );(2)详见解析.23.(1)y=x 2﹣8x ﹣1;(2)24.(1)证明见解析(2)4,(,2)25﹣1。

人教版九年级上册数学期中考试试卷有答案

人教版九年级上册数学期中考试试卷有答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.一元二次方程x 2﹣2x+3=0的一次项和常数项分别是()A .2和3B .﹣2和3C .﹣2x 和3D .2x 和32.平面直角坐标系内一点P (﹣4,3)关于原点对称的点的坐标是()A .(3,﹣4)B .(4,3)C .(﹣4,﹣3)D .(4,﹣3)3.二次函数y=(x+2)2-3的顶点坐标是()A .(﹣2,3)B .(2,3)C .(﹣2,﹣3)D .(2,﹣3)4.如图,将△ABC 绕点C 按逆时针方向旋转45°后得到△A ′B ′C ′,若∠A =45°,∠B ′=100°,则∠BCA ′的度数是()A .10°B .15°C .20°D .25°5.在半径为4的圆中,垂直平分半径的弦长为()A B .C .D .6.已知一元二次方程x 2﹣2x ﹣a =0,当a 取下列值时,使方程无实数解的是()A .﹣2B .﹣1C .0D .17.如图,在O 中,点C 为弧AB 的中点,若ADC α∠=(α为锐角),则APB ∠=()A .180α︒-B .1802α︒-C .75α︒+D .3α8.抛物线2(3)2y x =--经过平移得到抛物线2y x =,平移过程正确的是()A .先向下平移2个单位,再向左平移3个单位B .先向上平移2个单位,再向右平移3个单位C .先向下平移2个单位,再向右平移3个单位D .先向上平移2个单位,再向左平移3个单位.9.从前有一个醉汉拿着竹竿进城,横拿竖拿都进不去,横着比城门宽43米,竖着比城门高23米,一个聪明人告诉他沿着城门的两对角斜着拿竿,这个醉汉一试,不多不少刚好进去了,求竹竿的长度.若设竹竿长x 米,则根据题意,可列方程()A .22242(()33x x x +++=B .22242()()33x x x-+-=C .22242((33x x x-++=D .22242()()33x x x++-=10.已知a 、b 、m 、n 为互不相等的实数,且(a +m )(a +n )=2,(b +m )(b +n )=2,则ab ﹣mn的值为()A .4B .1C .﹣2D .﹣1二、填空题11.一元二次方程ax 2+2x =0的一个根是1,则a =_____.12.二次函数y =2x 2﹣2x 的对称轴是_____.13.在⊙O 中,圆心角∠AOB =80°,点P 是圆上不同于点A 、B 的点,则∠APB =_____°.14.“绿水青山就是金山银山”,为了山更绿、水更清,某区大力实施生态修复工程,发展林业产业,确保到2021年实现全区森林覆盖率达到72.6%的目标.已知该区2019年全区森林覆盖率为60%,设从2019年起该区森林覆盖率年平均增长率为x ,则x =_____.15.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:x …012…y…434…若一次函数y =bx ﹣ac 的图象不经过第m 象限,则m =_____.16.如图,△ABC 为等腰直角三角形,∠B =90°,AB =2,把△ABC 绕点A 逆时针旋转60°得到△AB 1C 1,连接CB 1,则点B 1到直线AC 的距离为_____.三、解答题17.解方程:(1)x 2﹣x ﹣1=0;(2)3x (1﹣x )=2﹣2x .18.已知关于x 的一元二次方程()22x 2k 1x k 0--+=有两个不相等的实数根(1)求k 的取值范围;(2)若此方程的两实数根12x .x 满足()()12x 1x 15--=,求k 的值19.如图,已知△ABC 的三个顶点坐标为A (﹣2,3),B (﹣6,0),C (﹣1,0).(1)将△ABC 绕坐标原点O 旋转180°,画出图形,并写出点A 的对应点A '的坐标;(2)将△ABC 绕坐标原点O 逆时针旋转90°,直接写出点A 的对应点A ''的坐标.(3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20.如图,在△ABC 中,AB =AC ,∠BAC =110°,将△ABC 绕点A 顺时针方向旋转35°后能与△ADE 重合,点G 、F 是DE 分别与AB 、BC 的交点.(1)求∠AGE 的度数;(2)求证:四边形ADFC是菱形.21.如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC,(1)求证:PA是⊙O的切线;(2)若O的直径.22.网络销售已经成为一种热门的销售方式为了减少农产品的库存,某市长亲自在某网络平台上进行直播销售板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价格且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元.设板栗公司销售该板栗的日获利为W(元).(1)请求出日获利W与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?23.如图1,AC⊥CH于点C,点B是射线CH上一动点,将△ABC绕点A逆时针旋转60°得到△ADE(点D对应点C).(1)延长ED交CH于点F,求证:FA平分∠CFE;(2)如图2,当∠CAB>60°时,点M为AB的中点,连接DM,请判断DM与DA、DE的数量关系,并证明.24.如图,直线,,AB BC CD 分别与⊙O 相切于点,,E F G ,且//,6cm,8cm AB CD OB OC ==.求:(1)BOC ∠的度数;(2)⊙O 的半径.25.如图,抛物线2y ax bx =+过(4,0)A ,()1,3B 两点.备用图(1)求该抛物线的解析式;(2)点P 是抛物线上一点,且位于第一象限,当ABP △的面积为3时,求出点P 的坐标;(3)过B 作BC OA ⊥于C ,连接OB ,点G 是抛物线上一点,当BAG OBC BAO ∠+∠=∠时,请直接写出此时点G 的坐标.参考答案1.C2.D3.C4.A5.D6.A7.B8.D9.B 10.C 11.-2.12.直线x=1 2.13.40或140°.14.10%.15.3.16.62 2.17.(1)x1=12,x2=12;(2)x1=23,x2=1.18.(1)1k4<;(2)k1=-19.(1)图见解析,A′(2,﹣3);(2)(﹣3,﹣2);(3)(3,3)或(﹣7,3)或(﹣5,﹣3).20.(1)∠AGE=70°;(2)见解析.21.(1)见解析(2)22.(1)W=22100550027000(610)100560032000(1030)x x xx x x⎧-+-≤≤⎨-+-<≤⎩;(2)当销售单价定为28元时,销售这种板栗日获利最大,最大利润为46400元.23.(1)见解析;(2)2DMAD =DE ,证明见解析.24.(1)90°;(2)4.8cm 25.(1)抛物线表达式为:24y x x =-+;(2)点P 坐标为(3,3),(2,4),517117,22⎛-+ ⎝⎭(3)点G 坐标为(3,3),111,39⎛⎫⎪⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学试卷 第 1 页 共 7 页
图1
九年级 期中试卷
一.填空题(本题共11题,每空2分,共30分)
1.要使式子5+x 有意义,x 的取值范围是 ;要使
12+x 有意义,x 的取值范围是 . 2.计算:2)3(= ;
2257⨯= .
3.已知△ABC 的三边长分别为a 、b 、c , 且a 、b 、c 满足
a 2 -6a +9+|5|0c -=,则△ABC 的形状是 三角形.
4.若方程x ax a 2
30--=的一个根为6,则另一个根为_________.
5.二次根式 (1)12+x , (2)x 12, (3)15,(4)5.1 (5)
33
1
,其中最简二次根式的有____________(填序号);计算:(3-2)2003·(3+2)2004= .
6.两圆半径分别为5厘米和3厘米,如果圆心距为3厘米,那么两圆位置
关系是_______.
7.用配方法解方程时 x 2+4x -12=0 配方
为 ; 方程x 2- 4=0的解是
.
8.相交两圆的公共弦长为6,两圆的半径分别为5,则这 两圆的圆心距等于 .
9.正六边形的半径为2厘米,那么它的周长为 厘米. 10.在△ABC 中,∠C =90°,AC =4,BC =3,以直线AC 为轴旋转 一周所得到几何体的表面积是 . 11.如图1,四边形ABCD 内接于⊙O ,若∠BOD =160,
九年级数学试卷第 2 页共7 页
图2图3
则∠BCD=.
二.选择题(本题共10题,每小题2分,共20分)
1.如图2,⊙O是△ABC的外接圆,直线EF切⊙O于点A,若∠BAF= 40°,则∠C等于【】
A. 20°
B. 40°
C. 50°
D. 80°
2.下列语句中正确的是【】
(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;
(3)长度相等的两条弧是等弧;(4)经过圆心的每一条直线都是圆的对称轴.
A. 1个
B. 2个
C. 3个
D. 4个
3.下列图形中,绕中心旋转600后,可以和原图形重合的是【】
A.正六边形
B. 正五边形
C. 正三角形
D.正方形
4.设⊙O1, ⊙O2的半径分别是R、r(R>r),圆心距是O1O2 =5,且R、r
是方程x2—7x+10=0的两个根,则两圆的位置关系是【】
A. 内切
B. 外切
C. 相交
D.外离
5.如图3,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺
次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是【】
A. π
B. 1.5π
C. 2π
D. 2.5π
6.已知圆的半径为6.5厘米,如果一条直线和圆心距离为6.5厘米,那么
这条直线和这个圆的位置关系是【】
A. 相交
B. 相切
C. 相离
D. 相交或相离
7.下列根式中,属于最简二次根式的是【】
A.9
B.a3
C.2
3a
D.
3
a
8. 12a
=-,则a的取值范围是【】
九年级数学试卷 第 3 页 共 7 页
A. 全体实数
B. a ≥0
C. 12a ≥
D. 12
a ≤ 9.化简(-3)2 的结果是【 】 A. 3 B .-3 C. ±3 D. 9
10.已知x 、y
为实数,4y =++,则y x 的值等于【 】 A. 8 B. 4 C. 6 D. 16
三.计算 (共10分)
(1)(本题3分) 18+6
-3 (2)(本题3分)
)2)(2(-+a a
(3)(本题4分)已知512x x =+,求x x 2
43--的值.
四.解方程(每小题4分,共8分)
(1)229(23)4(2)0x x +--= (2)3x (x -1)=2-2x
五.解答(32分)
1.(本题5分)已知方程5x2+kx-6=0的一根是2, 求它的另一根及k
的值.
2.(本题6分)如图4,在△ABO中,OA=OB,以O为圆心的圆经过
AB的中点C,且分别交OA、OB于E、F两点
九年级数学试卷第 4 页共7 页
九年级数学试卷 第 5 页 共 7 页
图4
O
A
B
C E
F
(1)求证:AB 是圆O 的切线.
(2)若△ABO 的腰上的高等于底边的一半,且AB =ECF 的
长.
3.(本题6分)阅读:
第1题:正三角形边长为a ,则它的外接圆和内切圆面积之差__________;
九年级数学试卷 第 6 页 共 7 页
第2题:正方形边长为a ,则它的外接圆和内切圆面积之差为__________; 以上两题的答案均为
24
a π
. 同学们猜想一下: 正n 边形边长为a 其外接圆内
切圆的面积之差是什么?如果仍然是
24
a π
,请你证明. 如果不正确,说明理由.
4. (本题4分)已知关于x 的一元二次方程9x 2-(m +6)x +m -2=0有两
个相等实根,
求m 的值.
5.(本题5分)某化肥厂去年四月份生产化肥500吨,因管理不善,五月
份的产量减少了10%,从六月份开始,改变管理方式,产量逐月上
升,七月份产量达到648吨,则该厂六.七月份平均增长率是多少?
6.(本题6分)将等腰△ABC绕底边BC的中点O旋转180度,
①画出原图形与旋转后的图形
②旋转后的图形与原图形拼成什么图形?
③要使拼成的图形是正方形,那么三角形应满足什么条件?
九年级数学试卷第7 页共7 页。

相关文档
最新文档