九年级期中考试数学试卷

合集下载

福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

2024-2025学年第一学期期中考试九年级数学试题(满分150分,完卷时间120分钟)班级______姓名______成绩______一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.2.用配方法解一元二次方程的过程中,配方正确的是( )A. B. C. D.3.如图,在中,,则等于( )A. B. C. D.4.抛物线与轴的交点是( )A. B. C. D.5.正多边形的中心角为,则正多边形的边数是( )A.4B.6C.8D.126.如图,将绕点逆时针旋转,得到.若点在线段的延长线上,则的度数为( )A. B. C. D.7.在平面直角坐标系中,三个顶点的坐标分别为,,,以原点为位似中心,把这个三角形缩小为原来的,可以得到,则点的坐标为( )A. B.或C.或 D.2450x x --=()221x +=()221x -=()229x +=()229x -=O e 60ABC ∠=︒AOC ∠30︒60︒120︒150︒223y x =+y ()0,5()0,3()0,2()2,145︒ABC △A 100︒ADE △D BC B ∠30︒40︒50︒60︒ABC △()4,2A ()2,0B ()0,0C O 12A B C '''△A '()2,1()1,2()1,2--()2,1()2,1--()1,2--8.如图,在中,为上一点,连接、,且、交于点,,则为( )A. B. C. D.9.已知抛物线,与的部分对应值如表所示,下列说法错误是( )01230343A.开口向下 B.顶点坐标为C.当时,随的增大而减小D.10.如图,在矩形中,,,以点为圆心作与直线相切,点是上一个动点,连接交于点,则的最小值是( ).A. B.1D.二、填空题(本大题共6小题,每小题4分,共24分)11.在直角坐标系中,若点,点关于原点中心对称,则______.12.已知关于的一元二次方程有一个根为,则______.13.如图,在中,分别交、于点、;若,,,则的长为______.14.如图,四边形为的内接四边形,,则的度数为______.ABCD □E CD AE BD AE BD F :4:25DEF ABF S S =△△:DF BF 2:52:33:53:22y ax bx c =++y x x1-y m()1,41x <y x 0m =ABCD 8AB =6AD =C C e BD P C e AP BD T AT PT3512()1,A a (),2B b -a b +=x 20x x m -+=2-m =ABC △MN BC ∥AB AC M N 1AM =2MB =9BC =MN ABCD O e 100A ∠=︒DCE ∠15.若圆锥的高为,母线长为,则这个圆锥的侧面展开图的弧长是______.(结果保留)16.关于的一元二次方程有两个整数根且乘积为正,关于的一元二次方程同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②③;④,其中正确结论的结论是______.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题8分)用适当的方法解下列方程:(1)(2)18.(本小题8分)已知是关于的一元二次方程,求证:方程总有两个不相等的实数根.19.(本小题8分)为了测量水平地面上一棵直立大树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在与树底端相距8米的点处,然后沿着直线后退到点,这时恰好在镜子里看到树梢顶点,再用皮尺量得米,观察者目高米,求树的高度.20.(本小题8分)如图1、图2,,均是等腰直角三角形,,(1)在图1中,求证:;(2)若绕点顺时针旋转一定角度后如图2所示,请问与还相等吗?为什么?图1 图221.(本小题8分)如图,是的直径,过点作的切线,点是射线上的一点,连接,过点作,交于点,连接.8cm 10cm cm πx 2220x mx n ++=y 2220y ny m ++=22m n <()()22112m n -+-≥1221m n -≤-≤2240x x +-=()3284x x x -=-()2310x a x a ++++=x B E BE D A 1.6DE = 1.5CD =AB AOB △COD △90AOB COD ︒∠=∠=AC BD =COD △O AC BD AB O e A O e AC P AC OP B BD OP ∥O e D PD(1)请补全图形;(要求:尺规作图,不写作法,保留作图痕迹)(2)证明:是的切线.22.(本小题10分)如图,四边形内接于,为的直径,平分,,点在的延长线上,连接.(1)求直径的长;(2)若.23.(本小题10分)施工队要修建一个横断面为抛物线的公路隧道,其最高点距离地面高度为8米,宽度为16米.现以点为原点,所在直线为轴建立直角坐标系(如图所示).(1)求出这条抛物线的函数解析式,并写出自变量的取值范围;(2)隧道下的公路是单向双车道,车辆并行时,安全平行间距为2米,该双车道能否同时并行两辆宽2.5米、高5米的特种车辆?请通过计算说明;24.(本小题12分)问题背景:如图1,已知,求证:;尝试运用:如图2,在中,点是边上一动点,,且,,,与相交于点,在点运动的过程中,连接,当时,求的长度;拓展创新:如图3,是内一点,,,,,求的长.PD O e ABCD O e BD O e AC BAD ∠CD =E BC DE BD BE =P OM O OM x x ABC ADE ∽△△ABD ACE ∽△△ABC △D BC 90BAC DAE ︒∠=∠=ABC ADE ∠=∠4AB =3AC =AC DE F D CE 12CE CD =DE D ABC △BAD CBD ∠=∠12CD BD =90BDC ∠=︒3AB =AC =AD图1 图2图325.(本小题14分)已知抛物线过点和,与轴交于另一点,顶点为.(1)求抛物线的解析式,并直接写出点的坐标;(2)如图1,为线段上方的抛物线上一点,,垂足为,轴,垂足为,交于点.当时,求的面积;(3)如图2,与的延长线交于点,在轴上方的抛物线上是否存在点,使若存在,求出点的坐标;若不存在,请说明理由.图1 图22024-2025学年第一学期期中考试九年级数学参考答案及评分标准一、选择题(共10小题,每小题4分,满分40分)题号12345678910答案A D C B C B C A CD二、填空题(本大题共24分,每小题4分)11.112.13.314.15.16.①③④三、解答题(共8小题,满分86分)17.(1)解:.,,,22y ax ax c =-+()1,0A -()0,3C x B D D E BC EF BC ⊥F EM x ⊥M BC G BG CF =EFG △AC BD H x P OPB AHB ∠=∠P 6-100︒12π2240x x --=1a = 2b =-4c =-.,即,(2)解:或,.18.证明:,故方程总有两个不相等的实数根;19.解:根据题意,易得,则,则,即,解得:,答:树的高度为.20.解:(1)证明:,均是等腰直角三角形,,,,,;(2)答:相等.在图2中,,,,在和中,,,.21.解:(1)答:补全图形如图所示:()()2242414200b ac ∴∆=-=--⨯⨯-=>1x ∴===11x =+21x =()()3242x x x -=--()()32420x x x -+-=()()3420x x +-=340x +=20x -=12x ∴=243x =-()()()22223411694425140a a a a a a a a ∆=+-⨯⨯+=++--=++=++>90CDE ABE ∠=∠=︒CED AEB∠=∠ABE CDE ∽△△BE AB DE CD =81.6 1.5AB =7.5AB =AB 7.5m AOB △COD △90AOB COD ︒∠=∠=OA OB ∴=OC OD =OA OC OB OD ∴-=-AC BD ∴=90AOB COD ︒∠=∠=DOB COD COB ∠=∠-∠ COA AOB COB ∠=∠-∠DOB COA∴∠=∠DOB △COA △OD OC DOB COA OB OA =⎧⎪∠=∠⎨⎪=⎩()SAS DOB COA ∴≌△△BD AC ∴=(2)解:证明:连接,切于,,即,,,,,,在和中,,,,,即,是的半径,是的切线.22.(1)解:如图所示,连接,为的直径,平分,OD PA O e A PA AB ∴⊥90PAO ∠=︒OP BD ∥DBO AOP ∴∠=∠BDO DOP∠=∠OD OB = BDO DBO ∴∠=∠DOP AOP ∴∠=∠AOP △DOP △,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩()SAS AOP DOP ∴≌△△PDO PAO ∴∠=∠90PAO ︒∠= 90PDO ︒∴∠=OD PD ⊥OD O e PD ∴O e OC BD O e AC BAD ∠,,..,,,即...(2)解:如图所示,设其中小阴影面积为,大阴影面积为,弦与劣弧所形成的面积为,由(1)已知,,,,.,弦弦,劣弧劣弧..为的直径,,,,...23.(1)解:依题意:抛物线形的公路隧道,其高度为8米,宽度为16米,现在点为原点,点,顶点,设抛物线的解析式为,把点,点代入得:,90BAD ︒∴∠=11904522BAC DAC BAD ∠=∠=∠=⨯︒=︒OB OD=90COD ︒∴∠=CD = OC OD =222OD CD ∴=228OD =2OD ∴=224BD OD OB ∴=+=+=1S 3S CD CD 2S 90COD ∠=︒45DAC ∠=︒OC OD =4BD =()11180904522BDC COD ︒︒︒∴∠=-∠=⨯=DAC BDC ∠=∠ ∴BC =CD BC =CD 12S S ∴=BD O e CD =90BCD ECD ∴∠=∠=︒BC CD ==BE = CE BE BC ∴=-=-=11622ECD S CE CD ∴=⋅=⨯=△13236ECD S S S S S S ∴=+=+==阴影部分△OM O ∴()16,0M ()8,8P 2y ax bx =+()16,0M ()8,8P 6488256160a b a b +=⎧⎨+=⎩解得抛物线的解析式为,,自变量的取值范围为:.(2)解:当时,,故能同时并行两辆宽2.5米、高5米的特种车辆.24.证明:问题背景:,,,,,,.尝试应用:如图(2),连接,,,,,,,,,,,,,,,182a b ⎧=-⎪⎨⎪=⎩∴2128y x x =-+16OM = ()16,0M ∴x 016x ≤≤98 2.512x =--=21992072582232y ⎛⎫=-⨯+⨯=> ⎪⎝⎭ABC ADE ∽△△AB AC AD AE∴=BAC DAE ∠=∠BAD DAC DAC CAE ∴∠+∠=∠+∠BAD CAE ∴∠=∠AB AD AC AE=ABD ACE ∴∽△△CE 4AB = 3AC =90BAC ∠=︒5BC ∴===90BAC DAE ∠=∠=︒ ABC ADE ∠=∠ABC ADE ∴∽△△AB AC AD AE∴=43AB AD AC AE ∴==90BAC DAE ︒∠=∠= 90BAD CAE DAC ∴∠=∠=︒-∠BAD CAE ∴∽△△B ACE ∴∠=∠43AB BD AC CE ==设,,,,,,,,,,拓展创新:过点作的垂线,过点作的垂线,两垂线交于点,连接,图3,,,又,,,又,,即,,,,,,∴4BD x =3CE x =54CDx ∴=-90B ACB ︒∠+∠= 90ACE ACB ︒∴∠+∠=90DCE ︒∴∠=12EC DC = 31542x x ∴=-12x ∴=32EC ∴=3CD =DE ∴===A AB D AD M BM 90BAM ADM BDC ︒∴∠=∠=∠=BAD DBC ∠=∠ DAM BCD ∴∠=∠90ADM BDC ︒∠=∠= BDC MDA ∴∽△△BD DC MD DA∴=BDC ADM ∠=∠BDC CDM ADM CDM ∴∠+∠=∠+∠BDM CDA ∠=∠BDM CDA ∴∽△△BM DM BD AC AD DC∴==12CD BD = 2BD CD ∴=2BM AC ∴==2DM AD =,,,(舍去).25.解:(1)把点,代入中,,解得,,顶点;(2)方法一:如图1,抛物线,令,,或,.设的解析式为,将点,代入,得,解得,..设直线的解析式为,设点的坐标为,将点坐标代入中,得,,联立得.AM ∴===222AD DM AM += 22423AD AD ∴+=AD ∴=()1,0A -()0,3C 22y ax ax c =-+203a a c c ++=⎧⎨=⎩13a c =-⎧⎨=⎩223y x x ∴=-++∴()1,4D 223y x x =-++0y =1x ∴=-3x =()3,0B ∴BC ()0y kx b k =+≠()0,3C ()3,0B 330b k b =⎧⎨+=⎩13k b =-⎧⎨=⎩3y x ∴=-+EF CB ⊥ EF y x b =+E ()2,23m m m -++E y x b =+23b m m =-++23y x m m ∴=-++233y x y x m m =-+⎧⎨=-++⎩.把代入,得,..,即.解得或.点是上方抛物线上的点,(舍去).点,,,,,;方法二:图1如图所示,过点作、分别垂直,轴,分别交于,点设,由可知,则,则代入二次函数解析式化简的解得,(舍去)则22262m m x m m y ⎧-=⎪⎪∴⎨-++⎪=⎪⎩226,22m m m m F ⎛⎫--++∴ ⎪⎝⎭x m =3y x =-+3y m =-+(),3G m m ∴-+BG CF = 22BG CF ∴=()()2222223322m m m m m m ⎛⎫⎛⎫---+-=+ ⎪ ⎪⎝⎭⎝⎭2m =3m =- E BC 3,m ∴=-∴()2,3E ()1,2F ()2,1G EF ==FG ==112EFG S ∴==△F FR FH y x R H RF m =CF BG =CRF GMB ≌△△RF MB m ==32HM m ∴=-()232EG m =-()23263EM m m m ∴=-+=-()3,63E m m --2760m m -+=11m =26m =1121122EFG S EG FK ∴=⨯⨯=⨯⨯=△(3)如图2,过点作于,点,,.点,点,,联立得,.设,把代入,得,,联立得,,,..设点.过点作轴于点,在轴上作点使得,且点的坐标为.若在和中,,,.A AN HB ⊥N ()1,4D ()3,0B 26BD y x ∴=-+ ()1,0A -()0,3C 33AC y x ∴=+326y x y x =+⎧⎨=-+⎩35245x y ⎧=⎪⎪∴⎨⎪=⎪⎩324,55H ⎛⎫∴ ⎪⎝⎭12AN y x b =+()1,0-12b =1122y x ∴=+112226y x y x ⎧=+⎪⎨⎪=-+⎩11585x y ⎧=⎪⎪∴⎨⎪=⎪⎩118,55N ⎛⎫∴ ⎪⎝⎭2222211816815555AN ⎛⎫⎛⎫⎛⎫⎛⎫∴=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22281655HN ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭AN HN ∴=45H ∴∠=︒()2,23P n n n -++P PR x ⊥R x S RS PR =45RSP ︒∴∠=S ()233,0n n -++45OPB AHB ︒∠=∠=OPS △OPB △POS POB ∠=∠OSP OPB ∠=∠OPS OBP ∴∽△△...或或(舍去).,,.OP OS OB OP∴=2OP OB OS ∴=⋅()()()222213333n n n n n ∴++-=⋅-++0n ∴=n =3n =()10,3P∴2P3P。

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.2024年巴黎奥运会,中国体育健儿勇夺91枚奖牌,如图是本届奥运会的领奖台,其左视图是()A .B .C .D .2.已知点()13,A y -,()21,B y -和()32,C y 都在反比例函数()0ky k x=>的图象上,则1y ,2y 和3y 的大小关系是()A .312y y y <<B .213y y y <<C .123y y y <<D .321y y y <<3.如图1是某班级的花架,图2是其侧面示意图,已知AB CD EF ∥∥,36cm AC =,35BD DF =,则AE 的长为()A .48cmB .60cmC .96cmD .120cm4.10月16日是世界粮食日.某校组织了粮食安全公益活动,现有“节粮宣讲员”、“光盘示范员”和“爱粮监督员”三类志愿者岗位身份,小霞和小艺从中任选一类,则她们恰好选到同一类岗位的概率是()A .14B .13C .12D .235.函数y kx k =-和()210k y k x+=-≠在同一平面直角坐标系中的图象可能是()A .B .C .D .6.“黄金比例分割法”是启功先生研究的一套楷书结构法,是将正方形按照黄金分割的比例来分割,形成“黄金格”(如图,四条与边平行的线的交点都是黄金分割点),汉字的笔画至少要穿过两个黄金分割点才美观.若正方形“黄金格”的边长为8cm ,四个黄金分割点组成的正方形的边长为()A .()4cmB .()16cmC .(12cm-D .(24cm-7.如图,直线y x =-与双曲线()0ky k x=≠交于A ,B 两点,已知OA =表达式为()A .3y x=B .3y x=-C .9y x=D .9y x=-二、填空题8.如图,圭表是度量日影长度的一种天文仪器,垂直于地面的直杆叫“表”,水平放置于地面上刻有刻度以测量影长的标尺叫“圭”.当正午太阳照射在表上时,日影便会投影在圭面上,冬至日影最长,夏至日影最短.圭面上冬至线与夏至线之间的距离AB 的长为3.5m ,则表高为()(参考数据:冬至时,0.5≈表高影长;夏至时,3≈表高影长)A .2.1mB .2.4mC .56m .D .5.8m三、单选题9.如图,点光源O 射出的光线沿直线传播,将胶片上的建筑物图片AB 投射到与胶片平行的屏幕上,形成影像CD .已知3cm AB =,胶片与屏幕的距离EF 为定值,设点光源到胶片的距离OE 长为x (单位:cm ),CD 长为y (单位:cm ),y 随x 的变化而变化,且当60x =时,43y =,则y 与x 的函数关系可表示为()A .4360y x =B .233y x =+C .24003y x=+D .2580y x=10.已知反比例函数()22a y a x-=≠,点()11,M x y 和()22,N x y 是反比例函数图象上的两点.若对于12x a =,256x ≤≤,都有12y y >,则a 的取值范围是()A .502a -<<或522a <<B .532a -<<且2a ≠,0a ≠C .532a -<<-或02a <<D .5522a -<<且2a ≠,0a ≠四、填空题11.若()304n m m =≠,则n mm+=.12.近年来,济南环境保护效果显著,越来越多的候鸟选择来济过冬.为了解候鸟的情况,生物学家采用“捕获—标记—再捕获”的方法估计候鸟的数量.先随机捕捉40只候鸟,戴上标记卡并放回,经过一段时间后,重复进行5次捕捉.记录数据如下表,由此估计该区域约有只候鸟.累计捕捉数量(只)100200350420480带有标记卡数量(只)132444526013.坐落于济南市大明湖的超然楼是一座拥有700年历史的名楼,《周髀算经》中有“偃矩以望高”的测高方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC ),小明受到启发,利用“矩”测量超然楼DE 的高度.通过调整自己的姿势和“矩”的摆放位置,使AC 保持水平,点A 、B 、D 在同一直线上,90AFE DEF ∠=∠=︒,测得0.15m AB =,0.2m BC =, 1.7m AF =,37.5m EF =,则超然楼的高度DE =m .14.如图,点P ,Q ,R 在反比例函数()0ky x x=>的图象上,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为1S ,2S ,3S .若OE ED DC ==,2320S S +=,则k =.15.如图,在ABCD 中,4AB =,6AD =,45A ∠=︒,点E 为边AD 上的一个动点,连接EC 并延长至点F ,使得12CF CE =,以EB ,EF 为邻边构造BEFG ,连接CG ,则CG 的最小值为.五、解答题16.如图,一次函数4y kx =+的图象与反比例函数()0my x x=<的图象交于A ,B 两点,与y 轴交于点C ,()1,3B -,连接OA ,OB .(1)求k 和m 的值;(2)求AOB V 的面积.17.图1是小亮沿广场道路AB 散步的示意图,线段CD 表示直立在广场上的灯柱,点C 表示照明灯的位置,已知小亮身高1.5m ,6m CD =.(1)如图2,小亮站在E 处时与灯柱的距离9m ED =,则此时小亮的影长AE =m ;(2)如图3,小亮继续行至G 处时,发现其影长KG 恰为身高的一半,求此时小亮与灯柱的距离.18.如图,在平面直角坐标系中,ABC V 的顶点坐标分别是()2,6A ,()6,2B ,()10,0C .(1)以原点O 为位似中心画111A B C △,使它与ABC V 位似.若1112A B AB =在第一象限内画出111A B C △;(2)在(1)的条件下,求点1A的坐标.19.如图1,直角尺是机械行业中检验工件垂直度的常用工具.如图2,在矩形ABCD中,直角尺的顶点G在CD上滑动,当点E落在BD上时,另外两个顶点恰好与A,B重合.若==,求BD的长.BE AE22420.2024年8月8日是中国第16个“全民健身日”.为提高学生身体素质,积极倡导全民健身,某校开展了一分钟跳绳比赛.数学兴趣小组随机抽取了部分学生成绩,并对数据进行统计整理,以下是不完整的统计图表.一分钟跳绳成绩统计表成绩等级一分钟跳绳次数频数x≥nA160x≤<75B120160x≤<69C80120x<36D80请根据以上信息,完成下列问题.(1)随机抽取的学生人数为人,统计表中的n=,统计图中B等级对应扇形的圆心角为度;(2)该校共有800人参加比赛,请你估计该校成绩达到B等级及以上的有多少人?(3)该比赛服务组有两名男生和两名女生,现从中随机挑选两名同学负责跳绳发放工作,请用树状图法或列表法求出恰好选中“一男一女”的概率.21.如图1,在平面直角坐标系中,直线y x b =+与双曲线()10ky k x=≠交于()4,1A m +,(),3B m -.(1)求一次函数和反比例函数的表达式;(2)根据图象,直接写出关于x 的不等式kx b x+<的解集;(3)如图2,将直线y x b =+向上平移a 个单位长度得到直线l ,直线l 与反比例函数()2130y x x=-<的图象交于C ,D 两点,与双曲线1k y x =在第一象限内交于点E ,连接BD ,EA ,若四边形ABDE 是平行四边形,求a 的值.22.2024年9月,济南港—寿光港集装箱业务的首船作业,标志着小清河复航业务再结硕果.集装箱搬运车是为了更高效地对集装箱进行搬运和叠放,当液压撑杆与吊臂垂直且吊臂完全伸展开时,集装箱搬运车的抓手可以达到最大高度.如图1是抓手达到最大高度时的示意图,四边形ABCD 为矩形,5m AB =,0.9m BC =,AE BF ⊥,延长FB DC ,交于点H , 1.2m CH =.(1)求此时液压撑杆AE 的长;(2)已知吊臂BF 最长为9.5m ,抓手0.5m FG =,某批集装箱的长宽高如图2所示,使用该款搬运车最多能将集装箱在地面上叠放几层?请通过计算说明.23.小光根据学习函数的经验,探究函数11y x =-的图象与性质.(1)刻画图象①列表:下表是x ,y 的几组对应值,其中a =,b =;x …4-2-1-0122334544332234 (11)x -…15-13-12-1-2-a4-4321b13…②描点:如图所示;③连线:请用平滑的曲线顺次连接.(2)认识性质观察图象,完成下列问题:①当1x >时,y 随x 的增大而;②函数11y x =-的图象的对称中心是.(填写点的坐标)(3)类比探究①小光发现,函数11y x =-的图象可以由反比例函数1y x =的图象经过平移得到.请结合图象说明平移过程;②函数43y x =-的图象经平移可以得到函数42=+y x 的图象,请说明平移过程.24.(1)在ABC V 和DEC 中,AB AC =,DE DC =,90BAC EDC ∠==︒.①如图1,当CE 与AC 重合时,BEAD=;②如图2,DEC 绕点C 逆时针旋转一定角度,连接AD ,BE ,BEAD的值是否改变?请说明理由;(2)如图3,正方形ABCD 的边长为2,E 为边AB 上一动点,以CE 为斜边在正方形ABCD 内部作等腰直角CFE △,90CFE ∠=︒,连接AF ,BF ,当AFE ABF ∠=∠时,求BE 的长.25.某数学兴趣小组学习了反比例函数后,进一步研究反比例函数8y x=的图象,他们在平面直角坐标系内选定点133,2P ⎛⎫- ⎪⎝⎭,过点P 作直线,并将图象沿该直线按一定的操作翻折,探究过程如下:【动手操作】操作1:如图1,过点P 作x 轴的平行线l ,将直线l 上方的反比例函数图象沿直线l 翻折得到新图象,与第一、三象限未翻折的图象组成“X 图象”.操作2:如图2,过点P 作y 轴的平行线m ,将直线m 左侧的反比例函数图象沿直线m 翻折得到新图象,与第一、三象限未翻折的图象组成“Y 图象”.操作3:如图3,过点P 作直线n :152y x =-+,将第一象限内反比例函数的图象在直线n 下方的部分沿直线n 翻折得到新图象,与直线n 下方的图象组成的封闭图象是“Z 图象”.试卷第11页,共11页【解决问题】(1)如图1,求“X 图象”与x 轴的交点C 的坐标;(2)过x 轴上一点(),0Q t 作y 轴的平行线,与“Y 图象”交于点M ,N .若3MN QN =,求t 的值;(3)如图3,反比例函数()80y x x =>的图象与直线n 交于点E ,F ,已知点G 和点H 是“Z 图象”上的两个动点,当以点E ,G ,F ,H 为顶点的四边形面积最大时,直接写出点G 和点H 的坐标.。

陕西省渭南市部分学校2024-2025学年九年级上学期期中考试数学试题

陕西省渭南市部分学校2024-2025学年九年级上学期期中考试数学试题

陕西省渭南市部分学校2024-2025学年九年级上学期期中考试数学试题一、单选题1.某几何体如图水平放置,其左视图是()A .B .C .D .2.若把方程2410x x --=化为2()x m n +=的形式,则n 的值是()A .5B .2C .2-D .5-3.为了估计鱼塘中的鱼数,养鱼者先从鱼塘中捕获30条鱼,在每一条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞鱼,通过多次重复试验后发现捕捞的鱼中有做记号的频率稳定在2.5%左右,则估计鱼塘中鱼的条数为()A .600条B .1000条C .1200条D .2200条4.如图,晚上小亮在路灯下散步,他从A 处向着路灯灯柱方向径直走到B 处,这一过程中他在该路灯灯光下的影子()A .逐渐变短B .逐渐变长C .先变短后变长D .先变长后变短5.某班准备从《我爱你中国》《我和我的祖国》《让世界充满爱》《在灿烂阳光下》四首歌曲中任选两首进行排练,以参加市级合唱大赛,那么该班恰好选中《我和我的祖国》和《在灿烂阳光下》这两首歌曲的概率是()A .12B .14C .16D .186.如图,在正方形ABCD 中,AC 为其对角线,点E 为AC 上一个动点,连接BE ,DE ,过D 作DF BE ∥交AC 于F ,连接BF .下列结论错误的是()A .BE DE=B .ADE FDC ∠=∠C .BC CE =D .AE CF=7.在同一直角坐标系中,若0ab <,则函数y ax b =+与b y x =的大致图象是()A .B .C .D .8.如图,在矩形ABCD 中,点E ,F 分别是边,AB BC 的中点,连接,EC FD .点G ,H 分别是,EC FD 的中点,连接GH .若6AB =,10BC =,则GH 的长度为()A .B .CD .2二、填空题9.菱形的两条对角线的长分别为6和8,则这个菱形的周长为.10.如图,AB DE ∥,连接,BD AE 交于点C ,若2BC =,1DC =,ABC EDC S kS =△△.则k 的值为.11.某种服装,平均每天可销售30件,每件赢利40元,网查发现,若每件降价1元,则每天可多售6件,如果每天要赢利2100元,每件应降价多少元?设该服装每件降价x 元,根据题意可列方程.12.如图,点A 在反比例函数()20y x x -=<的图象上,点B 在反比例函数()0k y x x =>的图象上,AB x ∥轴,点C 是x 轴上的一点,若ABC 的面积为52,则k 的值为.13.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC 中,DB =1,BC =2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,则CD 的长为.三、解答题14.解方程:2(1)2(1)x x x -=-.15.在一个不透明的盒子里装有若干个白球和35个黄球,这些球除颜色不同外其余均相同,每次从盒子里摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.3左右,请估计盒子里白球的个数.16.如图,在ABC V 中,AB AC =,点D 是BC 上一点,BD CD =,CE AB ⊥于点E ,连接AD .求证:ABD CBE ∽△△.17.如图,在平面直角坐标系中,ABC V 的顶点坐标分别为()2,2A -,4,0B -,()4,4C --.(1)在y 轴右侧,以原点O 为位似中心,画出A B C ''' ,使它与ABC V 位似,且相似比为12:(点A ,B ,C 的对应点分别为点A ',B ',C ');(2)在(1)的条件下,求A B C ''' 的面积.18.如图,小明欲测量一座信号发射塔的高度.他站在该塔的影子上前后移动,直到他自己影子的顶端正好与塔的影子的顶端重合,此时他距离该塔20米(20CE =米),他的影长2AE =米,已知小明的身高 1.8DE =米,点E 在AC 上,且BC AC ⊥,DE AC ⊥,求信号发射塔的高度BC .19.某班四个数学小组,准备研读四部古代数学著作.现制作背面完全相同的4张卡片,正面分别写有《九章算术》《周髀算经》《五经算术》《数術记遗》,将4张卡片混合后正面朝下放置在桌面上,每个小组选一代表从中依次抽取一张卡片.(1)第一学习小组抽到《五经算术》的概率是__________________________.(2)若第一和第二小组依次从中抽取一张,请利用列表或画树状图的方法,求这两组抽取的两张卡片正面写的是《九章算术》和《周髀算经》的概率.20.已知反比例函数21kyx+ =.(1)若该函数图象在第二、四象限,求k的取值范围;(2)当k取什么值时,在每个象限内y随x的增大而减小?21.如图,四边形ABCD为菱形,E为对角线AC上的一个点,连接DE并延长交AB的延长线于点F,连接BE.求证:AFD EBC∠=∠.22.很多学生由于用眼不科学,导致视力下降,需要佩戴眼镜.研究发现,近视眼镜的度数y(度)与镜片焦距x(米)成反比例函数关系,其函数图象如图所示.(1)当近视眼镜的度数是200度时,镜片焦距是多少米?(2)明明原来佩戴275度的近视眼镜,经过一段时间的矫正治疗并注意用眼健康,复查验光后,所配镜片的焦距调整到了0.4米,则明明的眼镜度数下降了多少度?23.已知关于x 的方程22(23)340x m x m m -+++-=.(1)求证:无论m 取何值,该方程总有两个不相等的实数根;(2)若方程有一个根是2x =,求m 的值.24.如图,点E 是ABCD 对角线AC 上的点(不与A ,C 重合),连接BE ,过点E 作EF BE ⊥交CD 于点F .连接BF 交AC 于点G ,BE AD =,FEC FCE ∠=∠.(1)求证:ABCD 是矩形;(2)若点E 为AC 的中点,求ABE ∠的度数.25.如图1,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成.(1)要使所围矩形猪舍的面积达到250m ,求猪舍的长和宽.(2)农户想在现有材料的基础上扩建矩形猪舍面积达到260m ,小红为该农户提出了一个意见:“为方便进出,在垂直于住房墙的一边留一个1m 宽的门就行”,如图2,请通过计算求小红设计的猪舍的长和宽?26.如图1,在等腰三角形ABC 中,10AB AC ==,12BC =,有两动点P 、Q 分别在边AB 、BC 上运动,点P 的速度为每秒1个单位长度,点Q 的速度为每秒2个单位长度,它们分别从点A 和点B 同时出发,点P 沿线段AB 按A B →方向向终点B 运动,点Q 沿线段BC 按B C →方向向终点C 运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为t 秒,请解答下列问题:(1)如图1,当t为何值时,PQ ACV相似;(2)当t为何值时,以点P、B、Q为顶点的三角形与ABC△的面积等于4?若存在,请求出t (3)点P、Q在运动过程中,是否存在这样的t,使得PCQ的值;若不存在,请说明理由.。

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。

2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。

3.答案全部涂、写在答题卡上,写在本卷上无效。

考试结束后,将答题卡交回。

一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。

广东省汕头市潮阳区2024-2025学年九年级上学期期中考试数学试题

广东省汕头市潮阳区2024-2025学年九年级上学期期中考试数学试题

广东省汕头市潮阳区2024-2025学年九年级上学期期中考试数学试题一、单选题1.下面四幅图形是用数学家名字命名的,其中是轴对称图形,但不是中心对称图形的是()A .科克曲线B .笛卡尔心形线C .赵爽弦图D .斐波那契螺旋线2.抛物线221y x =-+的对称轴是()A .直线12x =B .直线1x =-C .直线0x =D .直线2x =3.若一元二次方程20ax bx c ++=中的a ,b ,c 满足0a b c ++=,则方程必有根()A .0x =B .1x =C .1x =-D .1x =±4.已知(),2A a -和()4,B b 关于原点对称,则a b -的值为()A .6B .6-C .2D .4-5.若二次函数()22y mx x m m =++-的图象经过原点,则m 的值为()A .2B .0C .2或0D .16.已知m ,n 是方程2310x x --=的两根,则24m m n --的值为()A .-3B .-2C .-1D .47.如图,在ABC V 中,90ACB ︒∠=,将ABC V 绕点C 逆时针旋转θ角到DEC 的位置,这时点B 恰好落在边DE 的中点,则旋转角θ的度数为().A .60︒B .45︒C .30︒D .55︒8.已知二次函数222(0)y m xm x m =-+≠在22x -≤≤时有最小值−2,则m =()A .4-或-12B .4或-12C .4-或12D .4或129.如图,把Rt ABC △放置在平面直角坐标系中,90C ∠=︒,已知点A 是x 轴上的定点,点B 的坐标为0,2.将Rt ABC △绕点A 逆时针旋转60︒,旋转后点C 恰好与点O 重合,则旋转前点C 的坐标是()A .()4B .(2,C .)D .10.如图,在平面直角坐标系xOy 中,菱形ABDC 的边AB 在x 轴上,顶点C 在y 轴上,()3,0A -,()0,4C ,抛物线28y ax ax c =-+经过点C ,且顶点M 在直线BC 上,则a 的值为()A .25B .12C .34D .23二、填空题11.若关于x 的方程221x mx m -=-有一个根为1-,则m =.12.二次函数2y x =的图象向左平移2个单位长度,得到新的图象的二次函数解析式是.13.抛物线2y ax bx c =++的部分图象如图所示,则当0y >时,x 的取值范围是;14.如图,O 是正ABC V 内一点,3OA =,4OB =,5OC =.将线段BO 绕B 逆时针旋转60︒得到线段BO ,那么AOB ∠=.15.已知二次函数()()2140y a x a =-+≠的图象L 如图所示,点O 是坐标系的原点,点P 是图象L 对称轴上的动点,图象L 与y 轴交于点C ,则PCO △周长的最小值是.三、解答题16.用适当的方法解方程:()440x x x --+=17.已知函数21(1)45m y m x x +=-+-是二次函数;(1)求m 的值;(2)写出这个二次函数图象的开口方向、对称轴和顶点坐标.18.如图,ABC V 三个顶点的坐标分别为()2,4A ,()1,1B ,()4,3C .(1)请画出ABC V 关于原点对称的111A B C △,并写出1A 的坐标;(2)请画出ABC V 绕点B 逆时针旋转90︒后的222A B C △,并写出2A 的坐标.19.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.20.如图,在四边形ABCD 中,AC ,BD 是对角线,ABC V 是等边三角形.线段CD 绕点C 顺时针旋转60︒得到线段CE ,连接AE .(1)求证:AE BD =;(2)若30ADC ∠=︒,3AD =,5BD =,求CD 的长.21.某公司销售一批产品,经市场调研发现,当销售量在0.4吨至3.5吨之间时,销售额1y (万元)与销售量x (吨)的函数解析式为15y x =;成本2y (万元)与销售量x (吨)的函数图象是如图所示的抛物线的一部分,其中17,24⎛⎫ ⎪⎝⎭是其顶点.(1)求出成本2y 关于销售量x 的函数解析式;(2)当成本最低时,销售产品所获利润是多少?(3)当销售量是多少吨时,可获得最大利润?最大利润是多少?(注:利润=销售额-成本)22.如图1,四边形ABCD 是正方形,E ,F 分别在边BC 和CD 上,且45EAF ∠=︒(此时12EAF BAD ∠=∠),我们把这种模型称为“半角模型”;小明为了解决线段EF BE DF ,,之间的关系,将ADF △绕点A 顺时针旋转90︒后(如图2)解决了这个问题.(1)写出线段EF BE DF ,,之间的数量关系,并说明理由.(2)如图3,等腰Rt ABD △中,90BAD ∠=︒,AB AD =,点E ,F 在边BD 上,且45EAF ∠=︒,请写出EF BE DF ,,之间的数量关系,并说明理由.23.如图,抛物线()260y ax bx a =++≠与x 轴交于()1,0A -,()3,0B 两点,顶点为D .(1)求抛物线的解析式;(2)若在线段BC 上存在一点M ,使得45BMO ∠=︒,过点O 作OH OM ⊥交BC 的延长线于点H ,求点M 的坐标;(3)点P 是y 轴上一动点,点Q 是在对称轴上一动点,是否存在点P ,Q ,使得以点P ,Q ,C ,D 为顶点的四边形是菱形?若存在,求出点Q 的坐标,请说明理由.。

湖南省娄底市双峰县2024-2025学年九年级上学期11月期中数学试题(含答案)

湖南省娄底市双峰县2024-2025学年九年级上学期11月期中数学试题(含答案)

双峰县2024年下学期九年级期中考试数学试卷时量:120分钟 满分:120分考生注意:1.本学科试卷分试题和答题卡两部分,满分120分。

2.请在答题卡上作答,答在试卷上无效。

一.选择题(本题共10小题,每小题3分,共30分)1.下列方程中是一元二次方程的是( )A .B .C .D .2.若反比例函数的图象上有两点,则与的大小关系( )A .B .C .D .无法确定3.如果(其中),那么下列式子中不正确的是( )A .B .C .D .4.方程的解是( )A .B .C .D .5.关于反比例函数,下列说法中错误的是( )A .时,y 随x 的增大而减少B .当时,C .它的图像位于二、四象限D .当时,有最小值6.如图,若直线,且,则( )20ax bx c ++=2211x x +=()()121x x -+=223250x xy y --=1y x =()1213,,,2A y B y ⎫⎛-- ⎪⎝⎭1y 2y 12y y >12y y <12y y =a c b d=0,0b d >>a b c d b d ++=a b c d b d --=a c c b d d +=+a d b c=()2x x x -=3x =0x =120,3x x ==121,3x x ==3y x=0x >13x <<13y <<1x ≤-y 3-123l l l ∥∥:2:3,15DE EF AC ==BC =A .5B .6C .9D .107.新能源汽车已逐渐成为人们喜爱的交通工具,据某品牌新能源汽车经销商7月份至9月份统计,该品牌新能源汽车7月份销售1000辆,9月份销售1690辆.设月平均增长率为,根据题意,下列方程正确的是( )A .B .C .D .8.若是关于的方程的一个根,则的值是( )A .2022B .2026C .2020D .20199.验光师检测发现近视眼镜的度数(度)与镜片焦距(米)成反比例,关于的函数图象如图所示.经过一段时间的娇正治疗后,小雪的镜片焦距由0.25米调整到0.5米,则近视眼镜的度数减少了( )度.A .150B .200C .250D .30010.在古希腊时期,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听,他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来,后来人们将这个数称为黄金分割数.设,记,,,,则的值为( )x 21690(1)1000x -=21000(1)1690x +=()1000121690x +=()1000121690x x ++=a x 2310x x --=2202462a a +-y x y x a b ==11111S a b =+++2221111S a b =+++3331111S a b =+++ 100100100111a 1b S =+++123100S S S S ++++A .B .C .100D .505二.填空题(本题共8小题,每小题3分,共24分)11.如果,则_________.12.若是一元二次方程的两个根,则_________.13.若关于的一元二次方程有两个实数根,则实数的取值范围是_________.14.已知函数是反比例函数,则的值为_________.15.一个长方体物体的一顶点所在三个面的面积比是,如果分别按、面朝上将此物体放在水平地面上,地面所受的压力产生的压强分别为、(压强的计算公式为),则_________.16.如图所示的两个四边形相似,则的度数是_________。

山东省青岛市2024-2025学年九年级上学期11月期中考试数学试题

山东省青岛市2024-2025学年九年级上学期11月期中考试数学试题

山东省青岛市2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.若一元二次方程2352x x =+的二次项系数是3,则它的常数项是()A .2-B .2C .5-D .52.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有黑白两色棋子共10枚,每枚棋子除颜色外都相同.将盒子中的棋子搅拌均匀,从中随机摸出一枚棋子,记下它的颜色后再放回盒子中.不断重复这一过程,共摸了100次,发现有71次摸到白色棋子,则盒子中黑色棋子可能有()A .2.9枚B .3枚C .7枚D .7.1枚3.某学校致力于劳动教育的探索与实践,在校内设立了“田园风光”和“耘梦园”两个相似的矩形劳动场所,它们的相似比是1:2.若两个劳动场所种植相同品种的蔬菜,在每平方米所需农资成本(主要包括化肥、农药以及灌溉用水)不变的情况下,“田园风光”的农资成本为200元,则“耘梦园”的农资成本为()A .800元B .400元C .100元D .50元4.如图,四边形ABCD 是正方形,ADE V 是等边三角形,则ECB ∠的度数是()A .15︒B .30°C .60°D .75︒5.黄金分割在文艺复兴时期被视为金子般的比例,比值约等于0.618.有研究发现,成人的理想体重与身高的关系是:体重(kg )=身高()()cm 10.618⨯-.若王老师的身高是170cm ,下列选项中,最接近她的理想体重的是()A .60kgB .63kgC .65kgD .67kg6.关于x 的一元二次方程257x mx +=的根的情况是()A .无法确定B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根7.如图,在菱形ABCD 中,2BAD ABC ∠=∠,4cm AC =,则BD 的长为()A .2cmB .C .4cmD .8.秋冬季是支原体肺炎的感染高发期,佩戴口罩是遏制支原体肺炎病毒传播的一种有效途径.若有一个人患了支原体肺炎,经过两轮传染后共有81人患了支原体肺炎(假设每个人每轮传染的人数同样多).设每轮传染中平均一个人传染了x 个人,可列方程为()A .()181x x +=B .()181x x x ++=C .2181x x ++=D .()1181x x x +++=9.某学校开展“校园文化艺术节”文艺汇演活动,现打算从5名(2名男生和3名女生)候选人中随机选取3人担任本次活动的主持人,则选中的3人恰好都是女生的概率是()A .25B .35C .110D .31010.如图,把矩形ABCD 和矩形CEFG 拼成如图所示的图案,已知3AB =,4BC =,6CE =,8EF =,M 是AF 的中点,则CM 的长为()A .5BCD .二、填空题11.在中华人民共和国75周年华诞到来之际,某学校开展了“我心绘版图美丽白纸坊”手绘地图活动.小明绘制了一张比例尺为1:10000的青岛城区交通游览图,栈桥的图上长度约为4.4cm ,则栈桥的实际长度约为m .12.在正常情况下,10米跳台跳水运动员必须在距水面不小于5m 时完成规定的翻腾动作,并且调整好入水姿势,否则就容易出现失误.假设运动员距离水面的高度h (m )和运动员起跳后的运动时间t (s )之间满足关系:210 2.55h t t =+-,则当5h =时,210 2.555t t +-=即2220t t --=.t1.1 1.2 1.3 1.42220t t --=0.68-0.32-0.080.52根据表格中的对应值,可判断运动员完成动作的时间最多不超过s .(精确到0.1)13.为了加强学生国防教育,某校举办了主题为“爱我中华,强我国防”的演讲比赛,甲、乙、丙、丁四名学生分在同一个小组,赛前需要以抽签的方式确定出场顺序,主持人将表示出场顺序的卡片(除正面分别写有1,2,3,4外,其余完全相同)背面朝上放在桌面上,洗匀后先由甲随机抽取一张,然后由乙随机抽取一张,甲、乙抽到的出场顺序相邻的概率为.14.如图,在ABCD 中,对角线AC 与BD 相交于点O ,ABO 是等边三角形.若3AB =,则ABCD 的面积=.15.如图,一次函数25y x =+的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上(不与点A ,B 重合),过点P 作OB 的垂线,垂足为C ,连接OP ,过点C 作CD OP ∥,交x 轴于点D .若四边形PCDO 的面积为2,则点P 的坐标为.16.在平面直角坐标系中,Rt OAB 的位置如图所示,在直线OA 上依次取点1A ,2A ,3A …n A ,使12AA OA =,123A A OA =,234A A OA =,…,()11n n A A n OA -=+,分别过点1A ,2A ,3A …n A 作OA 的垂线,交x 轴于点1B ,2B ,3B …n B ,依次连接1AB ,12A B ,23A B …1n n A B -.若OAB △的面积为1,则1n n n A A B - 的面积=.三、解答题17.解下列方程(1)254x x =;(2)2412x x +=;(3)22760x x -+=;(4)()()2351x x --=.18.“回文”是指正读反读都能读通的句子,是古今中外都有的一种修辞手法和文字游戏.例如“处处飞花飞处处,潺潺碧水碧潺潺”等.在数学中,如果一个正整数从左往右读与从右往左读都一样,那我们称之为回文数,例如11,22,121…都是回文数.将牌面数字分别为0,1,2,3四张纸牌(除牌面数字外,其余均相同)背面朝上,洗匀后放在桌面上,小明先从中随机抽取一张,记下数字后放回并洗匀,小红再从中随机抽取一张.将小明、小红抽取的数字分别作为一个四位数(该四位数的千位数字和个位数字均为2)的百位和十位数字.请用列表或画树状图的方法求组成的四位数是回文数的概率.19.对于几何图形,我们通常是从它的定义、性质、判定和应用等方面进行研究,并且都是从组成图形的元素及相关元素之间的关系进行探究.观察、实验、归纳、类比、猜想、证明等是我们常用的探究方法.【定义】如图①,在四边形ABCD 中,BA BC =,DA DC =,我们把这种有两组邻边分别相等的四边形叫做筝形.不相邻的两个顶点连成的线段叫做它的对角线,线段AC 就是它的一条对角线.【性质】请结合图①,写出筝形ABCD 具有的性质.(任意写出2条你认为正确的即可)例如:∵四边形ABCD 是筝形∴BA BC =,DA DC=性质1:______;性质2:______.【判定】下列条件能够判定四边形ABCD 是筝形的有______.(将所有正确的序号填在横线上)①AB BC =且AD CD =;②BAD BCD ∠=∠;③AC BD ⊥且OA OC =;④ABD CBD ∠=∠.【应用】如图②,在筝形ABCD 中,AB AD =,BC CD =,请利用无刻度的直尺和圆规,在筝形ABCD 内部找一点P ,连接PB ,PD ,使折线B P D --恰好将筝形ABCD 的面积分为相等的两部分.(保留作图痕迹,不写作法)20.如图,在Rt ABC △中,90BAC ∠=︒,D 为BC 中点,连接AD ,取AD 的中点E ,过点D 作DF AC ∥,交CE 的延长线于点F ,连接AF .(1)求证:AC DF =;(2)已知______(从以下两个条件中任选一个作为已知,填写序号),请判断四边形AFDC 的形状,并证明你的结论.条件①:30B ∠=︒;条件②:CF 平分ACD ∠.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)21.面向日益严峻的气候变化形势,以发展新能源汽车推动道路交通领域零碳转型已成为全球共识.我国政府不断加大对新能源汽车的支持和推动,新能源汽车的市场需求正在不断增加.下表是一款某品牌新能源热门车型7月份和9月份的全国销量情况:月份7月9月销量/万辆 2.5 3.6(1)求该款车销量的月平均增长率.(2)青岛一个该品牌4S 店购进一批该款车型进行销售,已知进价为每辆6万元.经试销发现:当该款汽车售价为7.5万元时,平均每月销量为150辆;而当售价每降低0.1万元时,平均每月就能多售出15辆.为了扩大销量,该4S 店决定降价促销,若该4S 店想要维持利润不变,该款车的售价应为每辆多少万元?22.如图,点P 为线段AB 上一点,在AB 的同侧作等腰直角三角形PAC 和等腰直角三角形PBD ,AD 与BC ,PC 分别相交于点E ,F ,BC 与PD 交于点H .(1)求证:APD CPB △∽△;(2)求FEH ∠的度数.23.如图,在菱形ABCD 中,对角线12AC cm =,16BD cm =,在Rt QEF 中,90QEF ∠=︒,边QE 和BO 重合,边EF 和OC 重合.如图②,QEF △从图①所示位置出发,沿B 方向匀速运动,速度为1/s cm ;同时,动点P 从点D 出发,沿DA 方向匀速运动,速度为2/s cm .连接AQ ,PE .设运动时间为()s t ()05t <<.解答下列问题:(1)当t 为何值时,AOQ △为等腰三角形?(2)当PE AQ 时,求t 的值;(3)在运动过程中,是否存在某一时刻t 值,使DPE 与EFQ △相似?若存在,求出t 的值;若不存在,请说明理由.。

福建省厦门双十中学2024-2025学年上学期期中考试九年级数学试卷

福建省厦门双十中学2024-2025学年上学期期中考试九年级数学试卷

福建省厦门双十中学2024-2025学年上学期期中考试九年级数学试卷一、单选题1.一抛物线的形状、开口方向与抛物线212y x =相同,顶点为()2,1,则此抛物线的解析式为()A .()21212y x =-+B .()21212y x =+-C .()21212y x =++D .()21122x y --=2.如图将ABC V 绕点A 顺时针旋转90︒到ADE V ,若50DAE ∠=︒,则CAD ∠等于()A .30︒B .40︒C .50︒D .90︒3.我国古代数学的许多创新与发明都在世界上具有重要影响.下列图标是中心对称图形的是()A .B .C .D .4.将抛物线y =x 2平移得到抛物线y =(x -5)2,下列平移方法正确的是()A .向左平移5个单位B .向右平移5个单位C .向上平移5个单位D .向下平移5个单位5.已知关于x 的一元二次方程22590x x k ++-=的常数项为0,则k 的值为()A .9B .3C .3-D .3±6.若2x =是关于x 的一元二次方程220ax bx -+=的解,则代数式20242a b +-的值为().A .2022B .2023C .2024D .20257.平面直角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B (2,-l ),C (-m ,-n ),则点D 的坐标是()A .(-2,l )B .(-2,-l )C .(-1,-2)D .(-1,2)8.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD 为14的奖杯,杯体轴截面ABC 是抛物线2459y x =+的一部分,则杯口的口径AC 为()A .7B .8C .9D .109.如图,在ABC V 中,90308C A AC ∠=︒∠=︒=,,,点O 为AC 的中点,将ABC V 绕点O 按逆时针方向旋转得到A B C ''' ,点A ,B ,C 的对应点分别为A B C ''',,.当A '落在AB 边上时,两个三角形重叠部分(阴影部分)的面积为()A .833B .4C .D .10.已知a 、b 、m 、n 为互不相等的实数,且(a +m )(a +n )=2,(b +m )(b +n )=2,则ab-mn 的值为()A .4B .1C .﹣2D .﹣1二、填空题11.已知抛物线()2221y x =--+,当2x >时,y 随x 的增大而.12.请写出一个关于x 的一元二次方程;并且方程有两个相等的实数根.则这个一元二次方程可以是.13.如图,用48m 长的篱笆靠墙(墙足够长)围成一个面积是2300m 的长方形鸡场,鸡场有一个2m 的门,设与墙垂直的边长为m x ,所列方程是.14.若抛物线28y x x k =-+与x 轴只有一个公共点,则k 的值为.15.二次函数²y ax bx c =++自变量和对应函数值的部分对应值如下表所示,则关于x 的不等式.²50ax bx c ++-≤的解集为x 4-3-2-1-012y13854581316.如图,一段抛物线:(3)(03)y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;L ,如此进行下去,直至得2024C ,若(,2)P m -在第2024段抛物线2024C 上,则m =.三、解答题17.解方程:x 2+4x+1=0.18.为了让大家都能用上实惠药,医保局与药商多次谈判,将一种原价每盒100元的药品,经过两次降价后每盒64元,两次降价的百分率相同,求每次降价的百分率.19.如图,在ABC V 中,2AB =, 3.6BC =,=60B ∠︒,将ABC V 绕点A 按顺时针旋转一定角度得到ADE V ,当点B 的对应点D 恰好落在BC 边上时.(1)作出ADE V ;(要求:尺规作图,保留作图痕迹,不写作法)(2)求CD 的长.20.如图,x 轴上依次有A B C D E F ,,,,,六个点,且AB BC CD DE EF =====2,从点A 处向右上方沿抛物线.2412y x x =-++.发出一个带光的点P .(1)求抛物线顶点坐标;并在图中补画出y 轴;(2)若抛物线上点(,)P m n ,若06m <<,直接写出n 的取值范围为.21.已知关于x 的一元二次方程()()220a b x cx b a +++-=,其中a ,b ,c 分别为ABC V 三边的长.(1)如果1x =-是方程的根,试判断ABC V 的形状,并说明理由;(2)如果ABC V 是等腰直角三角形,c 为斜边,解这个一元二次方程.22.综合与实践数学兴趣小组在学习了二次函数之后,对物理学中的探究实验“阻力对物体运动的影响”又有了新的认识.对一个静止的小球从斜坡滚下后,在水平木板上运动的速度、距离与时间的关系进行了深入探究.兴趣小组先设计方案,再进行测量,然后根据所测量的数据进行分析,并进一步应用,请完成下列任务.【实验过程】如图1所示,一个黑球从斜坡顶端由静止滚下沿水平木板直线运动.从黑球运动到A 点处开始,用频闪照相机、测速仪测量并记录黑球在木板上的运动时间t (单位:s )、运动速度v (单位:/s cm )、滑行距离y (单位:cm )的数据.【收集数据】记录的数据如下:运动时间t /s 03691215…运动速度V /(/s cm )108.57 5.54 2.5…运动距离y /cm27.755169.758493.75…【建立模型】根据表格中的数值分别在图2、图3的平面直角坐标系中描点、连线;通过观察图像发现,我们可以用一次函数近似地表示v 与t 的函数关系,用二次函数近似地表示y 与t 的函数关系.请直接写....出v 与t 的函数关系式和y 与t 的函数关系式(不要求写出自变量的取值范围).①当黑球在水平木板上滚动了64cm 时,运动速度是多少?②若黑球到达木板A 点处的同时,在前方70cm 处有一辆电动小车,以2/s cm 的速度匀速向右直线运动,则黑球能否追上小车?请说明理由.23.在平面直角坐标系中,设二次函数()21232y x m m =--+-(m 是实数).(1)当2m =时,若点()8,A n 在该函数图象上,求n 的值.(2)小明说二次函数图象的顶点在直线132y x =-+上,你认为他的说法对吗?为什么?(3)已知点()1,P a c +,()45,Q m a c -+都在该二次函数图象上,是否存在m ,使得c 存在最大值,若存在,求出最大值,若不存在,请说明理由.24.综合与实践:问题情景:如图1、正方形ABCD 与正方形AEFG 的边AB ,()AE AB AE <在一条直线上,正方形AEFG 以点A 为旋转中心逆时针旋转,设旋转角为α,在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE ,DG .(1)操作发现:当正方形AEFG 旋转至如图2所示的位置时,求证:BE DG =;(2)操作发现:如图3,当点E 在BC 延长线上时,连接FC ,求FCE ∠的度数;(3)问题解决:如图4,如果45α=︒,2AB =,AE =G 到BE 的距离.25.已知抛物线22y ax bx =+-的顶点是P ,且交x 轴于()2,0A -,()2,0B 两点.(1)求抛物线的函数表达式;(2)过原点O 的直线与抛物线交于C ,D 两点,其中点C 在y 轴的左侧.①若直线CD 的表达式为y x =,求PCD △的面积;②若C ,E 两点关于y 轴对称,O ,Q 两点关于P 对称,求证:D ,E ,Q 三点共线.。

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。

广东省韶关市翁源县2024-2025学年九年级上学期11月期中考试数学试题(含答案)

广东省韶关市翁源县2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024-2025学年度第一学期期中考试九年级数学注意事项:1.全卷共6页,满分为120分,考试用时为120分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号,用2B 铅笔把对应的号码的标号涂黑.3.在答题卡上完成作答,答案写在试卷上无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.关于的一元二次方程的二次项系数、一次项系数、常数项分别是( )A .1,2,5B .C .D .3.已知和关于原点对称,则的值为( )A .B .1C .D .54.二次函数的图象顶点坐标是( )A .B .C .D .5.将抛物线先向下平移1个单位长度,再向右平移3个单位长度,所得到的抛物线为( )A .B .C .D .6.如图,已知点,将线段绕点按顺时针方向旋转,旋转后点的对应点坐标为( )A .B .C .D .7.如图,已知一菜园为长10米,宽7米的矩形,为了方便浇水和施肥,修建了同样宽的四条互相垂直的“井”x 2250x x -+-=1,2,5--1,2,5-1,2,5-(),2A a ()3,B b a b +5-1-23(1)2y x =-+-()1,2-()1,2-()1,2()1,2--22y x =+2(3)1y x =++2(3)3y x =-+2(3)3y x =++2(3)1y x =-+()1,2P PO O 90︒P ()1,2-()2,1-()2,1-()2,1字形道路,余下的部分种青菜,已知种植青菜的面积为54平方米,设小路的宽为米,则根据题意列出的方程是( )A .B .C .D .8.关于的一元二次方程的一个根是1,则的值为( )A .1或B .C .1D .9.设是抛物线上的三点,则的大小关系为( )A .B .C .D .10.如图,在正方形中,点的坐标分别是,点在抛物线的图象上,则的值是( )A .B.C .D .二、填空题:本大题共5小题,每小题3分,共15分.11.若方程是关于的一元二次方程,则的取值范围是_______.12.若二次函数与轴只有1个交点,则_______.13.数学课堂上,为探究旋转的性质,同学们进行了如下操作:如图所示,将一个三角形硬纸板,放置在一张白纸上,描出硬纸板的形状,并用图钉固定点,将三角形硬纸板绕点顺时针旋转一定角度后,再描出形状得到,经测量,则_______.x ()()1027254x x --=()()10754x x --=()()107254x x --=()()1027254x x +-=x ()22120a x x a -++-=a 2-2-1-()()()1233,,2,,2,A y B y C y --22y x x c =--+123,,y y y 321y y y >>123y y y >>132y y y >>213y y y >>ABCD A C 、()()1,17,3-、D 21y x bx =+-b 32-3212-12()2230a x x -+-=x a 22y x x m =-+x m =ABC △A A ADE △50,15BAC CAD ∠=︒∠=︒CAE ∠=14.设是方程的两个实数根,则的值为_______.15.如图,在中,,将绕点逆时针旋转得到,当点的对应点恰好落在边上时,则的长为_______三、解答题(一):本大题共3小题,每小题7分,共21分.16.(7分)解方程:17.(7分)如图,在平面直角坐标系中,点的坐标分别为.(1)画出关于点的中心对称图形;(2)将绕点顺时针方向旋转后得,画出.18.(7分)如图,是二次函数的图象.12,x x 23210x x --=1212x x x x --ABC △3,1AB AC ==ABC △C 90︒CDE △A D AB AE ()330x x x --+=A B C 、、()()()1,1,2,3,4,2ABC △O 111A B C △111A B C △O 90︒222A B C △222A B C △2y ax bx c =++(1)求二次函数解析式;(2)根据图象直接写出关于的不等式的解集.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,四边形为矩形,,将对角线绕点逆时针旋转得,作交于点.(1)证明:;(2)连接,求的长.20.(9分)乐昌马蹄是广东韶关的特产,韶关乐昌有着“马蹄之乡”的美称.乐昌马蹄以个头大、清甜多汁、爽脆无渣为特点而闻名全国,畅销国内外.某农产品商以每斤5元的价格收购乐昌马蹄,若按每斤10元出售,平均每天可售出100斤.市场调查反映:如果每斤降价1元,每天销售量相应增加50斤.(1)若该农产品商想要日销售利润达到600元,测每斤马蹄应降低多少元?(2)日销售利润能否达到700元?如果能,请计算出每斤马蹄降价多少元;如果不能,请说明理由.21.(9分)为解方程,我们可以将视为一个整体,然后设,则原方程化为,解此方程得.当时,.当时,原方程的解为.以上方法叫做换元法解方程,达到了降次的目的,体现了转化思想.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)请用上述方法解方程:.x 20ax bx c ++>ABCD 3,4AB BC ==AC A 90︒AF FE AD ⊥AD E ABC AEF △≌△DF DF ()()22237360x x ---+=23x -23x t -=2760t t -+=121,6t t ==1t =231,2x x -=∴=±6t =236, 3.x x -=∴=±∴12342,2,3,3x x x x ==-==-42540x x -+=(2)已知实数满足,求的值.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.(13分)如图,直线与抛物线相交于和.(1)求抛物线的解析式;(2)点是线段上的动点,过点作轴,交抛物线于点.是否存在这样的点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)轴上是否存在点,使得为等腰三角形?若存在,求出点的坐标;若不存在,请说明理由.23.(14分)【阅读理解】半角模型是指有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等.通过旋转或截长补短,将角的倍分关系转化为角的相等关系,并进一步构成全等三角形,用以解决线段关系、角度、面积等问题,【初步探究】如图1,在正方形中,点分别在边上,连接.若,将绕点顺时针旋转,点与点重合,得到.易证:.(1)根据以上信息,填空:(1)_______°;(2)线段之间满足的数量关系为_______;【迁移探究】(2)如图2,在正方形中,若点在射线上,点在射线上,,猜想线段之间的数量关系,请证明你的结论;【拓展探索】(3)如图3,已知正方形的边长为,连接分别交于点,若点恰好为线段的三等分点,且,求线段的长.,x y ()()2222222222150x y x y +-+-=22x y +2y x =-()220y ax bx a =++≠()1,1A -(),2B m C AB C CD x ⊥D C CD x M ABM △M ABCD ,E F ,BC CD ,,AE AF EF 45EAF ∠=︒ADF △A 90︒D B ABG △AEF AEG △≌△EAG ∠=BE EF DF 、、ABCD E CB F DC 45EAF ∠=︒BE EF DF 、、ABCD 45EAF ∠=︒BD AE AF 、M N 、M BD BM DM <MN2024-2025学年度第一学期期中考试九年级数学参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.1-5CBADD 6-10CABDB二、填空题:本大题共5小题,每小题3分,共15分.11. 12.1 13. 14. 15三、解答题(一):本大题共3小题,每小题7分,共21分.解答要求写出文字说明、证明过程或演算步骤.16.解:.解得:.(方法不唯一,酌情给分)17.解:(1)如图所示:即为所求.(2)如图所示:即为所求.18.解:(1)设二次函数解析式为:2a ≠35︒1-()()330x x x -+-=()()130x x +-=121,3x x =-=111A B C △111A B C △()()()240y a x x a =+-≠把点代入得:解得:(2).四、解答题(二):本大题共3小题,每小题9分,共27分.解答要求写出文字说明、证明过程或演算步骤.19.(1)证明:四边形为矩形绕点逆时针旋转得,,,在和中.(2)解:四边形为矩形,,,在中,根据勾股定理得:20.解:(1)设每斤马蹄降价元根据题意得解得答:若该农商想要日销售利润达到600元,则每斤马蹄应降低1元或2元.(2)日销售利润不能达到700元.理由如下:设每斤马蹄降价元则化简得方程无实数根日销售利润不能达到700元.()0,484a -=12a =-24x -<< ABCD 90B BAD ∴∠=∠=︒90BAD CAD ∴∠+∠=︒AC A 90︒AF,90BC EF CAF ∴=∠=︒90EAF CAD ∴∠+∠=︒BAD EAF∴∠=∠FE AD ⊥ 90AEF ∴∠=︒B AEF∴∠=∠ABC △AEF △BAD EAF B AEFAC AF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABC AEF ∴△≌△ ABCD 4AD BC ∴==ABC AEF △≌△3,4AB AE BC EF ∴====431DE AD AE ∴=-=-=FE AD ⊥ 90DEF ∴∠=︒Rt DEF △DF ===x ()()10510050600x x --+=111,2x x ==a ()()10510050700a a --+=2340a a -+=2(3)4470=--⨯=-<△∴∴21.解:(1)设则原方程化为:解得:当时当时原方程的解为:(2)设则原方程化为:解得:,,.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.解答要求写出文字说明、证明过程或演算步骤.22.解:(1)把代入直线得,,在抛物线上,,解得,抛物线的解析式为.(2)存在.理由如下:设动点的坐标为,则点的坐标为,点是线段上的动点,当时,线段有最大值且为.(3)存在.设点①当时,2y x=2540y y -+=121,4y y ==1y =2,1,1x x =∴=±4y =2,4,2x x =∴=±∴12341,1,2,2x x x x ==-==-2222w x y=+22150w w --=125,3w w ==-22220x y +≥ 22225x y ∴+=2252x y ∴+= (),2B m 2y x =-4m =()4,2B ∴()()1,14,6A B - 、22y ax bx =++2116422a b a b ++=-⎧∴⎨++=⎩14a b =⎧⎨=-⎩∴242y x x =-+C (),2n n -D ()2,42n n n -+()()2242PC n n n ∴=---+254n n =-+-25924n ⎛⎫=--+ ⎪⎝⎭ C AB 14n ∴≤≤∴52n =PC 94(),0M c AB AM =解得:或.②当时,解得:或.③当时,解得:,综上所述,为等腰三角形时,点的坐标为或或或或23.(1)①45 ②.(2)解:.证明如下:如图在上截取,连接,和中,,,,即,,,在和中,,2222(14)(12)(1)(10)c -+--=-+--121,1c c =+=+)1,0M ∴+()1,0M +AB BM =2222(14)(12)(4)(20)c -+--=-+-124,4c c =+=)4,0 M ∴+()4,0M +AM BM =2222(1)(10)(4)(20)c c -+--=-+-3c =()3,0M ∴∴ABM △M )1,0+()1,0+)4,0+()4,0+()3,0BE DF EF +=BE EF DF +=DC DH BE =AH ABE △ADH △,AB AD ABE D BE DH =⎧⎪∠=∠⎨⎪=⎩()SAS ABE ADH ∴△≌△,AE AH BAE DAH ∴=∠=∠90BAE BAH BAH DAH ∴∠+∠=∠+∠=︒90EAH BAD ∠=∠=︒45EAF ∠=︒ 45EAF FAH ∴∠=∠=︒EAF △HAF △AE AH EAF HAF AF AF =⎧⎪∠=∠⎨⎪=⎩,,,,(3)将绕点顺时针旋转得到,连接,由旋转可得,,又,,,设,则,在中,,,解得,;()SAS EAF HAF ∴△≌△EF HF ∴=DF DH HF =+ DF BE EF ∴=+ADN △A 90︒ABK △KM 90AB AD ADC ==∠=︒6BD ∴==12,43BM BD DM BD BM ∴===-=,90ADN ABK KAN ∠=︒△≌△,,45AK AN BK DN ABK ADB ∴==∠=∠=︒90KBM ABK ABD ∴∠=∠+∠=︒90,45KAN MAN ∠=︒∠=︒45KAM MAN ∴∠=∠=︒AM AM = AMK AMN ∴△≌△KM MN ∴=∴MK MN x ==4BK DN x ==-Rt BMK △222BK BM MK +=222(4)2x x ∴-+=2.5x = 2.5MN ∴=。

上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)

上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)

2024学年第一学期九年级数学学科期中考试试卷2024.10(时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列函数中,一定为二次函数的是()A. B. C. D.2.已知点P是线段AB的黄金分割点,且,那么下列结论正确的是()A. B.C.D.3.如图,在中,点D、E和F分别在边AB、AC和BC上,,,如果,那么下列结论中正确的是()A. B. C. D.4.下列关于向量的说法中,正确的是()A.如果,那么B.如果,,那么C.已知是单位向量,如果,那么D.如果,,其中是非零向量,那么5.在同一平面直角坐标系中,画出直线与抛物线,这个图形可能是()A. B.21yx=()()11y x x=+-2y ax=()21y x x x=-+BP AP>2BP AP AB=⋅2AP BP AB=⋅APAB=BPAP=ABC△DE BC∥DF AC∥34ADBD=34DEBC=34BFCF=37CFBC=37DFAC=k=0ka=2a=1b=2a b=e4a=4ea=23a b c+=2b c=ca b∥y ax b=+2y ax b=+C. D.6.已知在中,点D 、E 分别在边AB 和AC 上,联结CD 、BE 交于点F ,下列条件中,不一定能得到和相似的是( )A. B. C. D.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知,且,那么_______.8.抛物线与y 轴的交点坐标为_______.9.已知二次函数的图像经过点、,那么该二次函数图像的对称轴为直线_______.10.已知二次函数的图像在对称轴的左侧部分是上升的,那么m 的取值范围是_______.11.如图,已知在中,,CD 是边AB 上的高,如果,,那么_______.12.如图,在中,,点D 和点E 在边BC 上,,,那么_______.13.如图,已知,且,那么_______.ABC △ADE △ABC △DF EF BF CF =DF EF CF BF=BDE BFC ∠=∠BDF CEFS S =△△234a b c k ===0k ≠c a c b-=+223y x x =+-()20y x bx c a =++≠()1,1A --()5,1B -()21y m x =+ABC △90ACB ∠=︒3AD =2BD =CD =ABC △3AB AC ==4BE =BAE ADC ∠=∠CD =AD EF BC ∥∥::2:5:7AD EF BC =:AE AB =14.如图,在中,点D 在边BC 上,线段AD 经过重心G ,向量,向量,那么向量______.(用向量、表示)15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔10米种一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸有两根相邻的电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有一棵树,那么这段河的宽度为_______米.16.如图,在中,点D 在边AB 上,,点E 和F 分别在边BA 和CA 的延长线上,且,如果,那么_______.17.定义:如果将抛物线上的点的横坐标不变,纵坐标变为点A 的横、纵坐ABC △BA a = BC b = AG =a b ABC △ACD B ∠=∠CD EF ∥::3:4:2EA AD DB =AEF ABCS S =△△()20y ax bx c a =++≠(),A x y标之和,就会得到一个新的点,我们把这个点叫做点A 的“简朴点”,已知抛物线上一点B 的简朴点是,那么该抛物线上点的简朴点的坐标为_______.18.如图,在矩形ABCD 中,,在边CD 上取一点E ,将沿直线BE 翻折,使点C 恰好落在边AD 上的F 处,的平分线与边AD 交于点M ,如果,那么_______.三、解答题(本大题共7题,满分78分)19.(本题满分10分)如图,已知两个不平行的向量、,求作,满足.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的向量.)20.(本题满分10分,第(1)小题5分,第(2)小题5分)已知点在二次函数的图像上.(1)求二次函数图像的对称轴和顶点坐标;(2)将二次函数的图像先向左平移4个单位,再向上平移t 个单位后图像经过点,求的值.21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数的图像经过原点,顶点坐标为.(1)求二次函数的解析式;(2)如果二次函数的图像与x 轴交于点A (不与原点重合),联结OP 、AP ,试判断的形状并说明理由.22.(本题满分10分,第1小题5分,第2小题5分)如图,已知在中,点D 在边AC 上,过点A 作,交BD 的延长线于点E ,点F 是BE 延长线上一点,联结CF ,如果.(1)求证:;(2)如果,,求的值.()1,A x x y +1A 241y ax x =-+()12,3B ()1,C m 1C 1AB =BCE △ABF ∠2AD MF =BC =a bx x ()2a x b x -=- ()3,1-2y x bx b =-++()1,5-t ()2,2P -AOP △ABC △AE BC ∥2BD DE DF =⋅AB CF ∥2DE =6EF =AB CF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在中,CD 是AB 边上的高,点E 是边AC 的中点,联结ED 并延长交CB 的延长线于点F ,且.(1)求证:;(2)如果,求证:.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xOy 中,二次函数的图像与x 轴交于点,与y 轴交于点.(1)求该二次函数的解析式;(2)如果点是二次函数图像对称轴上的一点,联结AD 、BD ,求的面积;(3)如果点P 是该二次函数图像上位于第二象限内的一点,且,求点P 的横坐标.ABC △BD BF =ADE FDB ∽△△2DF AC CF AD=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B (),1D m -ABD △PB AB ⊥25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在矩形ABCD 中,,,点E 是射线D A 上的一点,点F 是边AB 延长线上的一点,且.联结CE 、EF ,分别交射线DB 于点O 、点P ,联结CF 、CP .(1)当点E 在边AD 上时,①求证:;②设,,求y 关于x 的函数解析式;(2)过点E 作射线DB 的垂线,垂足为点Q ,当时,请直接写出DE 的长.2AB =1BC =2DE BF =DCE BCF ∽△△DE x =CP y =14OQ PQ =2024学年第一学期九年级数学学科期中考试卷2024.10参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.A ;3.C ;4.D ;5.D ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.;8.;9.;10.;;12.;13.;14.;15.;16.;17.;18.三、解答题:(本大题共7题,其中第19—22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解: ,20.解:(1)∵点在二次函数的图像上,∴把,代入,得.解得.∴二次函数的解析式为.∴对称轴为直线.顶点的坐标为.(2)二次函数的解析式化为.∵将二次函数的图像先向左平移4个单位,再向上平移t 个单位,∴平移后新二次函数的解析式为.∵平移后图像经过点,∴把,代入,得.解得.21.解:(1)∵二次函数图像的顶点坐标为,∴设二次函数的解析式为.∵二次函数的图像经过原点,∴把,代入得..27()0,3-2x =1m <-94352133a b -+ 45238()1,05322a x b x -=- 2x a b =- ()3,1-2y x bx b =-++3x =1y =-2y x bx b =-++193b b -=-++2b =222y x x =-++1x =()1,3()213y x =--+()233y x t =-+++()1,5-1x =5y =-()233y x t =-+++5163t -=-++8t =()2,2P -()222y a x =--0x =0y =()222y a x =--()20022a =--解得.∴这个二次函数的解析式为.(2)∵二次函数的图像与x 轴交于点A ,∴把,代入得,(舍去).得点A 的坐标为.∴.∵,∴.∵,∴是等腰直角三角形.22.解:(1)∵,∴.∵,∴.∴∴.(2)∵,,∴.∵,∴.∵,∴,∴.23.证明:(1)∵,∴.∵CD 是AB 边上的高,点E 是边AC 的中点,∴在中.又∵,∴.∴.∵,∴.∴.(2)∵,∴.∴.∵,∴∴∴.∵,∴.∴.∴.24.解:(1)∵二次函数的图像与x 轴交于点,与y 轴交于点,12a =()21222y x =--0y =()21222y x =--14x =20x =()4,04OA =OP ==AP ==OP AP =222OP AP OA +=AOP △AE BC ∥AD DE CD BD=2BD DE DF =⋅DE BD BD DF=AD BD CD DF=AB CF ∥2DE =6EF =8DF DE EF =+=216BD DE DF =⋅=4BD =AB CF ∥AB BD CF DF =12AB CF =BD BF =F BD ∠=∠Rt ACD △12DE AC =12AE AC =AE DE =A ADE ∠=∠ADE BDF ∠=∠A F ∠=∠ADE FDB ∽△△2DF AC CF AD =DF AE CF AD =DF CF AE AD=A F ∠=∠ADE FCD ∽△△ADE FCD ∠=∠A FCD ∠=∠ABC CBD ∠=∠ABC CBD ∽△△BD BC BC AB=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B得解得.∴二次函数的解析式为.(2)∵点是二次函数图像对称轴上的一点,又∵二次函数图像的对称轴为直线.∴,点D 坐标为.设直线AB 的表达式为.∵直线AB 经过,,得,解得,∴直线AB 的表达式为.设抛物线的对称轴与直线AB 交于点E ,得点E 坐标为.∴.∴.(3)过点P 作轴,垂足为H .设点.∴,.∵,又∵,∴.∵,∴.∴.∴.∴(舍去),.即点P 的横坐标是.25.解:(1)∵四边形ABCD 是矩形,∴,,∵,∴.()202224b c c⎧=-⨯--+⎪⎨=⎪⎩2b =-2224y x x =--+(),1D m -12x =-12m =-1,12⎛⎫-- ⎪⎝⎭()0y px q p =+≠()2,0A -()0,4B 024p q q =-+⎧⎨=⎩24p q =⎧⎨=⎩24y x =+1,32⎛⎫- ⎪⎝⎭4DE =1142422ABD ADE BDE S S S DE AO =+=⋅=⨯⨯=△△△PH y ⊥()2,224P t t t --+PH t =-222BH t t =--ABO ABP P PHB ∠+∠=∠+∠90ABP PHB ∠=∠=︒ABO BPH ∠=∠90AOP PHB ∠=∠=︒ABO BPH ∽△△PH BH BO AO =22242t t t ---=10t =234t =-34-2AB CD ==90CDE ABC ∠=∠=︒90CBF ∠=︒CDE CBF ∠=∠∵,∴.∵,∴.∴.∴.(2)∵,∴.即.∵,∴.∴.∴.∵,∴.∴.又∵且,∴.∴.∵,∴.∴.∴.∵在中,,,∴.同理可得∴∴(3)1BC =12BC CD =2DE BF =12BF DE =BF BC DE CD=DCE BCF ∽△△DCE BCF ∠=∠DCE BCE BCF BCE ∠+∠=∠+∠BCD ECF ∠=∠,CD CE CB CF =CD CB CE CF=DCB ECF ∽△△PEC BDC ∠=∠EOP DOC ∠=∠EOP DOC ∽△△OE OP OD OC=OE OD OP OC=DOE COP ∠=∠DOE COP ∽△△EDO PCO ∠=∠EDO DBC ∠=∠PCE DBC ∠=∠ECP DBC ∽△△PC EC BC BD=Rt CDE △DE x =2CD =CE =BD =1y =y =1DE =2DE =3DE =。

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。

一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。

广东省江门市恩平市2024-2025学年上学期期中考试九年级数学试卷

广东省江门市恩平市2024-2025学年上学期期中考试九年级数学试卷

广东省江门市恩平市2024-2025学年上学期期中考试九年级数学试卷一、单选题1.下列图标是中心对称图形的是()A .B .C .D .2.方程2330x x -+=的二次项系数和常数项分别为()A .3-,3B .1-,3-C .1,3D .1,3-3.若一个点在第二象限,且它到x 轴和y 轴的距离分别为3和4,则这个点关于原点对称点的坐标为()A .()3 4-,B .()34-,C .()43-,D .()43-,4.二次函数2y x =的图象向右平移3个单位,得到新的图象的函数关系式是()A .23y x =+B .23y x =-C .()23y x =+D .()23y x =-5.下列方程中有两个不相等的实数根的方程是()A .2440x x -+=B .2510x x --=C .2230x x -+=D .2220x x -+=6.如图,将ABC V 绕点C 顺时针旋转后得到A B C ''△,且点B '恰好落在边AB 上,若B α∠=,则A CA '∠=()A .12αB .αC .90α︒-D .1802α︒-7.抛物线223y x x =+-与x 轴的交点坐标是()A .()3,0-,()1,0B .()3,0,()1,0C .()4,0-,()1,0D .()4,0,()1,08.如图,A ,B ,C 是O 上的三个点,25ABC ∠=︒,则AOC ∠的度数是()A .25︒B .50︒C .65︒D .70︒9.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为()A .10080807644x ⨯-=B .2(100)7644x x -+=C .(100)(80)7644x x --=D .10080100807644x x -+=⨯10.在Rt ABC △中,90C ∠=︒,D 为AC 上一点,CD ,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为s t ,正方形DPEF 的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象.由图象可知线段AB 的长为()A .7B .6C .5D .4二、填空题11.方程()()320x x -+=的根是.12.如图,已知在O 中120AOC ∠=︒,则ABC ∠的度数是.13.如图,二次函数26y x x =--的图象交x 轴于A ,B 两点,交y 轴于C 点,则ABC V 的面积为.14.如图,点F 是等边三角形ABC 内一点,3BF =.将ABF △绕点B 顺时针旋转60︒得CBG ,连接FG ,FG =.15.如图,已知二次函数2y ax bx c =++的图象过点()30,,对称轴为直线1x =,则下列结论:①0abc <;②方程20ax bx c ++=的两个根是11x =-,23x =;③当1x <时,y 随着x 的增大而增大;④420a b c ++<.其中正确结论是(填写序号).三、解答题16.解方程:2430x x -+=.17.如图:已知二次函数2()1y x m =--,当二次函数的图象经过坐标原点()0,0O 时,求二次函数的解析式18.HUAWEI Mate60Pro 是华为技术有限公司于2023年8月29日上架的一款全球首款支持卫星通话的大众智能手机,即使在没有地面网络信号的情况下,也可以拨打接听卫星电话,该手机还支持AI 隔空操控、智感支付、注视不熄屏等智慧功能等.该系列完成了核心技术领域从0到1的跃迁,让无数国人为之自豪并被赞誉为“争气机”.手机背面有一条圆弧,象征着以山河之美致敬奔腾不息的力量.如图,圆弧对应的弦AB 长80mm ,半径OC AB ⊥,垂足为D ,弓形高CD 长14mm .(1)求AD 的长;(2)求半径OA 的长.19.已知关于x 的方程220x mx m ++-=(1)求证:此方程有两个不相等的实数根:(2)若方程两根1x ,2x 满足125x x ⋅=,求m 的值;20.如图,点P 是正方形ABCD 内一点,点P 到点A ,B ,D 的距离分别为1,,ADP △绕A 旋转至ABP '△,连结PP ',并延长AP 与BC 交于点Q .(1)求证:APP ' 是等腰直角三角形;(2)求BPQ ∠的大小.21.为进一步发展基础教育,自2022年以来,某市加大了教育经费的投入,2022年该市投入教育经费60000万元.2024年投入教育经费86400万元.假设该市这两年投入教育经费的年平均增长率相同.(1)求这两年该市投入教育经费的年平均增长率;(2)若该市教育经费的投入还将保持相同的年平均增长率,请你预算2025年该市投入教育经费多少万元.22.如图,四边形ABCD 内接于⊙O ,AB 是直径,点D 是 AC 的中点.(1)求证:OD BC ∥;(2)连接AC ,若AB =10,CD =4,求AC 的长.23.如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C .(1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当PAB ∆面积最大时,求点P 的坐标,并求PAB ∆面积的最大值.。

河南省新乡市河南师范大学附属中学联考2024-2025学年九年级上学期11月期中数学试题(含答案)

河南省新乡市河南师范大学附属中学联考2024-2025学年九年级上学期11月期中数学试题(含答案)

2024-2025学年第一学期九年级期中考试数学试卷一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.已知的半径为,圆心O 到直线l 的距离为,则直线l 与的位置关系是( )A .相离 B .相交C .相切D .无法判断3.一元二次方程经过配方变形为,则k 的值是( )A .B .C .1D .74.如图,A 、B 、C 为圆O 上的三点,,则的度数是( )A .B .C .D .5.关于二次函数,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象的顶点坐标为C .与x 轴交于点和D .当时,y 随着x 的增大而减小6.如图,是由绕点O 顺时针旋转后得到的图形,若点D 恰好落在AB 上,且,则的度数是( )A .B .C .D .7.如果关于x 的一元二次方程有实数根,则a 的取值范围是()O e 5cm 4cm O e 2430x x -+=2(2)x k -=3-7-78AOB ∠=︒ACB ∠35︒36︒37︒39︒2(1)9y x =+-(1,9)-(2,0)-(4,0)1x <-ODC △OAB △40︒105AOC ∠=︒C ∠55︒45︒42︒40︒20x x a +-=A .B .C .D .8.如图,已知的半径为5,弦AB 的长为8,P 是AB 的延长线上一点,,则OP 等于()A . B .C.D .9.已知二次函数(m 为常数),当时,函数值y 的最小值为,则m 的值是( )A .或B .或C .2或D .2或10.如图1,动点P 从菱形ABCD 的点A 出发,沿边匀速运动,运动到点C时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )图1图2A .2 B .3 C D .二、填空题(每小题3分,共15分)11.把抛物线先向右平移1个单位再向上平移1个单位,所得到抛物线的解析式为________________.12.某种植物的主干长出若干个分支,每个支干又长出同样个数的小分支,主干、支干、小分支的总数是241,设每个支干长出小分支的个数是x ,则可列方程为________________。

广东省汕头市潮南区峡山街道联考2024-2025学年上学期期中考试九年级数学试题(含答案)

广东省汕头市潮南区峡山街道联考2024-2025学年上学期期中考试九年级数学试题(含答案)

2024~2025学年度第一学期九年级期中考试数学试卷(S )说明:1、本卷满分120分;2、考试时间120分钟;3、答案请写在答题卷上.一、选择题(每小题3分,共30分)1.关于的一元二次方程(为实数)根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定2.已知二次函数,当时,随增大而增大,则实数的取值范围是( )A. B. C. D.3.下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是( )A. B.C. D.4.二次函数图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限5.是一元二次方程的一个根,则代数式的值是( )A. B.2017 C. D.20256.某商品原价200元,连续两次降价后售价为148元,下列所列方程正确的是( )A. B.C. D.7.如图,是一个中心对称图形,为对称中心,若,,,则的长为( )B.D.48.若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是( )A.6B.12C.12D.6x 220x kx --=k 2(1)y a x =-0x >y x a 0a >1a >1a ≠1a <2(1)2y x =-++m 220x x ++=2222021m m +-2017-2025-%a 2200(1%)148a +=()22001%148a -=200(12%)148a -=2200(1%)148a -=A 90C ∠=︒60BAC ∠=︒1BC =CC '27120x x -+=9.已知抛物线,则当时,函数的最大值为( )A. B. C.0 D.210.如图,抛物线经过正方形的三个顶点,,,点在轴上,则的值为( )A. B. C. D.二、填空题(每小题3分,共15分)11.已知关于的方程有一个根1,那么__________.12.若二次函数的图象与轴有且只有一个交点,则的值为________.13.如图,在正方形中,,E 为的中点,连接,将绕点按逆时针方向旋转得到,连接,则的长为_________.14.在平面直角坐标系中,将抛物线先绕原点旋转,再向下平移5个单位,所得到的抛物线的顶点坐标是_________.15.观察下列图形规律:当_________时,图形“”的个数是“”的个数的2倍.三、解答题(一)(每小题7分,共21分)16.用配方法解一元二次方程:17.如图,在中,,点、点分别为、的中点,连结,将绕点旋转得到.试判断四边形的形状,并说明理由.221y xx =--03x ≤≤2-1-2y axc =+OABC A B C B y a c 1-2-3-4-x 20ax bx c ++=a b c ++=2(1)42y a x x a =--+x a ABCD 4AB =AB DE DAE △D 90︒DCF △EF EF 221y xx =+-180︒n =∆∙2213x x+=ABC △2AB BC =D E AB AC DE ADE △E 180︒CFE ∆BCFD18.已知开口向上的抛物线经过点.(1)确定此拋物线的解析式;(2)当取何值时,有最小值,并求出这个最小值.四、解答题(二)(每小题9分,共27分)19.如图,在边长均为1个单位长度的小正方形组成的网格中,点,点,点均为格点(每个小正方形的顶点叫做格点).【实践与操作】(1)作点关于点的对称点;(2)连接,将线段绕点顺时针旋转得点对应点,画出旋转后的线段;【应用与计算】(3)连接,求出四边形的面积.20.如图,二次函数(为常数)的图象的对称轴为直线.(1)求的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式。

天津市静海区2024-2025学年上学期九年级期中数学考试卷

天津市静海区2024-2025学年上学期九年级期中数学考试卷

天津市静海区2024-2025学年上学期九年级期中数学考试卷一、单选题1.若2(3)50m x mx -+-=是关于x 的一元二次方程,则m 的值为()A .3m ≠B .3m =C .3m ≥D .0m ≠2.中国古典园林讲究“造景”的艺术,而窗棂()líng 是园林重要的“造景”工具之一,如图①,是苏州园林内的一种窗棂,图②是这种窗棂中的部分图案,该图案是由1个正六边形和6个全等的等边三角形组成的;下列关于该图案对称性的说法,正确的是()A .既是轴对称图形又是中心对称图形B .是轴对称图形但不是中心对称图形C .是中心对称图形但不是轴对称图形D .既不是轴对称图形也不是中心对称图形3.若一元二次方程2440mx x ++=没有实数根,则m 的取值范围是()A .1m <B .1m <-C .1m ≥-D .1m >4.用配方法解方程2810x x -+=,下列变形正确的是().A .2(4)3x -=B .2(4)15x -=C .2(4)7x -=D .2(4)3x -=-5.电影《志愿军》不仅讲述了中国人民志愿军抗美援朝的故事,更是通过鲜活生动的人物塑造,让观众体会到历史事件背后的人性和情感,一上映就获得全国人民的追捧.某地第一天票房约3亿元,若以后每天票房按相同的增长率增长,三天后票房收入累计达18亿元,若把增长率记作x ,则方程可以列为()A .()3118x +=B .()23118x +=C .()233118x +=+D .()()23313118x x +++=+6.函数22y x =-先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A .22(1)2y x =--+B .22(1)2y x =---C .22(1)2y x =-++D .22(1)2y x =-+-7.如图,在Rt ABC △中,已知9030BAC C ∠=︒∠=︒,,将ABC V 绕点A 顺时针旋转70︒得到AB C ''△,则CAC '∠的度数是()A .60︒B .70︒C .80︒D .90︒8.如图,在平面直角坐标系中,若ABC V 与111A B C △关于点E 成中心对称,则对称中心点E 的坐标是()A .(3,1)-B .(3,0)C .(2,1)-D .(2,0)9.对于二次函数2144y x x =-+-,下列说法正确的是()A .当0x >,y 随x 的增大而增大B .图像与x 轴有两个交点C .图像的顶点坐标为(2,7)--D .当2x =时,y 有最大值3-10.二次函数23324y x ⎛⎫=-+ ⎪⎝⎭的图象()13x ≤≤如图所示,则该函数在所给自变量的取值范围内,函数值y 的取值范围是()A .1y ≥B .13y ≤≤C .334y ≤≤D .03≤≤y 11.某水利工程公司开挖的池塘,截面呈抛物线形,蓄水之后在图中建立平面直角坐标系,并标出相关数据(单位:m ),某学习小组探究之后得出如下结论,其中正确的为()A .水面宽度为30mB .抛物线的解析式为1²525y x =-C .最大水深为3.2mD .若池塘中水面的宽度减少为原来的一半,则最大水深减少为原来的1312.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m ,另三边用竹篱笆围成,篱笆总长35m ,围成长方形的养鸡场四周不能有空隙.有下列结论:①要围成养鸡场的面积为2150m ,则养鸡场的宽为7.5m ;②围成养鸡场的面积能达到2200m ;③围成养鸡场的最大面积为21225m 8其中,正确结论的个数是()A .0个B .1个C .2个D .3个二、填空题13.把方程223x x =-化为一般形式是.14.一元二次方程260x x m -+=有两个实数根1x ,2x .若12x =,则2x 的值为15.若点(),1A a -关于原点对称的点为()5,B b ,则点(),C a b 关于y 轴对称的点D 的坐标为.16.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是2305h t t =-.小球运动到最高点所需的时间是s .17.如图,正方形ABCD 中,点E 在DC 边上,2DE =,1EC =,把线段AE 绕点A 旋转,使点E 落在直线BC 上的F 点,则F ,C 两点间的距离为.18.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的图象如图所示,小明得出了以下结论:①0abc <,②24b ac >,③420a b c ++>,④当1x <-时,y 随x 的增大而增大,⑤若方程2ax bx c k ++=有两个不相等的实数根,则k 的取值范围是5k <,其中结论正确的个数为.(填序号)三、解答题19.解方程:(1)2213x x +=(配方法);(2)2(3)3x x x -=+(公式法);(3)22(3)8x -=;(4)(8)(1)12x x ++=-.20.如图,在平面直角坐标系中,已知ABC V 的三个顶点的坐标分别为(5,4)A ,(0,3)B ,(2,1)C .(1)画出ABC V 关于原点成中心对称的111A B C △,并写出点1C 的坐标;(2)画出将111A B C △绕点1C 按顺时针方向旋转90︒所得到的221A B C △,并求出221A B C △的面积.21.已知关于x 的方程220x ax a ++-=.(1)若该方程的一个根为2,求a 的值及该方程的另一根.(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.(3)若方程的两根互为倒数,求a 的值.22.天津素称“月季之乡”.花虹园区在长为10米,宽为8米的矩形土地上修建同样宽度的两条道路(互相垂直),其余部分种植月季花球盆栽,并使种植花卉的总面积为63平方米,修建方案如图所示.(1)利用你所学的有关图形运动的知识,求道路的宽度;(2)某盆栽供应商的进货价为每盆30元,销售价为每盆60元,花节期间平均每天可以售出20盆.花节落幕后降价出售,经市场调查发现:如果每盆降价3元,那么平均每天就可多出售6盆.设每盆降价x 元.①降价后每盆的利润是__________元;每天卖出__________盆;(用含的代数式表示)②供应商想要达到每天750元的盈利,同时让购买者得到实惠,求每盆应降价多少元?23.如图,已知抛物线2y x bx c =++经过(1,0)A -、(3,0)B 两点.(1)求抛物线的解析式和顶点坐标;(2)点P 为抛物线上一点,若10PAB S = ,求出此时点P 的坐标.24.如图,在ABC V 中,点E 在BC 边上,AE AB =,将线段AC 绕A 点旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若63ABC ∠=︒,25ACB ∠=︒,求FGC ∠的度数.25.素材一:秦、汉时期是中国古代桥梁的创建发展时期,此时期创造了以砖石为材料主体的拱券结构,为后来拱桥的出现创造了先决条件.如图(1)是位于某市中心的一座大桥,已知该桥的桥拱呈抛物线形.在正常水位时测得桥拱处水面宽度OB 为40米,桥拱最高点到水面的距离为10米.素材二:在正常水位时,一艘货船在水面上航行,已知货船的宽DE 为16米,露出水面的高DG 为7米.四边形DEFG 为矩形,OD BE =.现以点O 为原点,以OB 所在直线为x 轴建立如图(2)所示的平面直角坐标系,将桥拱抽象为一条抛物线.(1)求此抛物线的解析式.(2)这艘货船能否安全过桥?(3)受天气影响,水位上升0.5米,若货船露出水面的高度不变,此时该货船能否安全过桥?。

山西省阳泉市部分学校2024-2025学年上学期期中考试九年级数学试卷(含答案)

山西省阳泉市部分学校2024-2025学年上学期期中考试九年级数学试卷(含答案)

2024—2025学年度第一学期期中九年级数学(满分120分,练习时间120分钟)第I 卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.是同类二次根式的是( )2.已知关于x 的一元二次方程,若,则下列各数中是该方程的根的是( )A.1B.C.2D.03.在数学史上,有很多著名的几何图形用来验证数学知识的产生过程.如图所示的图案,是由一连串公共顶点为O 的直角三角形拼接而成,若,则图中直角三角形之间存在的变换关系是( )A.图形的平移B.图形的旋转C.图形的全等D.图形的相似4.利用配方法解方程时,将该方程化为的形式,然后利用直接开平方法求解,这个过程体现的数学思想是( )A.数形结合思想B.转化思想C.整体思想D.公理化思想5.如果,那么下列比例式正确的是( )A. B. C. D.6.若等腰三角形一条边的长为3,另两条边的长分别是关于x 的一元二次方程的两个根,则k 的值是( )A.27B.36C.27或36D.187.我国古代数学《九章算术》中有一道“井深几何”的问题:“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸(1尺等于10寸),问井深几何?”根据题意画出如图示意图,则并深为( )20x bx c ++=10b c ++=1-30AOB BOC COD LOM ∠=∠=∠==∠=︒ 2680x x ++=()231x +=:5:3a b =35a b a -=32b a b =+14a b a b -=+223a b=2120x x k -+=A.56.5尺B.57.5尺C.6.25尺D.1.25尺8.如图,在中,点D 是上一点,且,若,,则与的面积比为( )A. B. C. D.9.对于实数a ,b ,定义运算“( )”:若,例如:.已知关于x 的一元二次方程有实数根,则m 的取值范围为( )A. B. C. D.10.如图,在中,,,点D ,E 分别是,边上的动点,连结,F ,M 分别是,的中点,则的最小值为( )A.12B.10C.9.6D.4.8第II 卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.的结果是________.ABC △AC ABD C ∠=∠2AD =3AB =ABD △BCD△4:54:92:32:1()*a b a a b =-()2*32232=-=-211*(2)724x m m m -=-13m ≥-13m ≤-16m ≤-16m ≥-ABC △10AB BC ==12AC =AB BC DE AD DE FM12.如图,直线,若,,,那么的长为________.13.某种小家电在两年内提价两次后每个的价格比两年前增加了44%,则平均每次提价的百分率为________.14.如图,小明在A 时测得某树的影长为3m ,B 时又测得该树的影长为2m ,若两次日照的光线互相垂直,则树的高度为________m.15.如图,在中,,,,点D 是边上的一点,过点D 作,交于点F ,作的平分线交于点E ,连接.若的面积是2,则的值是________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(每小题5分,共10分)(1(2)解方程:17.(本题10分)图①、图②、图③都是的网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.点A ,B ,C 均在格点上.在图①、图②、图③给定的网格中,仅用无刻度的直尺,按下列要求完成作图,并保留作图痕迹.AB CD EF ∥∥12AD =4DF =15BE =CE Rt ABC △90C ∠=︒3AC =4BC =AC DF AB ∥BC BAC ∠DF BE ABE △DE EF221)(2)--+-()()325211x x x -+=+66⨯图① 图② 图③(1)在图①中,以点C 为位似中心,将放大到原来的2倍;(2)在图②中,在线段上作点D ,使得;(3)在图③中,作,且相似比为.18.(本题8分)玉米俗称玉米棒子、苞米,是我国第一大粮食作物,也是全世界公认的“黄金作物”.政府鼓励农民种植玉米,一亩地每年补贴300元.经调查:我省玉米实验田平均亩产量约1300千克,市场销售价为每千克1.2元,除购买种子、播种、施肥、浇水、收割等成本费用外(随种植亩数的变化而变化),种植一亩玉米的净利润达到1360元.(1)求种植一亩玉米的成本需要多少元;(2)某农场现有15亩实验田,计划种植玉米和蔬菜,根据经验调查发现:按2023年种植一亩玉米的成本来计算,以后每多种植1亩,平均每亩的成本会减少20元,2024年农场计划投入3200元的成本种植玉米,问:该农场计划种植几亩玉米?19.(本题7分)如图,在中,点D 在边上,,点E 在边上,.(1)求证:.(2)若,,求的长.20.(本题8分)项目化学习项目主题:测量树的高度.分析探究:树的高度不能直接测量,需要借助一些工具,比如小镜子,标杆,皮尺,小木棒,自制的直角三角形硬纸板,确定方案后,还要画出测量示意图,并实地进行测量,得到具体数据,从而计算出树的高ABC △BC 3CD BD =BEF BAC △∽△3:4ABC △BC DAC B ∠=∠AD CD CE =ABD CAE △△∽9AB =6AC BD ==AE度.成果展示:下面是某小组进行交流展示时的部分测量方案及测量数据:测量工具标杆,皮尺测量方案选一名同学作为观测者,在观测者与树之间的地面直立一根标杆,使树的顶端、标杆的顶端与观测者的眼睛恰好在一条直线上.这时再测出观测者的脚到树底端的距离,以及观测者的脚到标杆底端的距离,然后测出标杆的高.测量示意图测量数据线段表示树,标杆,观测者的眼睛到地面的距离,观测者的脚到树底端的距离,观测者的脚到标杆底端的距离.……请同学们继续完善上述成果展示:任务一:根据测量数据,求出树的高度;任务二:写出求树的高度时所利用的数学知识________________________________________.(写出一个即可)21.(本题8分)阅读下列材料,并按要求完成相应的任务.两千多年前,古希腊数学家欧多克索斯(Eudoxus ,约前400-前347)发现:如图1,将一条线段分割成长、短两条线段,,若较短线段与较长线段的比等于较长线段与原线段的比,即(此时线段叫做线段,的比例中项)比值为黄金比,P 为线段的黄金分割点. 图1采用如下方法可以得到黄金分割点:如图2,设是已知线段,经过点B 作,且,连接,在上截取,在上截取,则C 就是线段的黄金分割点.任务:AB 3.2m EF = 1.7m CD =14m DB =2m DF =AB AB AP BP BP AP AP AB =AP BP AB AB AB BD AB ⊥12BD AB =AD AD DE DB =AB AC AE =AB图2(1)求证:C 是线段的黄金分割点.(2)若,则的长为________.22.(本题12分)综合与实践(1)如图①,在中,,,点D 在边上,点E 在边上.若,求证:.图①(2)如图②,在矩形中,,,点E 在边上,连接,过点E 作,交于点F .图②i )若,求的长;ii )若点F 恰好与点D 重合,求的长.23.(本题12分)综合与探究如图1,在矩形中,,,点E 是对角线上任意一点,交于点G ,交于点F .(1)当点E 为的中点时,________. 图1(2)如图2,将四边形绕点B 逆时针旋转,连结,.在旋转过程中,是否发生变化,若不变化,求出的值,若发生变化,请说明理由.AB 1BD =BC Rt ABC △90ACB ∠=︒AC BC =AB BC 45CDE ∠=︒ACD BDE △∽△ABCD 4cm AB =10cm BC =BC AE EF AE ⊥CD :1:9BE EC =CF BE ABCD 6cm AB =4cm AD =BD EG CD ∥BC EF AD ∥AB BD DE CG=BFEG CG DE DE CG DE CG图2(3)如图3,将四边形绕点B 逆时针旋转,连结,.请直接写出旋转过程中的值. 图3BFEG AF DE DE AF九年级数学答案一、1、C2、A3、D4、B5、C6、B7、B8、A9、D10、D二、11、412、13、20%1415、三、16、解:(1(2),,,,,.17、(1)如图,即为所求(2)如图,点D 即为所求(3)如图,即为所求18、(1)设种植一亩玉米的成本需要x 元,154372211111)(2)(21)21444---+-=--+=-+-+=-2315210211x x x x +--=+238110x x --=14∆==81423x ±=⨯1113x =21x =-11A B C △BEF △依题意得:,解得.答:种植一亩玉米的成本最高需要500元.(2)设该农场计划种植y 亩玉米,则每亩的成本为依题意得:,整理得:,解得:,(不合题意,舍去)。

江苏省盐城市盐城经济技术开发区2024-2025学年九年级上学期11月期中考试数学试题(含答案)

江苏省盐城市盐城经济技术开发区2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024年秋学期九年级数学期中考试试卷一、选择题(每题3分,计24分)1. 下列方程是一元二次方程的是( )A. 3x 2-6x +2B. ax 2-bx +c =0C.D. x 2=02. 用配方法解方程,配方正确是()A. B. C. D. 3. 如图,已知四边形是的内接四边形,且,那么等于( )A B. C. D. 4. 一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A. 12B. 9C. 15D. 12或155.如图,小球从口往下落,在每个交叉口都有向左或向右两种可能,且可能性相同,则小球最终从口落出的概率为( )A. B. C. D.6.电影(长津湖》讲述了一段波澜壮阔的历史,一上映就获得全国人民的追捧,某地第一天票房约亿元,三天后票房收入累计达亿元,若把增长率记作( )A .;B .;C .;D .7.如图,是的直径,圆上的点D 与点C ,E 分布在直线的两侧,,则( )的.212x x +=2240x x --=()213x -=()214x -=()215x -=()213x +=ABCD O e 120ABC ∠=︒AOC ∠125︒120︒110︒100︒A G 18161412310x ()3110x +=()23110x +=()233110x ++=()()23313110x x ++++=AB O e 50BCD ∠=︒AED =∠A .B .C .D .8.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的弧与弧的长都为,且与闸机侧立面夹角.当双翼收起时,可以通过闸机的物体的最大宽度为( )A .B .C .D .二、填空题(每题3分,计30分)9.一组数据19,15,10,x ,4,它的中位数是13,则这组数据的平均数是 .10.已知一元二次方程的其中一个根为,则的值为 .11.关于的一元二次方程有两个实数根,那么的取值范围是 .12.已知,如图,是的弦,,点在弦上,连结并延长交于点,,则的度数是 .14.设m 、n 为关于x 的方程x 2+4x ﹣2023=0的两个实数根,则m 2+5m +n = .60︒50︒45︒40︒A B 10cm AP BQ 12π30PCA BDQ ︒∠=∠=72cm 10cm 10cm 82cm 250ax bx +-=2x =1632a b +-x ()22114x m x m +-=-m AB AD O e 30B ∠=︒C AB CO O e D 35D ∠=︒BAD ∠15.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为170cm ,方差为acm 2.第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是170cm ,此时全班同学身高的方差为bcm 2,那么a 与b 的大小关系是a b .(填“<”,“>”或“=”)D=_______°.18.如图,在矩形ABCD 中,AB=3,⊙O 与边BC ,CD 相切,现有一条过点B 的直线与⊙O 相切于点E ,连接BE ,△ABE 恰为等边三角形,则⊙O 的半径为.第17题 第18题三、解答题(共9题,计96分)19.解方程:(1);(2);20.“秋风响,蟹脚痒”,正是食蟹好时节.某蟹农在今年五月中旬向自家蟹塘投放蟹苗1200只,为赶在食蟹旺季前上市销售,该蟹农于九月中旬在蟹塘中随机试捕了4次,获得如下数据:(1)、四次试捕中平均每只蟹的质量为____________;(2)、若蟹苗的成活率为,试估计蟹塘中蟹的总质量为_______;(3)、若第3次试捕的蟹的质量(单位:g )分别为:166,170,172,a ,169,167.①____________;②求第3次试捕所得蟹的质量数据的方差.21.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船数量/只平均每只蟹的质量/g 第1次试捕4166第2次试捕4167第3次试捕6168第4次试捕6170()24190x --=2250x x --=g 75%kg =a的轮子被水面截得的弦AB 长8m ,设圆心为O ,OC ⊥AB 交水面AB 于点D ,轮子的吃水深度CD 为2m ,求该桨轮船的轮子直径.22.已知,内接于,为的直径,点为优弧的中点.(1)如图1,连接,求证:;(2)如图2,过点作,垂足为.若,求的半径.23.已知关于的一元二次方程.求证:无论取何值,方程总有两个不相等的实数根.ABC V O e AC O e D BC OD DO BC ⊥D DE AC ⊥E 38AE BC ==,O e x 22(3)10x m x m ++-+=m(2)已知关于 x 的方程﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求 m 的值;(3)若关于 x 的方程 a +bx+1=0(a 、b 是常数,a >0)是“邻根方程”,令 t =8a-,试求 t 的最大值.25.小明大学毕业后和同学创业,合伙开了一家网店,暑期销售原创设计的手绘图案T 恤衫.已知每件T 恤衫的成本价为60元,当销售价为100元时,每天能售出20件;经过一段时间销售发现,当销售价每降低1元时,每天就能多售出2件.(1)若降价8元,则每天销售T 恤衫的利润为多少元?(2)小明希望每天获得的利润达到1050元并且优惠最大,则每件T 恤衫的销售价应该定为多少?26.如图,是直角三角形的外接圆,直径,过C 点作的切线,与延长线交于点D ,M 为的中点,连接,,且与相交于点N .(1)求证:与相切;(2)当时,在的圆上取点F ,使,补全图形,并求点F 到直线的距离.27.(1)如图1,四边形ABCD 为⊙O 的内接四边形,AC 为⊙O 的直径,则∠B =∠D = 度,∠BAD +∠BCD = 度.(2)如果⊙O 的内接四边形ABCD 的对角线AC 不是⊙O 的直径,如图2,求证:圆内接四边形的对角互补.知识运用(3)如图3,等腰三角形ABC 的腰AB 是⊙O 的直径,底边和另一条腰分别与⊙O 交于点 D ,E ,F 是线段CE 的中点,连接DF ,求证:DF 是⊙O 的切线.2x 2x 2b O e ABC 4AC =O e AB CD BM OM BC OM BM O e 60A ∠=︒O e 15ABF ∠=︒AB参考答案1-4DCBC 5-8CDDD9.12.2 10.7 11.12. 13.86 14.2019 15.>16.b>-3 17.3018.19.(1),(2),20.(1)168(2)(3)①164 ②721.解:设半径为rm,则OA =OC =rm ,∴OD =(r ﹣2)m .∵AB =8m ,OC ⊥AB ,∴AD =4m .在Rt △ODA 中有OA 2=OD 2+AD 2,即r 2=(r ﹣2)2+4,解得r =5m则该桨轮船的轮子直径为10m .22.(1)(1)证明:如下图,延长交于,∵点为优弧的中点,∴,12m ≤65︒112x =-252x =11x =21x =151200DO BC F D BC »»BD CD =∴,即;(2)23.证明:一元二次方程中,a =2,,,,一元二次方程总有两个不相等的实数根.24.(1)不是邻根方程;是邻根方程(2)或(3)25.(1)解:由题意得,每天销售T 恤衫的利润为:(元).答:降价8元,则每天销售T 恤衫的利润为1152元.(2)解:设此时每件T 恤衫降价x 元,由题意得,,整理得,解得或.又∵优惠最大,∴.∴此时售价为(元).答:小明希望每天获得的利润达到1050元并且优惠最大,则每件T 恤衫的销售价应该定为75元.26.(1)根据题意可得,根据直径所对的圆周角是直角,得出,进而得出,证明,得出,即可得证;(2)DF BC ⊥DO BC ⊥256()22310x m x m ++-+=3b m =+1c m =-+24b ac∴∆=-()()23421m m =+-⨯⨯-+26988m m m=+++-2217m m =-+()22116m m =-++()21160m =-+>∴()22310x m x m ++-+=260x x --=2210x -=0m =2m =-4t =最大值()()10086020281152--⨯+⨯=()()100602021050x x --+=2301250x x -+=5x =25x =25x =1002575-=OM AD ∥90ABC ∠=︒OM BC ⊥OBM OCM V V ≌90OBM ∠=︒21-27.(1)∵四边形ABCD为⊙O的内接四边形,AC为⊙O的直径,∴∠B=∠D=90度,∵∠BAD+∠BCD+∠B+∠D=360°∴∠BAD+∠BCD=360°−∠B−∠D=180°故答案为:90,180(2)证明:如图,连接AO并延长,交⊙O于点E,连接BE,DE.由(1)可知,∠ABE=90°,∠ADE=90°,∴∠ABE+∠ADE=180°∴∠BAD+∠BED=180°∵∠BED=∠C,∠CDE=∠CBE∴∠BAD+∠C=180°,∠ABC+∠ADC=180°即圆内接四边形的对角互补(3)证明:连接OD,DE,如图所示.∵OB=OD,∴∠B=∠ODB∵AB=AC,∴∠B=∠C∴∠ODB=∠C∴OD∥AC∵四边形ABDE是圆内接四边形,∴∠B+∠AED=180°∵∠DEC+∠AED=180°,∴∠B=∠DEC∴∠C=∠DEC∴DC=DE∵F是线段CE的中点,∴DF⊥AC∴DF⊥OD∵OD是⊙O的半径,∴DF是⊙O的切线。

湖南省长沙市一中教育集团2024-2025学年九年级上学期期中考试数学试题

湖南省长沙市一中教育集团2024-2025学年九年级上学期期中考试数学试题

湖南省长沙市一中教育集团2024-2025学年九年级上学期期中考试数学试题一、单选题1.长沙国庆期间的人流量统计显示,10月4日瞬时客流量达到158.4万人次,成为当天的峰值,这一数据反映了长沙在国庆假期中的旅游热度,尤其是红色旅游景区的人气高涨.将数据158.4万用科学记数法表示应()A .4158.410⨯B .515.8410⨯C .61.58410⨯D .71.58410⨯2x 的取值范围是()A .2024x >B .2024x <-C .2024x ≤D .2024x ≥3.如表是长沙市一中现代舞蹈社团20名成员的年龄分布统计表,数据不小心被撕掉一块,仍能够分析得出关于这20名成员年龄的统计量是()年龄/岁15161718频数/名56A .平均数B .方差C .中位数D .众数4.已知m 是方程210x x --=的一个根,则代数式22024m m -+的值等于()A .2025B .0C .2024-D .20235.已知12x x ,是一元二次方程220x x --=的两个根,则12x x +的值是()A .1B .2C .1-D .2-6.将抛物线241y x x =+-向左平移2个单位长度,再向上平移3个单位长度,得到的抛物线的顶点坐标是()A .()2,5--B .()4,2--C .()0,2-D .()2,4--7.如图,O 的直径AB 垂直于弦CD ,垂足为E ,30A ∠=︒,4AB =,CD 的长为()A .2B .C .4D .8.已知抛物线()230y ax bx a =+-<过点()12,A y -,()23,B y -,()21,C y ,()34,D y 四点,则1y ,2y ,3y 的大小关系是()A .123y y y >>B .213y y y >>C .132y y y >>D .321y y y >>9.如图,已知长方形ABCD 的边长10cm AB =,8cm BC =,点E 在边AB 上,4cm AE =,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则能够使BPE 与CQP V 全等的时间t 为()A .1sB .1或4sC .1或2sD .2或4s10.如图,若点M 是等边ABC V 的边BC 上任意一点,将AMC 绕点A 顺时针旋转得到ANB ,且点M 在边BC 上,连接MN ,则下列结论:AB MN ⊥①,30BMN ∠=︒②,MN AM =③,BN AM ④∥,其中正确的个数有个.()A .1个B .2个C .3个D .4个二、填空题11.若方程()11230m m xx -++-=是关于x 的一元二次方程,则m =.12.如图,菱形OABC 的顶点A 、B 、C 在O 上,过点B 作O 的切线交OA 的延长线于点D .若O 的半径为5,则AD 的长为.13.若关于x 的一元二次方程()21004ax x a --=≠有两个不相等的实数根,则点()1,3P a a +--在第象限.14.直线1y ax =与直线212y x b =+在同一平面直角坐标系中的图象如图所示,关于x 的不等式12ax x b <+的解集为.15.如图,在以AA '为直径的半圆O 中,作一个矩形OABC ,再将矩形OABC 绕点C 顺时针旋转至矩形O A B C '''',且O '在半圆上,则旋转角为.16.感恩的心是一种生活态度,它能够提升我们的生活质量,让我们更加快乐和满足.如图是小双同学在学习二次函数时设计的“爱心”图案.“爱心”是在平面直角坐标系中,由二次函数y 225x x =-++的图象与其关于直线y x =-对称的图象所组成,若两图象相交于A ,B ,C ,D 四点,则四边形ABCD 的面积为.三、解答题17.计算:()11π202412-⎛⎫---+- ⎪⎝⎭18.先化简:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,再从3-,1,2中选取一个合适的数作为x 的值代入求值.19.如图,在ABC V 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接,若8AC =,15BC =.(1)求ACD 的周长;(2)在AB 下方取点K ,以D 为圆心DK 为半径画弧,交AB 于点E 和点F ,求证:AE BF =.20.为了解长沙市九年级学生每周校外锻炼身体的时长t (单位:小时)的情况,在全市随机抽取部分九年级学生进行调查,按五个组别:A 组(3t ≤4)<,B 组()45t ≤<,C 组()56t ≤<,D 组()67t ≤<,E 组()78t ≤<进行整理,绘制如图两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次抽样调查的总人数是_____,扇形统计图中m =_____,A 组所在扇形的圆心角的大小是______;(2)将频数分布直方图补充完整;(3)若长沙市共约有6万名九年级学生,请你估计全市每周校外锻炼身体时长不少于6小时的九年级学生人数.21.如图,直线122y x =-+与y 轴、x 轴分别交于点B 、点C ,经过B 、C 两点的抛物线2y ax =bx c ++与x 轴的另一个交点为()1,0A -.(1)求二次函数的解析式;(2)点P 为该二次函数的图象在第一象限上一点,当BCP 的面积最大时,求P 点的坐标;(3)在(2)的条件下,在平面直角坐标系中找一点Q ,当B 、C 、P 、Q 为顶点所构成的四边形是平行四边形时,直接写出Q 的坐标.22.湖南长沙是一个充满文化底蕴的城市,拥有着丰富的旅游特色纪念品.随着国庆小长假旅游旺季的到来,我市某店铺购进了一批旅游纪念品,“文创T 恤”和“纪念湘绣”,进货价和销售价如表:纪念品价格文创T 恤纪念湘绣进货价(元/个)5966销售价(元/个)7988(1)该店铺购进“文创T 恤”和“纪念湘绣”共80件,且进货总价不高于4900元,若进货后能全部售出,则分别购进“文创T 恤”和“纪念湘绣”多少件,才能获得最大销售利润?最大销售利润是多少?(2)该店铺为了在国庆假期中尽快售完“文创T 恤”,打算调价销售,如果按照原价销售,平均每天可售8件,经调查发现,每降价1元,平均每天可多售2件,将销售价定为每个多少元时,能使“文创T 恤”平均每天销售利润为256元?23.如图,已知正方形ABCD ,以顶点B 为直角顶点的等腰Rt BEF △在正方形外部绕点B 旋转.(1)如图1,连接AE 与CF ,在旋转过程中小语同学发现AE CF =,请你帮小语同学完成证明过程;(2)如图2,若10AB =,8BE BF ==,在旋转过程中,①求点D 与点E 之间的最大距离;②当BCE ∠最大时,连接AF ,求ABF △的面积.24.在平面直角坐标系中,对“纵横值”给出如下定义:点(),A x y 是函数图象上任意一点,纵坐标y 与横坐标x 的差y x -称为点A 的“纵横值”.函数图象上所有点的“纵横值”中的最大值称为函数的“最优纵横值”.例如:点()1,3A 在函数21y x =+图象上,点A 的“纵横值”为312-=,函数21y x =+图象上所有点的“纵横值”可以表示为21y x x -=+1x x -=+,当36x ≤≤时,1x +的最大值为617+=,所以函数y =()2136x x +≤≤的“最优纵横值”为7.根据定义,解答下列问题:(1)①点()5,1B -的“纵横值”为______;②函数()331y x x x=+-≤≤-的“最优纵横值”为______;(2)若二次函数2y x bx c =-++图象的顶点在直线52x =上,且“最优纵横值”为3,求c 的值;(3)若二次函数()2y x h k =--+图象的顶点在直线=9y x +上,当14x -≤≤时,二次函数的“最优纵横值”为7,求h 的值.25.已知O 是ACD 的外接圆,点D 是 AC 的中点.(1)如图1,连接OD 交AC 于点E ,过点A 作CO 的垂线交CO 延长线于点F .设DAC α∠=,FAC β∠=,请用含α的代数式表示β;(2)如图2,过点C 作BC AC ⊥,交弦AD 的延长线于点B .①求证:AD BD =;②若O 的半径为4,5AD =,求BC 的值;(3)如图3,若 AC 是半圆,点P 是O 上的动点,且点D ,P 分别位于AC 的两侧,作APD △关于AD 的轴对称图形AQD ,连接CQ ,试探究2CQ ,2DQ ,2A Q 三者之间满足的数量关系,并证明所得到的结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中考试数学试卷
初三 班 姓名 座号 得分
一、选择题(每小题4分,共40分)
1、方程224x x =的根为 ( )
A .0x =
B .2x =
C .120,2x x ==
D .以上都不对
2、等腰三角形两边长分别是2和7,则它的周长是( )
A .9
B .11
C .16
D .11或16
3、方程:①13122
=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是( ) A. ①和② B. ②和③ C. ③和④ D. ①和③
4、二次三项式x 2-4x+3配方的结果是( )
A .(x-2)2+7
B .(x-2)2-1 D .(x+2)2+7 D .(x+2)2-1
5、三角形三边长为
6、8、10,那么这个三角形的最短边上的高为( )
A .8
B .6
C .7.4
D .4.5
6、三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是( )
A .角平分线
B .中位线
C .高
D .中线
7、对角线相等,并且互相平分的四边形是( )
A .等腰梯形
B .矩形
C .菱形
D .正方形
8、下列图形中,是中心对称图形,但不是轴对称图形的是( )
A .正方形
B .矩形
C .菱形
D .平行四边形
9、某工厂搞技术革新,计划在两年内使成本下降51%,则平均每年下降百分率为( )
A .30%
B .26.5%
C .24.5%
D .32%
10、下列命题中,不正确的是( )
A . 顺次连结菱形各边中点所得的四边形是矩形。

B . 有一个角是直角的菱形是正方形。

C .对角线相等且垂直的四边形是正方形。

D .有一个角是60°的等腰三角形是等边三角形。

二、填空题(每题4分,共32分)
11、方程(x+5)(x-7)=-26,化成一般形式是 ,其二次项的系数和一次项系数的和是 。

12、命题“如果∠1与∠2是邻补角,那么∠1+∠2=180°。

它的逆命题是 ,
它是一个 命题。

(填“真”“假”)
13、等边三角形的边长为2cm ,则它的高为 。

14、如果方程03)1(2=--+x k x 的一个根是1,那么k 的值是 ,另一个根是 。

15、平行四边形的长边是短边的2倍,一条对角线与短边互相垂直,则这个平行四边形的一个锐角为 ;
16、已知21,x x 是方程0452=-+x x 的两个根,那么=+21x x ,=21x x
17、在平行四边形ABCD 中,若∠A+∠C=︒210,则∠A= ∠B=
18、等腰直角三角形斜边上的中线长为4cm ,则其面积为 。

三、解方程(每题5分,共20分)
19、0322=--x x 20、22510x x +-=
21、()2
231210x --= 22、(x-3)2=2(3-x)
四、23、(此题6分)△ABC 中,AB=AC ,利用尺规作AB 边上的垂直平分线MN 与∠BAC 的角平分线AD ,两线交于点P 。

(保留作图痕迹,不写作法)
五、(第24题6分,第25题10分,第26题6分,共22分)
24、某钢铁厂今年1月份钢产量为4万吨,第一季度共生产钢13.24万吨,问2、3月份平均每月的增长率是多少?
25、已知:如图梯形ABCD 中,AB//DC ,E 是BC 中点,AE 、DC 的延长线相交于点F ,连结AC 、BF 。

(1)求证:AB=CF
(2)四边形ABFC 是什么四边形?并说明你的理由。

A B C
26、已知:菱形ABCD的对角线AC=6m,周长是20m,求另一条对角线BD的长及菱形的面积。

做完后,一定要认真检查!相信你会做得更好!C
B。

相关文档
最新文档