八年级下数学期中考试数学试卷有答案-最新
山东省泰安市岱岳区(五四制)2023-2024学年八年级下学期期中考试数学试卷(含解析)
八年级数学练习题一、选择题,每小题4分,共48分.1. 下列二次根式中,是最简二次根式的是()A. B. C. D. 【答案】A解析:解:A是最简二次根式,故A符合题意;B,故B不符合题意;C,故C不符合题意;D,故D不符合题意;故选:A.2. 已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当时,它是菱形B. 当时,它是矩形C. 当时,它矩形D. 当时,它是菱形【答案】A解析:解:、由是平行四边形可得,该选项错误,符合题意,、对角线相等的平行四边形是矩形,该选项正确,不符合题意,、有一个角是直角的平行四边形是矩形,该选项正确,不符合题意,、对角线互相垂直的平行四边形是菱形,该选项正确,不符合题意,故选:A.3. 下列二次根式中,与是同类二次根式的是()A. B. C. D. 【答案】C解析:解:的被开方数是2.A,是整数,所以与不是同类二次根式,故本选项不合题意;B.该二次根式的被开方数是6,所以与不是同类二次根式,故本选项不合题意;C,被开方数是2,所以与是同类二次根式,故本选项符合题意;D,被开方数是3,所以与不是同类二次根式,故本选项不合题意;故选:C.4. 用配方法解方程方程应变形为()A.B.C. D. (x-1)2=1【答案】B解析:解:,,;故选:B.5. 在下列方案中,能够得到是的平分线的是()方案Ⅰ:作菱形,连接.方案Ⅱ:取,以为顶点作矩形,连接交于点,连接.A. 方案Ⅰ可行,方案Ⅱ不可行B. 方案Ⅰ、Ⅱ都可行C. 方案Ⅰ不可行,方案Ⅱ可行D. 方案Ⅰ、Ⅱ都不可行【答案】B解析:方案Ⅰ,证明:菱形,(菱形的性质),是的平分线;方案Ⅱ,证明:矩形,(矩形的性质),,,,是的平分线;故选B.6. 下列一元二次方程没有实数根的是()A. B.C. D.【答案】C解析:解:A.,方程有两个不相等实数根,不合题意;B.,方程有两个不相等的实数根,不合题意;C.,方程没有实数根,符合题意;D.,方程有两个相等的实数根,不合题意.故选:C.7. 下列各式计算正确的是()A. B.C. D.【答案】C解析:解:A、,故选项的计算错误;B、不能合并,故选项的计算错误;C、,故选项的计算正确;D、,故选项的计算错误;故选C.8. 用因式分解法解方程,下列方法中正确的是()A. ,∴或B. ,∴或C. ,∴或D. ,∴【答案】A解析:解:用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是,.所以第一个正确.故选∶A.9. 如图,、分别是正方形的边,上的点,且,,相交于点,下列结论:①;②;③;④中,正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】C解析:解:四边形是正方形,,,,,在和中,,,(故①正确);∴∵∴(故④正确);,,一定成立(故②正确);假设,,(线段垂直平分线上的点到线段两端点的距离相等),在中,,,这与正方形的边长相矛盾,假设不成立,(故③错误);故选:C.10. 如图,边长为4的菱形中,,点E、F分别是、的中点,则的周长是()A. 12B.C. 6D. 【答案】D解析:解:四边形是菱形,,,、分别是、的中点,,在和中,,,,.如图,连接,,与是等边三角形,又、分别是、的中点,,(三线合一),,,是等边三角形.又中,,周长是.故选:D.11. 对于任意两个正数,定义运算※为:,计算的结果为()A. B. C. 5 D. 或5【答案】C解析:解:※※.故选:C.12. 四边形是一张正方形纸片,将其对折,使对折的两部分完全重合,得到折痕,展开后再沿折叠,使点A正好落在上.下列说法:①②③是等边三角形④正确的有()个A. 1B. 2C. 3D. 4【答案】C解析:解:对折正方形纸片,使与重合,得到折痕,,,沿折叠,使点落在上的点处,,,,在中,,∴,;故②正确在中∵,∴,∴故①不正确∵∴,∴∴是等边三角形,故③正确;∴而∴故④正确故选:C二、填空题,每小题4分,共24分.13. 若二次根式有意义,则的取值范围是_________.【答案】解析:解:由题意,得,解得,故答案为:.14. 如图,已知直角三角形的斜边,则斜边上的中线______.【答案】5解析:解:∵直角的斜边,∴斜边上的中线,故答案为:5.15. 关于x的一元二次方程有两个不相等的实数根,则a的取值范围是______.【答案】且##且解析:解:根据题意得:且,解得:且.故答案为:且.16. 如图,在中,以点A为圆心AB长为半径作弧交于点F,分别以点B、F为圆心,大于的长度为半径作弧,交于点G,连接并延长交于点E,若,,则的长为______.【答案】解析:解:如图,连接,由作图可知:,,,,∴,∵,,∴,∴,,∴四边形是平行四边形,∵,∴四边形是菱形,∴.故答案为:.17. 如图,把一张大正方形的内部剪去两个面积分别为8和18的小正方形,那么剩下的纸片的面积是______.【答案】24解析:解:大正方形的边长为,∴剩下的纸片的面积,故答案为:24.18. 如图1,在矩形中,动点从点出发,沿、、运动至点停止,设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则矩形的对角线长为______.【答案】解析:解:动点从点出发,沿、、运动至点停止,而当点运动到点,之间时,的面积不变,函数图象上横轴表示点运动的路程,时,开始不变,说明,时,接着变化,说明,,,矩形的对角线长为.故答案为:.三、解答题:19. 计算:(1);(2).【答案】(1)(2)【小问1解析】解:【小问2解析】20. 如图,菱形的对角线、相交于点O,,,与交于点F,.(1)求证:是矩形;(2)求的长.【答案】(1)见解析(2)12【小问1解析】解:∵,四边形是平行四边形.又菱形对角线交于点,,即.四边形是矩形;【小问2解析】解:∵四边形是矩形∴是的中点,∵四边形是菱形∴是的中点,∴,∵,∴,∵四边形是菱形,∴21. 解方程.(1);(2).【答案】(1),(2),【小问1解析】解:∵,∴,∴,.【小问2解析】解:,,,∴,.22. 如图,四边形为矩形,O为中点,过点O作的垂线分别交、于点E、F,连接、.(1)求证:四边形是菱形;(2)若,,求的长.【答案】(1)见解析(2)【小问1解析】证明:为中点,,为的垂直平分线,,,则,.∵四边形是矩形,,,,∴,四边形平行四边形.又,四边形是菱形;【小问2解析】解:∵四边形是菱形,,,,,,设,在中,,在中,.,解得,.23. 课本知识再现:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.(1)化简:______;______;(2)在有关二次根式得计算中,当出现分母且分母中出现二次根式时,我们往往将分母中得二次根式通过相关知识使分母不含二次根式,如:;我们思考“如何化简”的问题.为了使分母之中不含根号,我们想到平方差公式“”,其特点是类比分数的基本性质和平方差公式,使进行变形:这样计算过程数学上称之为“分母有理化”.请把分母有理化;(3)计算:.【答案】(1),(2)(3)【小问1解析】解:;.故答案为:,.【小问2解析】解:.【小问3解析】解:.24. 在平面直角坐标系中,O是坐标原点,正方形的边长为2,且边、分别在x轴和y轴上.(1)直接写出B点坐标;(2)正方形绕点A顺时针旋转,求点B的对应点的坐标;(3)正方形绕点A顺时针旋转,当点C恰好落在AB延长线上时,直接写出点B的对应点的坐标.【答案】(1)(2)(3)【小问1解析】解:∵正方形的边长为2,∴∵点B在第一内,∴.【小问2解析】解:过点作于E,如图,由旋转可得:,,∴,∴,在中,,∴,,∴.【小问3解析】解:当点C恰好落在AB延长线上时,如图,过点作于D,∵正方形∴∴∵于D,∴∴∵∴∴∴.25. 阅读材料:如果关于x的一元二次方程有两个实数根,且其中一个实数根比另一个大1,称这样的方程为“连根方程”,如方程就是一个连根方程.(1)问题解决:请你判断方程是否是连根方程;(2)问题拓展:若关于x的一元二次方程(m是常数)是连根方程,求m的值;(3)方法总结:如果关于x的一元二次方程(b、c是常数)是连根方程,请直接写出b、c 之间的关系式.【答案】(1)方程是连根方程(2)(3)【小问1解析】解:∵,∴,解得:,∵,∴是连根方程.【小问2解析】解:∵方程(是常数)是“连根方程”,设的两个根为,∴,∴,∴,解得:.【小问3解析】解:方程(b、c是常数)是“连根方程”,设方程的两个根为:,且,∴,∴,∴,∴;∴.。
北京市育才中学2023-2024年八下期中数学试卷及答案
2023—2024学年度第二学期北京市育才学校八年级数学学科期中考试试卷一.选择题:(每小题2分,共20分). 1. 下列各式中,是最简二次根式的是( ).A .BC D2. 以下列各组数为边长,不能构成直角三角形的是( ).A. 3,4,5B. 4,5,6C.D. 1, 23. 下列计算,正确的是( ).A B . C = D 2=4. 关于四边形对角线的性质,下列描述错误的是( ). A .平行四边形的对角线互相平分 B .矩形的对角线互相垂直C .菱形的每一条对角线平分一组对角D .正方形的对角线相等5. 一次函数21y x =+的图象一定经过下列四个点中的( ). A .(12,1) B .(12−,1−) C .(1,3) D .(1−,0) 6. 若△ABC 的面积为12,则以△ABC 三边的中点为顶点的三角形的面积等于( ). A. 6B. 4C. 3D. 27. 一次函数y kx b =+满足0kb >,且y 随x 的增大而减小,则此函数的图象一定 不经过( ). A .第一象限B .第二象限C .第三象限D .第四象限8. 如图,网格中每个小正方形边长均为1,点A ,B ,C 都在格点上,以A 为圆心,AB 长为半径画弧,交最上方的网格线与点D ,则CD 的长为( ). A.5 B. 0.8 C. 52− D. 35−9. 在学校科技节活动中,聪聪用四根长度相同的木条制作了能够活动的菱形学具.他先活动学具成为图1所示菱形,并测得120B ∠=︒,接着活动学具成为图2所示正方形,并测得对角线20AC =cm ,则图1中对角线AC 的长为( ).A .102cmB .202cmC .106cmD .56cm10. 如图1,四边形ABCD 是平行四边形,连接BD ,动点P 从点A 出发,沿折线AB →BD →DA 匀速运动,回到点A 后停止. 设点P 运动的路程为x ,线段AP 的长为y ,图2是y 与x 的函数关系的大致图象,则平行四边形ABCD 的面积为( ).A. 245B. 165C. 125D. 36CB DAP 图1xy68126O 图2D Axyy = 6 xy = k ∙x2ODEBC A17题图x二.填空题:(每小题2分,共16分).11. 若1x −在实数范围内有意义,则实数x 的取值范围是_______. 12. 已知23a =,则a =_______.13. 已知点(2−,1y ),(1,2y )都在直线23y x =−上,则1y _______2y (填“>”,“=”或“<”).14. 函数2y tx t =++为正比例函数,则t 的值为_______.15. 在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D , ∠ACD =3∠BCD ,E 是斜边AB的中点,则∠DCE =_______°.16. 函数y kx =与6y x =−的图象如图所示,则k =_______.17. 如图,一支17cm 的铅笔放在圆柱体笔筒中(铅笔的粗细不计),笔筒内部底面直径为9cm ,内壁高12cm ,那么这支铅笔露在笔筒外的部分长度x (cm )的范围是_______.18. 矩形ABCD 中,点E 是AD 上一点,AE =2,DE =3,DC =6,点F 是AB 边上的动点,以EF 为一边作菱形EFGH ,使顶点H 落在CD 上,连接CG ,则EF 的最小值为_______,△HCG 面积的最小值为_______.GHCDABE F18题图三.解答题:(共8小题,共64分) 19. 计算:(共2小题,每小题4分)(1); (2)22)+.20.(6分)如图,在ABCD 中,点E ,F 分别在BC ,AD 上,且BE =DF .求证:AE ∥CF .21.(8分)如图,折叠矩形ABCD 的一边BC ,使点B 落在AD 边上的点F 处,折痕为CE ,若AD =5,CD =3,求AE 的长.22.(8分)在平面直角坐标系xOy 中, A (1−,4), B (3,0),C (2−,0).(1)求直线AB 所对应的函数的解析式,并画 出直线AB ;(2)直接写出∠OBA 的度数为_______°; (3)若点P 是直线AB 上一点,当△BCP 的面 积为5时,求点P 的坐标.EA B23.(6分)尺规作图:过直线外一点作这条直线的平行线.已知:如图,直线l 和直线l 外一点A . 求作:直线m ,使得m ∥l ,且m 经过点A . 作法:①在直线l 上任取一点B ,以点B 为圆心,任意长为半径作弧,交l 于点C ; ②连接AC ,分别以A ,C 为圆心,大于12AC 长为半径作弧,两弧交于P ,Q 两点;③作直线PQ ,交AC 于点O ;④作射线BO ,在线段BO 的延长线上取点D ,使得DO =BO ; ⑤作直线AD ,则AD 即为所求作直线m .(1)使用直尺和圆规,依作法补全图形(保留作图痕迹); (2)完成下面的证明.证明:连接AB ,CD ,∵PQ 是线段AC 的垂直平分线,垂足为O ,∴AO =CO .又∵DO =BO , ∴四边形ABCD 为( )(用汉字填四边形名称)(_____________________________________)(填推理依据).∴AD ∥BC (____________________________________)(填推理依据).即m ∥l .lAlA24.(9分)探究函数y=|x+1|的图象与性质.请将探究过程补充完整:(1)函数y=|x+1|的自变量x的取值范围是;(2)下表是x与y的几组对应值:m=,n= ;(3)在如图网格中,建立平面直角坐标系xOy,描出上表中各对对应值为坐标的点,并画出该函数的图象;−|+1的图象可以看作是由函数y=|x+1|的图象向(填“左”(4)函数y=|x2或“右”)平移个单位长度,再向(填“上”或“下”)平移个单位长度而得到;(5)以下关于函数y=|x+1|的结论,正确的是.(只填序号)①函数有最小值为0;−时,y随x的增大而减小;②当x>1−,0)且垂直于x轴的直线对称.③图象关于过点(125.(9分)如图,Rt △ABC 中,∠ABC =90°,点D ,E 分别是AC ,AB 的中点,CF //DB ,BF //DC .(1)求证:四边形DBFC 是菱形;(2)若AD =3,DE =1,求四边形DBFC 的面积.26.(10分)如图1,正方形ABCD ,点E 为对角线BD 上任意一点(不与B ,D 重合),连接AE ,过点E 作EF ⊥AE ,交线段BC 于点F ,以AE ,EF 为邻边作矩形AEFG ,连接BG . (1)求证:AE=EF ;(2)猜想线段AB ,BE ,BF 之间的数量关系(用等式表示),并证明. (3)若正方形ABCD 的边长为2,设四边形AGBE 的周长为m ,直接写出m 的取值范围.附加题:(共2小题,第1小题4分,第2小题6分,共10分) 1. 已知m ,n 是两个连续的正偶数,m <n ,a =mn,q = (1)当m =4时,q = ;(2)当m 为任意正偶数时,q 的值是定值吗?如果是,求出这个定值,如果不是,请说明理由.G2. 在平面直角坐标系xOy 中,正方形ABCD 四个顶点的坐标分别是A (2−,2),B (2−,2−),C (2,2−),D (2,2),点M 为正方形ABCD 边上任意一点,点P 为线段OM 上一点(点P 不与点O 、M 重合),且OM nOP =. 若射线OM 上存在一点Q ,满足2OQ OP OM +=,则称线段PQ 是正方形ABCD 关于点M 的n 倍拓展线段.(1)如图2,当点M 的坐标为(2,1)时,在E 1(12,14),E 2(32,34),E 3(3,32) 中, 是正方形ABCD 关于点M 的2倍拓展线段上的点; (2)若点H (m ,2m )是正方形ABCD 关于点M 的2倍拓展线段上的点,请直接写出m 的取值范围;(3)已知点F (0,12),G (32,0),若线段FG 上的所有点都是正方形关于点M 的n 倍拓展线段上的点,请直接写出n 的取值范围.图1 图2P M xOy 12345-1-2-3-4-512345-1-2-3-4-5ADC BM BC D A-5-4-3-2-154321-5-4-3-2-154321y OxxOy12345-1-2-3-4-512345-1-2-3-4-5AD CBxOy 12345-1-2-3-4-512345-1-2-3-4-5A DCB备用图1 备用图22023—2024学年度第二学期北京市育才学校八年级数学学科期中考试试卷参考答案及评分标准一.选择题:(每小题2分,共20分).二.填空题:(每小题2分,共16分)三.解答题(共8小题,满分64分)19. (1; (2)22)+−+− ……3分 =342−+ ……3分 = ……4分 =1 ……4分20. 证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC . ……2分 ∴AF ∥EC . ∵BE =DF ,∴AD −DF =BC −BE ,即AF =EC , ……4分 ∴四边形AECF 是平行四边形. ……5分 ∴AE ∥CF . ……6分21.解:∵四边形ABCD 是矩形,∴AD =BC =5,CD =AB =3,∠A =∠D =90°. ……2分 ∵沿CE 折叠,∴CF =CB =5,BE =EF , ……4分 ∴在Rt △CDF 中,2222534DF CF CD =−=−=, ……5分 ∴AF =AD −DF =5−4=1. ……6分 设AE =x ,则BE =EF =3−x .在Rt △EAF 中,由222AE AF EF +=得:2221(3)x x +=− , ……7分 解得:43x =. 43AE 即的长为. ……8分 22.解:(1)l AB 如图所示 ……1分 设l AB :y kx b =+(k 、b 为常数,且0k ≠)由430k b k b −+=⎧⎨+=⎩, ……3分 解得13k b =−⎧⎨=⎩. 所以l AB :3y x =−+; ……5分 (2)45 ……6分(3)依题意:1=52BCP p S BC y ⋅= ,且BC =5,所以2P y =±.当2P y =时,由23x =−+得:1x =,所以(12)P ,; 当2P y =−时,由23x −=−+得:5x =,所以(52)−,, ……8分 综上所述,(12)P ,或(52)−,. EA B CDF -4-3-2-14321-4-3-2-14321y xO23.(1)如图所示:……3分(2)平行四边形; ……4分 对角线互相平分的四边形是平行四边形; ……5分平行四边形的对边平行. ……6分 24. (1)全体实数; ……1分(2)m =1,n =3; ……3分(3)如图所示……5分(4)右,3;上,1 ……7分 (5)①③ ……9分m25. (1)证明:∵CF//DB,BF// DC,∴四边形DBFC是平行四边形. ……2分∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴BD=CD=12AC. ……3分∴平行四边形DBFC是菱形. ……4分(2)解:∵D,E分别是AC,AB的中点,∴DE是△ABC的中位线.∵AD=3,DE=1,∴AC=2AD =6,BC=2DE =2,……6分∴AB===. ……7分∵四边形DBFC是菱形,∴S四边形DBFC =2S△DBC= S△ABC……8分=11222AB BC⋅=⨯=……9分26.(1)连接EC,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,……1分∴∠ABE=∠EBC =45°.∵BE=BE,∴△ABE≌△CBE(SAS),……2分∴AE=EC,∠BAE=∠BCE.G∵AE ⊥EF ,∠ABC =90°,∴∠BAE+∠BFE =180°. ……3分 ∵∠EFC+∠BFE =180°, ∴∠BAE =∠EFC , ∴∠EFC =∠ECF ,∴EF =EC , ……4分 ∴AE=EF .(2)+AB BF = ……5分 过点E 作EH ⊥BC 于H , ∵∠EBC =45°∴BE, ……6分 ∴FH = BH −BF=2BE BF − ∵EF =EC ,EH ⊥BC , ∴FH =HC=12FC , ……7分∴22FC FH BF ==−, ……8分∴+FC BF BF =−即AB BF =−∴+AB BF =(3)4m ≤<+ ……10分G附加题:1.(1)2 ……1分 (2)是定值 ……2分证明:将n =m +2,a =mn 代入q =q == ……3分=2n m =−= ……4分2. (1)2E ,3E ; ……2分(2)1322m ≤≤或3122m −≤≤−; ……4分 (3)163n ≥. ……6分。
最新人教版八年级(下)期中模拟数学试卷(含答案)
最新人教版八年级(下)期中模拟数学试卷(含答案)一、选择题(共10小题,每小题3分,共30分)下列各题均有四个备选选项,其中有且只有一个正确,请在答题卷上将正确答案的字母涂黑.1x 的取值范围是A .1x ≥B . 1x > C. 1x ≤ D .1x < 2.下列计算错误..的是A.B.C. ÷D. 3.下列各组数是三角形的三边,不能组成直角三角形的一组数是 A. 3,4,5 B. 6,8,10 C. 1,1,2D. ,,4.点(3,-1)到原点的距离为 A.B .3C .1 D5.已知实数x 、y()210y +=,则x ﹣y 等于A. 3B. ﹣3C. 1D. ﹣16.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠A BE 为A. 100B.150C.200D. 2507.()21计算的结果为A.28-.10-28-.10-8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为 A1) B .(2,1)C .(2D.(19.如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A .当E ,F ,G ,H 是各边中点,且AC=BD 时,四边形EFGH 为菱形EB .当E ,F ,G ,H 是各边中点,且AC ⊥BD 时,四边形EFGH 为矩形 C .当E ,F ,G ,H 不是各边中点时,四边形EFGH 可以为平行四边形 D .当E ,F ,G ,H 不是各边中点时,四边形EFGH 不可能为菱形10.如图,三个相同的正方形拼成一个矩形ABCD ,点E 在BC 上,BE=2,EC=10,FM ⊥AE 交AB 于F ,交CD 的延长线于M ,则FM 的长为A .58B .56C .262D .372二、填空题(共6小题,每小题3分,共18分) 11= .12.在实数范围内分解因式:52x = .13.在菱形ABCD 中,对角线AC =2,BD =4, 则菱形ABCD 的周长是 . 14.如图,在矩形ABCD 中,∠DAC=65°,点E 是CD 上一点,BE 交AC 于点F ,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C ′处,则∠AFC ′= .15.AD 是△ABC 的高,AB=4,AC=5,BC=6,则BD= .16.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则ADBC 的值为__________.三、解答题(共8小题,共72分)ABCD第15题图17.(本题8分)计算:(1) (2))(8381412---.18.(本题8分)已知:1a =,1b =.求:(1)a b -的值;(2)ab 的值;(3)a bb a+的值.19.(本题8分)如图,某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行163n mile,“海天”号每小时航行 4n mile.它们离开港口一个半小时后分别位于点Q 、R 处,且相距10n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?20.(本题8分)已知:如图,在ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.21.(本题8分)如图,每个小正方形的边长都为1.ABODFCE(1)请直接写出:四边形ABCD 的面积是 ; (2)求点B 到AD 的距离.22.(本题10分)如图,在矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(1)若PCD ∆是等腰三角形时,求AP 的长; (2)求证:PC ⊥CF .23.(本题10分)已知在Rt △ABC 中,∠ACB=90°.(1)如图1,点O 是AB 的中点,OM ⊥AC 于M ,求证:AM=CM ;CBDA2017∼2018学年度下学期八年级期中考试数学参考答案1 .A 2.B 3.D 4.D 5.A 6.B 7.C 8.C 9.D 10.B 11.2 12.(x x 13. 14. 40︒ 15. 9416. 217.(1)解:原式=263⨯=. (4分) (2)解:原式=(8分)18.(1) 解:原式)11-=2-. (2分)(2) 解:原式=)11=1. (4分)(3)解:原式2211(8分)19.根据题意,161.58,4 1.56,10.3PQ PR QR =⨯==⨯==(2分)222228610,P QP RQ R +=∴+=.(4分) 90QPR ∴∠=︒.(6分)由"远航"号沿东北方向航行可知,45,45NPQ RPN ∠=︒∴∠=︒.(7分) 答:"海天"号沿西北方向航行.(8分)20.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,(2分)∴∠F =∠E ,∠DCA =∠CAB ,(4分) ∵AB =CD ,FD =BE ,∴CF =AE ,(5分) ∴△COF ≌△AOE ,(7分) ∴OE =OF .(8分)(方法二:连接FA 、CE,证四边形FAEC 是平行四边形,也可.)21 . 解:(1)14.5 (4分)(2)连BD ,设B 到AD 的距离为d ,可求90BCD ∠=︒ , AD ==5分)152B C D S=⨯=(6分)114.552ABD S h ∆∴=-=(7分) h ∴=(8分)22.解:(1)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,;(1分)要使△PCD 是等腰三角形,有如下三种情况: ①当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2分)②当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD =∠PDC+∠PDA=90°, ∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3分) ③当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC = 185= ,∴PC=2CQ =365,∴AP=AC-PC=145 .(6分)综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145.(2)连接PF 、DE ,记PF 与DE 的交点为O ,连接OC , 四边形ABCD 是矩形,190,,2BCD OE OD OC ED ∴∠=︒=∴=(7分)在矩形PEFD中,PF DE =,∴12OC PF =,(8分)12OP OF PF ==,OC OP OF ∴==, OCF OFC ∴∠=∠,OCP OPC ∠=∠(9分)又180OPC OFC PCF ∠+∠+∠=︒,22180O C P O C F ∴∠+∠=︒,90PCF ∴∠=︒(10分),ACB ∠=O A 又OM AC ⊥ ②证明:取AB 的中点E ,AC 的中点F ;连接EF,DF ,过P 作PH AQ ⊥于H ,在Rt APH ∆中 2AP t = 30A ∠=︒,AH ∴=又CQ =, AF=CFHF QF ∴=(7分) 又∵D 是PQ 的中点 DF PH ∴PH AC ⊥90ACB ∠=︒PH BC ∴DF BC ∴(8分) ∵E 、F 分别是AB 、AC 的中点 EF BC ∴(9分)∴D 在△ABC 的中位线EF 上.(10分)24.证明:(1)∵EM 垂直平分BD 90EOD MOB ∴∠=∠=︒ OB=OD ∵四边形ABCD 是平行四边形 AD BC ∴ ADB CBD ∴∠=∠ ∴△DOE ≌△BOM ∴OE=OM(2分)又OB=OD EM ⊥BD ∴四边形BMDE 是菱形(3分)(2)延长MN 分别交AB 、AD 的延长线于点E 、F ,作M A F M A E'∠=∠,截取AM AM '=,连接,M N M F '',则有45AFN FND CNM CMN BME E ∠=∠=∠=∠=∠=∠=︒, 45M AN M AF FAN MAE FAN MAN ''∠=∠+∠=∠+∠=︒=∠,又∵AM AM '=AN AN =,MAN ∴∆≌M AN '∆(4分) M N MN '∴=,45MFA E ︒∠=∠= AF AE ∴= 又∵AM AM '= MAF MAE '∠=∠MAF '∴∆≌MAE ∆(5分) ∴M F ME '= M FA E '∠=∠ 则90M FN '∠=︒, 在Rt M FN '∆中,222M N FN M F ''=+,(6分)在Rt MBE ∆中,222ME MB =, 在Rt FDN ∆中,222FN DN =,在Rt MCN ∆中,222MN MC =,2222222M C M N M NBM D N '∴===+,222MC BM DN ∴=+(8分)(3)在矩形ABCD 及四边形EFMN 是平行四边形可证明AF=CN, (9分)如图,延长DC 至N ’,截CN ’=CN,连接FN ’交BC 于M ’,连接MN ’、AC.则有MN ’=MN, 由三角形中两边之和大于第三边易知,无论F 点在什么位置,点M 在M ’处时 FM+MN=FN ’=AC=, (11分) 故四边形EFMN 周长的最小值为.(12分)最新八年级下册数学期中考试题及答案AD FB N 图3CM EM人教版八年级下学期期中数学试卷八年级数学一、选择题1、若二次根式5-x 有意义,则x 的取值范围是( a )A 、5≥xB 、5≤xC 、5 xD 、5 x 2、下面各式是最简二次根式的是( d )A 、8B 、21C 、9D 、2 3、下列各组数中不能作为直角三角形的三边长的是( c )A 、6,8,10B 、5,12,13C 、1.5,2,3D 、9,12,15 4、下列计算正确的是( c ) A 、532=+ B 、3223=- C 、632=⨯ D 、322324= 5、在平面直角坐标系中,点P (1,-3)到原点的距离是( b )A 、4B 、10C 、22D 、无法确定 6、如图所示,在平行四边形ABCD 中,已知AC=3cm ,若△ABC 的周长为9cm , 则平行四边形的周长为( b )A 、6cmB 、12cmC 、16cmD 、11cm 7、下列命题是真命题的是( c )A 、一组对边平行,另一组对边相等的四边形是平行四边形B 、对角线互相垂直的平行四边形是矩形C 、四条边相等的四边形是菱形D 、对角线相等的矩形是正方形8、甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发, 他们离出发地的距离s (km )和骑行时间t (h )之间的函数关系如图所示, 根据图像信息,以上说法正确的是( d )A 、甲和乙两人同时到达目的地;B 、甲在途中停留了0.5h;C 、相遇后,甲的速度小于乙的速度;D 、他们都骑了20km9、已知菱形的面积为24cm ²,一条对角线长为6cm ,则这个菱形的边长是( b )cm A 、8 B 、5 C 、10 D 、410如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于E ,PF ⊥CD 于 F ,连接EF ,给出下列四个结论:①AP=EF,②△APD 一定是等腰三角形,G ,③∠PFE=∠BAP,④PD=2EC.其中正确结论的序号是( d ) A 、①②④ B 、②④ C 、①②③ D 、①③④ 二、填空题11、=÷218__3_____12、在实数范围内因式分解:32-x =__)3)(3(-+x x _13、如图,在直角三角形ABC 中,点D 为AC 的中点,BC=3,AB=4,则BD=____2.5______ 14、“全等三角形的对应角相等”的逆命题 对应角相等的三角形是全等三角形 ,这个命题是__假__命题。
人教版数学八年级下册《期中考试试卷》附答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是( ) A. 4 B. 5 C. 0.2 D. 132. 使二次根式2x -有意义的x 的取值范围是( )A. x≠2B. x >2C. x≤2D. x≥2.3. 下列计算正确的是( )A. 103=7-B. 23=5+C. 333=23-D. 22=22+ 4. 下列各组数中,以a 、b 、c 为边三角形不是直角三角形的是( )A. a =1,b =2,c =3B. a =32,b =2,c =52C. a =5,b =12,c =13D. a =7,b =24,c =255. 在平行四边形ABCD 中,∠A 比∠B 大40°,那么∠C 的度数为( )A 60° B. 70° C. 80° D. 110°6. 在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A. AB =BC ,CD =DAB. AB //CD ,AD =BCC. AB //CD ,∠A =∠CD. ∠A =∠B ,∠C =∠D7. 如图,正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为( )A 13 B. 4 C. 17 D. 58. 菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=( )A72B. 3C.512D.539. 将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是( )A. B.C. D.10. 将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则FMFG的值为( )A. 622-B. 22C. 255D. 522- 二、填空题(每小题3分,共18分)11. 化简:()()2255-+=_____. 12. 若a =2+3,b =2﹣3,则ab 的值为_____.13. 点D 、E 、F 分别是△ABC 三边的中点,若△ABC 的周长是16,则△DEF 的周长是_____.14. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A ,B ,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D ,则CD 的长为_____.15. △ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于D ,分别以AD 、BD 、CD 为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G 刚好在AE 的延长线上,则其中一个菱形AEDF 的面积为_____.16. △ABC 中,AD ⊥BC 于D ,AB =m ,AC =n ,∠ACB =2∠BAD ,用m 、n 表示AD 的长为_____.三、解答题(共72分)17. 计算:(1)1 27123-+=(2)(3622)2-÷=18. 已知:如图,点E,F分别在□ABCD的AB,DC边上,且AE=CF,联结DE,BF.求证:四边形DEBF是平行四边形.19. 已知=51-,求代数式256x x+-的值.20. 如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)直接写出AC的长为,△ABC的面积为;(2)请在如图所示网格中,用无刻度的直尺作出AC边上的高BD,并保留作图痕迹;(3)求BD的长.21. 如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED是菱形.22. 在△ABC中,AB=AC=5.(1)若BC=6,点M、N在BC、AC上,将△ABC沿MN折叠,使得点C与点A重合,求折痕MN的长;(2)点D在BC的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD是直角三角形.23. ▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=12时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.24. 书籍和纸张的长与宽比值都有固定的尺寸,如常用的A3、A4、A5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD长与宽之比也满足以上条件,其中宽AB=2.①点P是AD上一点,将△BP A沿BP折叠得到△BPE,当BE垂直AC时,求AP的长;②若将长方形ABCD绕点B旋转得到长方形A1BC1D1,直线CC1交DD1于点M,N为BC的中点,直接写出MN的最大值:.答案与解析一、选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是()B. C. D.A.[答案]B[解析][分析]根据最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式,可得答案.[详解]解:A.=2,故不符合题意;B.C.,故不符合题意;5D. ,故不符合题意故选:B.[点睛]本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式.2. x的取值范围是( )A. x≠2B. x>2C. x≤2D. x≥2.[答案]D[解析][分析]根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.[详解]解:由题意得,x-2≥0,解得x≥2,故选:D.[点睛]本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.3. 下列计算正确的是( )C. D. 2[答案]C[解析][分析]先把各个二次根式化成最简二次根式再合并判断即可.[详解]解:A,故该选项不符合题意;B不能计算,故该选项不符合题意;C、正确,符合题意;D,故该选项不符合题意;故选:C.[点睛]此题考查二次根式的加减,关键是先把各个二次根式化成最简二次根式再合并解答.4. 下列各组数中,以a、b、c为边的三角形不是直角三角形的是( )A. a=1,b,cB. a=32,b=2,c=52C. a b,cD. a=7,b=24,c=25[答案]C[解析][分析]根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.[详解]解:A、12+2=2,符合勾股定理的逆定理,是直角三角形,故此选项错误;B、22+(32)2=(52)2,符合勾股定理的逆定理,是直角三角形,故此选项错误;C、2+)2≠2,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;D、72+242=252,符合勾股定理的逆定理,是直角三角形,故此选项错误.故选:C.[点睛]本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5. 在平行四边形ABCD中,∠A比∠B大40°,那么∠C的度数为( )A. 60°B. 70°C. 80°D. 110°[答案]D[解析][分析]根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.[详解]画出图形如下所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠C=110°.故选D.[点睛]此题考查了平行四边形的性质.理解平行四边形的对角相等,邻角互补是解题的关键.6. 在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A. AB=BC,CD=DAB. AB//CD,AD=BCC. AB//CD,∠A=∠CD. ∠A=∠B,∠C=∠D[答案]C[解析]分析]根据平行四边形的判定定理,分别进行判断,即可得到答案.[详解]解:如图:A、根据AB=BC,AD=DC,不能推出四边形ABCD是平行四边形,故本选项错误;B、根据AB∥CD,AD=BC不能推出四边形ABCD平行四边形,故本选项错误;C、由AB∥CD,则∠A+∠D=180°,由∠A=∠C,则∠D+∠C=180°,则AD∥BC,可以推出四边形ABCD是平行四边形,故本选项正确;D、∵∠A=∠B,∠C=∠D,∠A+∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB∥CD,但不能推出其它条件,即不能推出四边形ABCD是平行四边形,故本选项错误;故选:C.[点睛]本题考查了对平行四边形判定定理和等腰梯形的判定的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形,等腰梯形的定义是两腰相等的梯形.7. 如图,正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A点出发,到达B点,则它运动的最短路程为( )13 B. 417 D. 5[答案]A[解析][分析]正方体侧面展开为长方形,确定蚂蚁的起点和终点,根据两点之间线段最短、勾股定理即可求出最短路径长.[详解]一.如图,它运动的最短路程22(22)21721AB⎛⎫=++⨯=⎪⎝⎭二、如图,它运动的最短路程2222+21312AB⎛⎫=+⨯=⎪⎝⎭故选:A.[点睛]本题考查了正方体的侧面展开图、两点之间线段最短、勾股定理,掌握正方体的侧面展开图是解题关键.8. 菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=( )A723 C.512D.53[答案]A [解析][分析]连接BF、BD,根据菱形ABCD的边长为2,可得AB=BC=CD=2,由∠A=60°,可得△BCD是等边三角形,进而可求∠DBF=90°,再根据勾股定理分别求出BF、DF的长,进而可得PB的长.[详解]解:如图,连接BF、BD,∵菱形ABCD的边长为2,∴AB=BC=CD=2,∵∠A=60°,∴△BCD是等边三角形,∴BD=BC=2,∠DBC=60°,∴∠DBA=60°,∵点G为AB的中点,∴菱形BEFG的边长为1,即BE=EF=BG=1,∵点E在CB的延长线上,∠GBE=60°,∴∠FBG=30°,连接EG,∴EG⊥FB于点O,3∴OB∴FB3∵∠DBF=∠DBA+∠FBG=90°,根据勾股定理,得DF227DB BF ,∵点P为FD的中点,∴PB =12DF =72. 故选:A .[点睛]本题考查了菱形的性质、等边三角形的判定与性质、直角三角形斜边上的中线、勾股定理,解决本题的关键是掌握菱形的性质.9. 将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是( )A. B.C. D.[答案]B[解析][分析]直接验证三角形三边的平方之间的关系即可作出判断.[详解]解:对于A 选项,((2255160100+=>,三角形为锐角三角形,合理;对于B 选项,102+42<112,说明边长为11的边所对的角是钝角,这个时候三角形不可能完全处在正方形内,故不合理;对于C 选项,(22210839+>,说明边长为239,三角形为锐角三角形,合理; 对于D 选项,62+72<102,说明边长为10的边所对的角为钝角,合理.故选:B .[点睛]本题主要考查了正方形的性质和勾股定理,正确判断各三角形的形状是解答的关键.10. 将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则FMFG的值为( )A. 622-B.22C.255D.522-[答案]A[解析][分析]连接HF,直线HF与AD交于点P,根据正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH 与五边形MCNGF的面积为4x2,5x2,可得GF=2x,根据折叠可得正方形ABCD的面积为24x2,进而求出FM,最后求得结果.[详解]如图,连接HF,直线HF与AD交于点P,∵正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH与五边形MCNGF的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF22GF=2,由折叠可知:正方形ABCD的面积为:4x2+4×5x2=24x2,∴PM 2=24x 2,∴PM =x ,∴FM =PH =12(PM ﹣HF )=12(x ﹣x )=)x ,∴FM GF = 故选:A .[点睛]本题考查了剪纸问题,解决本题的关键是掌握对称的性质.二、填空题(每小题3分,共18分)11. 2=_____. [答案]10[解析][分析]根据二次根式的性质计算.[详解]2 =5+5=10.故答案为:10.[点睛]本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12. 若a =,b =2则ab 的值为_____.[答案]1[解析][分析]直接利用平方差公式计算得出答案.[详解]解:∵22a b ==∴ab =(22+=4﹣3=1.故答案为:1.[点睛]此题主要考查了二次根式的化简求值,正确运用乘法公式是解题关键.13. 点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是_____.[答案]8.[解析][分析]据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.[详解]如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF12=BC,FE12=AB,DE12=AC,∴DF+FE+DE12=BC12+AB12+AC12=(AB+BC+CA)12=⨯16=8.故答案为8.[点睛]本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.14. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为_____.[答案]37[解析][分析]由勾股定理求出AB,再由勾股定理求出DE,即可得出CD 的长.[详解]解:连接AB ,AD ,如图所示:∵AD =AB =222222+=,∴DE =()222217-=,∴CD =37-.故答案为:37-.[点睛]本题考查了勾股定理,由勾股定理求出AB 、DE 是解题的关键.15. △ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于D ,分别以AD 、BD 、CD 为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G 刚好在AE 的延长线上,则其中一个菱形AEDF 的面积为_____.[答案]222[解析][分析]如图所示,连接HG ,设EG 交DH 于点K ,先证明△GDE 是等腰直角三角形,再证明∠GKD =90°,从而在Rt △GHK 中,由勾股定理得x 2+22)x x -=4,求得x 2的值,再根据菱形的面积等于底乘以高,得出菱形BGDH 的面积,即菱形AEDF 的面积.[详解]如图所示,连接HG ,设EG 交DH 于点K ,则HG =2,∵三个菱形全等,∴GD =ED ,∠ADE =∠BDG ,∵AD ⊥BC 于D ,∴∠ADB =∠ADE+∠BDE =90°,∴∠GDE =∠BDG+∠BDE =90°,∴△GDE 是等腰直角三角形,∴∠EGD =∠GED =45°,∵四边形AEDF 为菱形,∴AE ∥DF ,∴∠EDF =∠GED =45°,∴∠GDK =45°,∴∠GKD =90°,设GK =DK =x ,则GD =DH 2x ,HK 2x ﹣x ,在Rt △GHK 中,由勾股定理得:x 2+2(2)x x =4,解得:x 2=2∴菱形BGDH 的面积为:DH•GK 2x•x 2x 2=2+2,∴菱形AEDF 的面积为:2+2.故答案为:2+2.[点睛]本题考查了菱形的性质、菱形的面积计算、等腰直角三角形的判定及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.16. △ABC 中,AD ⊥BC 于D ,AB =m ,AC =n ,∠ACB =2∠BAD ,用m 、n 表示AD 的长为_____.[答案]2242-m n m n[解析][分析]延长BC 至E ,使CE =AC ,连接AE ,根据三角形的外角性质、等腰三角形的性质得到∠B =∠BAC ,得到BC =AC =n ,根据勾股定理、三角形的面积公式计算即可.[详解]延长BC 至E ,使CE =AC ,连接AE ,则∠CAE =∠E ,∵∠ACB =∠CAE+∠E ,∴∠CAE =∠E =12∠ACB , ∵∠ACB =2∠BAD ,∴∠E =∠BAD ,∵AD ⊥BC ,∴∠B+∠BAD =90°,∴∠B+∠E =90°,即∠BAE =90°,∴∠BAC+∠CAE =90°,∵∠B+∠E =90°,∠CAE =∠E ,∴∠B =∠BAC ,∴BC =AC =n ,由勾股定理得,AE 22BE AB -224n m -S △BAE =12×AB×AE =12×BE×AD ,即m×224n m -=2n×AD ,解得:AD 224-m n m , 224-m n m . [点睛]本题考查的是等腰三角形的性质、直角三角形的性质、勾股定理,掌握三角形的外角性质、灵活运用三角形的面积公式是解题的关键.三、解答题(共72分)17. 计算:(1127123= (2)(3622)2÷=[答案](1)33;(2)332. [解析][分析](1)先化简二次根式,再计算二次根式的加减法即可;(2)利用二次根式除法的分配律进行计算即可.[详解](1)原式323333= 433=; (2)原式362222=332=.[点睛]本题考查了二次根式的加减法、除法运算,熟记运算法则是解题关键.18. 已知:如图,点E ,F 分别在□ABCD 的AB ,DC 边上, 且AE=CF ,联结DE ,BF .求证:四边形DEBF 是平行四边形.[答案]见解析[解析][分析]由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,再说明EB=DF ,从而根据一组对边既平行又相等的四边形是平行四边形即可得证.[详解]∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,即EB ∥DF.∵AE =CF ,∴AB -AE =CD -CF ,即EB =DF .∴四边形DEBF 是平行四边形.[点睛]本题主要考查了平行四边形的性质与判定,熟练掌握平行四边形的性质定理与判定定理是解答本题的关键.19. 已知51,求代数式256x x +-的值.[答案]535-+[解析][分析]把x 的值代入多项式进行计算即可.[详解]当51时,256x x +-=))2515516+-=6255556--=535-+[点睛]本题考查了二次根式的化简求值,掌握完全平方公式是解题的关键.20. 如图,在每个小正方形边长为1的网格中,点A 、B 、C 均在格点上.(1)直接写出AC 的长为 ,△ABC 的面积为 ;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD ,并保留作图痕迹;(3)求BD 的长.[答案](1)29,9;(2)见解析;(3)182929[解析][分析](1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据题意画出线段BD即可;(3)根据三角形的面积公式即可得到结论.[详解](1)AC=2225+=29,S△ABC=4×5﹣12×2×4﹣12×2×5﹣12×1×4=9,故答案为:29,9;(2)如图所示,BD即为所求,(3)∵S△ABC=12AC•BD=1292BD=9,∴BD 1829.[点睛]本题考查了作图﹣应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.21. 如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED 是菱形.[答案]见解析[解析][分析]首先根据两对边互相平行的四边形是平行四边形证明四边形OCED 是平行四边形,再根据矩形的性质可得OC=OD ,即可利用一组邻边相等的平行四边形是菱形判定出结论.[详解]证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴OC=OD=12AC=12BD ∴四边形OCED 是菱形.22. 在△ABC 中,AB =AC =5.(1)若BC =6,点M 、N 在BC 、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC :CD =2:3,若AD =10,求证:△ABD 是直角三角形.[答案](1)103;(2)见解析 [解析][分析] (1)如图1,过作AD BC ⊥于,根据等腰三角形的性质得到3BD CD ==,求得4=AD ,根据折叠的性质得到AM CM =,1522AN AC ==,设AM CM x ==,根据勾股定理即可得到结论; (2)如图2,过作AE BC ⊥于,根据等腰三角形的性质得到12BE CE BC ==,设2BC t =,3CD t =,AE h =,得到BE CE t ==,根据勾股定理和勾股定理的逆定理即可得到结论.[详解]解:(1)如图1,过作AD BC ⊥于,5AB AC ==,6BC =,3BD CD ∴==,4AD ∴=,将ABC ∆沿MN 折叠,使得点与点重合,AM CM ∴=,1522AN AC ==, 设AM CM x ==,3MD x ∴=-,222AD DM AM +=,2224(3)x x ∴+-=, 解得:256x , 222225510()()623MN AM AN ∴=-=-=; (2)如图2,过作AE BC ⊥于, AB AC =,12BE CE BC ∴==, :2:3BC CD =,设2BC t =,3CD t =,AE h =,BE CE t ∴==, 5AB =,10AD =,2225h t ∴+=,222(4)10h t +=,联立方程组解得,5t =(负值舍去),55BD ∴=222222510125(55)AB AD BD+=+===,ABD∴∆是直角三角形.[点睛]本题考查了翻折变换(折叠问题),等腰三角形的性质,勾股定理的逆定理,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.23. ▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=12时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.[答案](1)见解析;(2)见解析;(339[解析][分析](1)根据菱形的判定定理得到平行四边形ABCD为菱形,得到△ACD为等边三角形,证明△F AC≌△EAB,根据全等三角形的性质得到AF=AE,根据等边三角形的判定定理证明结论;(2)延长AF至N,使DN=AD,延长AF至P,使FP=AF,延长BC、NP交于点H,根据菱形的判定定理得到四边形ABHN为平行四边形,根据(1)中结论解答;(3)延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,求出PE的长,证明△F AE≌△P AE,根据全等三角形的性质得到EF=PE,得到答案.[详解](1)证明:当n=1时,AD=AB,∴平行四边形ABCD 为菱形,∴∠ACD =12∠BCD =60°,∠CAB =60°, ∴△ACD 为等边三角形,∴AC =AD =AB ,∵∠EAF =60°,∴∠F AE =∠CAB ,∴∠F AC =∠EAB ,在△F AC 和△EAB 中,FAC EAB AC ABFCA EBA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△F AC ≌△EAB (ASA )∴AF =AE ,又∵∠EAF =60°,∴△AEF 为等边三角形;(2)证明:如图2,延长AF 至N ,使DN =AD ,延长AF 至P ,使FP =AF ,延长BC 、NP 交于点H ,∵DN =AD ,FP =AF ,∴DF 是△ANP 的中位线,∴NP ∥AB ,又AN ∥BH ,∴四边形ABHN 为平行四边形,∵AB =AN ,∴平行四边形ABHN 为菱形,由(1)可知,△APE 为等边三角形,∵AF =FP ,∴EF ⊥AP ,∴∠AFE =90°;(3)解:如图3,延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,∵CF=CE,∴∠CFE=∠CEF=30°,∵AG∥BC,∴∠G=∠CEF=30°,∴∠G=∠DFG,∴DG=DF,又DM⊥FG,∴GM=MF,在Rt△DMF中,∠DFM=30°,∴DM=12DF=2,由勾股定理得,MF2223DF DM-=∴GF=3∴PH=GF=3,同理,∠BHE=30°,EH=3,∴∠PHN=60°,∴∠NPH=30°,∴NH=12PH=3∴EN=EH﹣NH3,由勾股定理得,PN22PH NH-6, ∴PE2239PN EN-=∵∠F AE =60°,∠BAD =120°,∴∠DAF +∠EAB =60°,∴∠HAP +∠EAB =60°,即∠EAP =60°,∴∠F AE =∠EAP ,在△F AE 和△P AE 中,AF AP FAE PAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△F AE ≌△P AE (SAS )∴EF =PE =39, 故答案为:39.[点睛]本题考查的是菱形的判定和性质、全等三角形的判定和性质、等边三角形的性质、旋转变换的应用,正确作出辅助线、掌握全等三角形的判定定理和性质定理是解题的关键.24. 书籍和纸张的长与宽比值都有固定的尺寸,如常用的A 3、A 4、A 5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD 长与宽之比也满足以上条件,其中宽AB =2.①点P 是AD 上一点,将△BP A 沿BP 折叠得到△BPE ,当BE 垂直AC 时,求AP 的长; ②若将长方形ABCD 绕点B 旋转得到长方形A 1BC 1D 1,直线CC 1交DD 1于点M ,N 为BC 的中点,直接写出MN 的最大值: .[答案](1)2a b;(2)①232231 [解析][分析] (1)设长方形的长与宽分别为a ,b .根据对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等,构建关系式解决问题即可;(2)①如图1中,延长PE 、BC 交于点G ,证明AC =PG ,PG =BG 即可解决问题;②如图2中,连接BM ,取BD的中点O ,连接OM ,ON ,延长CC 1到K ,使得C 1K =CC 1在MK 的延长线上取一点J ,使得D 1J =D 1K .想办法证明DM =MD 1,推出BM ⊥DD 1,求出OM ,ON 即可解决问题.[详解](1)设长方形的长与宽分别为a ,b . 由题意:2a b a b =,∴a 2=2b 2,∴2a b=; (2)①如图1中,延长PE 、BC 交于点G ,∵∠PEB =90°,∴PE ⊥BE ,∵BE ⊥AC ,BE ⊥PE ,∴PG ∥AC ,∵四边形ABCD 是矩形,∴AB =CD =2,AD =BC =2,AD ∥BG ,∠ABC =90°, ∴四边形APGC 是平行四边形,∴PG =AC 22AB BC +222(22)+23∵AD ∥BC , ∴∠APB =∠GBP ,∵∠APB =∠GPB ,∴∠GBP =∠GPB ,∴GP =GB =3,∴AP =CG =BG =BC =32;②如图2中,连接BM,取BD的中点O,连接OM,ON,延长CC1到K,使得C1K=CC1在MK的延长线上取一点J,使得D1J=D1K,连接BD1.∵BC=BC1,∴∠BCC1=∠BC1C,∵∠BC1D1=∠BCD=90°,∴∠D1C1K+∠BC1C=90°,∠BCC1+∠DCC1=90°,∴∠D1C2K=∠DCC1,∵CD=C1D1,CC1=C1K,∴△DCC1≌△D1C1K(SAS),∴DC1=KD1=JD1,∠CC1D=∠C1KD1,∵∠JKD1+∠C1JKD1=180°,∠CC1D+∠DC1M=180°,∴∠DC1M=∠D1KJ,∵D1J=D1K,∴∠J=∠D1KJ,∴∠J=∠DC1M,∵∠D1MJ=∠DMC1,∴△D1MJ≌△DMC1(AAS),∴D1M=DM′,∵BD=BD1,∴BM⊥DD1,取BD的中点O,连接OM,ON,∵∠BMD=90°,∴OM=12BD3∵BO=OD,BN=CN,∴ON=12CD=1,∵MN≤OM+ON,∴,∴MN+1..[点睛]本题属于几何变换综合题,考查了矩形的性质,旋转变换,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加辅助线构造全等三角形解决问题,属于中考压轴题.。
人教版数学八年级下册《期中考试试卷》(带答案)
人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。
八年级下学期期中考试数学试卷(含有答案)
八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
安徽省芜湖市部分学校2023-2024学年八年级下学期期中考试数学试卷(含答案)
八年级数学(答题时间120分钟,满分150分)温馨提示:本卷共八大题,计23小题,满分150分,考试时间120分钟。
一、选择题(本题共10小题,每小题4分,共40分)1.下列各式中,计算正确的是().A.B.C.D.2.下列各式中属于最简二次根式的是().A.B.C.D.3.估计的值应在().A.4和5之间B.5和6之间C.6和7之间D.7和8之间4.如图,一架靠墙摆放的梯子长5米,底端离墙脚的距离为3米,则梯子顶端离地面的距离为().A.5米B.4米C.3米D.2米5.勾股定理从被发现到现在已有五千年的历史,人们对这个定理的证明找到了很多方法.我国数学家刘徽利用“出入相补”原理(一个平面图形从一处移到另一处,面积不变;又若图形分成若干块,则各部分的面积和等于原来图形的面积)也证明了勾股定理,如图所示,这种证法体现的数学思想是().A.数形结合思想B.分类思想C.函数思想D.归纳思想6.在一个三角形地块中分出一块(阴影部分)种植花草,尺寸如图,则PQ的长度是().A.1m B.2m C.3m D.4m7.如图,在四边形ABCD中,对角线AC和BD交于点O,下列条件能判定四边形ABCD为平行四边形的是().A.,B.,C.,D.,8.如图,在“V”字形图形中,,,,,,若要求出这个图形的周长,则需添加的一个条件是().A.BE的长B.DE的长C.AB的长D.AB与BE的和9.如图所示,有一块直角三角形纸片,,,,将斜边AB翻折,使得点B 恰好落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为().A.2cm B.C.D.5cm10.如图,在中,,,,D为AB边上一动点(不与点A重合),为等边三角形,过点D作DE的垂线,F为垂线上任意一点,连接EF,G为EF的中点,连接BG、CG,则的最小值是().A.B.C.D.10二、填空题(本大题共4小题,每小题5分,满分20分)11.请写出一组勾股数______.12.已知:,,则=______.13.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):若一个三角形的三边长分别为a,b,c,则这个三角形的面积.若一个三角形的三边长a,b,c分别为,,,则这个三角形的面积为______.14.如图,C为平行四边形ABDG外一点,连接BC,DC,分别交边AG于点F,E,使,,,若,,则(1)CE的长为______;(2)AB的长为______.三、(本大题共2小题,每小题8分,满分16分)15.已知实数a在数轴上的对应点位置如图,化简.16.在平面直角坐标系中,按要求完成下列各题:(1)描出下列各点,,,将这些点依次用线段连接,并写出点C关于y轴对称的点的坐标为______;(2)在y轴上有点D,则的最小值为______;(3)证明:是直角三角形.四、(本大题共2小题,每小题8分,满分16分)17.请观察式子:,.仿照上面的方法解决下列问题:(1)化简:①=______;②=______;③=______.(2)把中根号外的因式移到根号内,化简的结果是______.18.如图,在平行四边形ABCD中,∠ABC、∠BCD的角平分线交于边AB上一点E,且.(1)求证:;(2)求线段CE的长.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平行四边形ABCD中,点E在BA的延长线上,点F在DC的延长线上,连接BF、DE、EF,EF交AD于点G,交BC于点H,.求证:四边形EBFD是平行四边形.20.定义:若一个三角形一边上的中线、高线与这条边均有交点,则这两个交点之间的距离称为这条边上的“中高距”.如图,中,AD为BC边上的中线,AE为BC边上的高线,则DE的长称为BC边上的“中高距”.(1)若BC边上的“中高距”为0,则的形状是______三角形;(2)若∠B=30°,∠C=45°,AB=4,求BC边上的“中高距”.六、(本题满分12分)21.高空抛物是一种不文明的危险行为,据研究,从高处坠落的物品,其下落的时间t(s)和高度h(m)近似满足公式(不考虑空气阻力的影响).(1)求物体从40m的高空落到地面的时间;(2)已知从高空坠落的物体所带能量(单位:J)E=10×物体质量(kg)×高度(m),某质量为0.05kg的鸡蛋经过6s落在地上,这个鸡蛋在下落过程中所带能量有多大?你能得到什么启示?(注:65J的能量就可以杀伤无防护的人体)七、(本题满分12分)22.如图,在中,,延长AC到点D,在BC边上取一点H,连接HD,设E和F 分别是AB和HD的中点,连接EF,若EF恰好与BC垂直,垂足为K.已知,试求EF的长.八、(本题满分14分)23.在和中,点D在BC边上,,.(1)若.①如图1,当时,连接EC,证明:;②如图2,当时,过点A作DE的垂线,交BC边于点F,若,,求线段CF的长;(2)如图3,已知,作∠DAE的角平分线交BC边于点H,若,,当时,请直接写出线段BD的长.八年级数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)题号12345678910答案C D D B A B B C B A第10题解析取的中点,连接,则三点共线,进而得到点在直线上运动,作点关于的对称点,连接,得到,进而得到三点共线时,的值最小,作,∵,,∴.即的最小值是.二、填空题(本大题共4小题,每小题5分,满分20分)11.3,4,5(不唯一);12.4;13.;14.(1)2(2分);(2)(3分)三、(本大题共2小题,每小题8分,满分16分)15.解:由图知:,,.(4分)原式.(8分)16.(1)解:如下左图(2分)点关于轴对称的点的坐标为(4分)(2)解:如上右图,点D即为所求(5分)此时.(6分)(3)解:,,,∴,∴是直角三角形.(8分)四、(本大题共2小题,每小题8分,满分16分)17.(1)解:①,②,③.(6分)(2).(8分)(注:只写最后结果不扣分)18.(1)证明:四边形是平行四边形,,,,,,、的角平分线交于边上一点,,,..即.(4分)(2)解:∵,,,,,,由(1)可知.(8分)五、(本大题共2小题,每小题10分,满分20分)19.证明:在平行四边形ABCD中,,,∴,∵∴,即.在和中,∴.(8分)∴,又,∴四边形是平行四边形.(10分)20.解:(1)等腰(4分)(2)在中,,,∴,∴.在中,,,∴,∴.(8分)∵点D为的中点,∴,∴.(10分)六、(本题满分12分)21.解:(1)∵,,∴.(4分)(2)∵,,∴,∴(8分)∴,∴.(10分)严禁高空抛物.(12分)七、(本题满分12分)22.解:如图,分别取AC,CD的中点P、Q,连接PE,FQ,作垂足为M.(2分)∵点、F分别为、的中点,∴分别是、的中位线,∴,.∴,.∵,∴.∵P、Q分别为的中点,∴.∴.∴.∴.(10分)∵,,∴,∵,∴,又∵,∴四边形为平行四边形,∴.(12分)八、(本题满分14分)23.(1)①证明:,,在和中,,.(2分),,,,.(4分)②解:如图2,连接,作交的延长线于点G,,,,,、都是等边三角形,在和中,,.(6分),,,,,,,,,,是的垂直平分线,.(8分)设,则,在中,,即,解得,即线段的长为.(10分)线段的长为5.6.(14分)具体过程如下:如图3,延长至N,使,连接,交的延长线于点M,连接,作于P,,.,,,,在和中,,,,,,,.中,,,,即,.,,.,是的角平分线,,是线段的垂直平分线,.设,则,,在中,,即,解得,.(说明:以上解答方法不唯一,只要合理,均要赋分)。
辽宁省本溪市第十二中集团2023-2024学年八年级下学期期中数学试题(含答案)
本溪市第十二中学教育集团2023—2024学年(下)期中考试八年数学试卷(本试卷共23道题 满分120分 考试时间120分钟)考生注意:请在答题卡各题目规定答题区域内作答,答在本试卷上无效第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果,那么下列运算正确的是( )A .B .C .D .2.在中,,,则的度数为()A .B .C .D .3.我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘徽割圆术”“赵爽弦图”中,中心对称图形是( )A .B .C .D .4.下面各式从左到右的变形,属于因式分解的是()A .B .C .D .5.利用数轴确定不等式组的解集,正确的是( )A .B .C .D .6.分式的值为0,则的值是( )A .0B .C .1D .或17.如图,的顶点,顶点分别在第一、四象限,且轴,若,,则点的坐标是( )a b >33a b -<-33a b +<+33a b-<-22a b<ABC △AB AC =40A ∠=︒ABC ∠70︒40︒110︒65︒()2111x x x x --=--()()2632x x x x --=-+()2211x x -=-()21x x x x-=-12x x ≤-⎧⎨>⎩211x x --x 1-1-OAB △()0,0O ,A B AB x ⊥6AB =5OA OB ==A第7题图A .B .C .D .8.在芦山地震抢险时,某镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不足90人.设预定每组分配的人数是,则应满足的不等式组是( )A .B .C .D .9.如图,中,,将逆时针旋转,得到,交于.当时,点恰好落在上,此时等于( )第9题图A .B .C .D .10.如图1,在中,动点从点运动到点再到点后停止,速度为2单位,其中长与运动时间(单位:)的关系如图2,则的长为()()5,4()3,4()5,3()4,3x x ()()811008190x x ⎧+≥⎪⎨-≤⎪⎩()()811008190x x ⎧-≥⎪⎨+≤⎪⎩()()811008190x x ⎧+>⎪⎨-<⎪⎩()()811008190x x ⎧->⎪⎨+<⎪⎩ABC △55BAC ∠=︒ABC △()055αα<<︒︒ADE △DE AC F 42α=︒D BC AFE ∠80︒82︒84︒86︒Rt ABC △P A B C /s BP t s AC第10题图ABC .D .17第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.分解因式:______.12.如图,已知点的坐标分别为,将沿轴向右平移,使点平移到点,得到,若,则点的坐标为______.第12题图13.如图,在中,的垂直平分线交于点,交于点,连接.若,,则的度数为______.22a ab -=,A B ()()2,4,6,0OAB △x B E DCE △8OE =C ABC △BC BC D AB E CE CE CA =40ACE ∠=︒B ∠第13题图14.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,间店为让利于顾客,计划以利润率不低于的价格降价出售,则该护眼灯最多可降价______元.15.如图,在中,,点为边上一点,连接,将沿折叠,使点落在射线上的点处,若,的面积为______.第15题图三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(每题5分,共计10分)(1)解不等式:,(2)计算:.17.(本小题8分)如图,在由边长为1个单位长度的小正方形组成的网格中,线段的端点均为网格线的交点.(1)将线段先向上平移4个单位长度,再向右平移3个单位长度得到线段,画出线段;(2)将线段绕点顺时针旋转得到线段,画出线段;20%ABC △AB AC =D AC BD ABD △BD A BC E 30BAC ∠=︒CD =CDE △4233x x --≤2211211a a a a a a -⋅--+-1010⨯AB A B 、AB 11A B 11A B 11A B 1A 90︒12A B 12A B(3)连接,直接写出______.18.(本小题8分)如图,平分,,,垂足分别为点,,.(1)求证:;(2)如果,,求证:.19.(本小题8分)小华山大桥是连接太子城、解放北路的交通要道,该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A 部件和3个部件组成,这种设备必须成套运输.已知1个部件和2个部件的总质量为2.8吨,2个部件和3个部件的质量相等.(1)求1个部件和1个部件的质量各是多少;(2)该卡车要运输这种成套设备通过此大桥,一次最多可运输多少套这种设备.20.(本小题9分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合函数图象研究函数性质及其应用的过程.下面,我们对函数展开探索,请补充完整以下探索过程:(1)列表:02468525直接写出的值,______,______.(2)在给出的平面直角坐标系中,利用表格中的数据描点、连线画出该函数图象.12B B 112A B B S =△AD BAC ∠DE AB ⊥DF AC ⊥E F DB DC =BE CF =BD AC ∥15DAF ∠=︒2AB DF =B A B A B A B 332y x m =--x ⋅⋅⋅4-2-⋅⋅⋅y ⋅⋅⋅1-4-1-n⋅⋅⋅,m n m =n =(3)已知函数的图象如图所示,结合你所画的函数图象,则不等式的解集为______.21.(本小题8分)【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:菜价3元/千克第一次质量金额甲2千克6元乙2千克6元菜价2元/千克第二次质量金额甲2千克______元乙______千克6元(1)完成上表;(2)计算甲两次买菜的均价和乙两次买菜的均价.(均价总金额总质量)(3)数学思考:设甲每次买质量为2千克的菜,乙每次买金额为6元的菜,两次的单价分别是元/千克、元/千克,用含有的式子,分别表示出甲、乙两次买菜的均价、,并比较、的大小.22.(本小题12分)(1)如图1,为等边三角形,点为边上一点,将线段绕点逆时针方向旋转得到线112y x =-+313122x m x --≥-+=÷a b a b 、x 甲x 乙x 甲x 乙ABC △D BC AD A 60︒段,连接,求证:(2)如图2,在中,,,点为边上一点,将线段绕点逆时针方向旋转得到线段,连接,若,求线段的长度.(3)如图3,在中,,,点为右侧一点,连接,若,,请直接写出线段的长度.第22题图1 第22题图2 第22题图323.(本小题12分)已知:若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角和是,则称这个两个顶点关于这条底边互为勾股顶针点.如图1,四边形中,是一条对角线,,则点与点关于互为顶针点:若再满足,则点与点关于互为勾股顶针点.【初步思考】(1)如图2,在中,,,为外两点,,,为等边三角形.①点与点______关于互为顶针点;②求证:点与点关于互为勾股顶针点.【实践操作】(2)在长方形中,.①如图3,点在边上,点在边上,请用圆规和无刻度的直尺作出点、,使得点与点关于互为勾股顶针点.(不用证明,不写作法,保留作图痕迹)【思维探究】②如图4,点是线段上的动点,点是平面内一点,点与点关于互为勾股顶针点,直线与直线交于点,在点运动过程中,当线段与线段的长度相等时,求的长.AE,DE CE BD CE=ABC△AB AC=90BAC∠=︒D BC AD A 90︒AE,DE BE3,4AB BD==BEABC△AB AC=120BAC∠=︒D AB,AD BD 4AD=BD=30ADB∠=︒CD180︒ABCD BC,AB AC DB DC==A D BC180BAC BDC∠+∠=︒A D BCABC△AB AC=30ABC∠=︒D E、ABC△EB EC=45EBC∠=︒DBC△A BCD A BCABCD4,6AB AD==E CDF AD E F E B CFE AB P E C BPCP AD F E BE AF AE第23题图1 第23题图2 第23题图3第23题图4 第23题备用图参考答案(仅供参考)1-5 CACBA 6-10 BDABD11.12.13.14.321516.【解答】解(1),②①得:,把代入①得:,解得:,故原方程组的解是:;(2)()2a a b -()4,435︒2335x y x y +=⎧⎨+=⎩①②-2x =2x =43y +=1y =-21x y =⎧⎨=-⎩2211211a a a a a a -⋅--+-17.【解答】解:(1)如图1,线段即为所求;图1(2)如图2,线段即为所求:图2(3)如图3,()221111a a a a a -=⋅---111111a a a a a -=-==---11A B 12A B图3.故答案为:5.18.【解答】证明:(1)平分,,,,;在和中,,,;(2)平分,,,,,,,,,在中,,,,平分,,,,,19.【解答】解:(1)设1个部件的质量为吨,1个部件的质量为吨,由题意得:,解得:,答:1个部件的质量为1.2吨,1个部件的质量为0.8吨.(2)解:设该卡车一次可运输套这种设备通过此大桥.根据题意得:,解得:.为整数,取最大值,.答:该卡车一次最多可运输6套这种设备通过此大桥112111431313245222B A B S =⨯-⨯⨯-⨯⨯-⨯⨯=△AD BAC ∠DE AB ⊥DF AC ⊥DE DF ∴=90E DFC ∠=∠=︒Rt BDE △Rt DFC △BD CD DE DF =⎧⎨=⎩()Rt Rt HL BDE DFC ∴≌△△BE CF ∴=AD BAC ∠15DAF ∠=︒30BAC ∴∠=︒BAD DAF ∠=∠BD AC ∥30DBE BAC ∴∠=∠=︒DAF BDA ∠=∠BAD BDA ∴∠=∠AB BD ∴=Rt BDE △30DBE ∠=︒2BD DE ∴=2AB DE ∴=AD BAC ∠DE AB ⊥DF AC ⊥DE DF ∴=2AB DF ∴=A x B y 2 2.823x y x y +=⎧⎨=⎩ 1.20.8x y =⎧⎨=⎩A B m ()1.20.83830m +⨯⋅+≤559m ≤m m ∴6m ∴=20.【解答】解:(1)把,代入中得:,,当时,,故答案为;4,2;(2)如图所示:(3)由图象可得,不等式的解集为或.21.【解答】解:根据题意,(1)(元),(元/千克).填表如下;菜价2元/千克质量金额甲2千克2元乙3千克6元(2)甲两次买菜的均价为:(元/千克)乙两次买菜的均价为:(元/千克)甲两次买菜的均价为2.5元/千克,乙两次买菜的均价为2.4元/千克.【数学思考】,,0x =1y =-332y x m =--13m -=-4m ∴=6x =363422n =⨯--=313122x m x --≥-+2x ≤-4x ≥224⨯=623÷=()644 2.5+÷=()()6623 2.4+÷+=∴2a b x +=甲2ab x a b=+乙,.22.(1)略 (2(323.【解答】解:(1)根据互为顶针点,互为勾股顶针点的定义可知:①点与点和关于互为顶针点;故答案为:和;②点与点关于互为勾股顶针点,理由:如图2中,图2是等边三角形,,,,,,,,点与点关于互为勾股顶针点;(2)①如图所示,点,点即为所求;()()22022a b a b ab x x a b a b -+-=-=≥++甲乙x x ∴≥甲乙A D E BC D E D A BC BDC △60D ∴∠=︒BD CD=AB AC = 30ABC ∠=︒30ABC ACB ∴∠=∠=︒120BAC ∴∠=︒180A D ∴∠+∠=︒AB AC = BD CD=∴D A BC E F。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
深圳大学附属中学2022-2023学年八年级下学期期中考试数学试卷(含解析)
八年级数学一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1. 垃圾分类人人有责.下列垃圾分类标识是中心对称图形的是()A. B. C. D.答案:B解析:详解:A. 不是中心对称图形,不符合题意;B.是中心对称图形,符合题意;C. 不是中心对称图形,不符合题意;D. 不是中心对称图形,不符合题意;故选B2. 若,则下列不等式成立的是()A. B. C. D.答案:D解析:详解:解:A、若,不等式两边同时乘以,可得,故此选项错误,不符合题意;B、若,不等式两边同时减去,可得,故此选项错误,不符合题意;C、若,不等式两边同时减去,可得,故此选项错误,不符合题意;D、若,不等式两边同时除以,可得,故此选项正确,符合题意.故选:D3. 如图,△ABC沿BC方向平移后的得到△DEF,已知BC=5,EC=2,则平移的距离是( )A. 1B. 2C. 3D. 4答案:C解析:详解:因为沿BC方向平移,点E是点B移动后的对应点,所以BE的长等于平移的距离,由图可知,点B、E、C在同一直线上,BC=5,EC=2,所以BE=BC-ED=5-2=3故选C.4. 已知,,则的值为( )A. 2B. -6C. 5D. -36答案:B解析:详解:解:,当,时,原式,故选:B.5. 在中,,边,则边的长为( )A. B. C. D.答案:C解析:详解:解:∵,∴,∴,∵,∴,∴,即是等腰直角三角形,由勾股定理得:,故选:C.6. 某学校举行“创新杯”篮球比赛,比赛方案规定:每场比赛都要分出胜负,每队胜1场积2分,负1场积1分,每只球队在全部8场比赛中积分不少于12分,才能获奖.小明所在球队参加了比赛并计划获奖,设这个球队在全部比赛中胜x场,则x应满足的关系式是( )A. B. C. D.答案:A解析:详解:解:由题意,胜一场得分,负一场得分,则得不等式:,故答案为:A.7. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=2,AB=6,则△ABD的面积是( )A. 3B. 6C. 12D. 18答案:B解析:详解:解:作DE⊥AB于E,如图所示,由图可知,AP平分∠CAB,∵∠C=90°,DE⊥AB,∴DE=DC=2,∴,故选B.8. 已知一次函数(k、b为常数)的图象如图所示,那么关于x的不等式的解集是()A. B. C. D.答案:C解析:详解:解:由图象可知,函数的图象经过点,并且函数值y随x的增大而减小,∴当时,函数值大于0,即关于x的不等式的解集是.故选:C.9. 如图,把一张长方形纸片沿对角线折叠,若,则长方形纸片的长宽比为( )A. 2:1B. :1C. :1D. 2:答案:C解析:详解:解:设长方形的长、宽分别为b、a,∵四边形是长方形,∴,;由折叠性质得:,,在与中,,∴,∴,∵,∴,∴,∴,,由勾股定理得:,即,∴,∴,故选:C.10. 如图,在中,,,D为的中点,,垂足为E.过点B作交的延长线于点F,连接;现有如下结论:①平分;②;③;④;⑤.其中正确的结论有( )A. 5个B. 4个C. 3个D. 2个答案:B解析:详解:解:∵D为的中点,∴,若平分,,∴,又∵,∴不可能平分,故①错误;∵,,,∴,,∴,是等腰直角三角形,∴,故②正确.,,,,,,,,故③正确.在中,,,是等腰直角三角形,∴是的垂直平分线,.,,,,,故⑤正确.故选B.二、填空题(本大题共5小题,每小题3分,共15分)11. 分解因式:___________.答案:解析:详解:解:原式,故答案为:.12. 如图,等腰三角形ABC中,,,于D,则等于_________.答案:解析:详解:解:∵,,∴,∵,∴,∴,∴,故答案为:.13. 已知x>2 是关于x 的不等式x-3m+1>0 的解集,那么m 的值为_____.答案:1解析:详解:解:x-3m+1>0x>3m-1,∵x>2 是关于x 的不等式x-3m+1>0 的解集,∴3m-1=2,解得:m=1,故答案为:1.14. 如图,直角△ABC沿着点B到点C方向平移到△DEF的位置,AB=4,DH=1,平移距离为2,则阴影部分的面积是___________.答案:7解析:详解:解:由平移的性质得:,,,∵而,∴,故答案为:7.15. 如图,在中,,,,点P为边上任意一点,连接,以C为中心将按逆时针方向旋转得,连接,则的最小值为_________.答案:解析:详解:解:如图,以为边,作等边三角形,连接,∵,,∴,∵是等边三角形,∴,,∴,∵以C为中心将按逆时针方向旋转得,∴,,∴,在和中,,∴,∴,∴当有最小值时,有最小值,∴当时,有最小值,∵,∴,∴的最小值为,故答案为:.三、解答题(本题共7小题,其中第16题5分,第17题8分,第18题7分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16. 解不等式组,并求其整数解;.答案:,整数解为1,2,3解析:详解:解:由,解得,由,解得.所以不等式组解集为,其整数解为1,2,3.17. 因式分解:(1)(2)答案:(1);(2)解析:详解:(1)==;(2)==.18. 如图,在平面直角坐标中,的顶点坐标分别是.(1)将以O为旋转中心旋转,画出旋转后对应的;(2)将平移后得到,若点A的对应点的坐标为,画出平移后对应的;(3)求线段的长度.答案:(1)详见解析(2)详见解析(3)解析:小问1详解:图中为所在图形:小问2详解:图中为所在图形:小问3详解:由(1)与(2)可得,,作轴于点H,则,,,根据勾股定理,得.19. 某工程队承担了一段长为1500米的道路绿化工程,施工时有两种绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?答案:(1)A:5元,B:4元;(2)总长度为500米时,费用最少;总成本最少为36000元解析:详解:(1)设A型花和B型花每枝的成本分别是x元和y元,根据题意得:解得:所以A型花和B型花每枝的成本分别是5元和4元.(2)设按甲方案绿化的道路总长度为a米,根据题意得:1500-a≥2aa≤500则所需工程的总成本是5×2a+4×3a+5(1500-a)+4×5(1500-a)=10a+12a+7500-5a+30000-20a=37500-3a∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少w=37500-3×500=36000(元)∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少,总成本最少是36000元.20. 我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:x2-2xy+y2-4=(x2-2xy+y2)-4=(x-y) 2-22=(x-y-2)(x-y+2).②拆项法:例如:x2+2x-3=x2+2x+1-4=(x+1) 2-2=(x+1-2) (x+1+2) =(x-1) (x+3).(1)分解因式:①4x2+4x-y2+1;②x2-6x+8;(2)已知:a、b、c为△ABC的三条边,a2+b2+c2-4a-4b-6c+17=0,求△ABC的周长.答案:(1)①,②(2)7解析:小问1详解:解:①4x2+4x-y2+1;②x2-6x+8;小问2详解:解:a2+b2+c2-4a-4b-6c+17=0,∴,21. 如图,点O是等边ABC内一点,将CO绕点C顺时针旋转60°得到CD,连接OD,AO,BO,AD.(1)求证:BCO≌ACD.(2)若OA=10,OB=8,OC=6,求∠BOC的度数.答案:(1)见解析;(2)150°解析:详解:(1)证明:∵CO绕点C顺时针旋转60°得到CD∴CO=CD,∠OCD=60°∵△ABC是等边三角形∴CA=CB,∠BCA=60°∴∠BCA=∠OCD∴∠BCO=∠ACD△BCO和△ACD中∴△BCO≌△ACD(SAS).(2)解:∵CO=CD,∠OCD=60°∴△OCD是等边三角形∴OD=OC=6.∠ODC=60°∵△BCO≌△ACD∴AD=OB=8,∠BOC=∠ADC∵OA=10∴OA2=AD2+OD2∴∠ADO=90°∴∠ADC=∠ADO+∠CDO=150°∴∠BOC=∠ADC=150°.22. 班级数学兴趣小组开展“直角三角板拼拼拼”活动.爱思考的小华拿到了两块相同的直角三角板,已知三角板的最小边长为.他先把两块三角板的斜边拼在一起,并画出如图1所示图形.活动一:将一块三角板固定,另一块三角板以角的顶点为中心,按逆时针方向旋转,如图2.(1)若旋转到两块三角板较长直角边垂直,连接两角顶点,如图3所示,则△ABD的面积为__________;(2)在旋转过程中,小华想探究两直角顶点连线与角顶点连线的位置关系,设旋转角为α,若旋转角为α满足,则这两条连线有什么位置关系?写出你的结论,并说明理由.(3)活动二:将一块三角板固定,另一块直角三角板沿着斜边所在射线向上平移d cm,两直角顶点连线与斜边所在射线交点设为F,探究:当为等腰三角形时,求d的值为多少?(直接写出答案)答案:(1)(2),详见解析(3)或解析:小问1详解:解:过点D作于点H,如图,∵,,∴,∴,,在中,,∴,故答案;小问2详解:解:理由:当是,过点A作于点M,交于点N.∵,∴,又∵,∴,即,又,∴(等腰三角形三线合一),∴,∴;小问3详解:解:当时,如图;此时点D与点F重合,则,∴,∵,∴是等边三角形,∴,∴,即;当时,如图,则,∴;取中点P,连接,则是等边三角形,∴,,∴,∵,∴,∴,∴,∵,∴,∴;综上,当为等腰三角形时,或.。
最新八年级(下)期中考试数学试题及答案
最新八年级(下)期中考试数学试题及答案人教版八年级下学期期中数学试卷考试时间: 120分钟 试卷总分:120分一、选择题(本大题共10小题,每小题3分,共30分) 1. 下列计算正确的是( )A.532=+B.632=⨯ C.2332=-D.2221= 2. 要使二次根式3-x 在实数范围内有意义,则x 的取值范围是( )A. x ≠3B. x ≤3C. x >3D. x ≥33. 三角形ABC 的三边长分别为a ,b ,c ,下列条件:①∠A =∠B -∠C②∠A ∶∠B ∶∠C = 3∶4∶5 ③ a 2=(b +c )(b -c ) ④ a ∶b ∶c =5∶12∶13 其中能判定三角形ABC 是直角三角形的有( )个。
A. 1B. 2C. 3D. 44. 如图,在Rt △AED 中,∠E =90°,AE =3,ED =4,以AD 为边在△AED的外侧作正方形ABCD ,则正方形ABCD 的面积是( ) A. 5B. 25C. 7D. 105. 下列条件中,能判定四边形ABCD 为平行四边形的个数是( )①AB ∥CD ,AD=BC ②AB=C D ,AD=BC ③∠A=∠B ,∠C=∠D④AB=AD ,CB=CD A. 1个B. 2个C. 3个D. 4个6. 一架长5米的梯子AB ,斜靠在一竖直的墙上,这时梯子底端距墙底3米,若梯子的顶端沿墙下滑1米,则梯子的底端在水平方向上将滑动( )A.7. A .a +6B .a --6C .a -D .18. 如图,在平面直角坐标系中,点O 、B 、D 的坐标分别是(0,0)、(5,0)、(2,3),若存在点C ,使得以点O 、B 、D 、C 为顶点的 四边形是平行四边形,则下列给出的C 点坐标中,错.误.的是( )A.(3,-3)B.(-3,3)C.(3,5)D.(7,3)9. 在 ABCD 中,对角线AC 、BD 相交于点 O ,若AC 、BD 的和为18 cm ,CD ∶DA =2∶3,△AOB 的周长为13 cm ,那么BC 的长是( ) A .6 cmB .9 cmC .3 cmD .12 cm10. 如图,△ABC 中,∠BAC =60°,∠B =45°,AB =2,点D 是BC 上的一个动点,D 点关于AB ,AC 的对称点分别是E 和F ,四边形AEGF 是平行四边形,则四边形AEGF 面积的最小值是 ( ) A. 1B.26 C. 2 D. 3二、填空题(本大题共6小题,每小题3分,共18分) 11. 化简:12=____________ .12. 如图,数轴上点A 表示数-1,点B 表示数1,过数轴上的点B 作BC 垂直于数轴,若BC =1,以A 为圆心,AC 为半径作圆弧交正半轴于点P ,则点P 所表示的数是______ . 13. 如图,已知长方体的长,宽,高分别为4cm ,3cm ,12cm ,在其中放入一根细棒,则细棒的最大长度可以是 ______ cm.14. 如图,平行四边形ABCD 中,DB =DC ,∠C =70°,AE ⊥BD 于点E ,则∠DAE =____________ .15. 如图,直线L 1,L 2,L 3分别过正方形ABCD 的三个顶点A ,D ,C ,且相互平行,若L 1,L 2的距离为2,L 2,L 3的距离为4,则正方形的对角线长为_______________. 16. 如图,△ABC 中,∠ABC =45°,∠BCA =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则BDAB=____________.三、解答题(本大题共8小题,共72分)17. (满分8分)计算18. (满分8分)已知:如图,在 ABCD 中,点E 、F 在AC 上,且AF =CE ,点G 、H 分别在AB 、CD 上,且AG =CH ,AC 与GH 相交于点O .求证:(1) (4分)EG ∥FH ;(2) (4分)GH 、EF 互相平分.∙19. (满分8分)如图,四边形ABCD 中,AB =BC ==4,∠DAB =∠B =∠C =∠D =90°,E 、F 分别是BC 和CD 边上的点,且,F 为CD 的中点,问△AEF 是什么三角形?请说明理由.20. (满分10分) 已知:2-727=+=n m ,,求: (1) (m +1)(n +1) (2) mn n m +21.(满分8分)如图,在四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,点E是边CD的中点,连接BE并延长交AD的延长线于点F,连接CF.(1)(4分)求证:四边形BDFC是平行四边形;(2)(4分)若CB=CD,求四边形BDFC的面积.(满分8分)在△ABC中,E是AC边上一点,线段BE垂直∠BAC的平分线于D点,点M(2)(4分)若AD=6,BD=8,DM =2,求AC的长.22.(满分10分)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)(2分)出发2秒后,求PQ的长;(2)(2分)当点Q在边BC上运动时,出发几秒钟,△PQB能形成等腰三角形?(3)(6分)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间;23.(满分12分)在平面直角坐标系中,已知A(0,5)B(a,b)且a,b满足b+=.a4-a1--4(1)(3分)如图1,求线段AB的长;(2)(4分)如图2,直线CD与x轴、y轴正半轴分别交于C、D两点,∠OCD=45°,第四象限的点P(m,n)在直线CD上,且mn=-6,求OP2 - OC2的值;(3)(5分)如图3,若点D(1,0),求∠DAO +∠BAO的度数.八年级数学参考答案一、选择题(本大题共10小题,共30分)二、填空题(本大题共6小题,共18分)三、解答题(本大题共8小题,共72分) 17. ①365223+ ②314 18.略19. 直角三角形 20. ①724+ ②32221. ① 略 ② 53 22. ① 略 ② 1423.①132 ②38③ 5.5秒或6秒或6.6秒 24.①132 ②12 ③45°最新人教版八年级(下)期中模拟数学试卷及答案一、选择题(本大题共10小题,每小题3分,共30分。
天津市河东区2023-2024学年八年级下学期期中数学试题(解析版)
2023-2024学年度第二学期八年级数学期中考试试卷一、选择题:本题共12小题,每小题3分,共36分.1. 下列各式一定是二次根式的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了二次根式的定义,关键是正确理解二次根式的定义.根据“一般地,我们把形如的式子叫做二次根式”判断即可.详解】解:A 、当无意义,故此选项不合题意;B是二次根式,故此选项符合题意;C 、,该代数式无意义,故此选项不合题意;D的根指数是3,不是二次根式,故此选项不合题意;故选:B.2. 下列二次根式中,是最简二次根式的是( )A. B.C. D. 【答案】D【解析】【分析】根据最简二次根式的定义判断即可.【详解】解:不是最简二次根式,不符合题意;不是最简二次根式,不符合题意;D.故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不能含有开得尽方的因数或因式;熟练掌握最简二次根式必须满足的两个条件是解题的关键.3. 下列各数属于勾股数的是( )A. 、、B. 、、C. 、、D. ,,【)0a ≥0x <70-<2===1.52 2.568103465a 12a 13a【答案】B【解析】【分析】本题考查的是勾股数.根据勾股定理一一计算两个较小的数的平方和是否等于最大数的平方即可.【详解】解: A .因为不是整数,所以不是勾股数,故本选项不符合题意.B .,是勾股数,故本选项符合题意.C .,不是勾股数,故本选项不符合题意.D .因为不一定是整数,所以不一定是勾股数,故本选项不符合题意.故选:B .4. 如图,字母B 所代表的正方形的面积是( )A. 12B. 15C. 144D. 306【答案】C【解析】【分析】根据勾股定理求出字母B 所代表的正方形的边长,根据正方形的性质即可求出面积答案.【详解】解:如图,在中,由勾股定理得,,字母代表的正方形的边长为,字母B 所代表的正方形的面积为:.故选C .【点睛】本题考查的是勾股定理的应用、正方形的面积,熟知如果直角三角形的两条直角边长分别是和,斜边长为,那么是解决问题的关键.2226810+=222546+≠2cm 2cm 2cm 2cm Rt DEF△12EF cm ===∴B 12cm ∴22212144cm EF ==a b c 222+=a b c5. 在平行四边形中,,则( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了平行四边形的性质,根据平行四边形对边平行得到,再根据已知条件求出的度数即可得到答案.【详解】解;∵四边形是平行四边形,∴,∴,∵,∴,∴,故选:D .6. 如图,在四边形中,对角线、相交于点,下列条件不能判定四边形为平行四边形的是( )A. B. C. D. 【答案】B【解析】【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】A、根据两组对边分别平行的四边形是平行四边形,可以判定,不符合题意;ABCD 23A B ∠∠=::D ∠=36︒60︒72︒108︒180A D A B +=+=︒∠∠∠∠A ∠ABCD AB CD AD BC ∥,∥180A D A B +=+=︒∠∠∠∠23A B ∠∠=::21807232A =︒⨯=︒+∠108D ∠=︒ABCD AC BD O ABCD ,AB CD AD BC∥∥,AD BC AB CD =∥,OA OC OB OD==,AB CD AD BC==B 、无法判定,四边形可能是等腰梯形,也可能是平行四边形,符合题意;C 、根据对角线互相平分的四边形是平行四边形,可以判定,不符合题意;D 、根据两组对边分别相等的四边形是平行四边形,可以判定,不符合题意;故选:B .【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定定理是解题的关键.7. 下列计算结果正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据算术平方根的定义对A 进行判断;根据二次根式的乘法法则对B 、C 、D 进行判断.【详解】解:A,故错误;BC,故错误;D 、,故错误;故选:B .【点睛】本题考查了二次根式的乘法运算及算术平方根的定义,正确运用二次根式的乘法法则及识别平方根与算术平方根的区别是解题的关键.8. 如图,一棵大树在一次强台风中在距地面处折断,倒下后树顶着地点A 距树底B 的距离为,则这棵大树在折断前的高度为( )A. 10B. 17C. 18D. 20【答案】C【解析】【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC 的长,进而可得出结论.【详解】解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC =5m ,AB =12m ,5=±=16=26=5==4==212=5m 12m∴,∴这棵树原来的高度为:BC +AC =5+13=18(m ),即:这棵大树在折断前的高度为18m ,故C 正确.故选:C .【点睛】本题考查了勾股定理的应用,熟知直角三角形斜边的平方等于两直角边的平方和是解答此题的关键.9. 已知实数a 、b 在数轴上的位置如图所示,化简|a +bA. B. 2a C. 2b D. 【答案】A【解析】=|a|,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】此题主要考查了二次根式=|a|.10. 如图,矩形的对角线,相交于点,若,则四边形的周长为( )的()13m AC ===2a-2b-ABCD AC BD O ,CE BD DE AC ∥∥4AC =OCEDA. B. C. D. 【答案】C【解析】【分析】本题考查了菱形的判定和性质,矩形的性质.根据矩形的性质,判定四边形是菱形,故其周长为计算即可.【详解】因为,所以四边形是平行四边形.因为四边形是矩形,所以,所以四边形是菱形,所以周长为,故选:C .11. 如图,点E ,F ,G ,H 分别是四边形边,,,的中点.则下列说法:①若,则四边形为矩形;②若,则四边形菱形;③若四边形是平行四边形,则与互相平分;④若四边形是正方形,则与互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】A 为46810OCED 42OC AC =,CE BD DE AC ∥∥OCED ABCD OD CO =OCED 428OC AC ==ABCD AB BC CD DA AC BD =EFGH AC BD ⊥EFGH EFGH AC BD EFGH AC BD【解析】【分析】本题考查了三角形中位线定理,平行四边形的判定及性质,特殊四边形的判定及性质;由三角形中位线定理及平行四边形的判定方法得四边形是平行四边形,再根据特殊四边形的判定及性质逐一判断即可求解;掌握特殊四边形的判定方法及性质是解题的关键.【详解】解:点E ,F ,G ,H 分别是四边形边,,,的中点,,,,,四边形是平行四边形,①若,则四边形为菱形;结论错误,不符合题意;②若,则四边形为矩形;结论错误,不符合题意;③若四边形是平行四边形,则与不一定互相平分;结论错误,不符合题意;④若四边形是正方形,则与互相垂直且相等;结论正确,符合题意.故选:A .12. 如图,菱形,点、、、均在坐标轴上,,点,点是的中点,点是上的一动点,则的最小值是( )A. 3B. 5C.D. 【答案】A【解析】【分析】直线AC 上的动点P 到E 、D 两定点距离之和最小属“将军饮马”模型,由D 关于直线AC 的对称点B ,连接BE ,则线段BE 的长即是PD +PE 的最小值.【详解】如图:连接BE,EFGH ABCD AB BC CD DA EH BD FG ∴∥∥EF AC GH ∥∥12EH FG BD ==12EF GH AC ==∴EFGH AC BD =EFGH AC BD ⊥EFGH EFGH AC BD EFGH AC BD ABCD A B C D 120ABC ∠=︒()30A -,E CD P OC PD PE+,∵菱形ABCD ,∴B 、D 关于直线AC 对称,∵直线AC 上的动点P 到E 、D 两定点距离之和最小∴根据“将军饮马”模型可知BE 长度即是PD +PE 的最小值.,∵菱形ABCD ,,点,∴,,∴∴△CDB 是等边三角形∴∵点是的中点,∴且BE ⊥CD , ∴故选:A .【点睛】本题考查菱形性质及动点问题,解题关键是构造直角三角形用勾股定理求线段长.二、填空题:本题共6小题,每小题3分,共18分.13.有意义,则x 的取值范围为____________.【答案】x ≥8【解析】【分析】根据被开方数大于等于0列式计算即可得解.∴x ﹣8≥0,的120ABC ∠=︒()30A -,60,30CDB DAO ∠=︒∠=︒3OA =OD AD DC CB ====BD =E CD 12DE CD ==3BE ==解得:x≥8故答案为x≥8【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的被开方数为非负数的性质是解题关键.14. 已知|a=0,则a +b =___.【答案】3【解析】【分析】根据非负性即可求出a ,b ,故可求解.【详解】根据题意得:a +2=0,b ﹣5=0,解得:a =﹣2,b =5,∴a +b =﹣2+5=3.故答案为:3.【点睛】此题主要考查代数式求值,解题的关键是熟知绝对值与二次根式的非负性.15. 菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.【答案】20【解析】【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD .∴△AOB 是直角三角形.∴.∴此菱形的周长为:5×4=20故答案为:20.16. 如图,正方形ODB C 中,OC =1,OA =OB ,则数轴上点A 表示的数是____.12125AB ===【答案】【解析】,结合数轴即可求解.【详解】∵正方形ODBC 中,OC =1,∴BC =OC =1,∠BCO =90°.∵在Rt△BOC 中,根据勾股定理得,OB .∴OA =OB .∵点A 在数轴上原点的左边,∴点A 表示的数是.【点睛】本题考查了实数与数轴,勾股定理,数形结合是解题关键.17. 如图,点O 是矩形的对角线的中点,点E 是的中点,连接,.若,,则矩形的面积为_______【答案】【解析】【分析】利用直角三角形斜边上中线等于斜边的一半得到,利用中位线定理得到,利用勾股定理得到,即求得矩形的面积.【详解】解:∵四边形是矩形,∴,∵点O 是矩形的对角线的中点,的=ABCD BD BC OA OE 2OA =1OE =ABCD 4BD =22CD OE ==BC =ABCD ABCD 90,BAD BCD ∠=∠=︒AB CD =ABCD BD∴,∴,∵点E 是的中点,∴是的中位线,∴∵,∴,∴,∴矩形的面积为故答案为:【点睛】此题考查了矩形的性质、直角三角形的性质、勾股定理、三角形中位线定理等知识,熟练掌握直角三角形的性质和三角形中位线定理是解题的关键.18. 如图,矩形,,,点在轴正半轴上,点在轴正半轴上.当点在轴上运动时,点也随之在轴上运动,在这个运动过程中,点到原点的最大距离为 __.##【解析】【分析】取 的中点 ,连接, ,由勾股定理可求 的长,由直角三角形的性质可求 的长,由三角形的三边可求解.【详解】如图,取的中点,连接,,122AO BD ==4BD =BC OE BCD △12OE CD =1OE =22CD OE ==BC ===ABCD 2BC CD ⋅==ABCD 1AB =2BC =A x D y A x D y C O 1+1AD H CH OH CH OH AD H CH OH矩形,,,,,点是的中点,,,点是的中点,,在中,,当点在上时,,的最大值为,.【点睛】本题考查了矩形的性质,直角三角形的性质,三角形的三边形关系,勾股定理等知识,添加恰当辅助线构造三角形是解题的关键.三、计算题:本大题共1小题,共6分.19. 计算:(1;(2)【答案】(1)(2)【解析】【分析】(1)先化简二次根式,然后计算加减法.(2)先去利用完全平方公式和平方差公式去括号,然后计算加减法.ABCD1AB=2BC=1CD AB∴==2AD BC==H AD1AH DH∴==CH∴===90AOD∠=︒H AD112OH AD∴==OCH∆CO OH CH<+H OC CO OH CH=+CO∴1OH CH+=+123-+))2233-++5-【小问1详解】;【小问2详解】解:.【点睛】本题主要考查了二次根式的加减计算,二次根式的混合计算,乘法公式,正确计算是解题的关键.四、解答题:本题共5小题,共40分.解答应写出文字说明,证明过程或演算步骤.20. 某开发区有一空地,如图所示,现计划在空地上种草皮,经测量,,,,,,求(1)此四边形空地的面积.(2)若每种植平方米草皮需要元,问总共需要投入多少元?【答案】(1)36平方米(2)3600元【解析】【分析】本题考查了勾股定理,勾股定理逆定理:(1)如图,连接,由勾股定理得,,由,可得是直角三角形,且,根据,求面积即可;23-+(33=--+33=-++=))2233++5459=-++-5=-ABCD 90B Ð=°3m AB =4m BC =12m AD =13m CD =1100AC 5AC =22222251216913AC AD CD +=+===ACD 90CAD ∠=︒ABC ACD ABCD S S S =+四边形△△(2)根据,计算求解即可.【小问1详解】解:如图,连接,∵,,,∴由勾股定理得,,∵,,∴,∴是直角三角形,且,∴.【小问2详解】解:由(1)得共需要投入元,答:共需要投入元.21. 如图,在平行四边形中,对角线,交于点,过点任作直线分别交、于点、.(1)求证:;(2)若,,,求四边形的周长.【答案】(1)见解析(2)15【解析】【分析】此题考查了平行四边形的性质以及全等三角形的判定与性质.(1)根据平行四边形的性质得出,求出,根据推出,即可得出答案;100ABCD S ⨯四边形AC 90B Ð=°3m AB =4m BC=5m AC ==12m AD =13m CD =22222251216913AC AD CD +=+===ACD 90CAD ∠=︒()211113451236m 2222ABC ACD ABCD S S S AB BC AC AD =+=⨯⨯+⨯⨯=⨯⨯+⨯⨯= 四边形361003600⨯=3600ABCD AC BD O O AB CD E F OE OF =6CD =5AD =2OE =AEFD ,AB CD OA OC =∥EAO FCO ∠=∠ASA AEO CFO △△≌(2)由,可得,继而求得答案.【小问1详解】证明:四边形是平行四边形,,,,在和中,,,;【小问2详解】解:,∴,四边形的周长.22. 如图,矩形中,,,是边上一点,将沿直线折叠,点的对应点恰好落在边上,求的长.【答案】3【解析】【分析】本题主要考查了矩形与折叠问题,勾股定理与折叠问题,先由矩形的性质和折叠的性质得到,,,,再利用勾股定理求出,则,设,则,在中,由勾股定理得,解方程即可得到答案.【详解】解:四边形是矩形,将沿直线折叠,点的对应点恰好落在边上AEO CFO △△≌24,6EF OE DF AF AB ==+== ABCD AB CD ∴ OA OC =EAO FCO ∴∠=∠AEO △CFO △OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA AEO CFO ∴ ≌OE OF ∴=OAE OCF △≌△AE CF=24,6EF OE DF AE DF FC CD ∴==+=+==∴AEFD 56415AD DF AE EF =+++=++=ABCD 8AB =10AD =E AB BCE CE B F AD AE 8AB CD ==10BC AD FC ===90D A ∠=∠=︒BE EF =6DF =4AF =AE x =8BE FE x ==-Rt AEF ()22248x x +=- ABCD BCE CE B F AD,,,,,,设,则,在中,由勾股定理得∴,解得,.23. 在中,,C 是的中点,过点D 作,且,连接交于F .(1)求证:四边形是菱形;(2)若,菱形的面积为40,求的长.【答案】(1)见解析;(2)10.【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得到,证明即可.(2)根据,计算即可.【小问1详解】证明:,且,∴四边形是平行四边形,∵,C 是的中点,∴,∴平行四边形是菱形.【小问2详解】解:∵四边形是菱形,8AB CD ∴==10BC AD FC ===90D A ∠=∠=︒BE EF=6DF ∴===1064AF ∴=-=AE x =8BE FE x ==-Rt AEF 222AE AF EF +=()22248x x +=-3x =3AE ∴=Rt BDE △90BDE ∠=︒BE AD BE AD BC =AE CD ABCD 8DB =ABCD DE DC BC =12BDE ABCD S S BD DE ==菱形AD BE AD BC =ABCD 90BDE ∠=︒BE DC CB CE ==ABCD ABCD∴,在和中,∵,∴,∴,∵,∴,∴,∴,∴,∴.【点睛】本题考查了平行四边形的判定,菱形的判定,直角三角形的性质,三角形全等的判定和性质,熟练掌握菱形的判定,直角三角形的性质是解题的关键.24. 如图,在矩形中,,,点从点出发向点运动,运动到点停止,同时,点从点出发向点运动,运动到点停止,点,的速度都是每秒个单位长度,连接,,设点,运动的时间为秒.(1)当为何值时,四边形是矩形?(2)当时,判断四边形的形状,并说明理由.(3)整个运动当中,线段扫过的面积是多少?【答案】(1)8(2)四边形为菱形,理由见解析(3)64AB BC CD DA ===ABD △CDB △AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩()SSS ABD CDB ≌ABD CBD S S = BC CE =CDE CBD S S = ABD CBD CDE S S S == 12BDE ABCD S S BD DE == 菱形18402DE ⨯⨯=10DE =ABCD 8AB =16BC =P D A A Q B C C P Q 1PQ AQ .CP P Q t t ABQP 6t =AQCP PQ AQCP【解析】【分析】本题主要考查了矩形的性质与判定,勾股定理,菱形的判定:(1)先由矩形的性质得到,,根据题意可得,则,再由当时,四边形为矩形,得到,据此可得答案;(2)当时,,,再证明四边形是平行四边形,利用勾股定理推出,据此可得结论;(3)连接,,与相交于点,则整个运动当中,线段扫过的面积是的面积的面积,即为矩形的面积的一半,据此求解即可.【小问1详解】解:在矩形中,,,,.由已知可得,∴,在矩形中,,,∴当时,四边形为矩形,∴,解得,当时,四边形是矩形.【小问2详解】解:四边形为菱形,理由如下:当时,,,∵四边形是矩形,∴,∴四边形是平行四边形,在中,由勾股定理得,∴,16BC AD ==8AB CD ==BQ DP t ==16AP CQ t ==-BQ AP =ABQP 16t t =-6t =6BQ DP ==10AP CQ ==APCQ AP AQ =AC BD AC BD E PQ AED △BEC +△ABCD ABCD 8AB =16BC =16BC AD ∴==8AB CD ==BQ DP t ==16AP CQ t ==-ABCD 90B Ð=°AD BC ∥BQ AP =ABQP 16t t =-8t =∴8t =ABQP AQCP 6t =6BQ DP ==10AP CQ ==ABCD 90,B AD BC ∠=︒∥APCQ Rt ABQ10AQ ==AP AQ =∴四边形为菱形;【小问3详解】解:连接,,与相交于点,则整个运动当中,线段扫过的面积是的面积的面积,.,整个运动当中,线段扫过的面积.AQCPAC BD AC BD E PQ AED△BEC+△12AED BEC ABCDS S S+=△△矩形∴PQ118166422AB BC=⨯⨯=⨯⨯=。
山东省泰安市东平县2023-2024学年八年级下学期期中考试数学试卷(含答案)
八年级数学试题注意事项:1本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题56分,非选择题94分,满分150分,考试时间120分钟;2.选择题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效;3.数学考试不允许使用计算器,考试结束后,应将答题卡(纸)交回.第I卷(选择题共48分)一、选择题(本大题共12个小题,每小题4分,共48分.每小题给出的四个答案中,只有一项是正确的.)1.关于四边形,下列说法正确的是()A.对角线相等的是矩形B.对角线互相垂直的是菱形C.对角线互相垂直且相等的是正方形D.对角线互相平分的是平行四边形2.在下列各式中,一定是二次根式的是()A. B. C. D.3.在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形()A.可能不是平行四边形B.一定是菱形D.一定是矩形 C.一定是正方形4.若方程是关于x的一元二次方程,则a的值是()A.2B.-2C.-2或2D.05.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=cm,则OD=()A.1cmB.1.5cmC.2cmD.3cm6.计算的结果为()A.+1B.-1C.1-D.17.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB//DCB.AC=BDC.AC⊥BDD.AB=DC8.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2-12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.189.已知,则x+y的值为()A.1B.-1C.0D.310.如图,在菱形ABCD中,∠A=60°,AD=4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为()A.2B.4C.D.11.已知方程x2+px+q=0的两根分别为3和-4,则x2-px+q可分解为()A.(x-3)(x+4)B.(x+3)(x-4)C.(x+3)(x+4)D.(x-3)(x-4)12.如图,正方形ABCD中,点M是边BC上一点(异于点B、C),AM的垂直平分线分别交AB、CD、BD 于E、F、K,连AK、MK.下列结论:①EF=AM;②AE=DF+BM;③BK=AK;④∠AKM=90°.其中正确的结论个数是()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题4分,共24分.只要求填写最后结果)13函数中自变量x的取值范围是.14.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为.15.若x2+6x+m2是一个完全平方式,则m=.16.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于.17.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为.18.有理数a、b、c在数轴上的位置如图所示,则的值为.三、解答题(本大题共7小题,共78分.写出必要的文字说明、证明过程或推演步骤)19.(每题3分,共12分)计算:(1)(2)(3)(4)20.(每题3分,共12分)用适当的方法解方程(1)81(x-2)2=16(2)y2-6y-6=0(3)-4x2-8x=-1(4)4x(x-1)=3(x-1)21.(本题8分)先化简,再求值:,其中.22.(本题8分)如图,在矩形ABCD是,对角线AC,BD相交于点O,点E、F分别是AO,AD的中点,连接EF,AB=4cm,BC=6cm,求EF的长.23.(本题10分)如图,在四边形ABCD中,AB//DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.24.(本题14分)配方法不仅可以用来解一元二次方程,还可以用来解决一些最值问题.例如:x2+2x+2=x2+2x+1-1+2=(x+1)2+1>1,所以x2+2x+2的最小值为1,此时x=-1.(1)尝试:①2x2-4x+5=2(x2-2x+1-1)+5=2(x-1)2+3,因此当x=时,代数式2x2-4x+5有最小值,最小值是;②-x2-2x=-x2-2x-1+1=-(x+1)2+1≤1,所以当x=时,代数式-x2-2x有最(填“大”或“小”)值.(2)应用:如图,矩形花圃一面靠墙(墙足够长)另外三面所围成的栅栏的总长是18m,栅栏如何围能使花圃面积最大?最大面积是多少?25.(本题14分)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.(1)经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.请你帮小明写出具体的解题步骤.(2)在此基础上,同学们作了进一步的研究:小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(3)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.图1 图2 图3八年级数学参考答案一、选择(本大题共12个小题,每小题4分,共48分.)123456789101112D C D B C B C B A A B C二、填空(本大题共6小题,每小题4分,共24分)13.x≤2且x≠-314.45°15.±316.18cm217.2.418.b-a+2c 19.(每题3分,共12分)(1);(2)5;(3);(4)20.(每题3分,共12分)(1)(2)(3)(4)21.,当时,原式=22.(8分)解:∵四边形ABCD是矩形∴∠ABC=90°,BD=AC,BO=DO在Rt△ABC中,AC=,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,∴EF23.(8分)解:(1)∵AB∥CD∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴O B=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=224.(14分)(1)①1 3;②-1 大(2)设垂直一边AD,分隔成两个有一边相邻的矩形花圃,则这个矩形花圃分隔成两个有一边相邻的矩形花圃,则AB=x米,则BC=(18-2x)米,根据题意可得:,,,当x=时,S有最大值为米.25.(14分)(1)证明:如图1在AB上取AB的中点M,连接ME.则图1AM=BM AB BC=BE=EC∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF(ASA),∴AE=EF.(2)正确证明:如图2在AB上取一点M,使AM=EC,连接ME.图2∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF ASA),∴AE=EF.(3)正确.证明:如图3在BA的延长线上取一点N.使AN=CE,连接NE.图3∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∴∠N=∠ECF,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF ASA)∴AE=EF.。
重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)
重庆市沙坪坝区2023–2024学年下期期中调研测试八年级数学试题卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列二次根式中,是最简二次根式的是( )ABCD2.已知函数,则自变量x 的取值范围是()A .x >-3B .x≥-3C.x ≠-3D .x ≤-33.下列计算,正确的是( )A B .C.D .4的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.下列命题正确的是()A .一组对边平行另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线相等的平行四边形是菱形D .有一个角是直角的菱形是正方形6.如图,用正方形按规律依次拼成下列图案.由图知,第①个图案中有2个正方形;第②个图案中有4个正方形;第③个图案中有7个正方形.按此规律,第8个图案中正方形的个数为()A .16B .22C .29D .377.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是()A .B .C .D .y ==1-=)221-=54+=1-8.如图,5个阴影四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、5、20,则正方形B 的面积为()A .8B .9C .10D .119.如图,在正方形ABCD 中,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ⊥AB 与点F ,EG ⊥BC 于点G ,连接DE ,FG ,若∠AED =α,则∠EFG =()A .a -90°B .180°-aC .a -45°D .2a -90°10.将自然数1,2,3,4,5,6分别标记在6个形状大小质地等完全相同的卡片上,随机打乱之后一一摸出,并将摸出的卡片上的数字分别记为,记,以下3种说法中:①A 最小值为3;②A 的值一定是奇数;③A 化简之后一共有5种不同的结果.说法正确的个数为( )A .3B.2C .1D .0二、填空题(本大题8个小题,每小题4分,共32分)11.计算:______.12.已知一次函数y =-2x +1的图象经过,若,则______(填“>”“<”或“=”).13.如图,□ABCD 对角线AC 、BD 相交于点O ,E 为AB 中点,AE =3,OE =4,则□ABCD 的周长为______.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠OAD =55°.则∠ODC =______.123456,,,,,a a a a a a 123456A a a a a a a =-+-+-()2π1--=1122(,),(,)A x y B x y 12x x >1y 2y15.如图,两个边长均为6的正方形ABCD 、正方形OGFE 有一部分堆叠在一起,O 恰为AC 中点,则图中阴影部分的面积为______.16.若关于x 的一次函数y =x +2a -5的图象经过第二象限,且关于y的分式方程的解为非负整数,则所有满足条件的整数a 的值之和为______.17.如图,将一个长为9,宽为3的长方形纸片ABCD 沿EF 折叠,使点C 与点A 重合,则EF 的长为______.18.若一个四位自然数,满足A ,B ,C ,D 互不相同且A -D =B -C >0;若,规定.(1)当N =1234,且F (M *N)为整数时,A +B-C -D =______;(2)若,且F (M *N )是一个立方数(即某一个整数的立方),则满足条件的M 的最小值为______.三、解答题(本大题8个小题,19题8分,其余题各10分,共78分)19.计算:(2).20.如图,四边形ABCD 是矩形,连接AC 、BD 交于点O ,AE 平分∠BAO 交BD 于点E .210122y a y y y+--=--M ABCD =N abcd =()*5Aa Bb Cc DdF M N +++=N DCBA =))2111++(1)用尺规完成基本作图:作∠ACD 的角平分线交BD 于点F ,连接AF ,EC ;(保留作图痕迹,不写作法与结论)(2)求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是矩形,∴AO =OC ,,∴ ① .∵AE 平分∠BAO ,CF 平分∠DCO ,∴,∴ ② .∵在△AEO 和△CFO 中,∴△AEO ≌△CFO (ASA ),∴ ④ .又∵AO =CO ,∴四边形AECF 是平行四边形( ⑤ ).21.已知在Rt △ABC 中,∠ACB =90°,AC =9,AB =15,BD =5,过点D 作DH ⊥AB 于点H .(1)求CD 的长;(2)求DH 的长.22.随着人口的增加和城市化进程的加快,为了预防污水排放量不断增加而导致水体污染,高新区进行了污水治理,现需铺设一段全场为4600米的污水排放管道,铺了1600米后,为了尽量减少施工对城市交通所造成的影响,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用50天完成了全部任务.(1)求原来每天铺设多少米管道?(2)若承包商安排工人加班后每天支付给工人工资增加了20%,完成整个工程后承包商共支付工人工资224000元,请问安排工人加班前每天需支付工人工资多少元?AB CD ∥11,22EAO BAO FCO DCO ∠=∠∠=∠EAO FCOAO CO ∠=∠⎧⎪=⎨⎪⎩③23.如图,在□ABCD 中,AD =6,CD =4,∠ADC =30°,动点P 以每秒1个单位的速度从点B 出发沿折线B →A →D 运动(含端点),在运动过程中,过点P 作PH ⊥BC 于点H ,设点P 的运动时间为x 秒,点P 到直线BC 的距离与点P 到点A 的距离之和记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)请直接写出当y 为3时x 的值.24.如图,在△ABC 中,,AD 是BC 边上的中线,F 为AC 右侧一点,连接AF 、CF ,恰好满足,连接BF 交AD 于E .(1)求证:四边形ADCF 是菱形;(2)若AB =6,AE =2,求四边形ADCF 的面积.25.如图,在平面直角坐标系中,函数y =-2x +12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式;(2)若点C 是直线AM 上一点,且,求点C 的坐标;(3)点P 为x 轴上一点,当,∠PBA =∠BAM 时,请直接写出满足条件的点P的坐标.90BAC ∠=︒,AF BC CF AD ∥∥23ABC AMO S S =△△26.正方形ABCD 对角线AC ,BD 相交于点O ,E 为线段AO 上一点,连接BE .(1)如图1,若,求AB 的长度;(2)如图2,F 为BC 上一点,连接DF ,G 为DF 上一点,连接OG ,CG ;若∠DOG =∠BEO ,∠FGC =∠BDF ,AE =CG ,求证:BE =2CG ;(3)如图3,若正方形ABCD 边长为2,延长BE 交AD 于F ,在AD 上截取DG =AF ,连接CG 交BD 于H ,连接AH 交BF 于K ,连接DK ,直接写出DK 的最小值.重庆市沙坪坝区2023—2024学年度下期期中调研测试八年级数学试题参考答案及评分意见一、选择题:题号12345678910答案ABCBDDADCB二、填空题:11.2; 12.<; 13.28; 14.35°; 15.9; 16.14; 1718.10;6721.三、解答题:19.;解:原式.BE AE==22=+=+-=(2)解:原式20.(1)如图:(2)①∠BAO =∠DCO . ②∠EAO =∠FCO . ③∠AOE =∠COF . ④OE =OF .⑤对角线互相平分的四边形是平行四边形.21.解:(1)∵∠ACB =90°,AC =9,AB =15,∴Rt △ABC 中,由勾股定理得:,∴CD =CB -BD =12-5=7.(2)∵DH ⊥AB ,∴,∴,∴DH =3.22.解:(1)设原来每天铺设x 米管道,由题意得.解得:x =80.经检验,x =80是原方程的解,且符合题意;答:原来每天铺设80米管道.(2)设安排工人加班前每天应支付工人y 元,由题意得.解得:y =4000.答:安排工人加班前每天应支付工人4000元.))2111++31619=-+-=-12BC ===1122ADB S AB DH BD AC =⋅=⋅△11155922DH ⨯⋅=⨯⨯()1600300050125%x x+=+()160030120%22400080y y ⋅++=23.解:(1)(2)性质:当0<x <4时,y 随x 增大而减小;当4<x <10时,y 随x 增大而增大.(3)x =2或5.24.解:(1)证明:∵,∴四边形ADCF 是平行四边形;∵∠BAC =90°,AD 是BC 边上的中线,∴CD =DA =BD ,∴四边形ADCF 是菱形.(2)如图,连接DF 交AC 于O ;∵四边形ADCF 是平行四边形,∴CD =AF ,∵BD =CD ,∴BD =AF ;∵,∴四边形BDAF 是平行四边形,∴E 为DA 中点,DF =AB =6;∴AD =2AE =4,∴BC =2AD =8;∵在Rt △BAC 中,∠BAC =90°,∴由勾股定理得:∴25.解:(1)在函数y =-2x +12中,令x =0得y =12;∴B (0,12).令y =0得x =6;∴A (6,0).∵M 为OB 中点,∴M (0,6).设直线AM 解析式为y =kx +b ,()140422(410)x x y x x ⎧-+≤≤⎪=⎨⎪-<≤⎩//,//AM BC CF AD //BD AF AC ===11622ADCF S DF AC =⋅⋅=⨯⨯=菱形将A(6,0),M(0,6)代入得:解得∴直线AM解析式为y=-x+6.(2)如图,过点C作CD⊥x轴于N,交直线AB于D,设C(c,-c+6),则D(c,-2c+12),∴∴;∵,∴;∴3|c-6|=12,∴c=10或2,∴C(10,-4)或(2,4).(3)P(12,0)或.26.解:(1)如图,过点E作EH⊥AB于H,60,06k bk b+=⎧⎨⋅+=⎩16kb=-⎧⎨=⎩()()62126CD c c c=-+--+=-ABC ADC BDCS S S=-△△△1122CD AN CD NO=⋅⋅-⋅()1116636 222CD AN NO CD AO c c=⋅-=⋅⋅=⨯⋅-=-11661822AMOS AO MO=⋅⋅=⨯⨯=△22181233ABC AMOS S=⨯=⨯=△△12,07⎛⎫⎪⎝⎭∵四边形ABCD 为正方形,∴∠BAE =∠ABO =45°,∴△AHE 为等腰直角三角形,∴.∴在Rt △BHE 中,由勾股定理得:,∴AB =AH +HB =1+2=3.(4分)(2)证明:如图,过点C 作直线,交DG 延长线于M ,交OG 延长线于N ,连接BM .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,BO =DO ,∠BAE =∠DBC =45°;∵,∴∠BDG =∠1,∠BCM =∠DBC =45°=∠BAE ;∵∠BDG =∠CGF ,∴∠1=∠CGF ,∴CG =CM ;∵AE =CG ,∴AE =CM ;∴在△BAE 与△BCM 中,∴,∴∴BE =BM ,∠ABE =∠2.∵∠DBM =∠2+45°,∠DOG =∠BEO =45°+∠ABE ,∴∠DBM =∠DOG ,∴,∴四边形BONM 是平行四边形,∴BO =MN ,∴DO =MN ;∴在△ODG 与△NMG 中,∴,∴∴OG =GN ,G 为O 中点,∵∠OCN =90°,∴CG =OG ,∵BE =BM =2OG ,∴BE =2G C.1AH HE AE ====2BH ===//MN BD //MN BD AB CBBAE BCM AE CG =⎧⎪∠=∠⎨⎪=⎩()SAS BAE BCM △≌△//BM OG 1DOG OGD NGM OD MN ∠=∠⎧⎪∠=∠⎨⎪=⎩()SAS ODG NMG △≌△(简释,如图:,取AB 中点T ,连接TK ,TD ,则)1-90AHO CHO HAO HCOEBO AKE ⇒∠=∠=∠⇒∠=︒△≌△112DK DT KT AB AB ≥-=-=-。
(最新)初二下册期中考试数学试卷及答案
第二学期期中阶段测试初二数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)第Ⅲ卷附加题三部分,其中第Ⅰ卷(选择题)和第Ⅱ卷共100分,第Ⅲ卷20分,考试时间100分钟。
第Ⅰ卷(共30分)一、选择题:(本大题共10小题,每小题3分,共30分. 在每小题的四个选项中,只有一个选项是符合题目要求的).1.下列各式中,运算正确的是( ). A .3333-= B .822= C .2+323=D .2(2)2-=- 2.下列二次根式中,是最简二次根式的是().A .15B .12C .13D .93.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ). A .1,2,3B .3,4,5C .5,12,13D .2,2,31.4.如图,矩形ABCD 中,对角线AC ,BD 交于O 点. 若∠AOB=60°,AC =8,则AB 的长为( ).A .4B .43C .3D .55.如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连接AB 、AD 、CD ,则四边形ABCD 一定是( ). A .平行四边形 B .矩形 C .菱形 D .正方形6.用配方法解方程2230x x --=,原方程应变形为( ).A .2(1)2x -=B .2(1)4x +=C .2(1)4x -= D .2(1)2x +=7.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF =12,AB =10, 则AE 的长为( ).A .13B .14C .15D .16 8.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形9.如图,一根木棍斜靠在与地面(OM )垂直的墙(ON )上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行. 在此滑动过程中,点P 到点O 的距离( ). A .不变B .变小 C .变大 D .无法判断PFE D C BA E C'D BA10.如图,在菱形ABCD 中,∠BAD =60°,AB =2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF =30°.设DE =x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ).A .线段ECB .线段AEC .线段EFD .线段BF第9题图 第10题图第Ⅱ卷(共70分)二、填空:(每小题2分,共10个小题,共20分) 11.写出一个以0,1为根的一元二次方程. 12.如果3x -在实数范围内有意义,那么x 的取值范围是________. 13.一元二次方程2x +kx -3=0的一个根是x=1,则k 的值是.14.如图,为了检查平行四边形书架ABCD 的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC ,BD 的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理. 15.某城2016年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,预计到2018年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程是 . 16.如图,DE 为△ABC 的中位线,点F 在DE 上,且 ∠AFB =90°,若AB =5,BC =8,则EF 的长为.17.如果关于x 的一元二次方程210ax x +-=有实数根,则a的取值范围 是________.18.如图,矩形ABCD 中,AB=3,BC=5.过对角线交点O 作OE ⊥AC 交AD 于E,则AE 的长是.19.如图,将矩形ABCD 沿对角线BD 所在直线折叠,点C 落在同一平面内,落点记为C’,BC’与AD 交于点E ,若 AB=3,BC =4,则DE 的长为.20.如图,正方形ABCD 的面积是2,E ,F ,P 分别是AB ,BC ,AC 上的动点, PE +PF 的最小值等于.第18题图 第19题图 第20题图三、解答题:(21,22题每小题4分,23,24,25每题5分, 26,27每题6分, 28题7分;共计50分)21.计算(1)188(31)(31)-++-; (2)1(123)622+⨯-NMO A P22.解方程: (1)2650x x -+=;(2) 22310x x --=.23.如图,在四边形ABCD 中,∠B =90º,AB=BC=2,AD =1,CD =3.求∠DAB 的度数.24.列方程或方程组解应用题如图,要建一个面积为40平方米的矩形花园 ABCD ,为了节约材料,花园的一边AD 靠着 原有的一面墙,墙长为8米(AD <8),另三 边用栅栏围成,已知栅栏总长为24米, 求花园一边AB 的长.25.如图,四边形ABCD 中,AB//CD ,AC 平分∠BAD ,CE//AD 交AB 于E. 求证:四边形AECD 是菱形.26.已知关于x 的一元二次方程22(22)40x m x m +++-=有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为负整数,且该方程的两个根都是整数,求m 的值.27.如图,四边形ABCD 是矩形,点E 在CD 边上,点F 在DC 延长线上,AE =BF . (1)求证:四边形ABFE 是平行四边形(2)若∠BEF =∠DAE ,AE =3,BE =4,求EF 的长.28.如图,在正方形ABCD 中,点M 在CD 边上,点N 在正方形ABCD 外部,且满足∠CMN =90°,CM =MN .连接AN ,CN ,取AN 的中点E ,连接BE ,AC ,交于F 点. (1) ①依题意补全图形;②求证:BE ⊥AC .(2)请探究线段BE ,AD ,CN 所满足的等量关系,并证明你的结论.(3)设AB =1,若点M 沿着线段CD 从点C 运动到点D ,则在该运动过程中,线段EN 所扫过的面积为______________(直接写出答案).D A BC D ACB EDA第Ⅲ卷附加题(共20分)附加题(1题6分,2题7分,3题7分,共20分)1. 如图1,将边长为1的正方形ABCD 压扁为边长为1的菱形ABCD .在菱形ABCD 中,∠A 的大小为α,面积记为S .30°45° 60° 90° 120° 135°150° S12122(由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A 大小的变化而变化,不妨把菱形的面积S 记为S (α).例如:当α=30°时,1(30)2S S =︒=;当α=135°时,2(135)S S ο==.由上表可以得到 (60)S S ︒=( ______°);(150)S S ︒=( ______°),…,由此可以归纳出(180)()S S α︒-=.(3) 两块相同的等腰直角三角板按图2的方式放置,AD =2,∠AOB =α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).图2图2 2.已知:关于x 的一元二次方程23(1)230(3)mx m x m m --+>-=. (1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x ,且12x x <. ①求方程的两个实数根1x ,2x (用含m 的代数式表示); ②若1284mx x <-,直接写出m 的取值范围.3. 阅读下列材料:问题:如图1,在平行四边形ABCD 中,E 是AD 上一点,AE=AB ,∠EAB=60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB=∠EAB ,连接AG. 求证:EG =AG+BG.小明同学的思路是:作∠GAH=∠EAB 交GE 于点H ,构造全等三角形,经过推理解决问题. 参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.(1)证明:图1(2)解:线段EG、AG、BG之间的数量关系为____________________________.证明:图2初二数学答案及评分标准=(31)-…………………………………………………3分 2……………………………………………………………4分(2)原式=2, ----2分 ==3⨯3分 ==…………………………………………………………………4分 22.(1)解:2650x x -+=移项,得265x x -=-.配方,得26959x x -+=-+,…………………………………………………1分所以,2(3)4x -=.………………………………………………………………2分 由此可得32x -=±,所以,15x =,21x =.…………………………………………………………4分 (2)解:2a =,3b =-,1c =-.………………………………… 1分224(3)42(1)170b ac∆=-=--⨯⨯-=>.………………………2分方程有两个不相等的实数根x ==,1x 2x .……………………………………4分23.解:连接AC在Rt △ABC 中,∠B =90º,AB =BC =2,∴∠BAC =∠ACB =45°,………………………………………………1分∴222AC AB BC =+.∴22AC =.………………………………2分 ∵AD =1,CD =3,∴222AC AD CD +=.…………………………3分 在△ACD 中,222AC AD CD +=,∴△ACD 是直角三角形,即∠DAC =90º.……………………………………4分 ∵∠BAD =∠BAC +∠DAC ,∴∠BAD =135º.………………………………………………………………5分 24.解:设AB 的长为x 米,则AD=BC=(242x -)米. (242)240x x -⋅=………………………………2分212200x x -+=(10)(2)0x x --=1210,2x x ==………………………………4分当110,4x AD == 当22,20x AD ==8,4AD AD <∴=Q10x ∴=………………………………5分答:AB 的长为10米.25.证明:∵AB ∥CD ,CE ∥AD∴四边形ADCE 是平行四边形…………………1分 ∵AC 平分∠BAD∴∠DAC=∠EAC ………………2分 ∵AB ∥CD∴∠DCA=∠EAC ………………3分 ∴∠DAC=∠DCA∴AD=DC …………………………4分 ∴四边形ADCE 是菱形…………5分26. 解:(1)∵一元二次方程22(22)40x m x m +++-=有两个不相等的实数根, ∴2224(22)41(4)b ac m m ∆=-=+-⨯⨯-………………………………1分 8200m =+>……………………………………………………………2分∴52m >-.……………………………………………………………………3分(2)∵m 为负整数,∴1m =-或2-.……………………………………………………………4分当1m =-时,方程230x -=的根为13x =,23x =-不是整数,不符合题意,舍去.…………………………………………………………………………5分当2m =-时,方程220x x -=的根为10x =,22x =都是整数,符合题意.综上所述2m =-.…………………………………………………………6分27.(1)证明:∵四边形ABCD 是矩形,∴AD =BC , ∠D =∠BCD =90°.∴∠BCF =180°-∠BCD =180°-90°=90°. ∴∠D=∠BCF .------------------------------------------------------------------1分在Rt △ADE 和Rt △BCF 中,,.AE BF AD BC =⎧⎨=⎩∴Rt △ADE ≌Rt △BCF .---------------------------------------------------------2分∴∠1=∠F.∴AE∥BF.∵AE=BF,∴四边形ABFE是平行四边形. ---------------------------------------------------3分(2)解:∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°. --------------------------------------------------------------------------4分在Rt△ABE中, AE=3,BE=4,AB=2222345AE BE+=+=.∵四边形ABFE是平行四边形,∴EF=AB= 5. --------------------------------------------------------------------------6分28.(1)①依题意补全图形.---------------------------------------------------------1分②解法1:证明:连接CE.∵四边形ABCD是正方形,∴∠BCD=90°, AB=BC.∴∠ACB=∠ACD=12∠BCD=45°.∵∠CMN=90°, CM=MN,∴∠MCN=45°.∴∠ACN=∠ACD+∠MCN=90°.∵在Rt△ACN中,点E是AN中点,∴AE=CE=12AN.----------------------------------------------------------------------------2分∵AE=CE,AB=CB,∴点B,E在AC的垂直平分线上.∴BE垂直平分AC.∴BE⊥AC. --------------------------------------------------------------------------------------3分解法2: 证明:连接CE .∵四边形ABCD 是正方形, ∴∠BCD =90°, AB =BC . ∴∠ACB =∠ACD =12∠BCD =45°. ∵∠CMN =90°,CM =MN , ∴△CMN 是等腰直角三角形. ∴∠MCN =45°.∴∠ACN =∠ACD +∠MCN =90°. ∵在Rt △ACN 中,点E 是AN 中点, ∴AE =CE =12AN . 在△ABE 和△CBE 中,,,.AE CE AB CB BE BE =⎧⎪=⎨⎪=⎩∴△ABE ≌△CBE (SSS ). -----------------------------------------------------------------2分 ∴∠ABE =∠CBE . ∵AB =BC ,∴BE ⊥AC . --------------------------------------------------------------------------------------3分 (2)BE =2AD +12CN (或2BE =2AD +CN ). -------------------------------------4分 证明:∵AB =BC , ∠ABE =∠CBE ,∴AF =FC . ∵点E 是AN 中点, ∴AE =EN .∴FE 是△ACN 的中位线. ∴FE =12CN . ∵BE ⊥AC , ∴∠BFC =90°. ∴∠FBC +∠FCB =90°. ∵∠FCB =45°, ∴∠FBC =45°. ∴∠FCB =∠FBC . ∴BF =CF .在Rt △BCF 中,222BF CF BF +=,∴BF =BC .-----------------------------------------------------------------------------5分∵四边形ABCD 是正方形, ∴BC =AD .∴BF AD . ∵BE =BF +FE ,∴BE =2AD +12CN .-------------------------------------------------------------------6分(3)34.---------------------------------------------------------------------------------------7分附加题:1.(1;12.(说明:每对两个给1分)----------------------------------2分(2)120;30;α. -----------------------------------------------------------------------------------4分 (说明:前两个都答对给1分,最后一个α答对给1分) (3)答:两个带阴影的三角形面积相等.证明:将△ABO 沿AB 翻折得到菱形AEBO , 将△CDO 沿CD 翻折得到菱形OCFD .∴S △AOB =12S 菱形AEBO =12S (α)---------------------------------------------------5分S △CDO =12S 菱形OCFD =12S (180α︒-)-----------------------------------------6分由(2)中结论S (α)=S (180α︒-) ∴S △AOB =S △CDO .2.(1)证明:∵23(1)230(0)mx m x m m --+≠-=是关于x 的一元二次方程,∴2[3(1)]4(23)m m m ∆=---- ·············· 1分269m m =-+2(3)m =-. ······················· 2分∵3m >,∴2(3)0m ->,即0∆>.∴方程总有两个不相等的实数根. ·············· 3分(2)①解:由求根公式,得3(1)(3)2m m x m-±-=.∴1x =或23m x m-=.∵3m >, ∴23321m m m -=->.∵12x x <,11 ∴11x =,22332m x m m -==-. ·············· 5分②323m <<. ························ 7分 3.(1)证明:如图1,作∠GAH=∠EAB 交GE 于点H ,则∠GAB=∠HAE .……………………1分∵∠EAB=∠EGB ,∠AOE=∠BOF ,∴∠ABG=∠AEH . 在△ABG 和△AEH 中 GAB HAEAB AE ABG AEH ⎧∠∠⎪⎨⎪∠∠⎩===∴△ABG ≌△AEH .……………………2分∴BG=EH ,AG=AH .∵∠GAH=∠EAB=60°,∴△AGH 是等边三角形.∴AG=HG .∴EG=AG+BG ;……………………3分(2)线段EG 、AG 、BG 之间的数量关系是EG+BG =AG .………4分 证明:如图2,作∠GAH=∠EAB 交GE 的延长线于点H ,则∠GAB=∠HAE . ∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH .……………………5分在△ABG 和△AEH 中,∴△ABG ≌△AEH .……………………6分∴BG=EH ,AG=AH .∵∠GAH=∠EAB=90°,∴△AGH 是等腰直角三角形.∴AG=HG ,∴EG+BG =AG . (7)O。
黑龙江省牡丹江市2023-2024学年八年级下学期期中数学试题(含答案)
2023-2024学年度第二学期八年级期中考试数学试卷考生注意:1.考试时间90分钟2.全卷共分三道大题,总分120分3请在答题卡上作答,在试卷上作答无效一、选择题(每小题3分,满分30分)1.下列根式是最简二次根式的是( )A .9B .12C .0.1D .32.下列各式中,运算正确的是( )A .2(2)2-=-B .284⨯=C .2810+=D .222-= 3.下列条件中,不能判定四边形为平行四边形的是( )A .AB //CD ,AD =BCB .∠A =∠C ,∠B =∠D C .AB =CD ,AD =BCD .AB //CD ,AB =CD 4.下列命题的逆命题是真命题的是( ) A .对顶角相等 B .等边三角形是锐角三角形C .矩形的对角线相等D .平行四边形的对角线互相平分 5.如图:在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF //BC 交AC 于M ,若CM =5,则CE 2+CF 2等于( )A .75B .100C .120D .1256.如图,在矩形COED 中,点D 的坐标是(1,3),则CE 的长是( )A .3B .22C 10D .47.已知a <b ,则化简二次根式3a b -的正确结果是( ) A .a ab -- B .a ab - C .a ab D .a ab -8.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE =CF ,连接EF ,BF ,EF 与对角线交于点O ,且BE =BF ,∠BEF =2∠BAC , FC =2,则AB 的长为( )A .83B .8C .43D .69.如图,在△ABC 中,AE ⊥BC 于点E ,BD ⊥AC 于点D ;点F 是AB 的中点,连接DF ,EF ,设∠DFE =x °,∠ACB =y °,则( )A .y =xB .y =-12x +90C .y =-2x +180D .y =-x +9010.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,AE 平分∠BAD ,分别交BC ,BD 于点E ,P ,连接OE ,∠ADC =60°,AB =12BC =1,则下列结论: ①∠CAD =30°;②BD =7;③ABCD S AB AC =⋅;④OE =14AD ;⑤38APO S =,正确的个数是( )A .2B .3C .4D .5二、填空题(每小题3分,共30分)11.1x +x 的取值范围是 . 12.如图,已知四边形ABCD 的对角线AC 与BD 相交于点O ,∠DAC =∠BCA ,添加一个条件 ,使四边形ABCD 为平行四边形(填一个即可).13.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足2694|5|0a a b c -++-+-=,则△ABC 的形状是 三角形.14.计算:152+= . 15.如图,在矩形ABCD 中,AB =5,AD =3,动点 P 满足 13PAB ABCD SS =矩形,则点 P 到A 、B 两点距离之和P A +PB 的最小值为 .16.如图,每个小正方形的边长为1,在△ABC 中,点D 为AB 的中点,则线段CD 的长为 .17.在Rt △ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a ∶b =2∶3,c =65,则a = . 18.如图,在四边形ABCD 中,CD =7,∠C =30°,M 为AD 中点,动点P 从点B 出发沿BC 向终点C 运动,连接AP ,DP ,取AP 中点N ,连接MN ,则线段MN 的最小值为 .19.在平行四边形ABCD 中,BC 边上的高为4,AB =5,AC 5=ABCD 周长等于 . 20在矩形ABCD 中,AD =9,点G 在边AD 上,AB =GD =4,边BC 上有一点H ,将矩形沿边GH 折叠,点C 和D 的对应点分别是C '和D ',若点A , D '和C '三个点恰好在同一条直线上时,AC '的长为 .三、解答题(满分60分)21.计算(每小题6分,共18分)(1)2(32218310)⨯-+; (2)2(4236)22(31)-÷--;(3)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中52,52x y =+=-. 22.(6分)已知平行四边形ABCD 中,AE ⊥BC 于E ,CF ⊥AD 于F .图1 图2(1)如图1,求证:四边形AECF 为矩形;(2)如图2,连接BF ,DE 分别交AE ,CF 于M ,N 两点,请直接写出图中的所有平行四边形. 23.(6分)矩形ABCD 中,AB =10,BC =3,E 为AB 边的中点,P 为CD 边上的点,且△AEP 是腰长为5的等腰三角形,请你画出图形,直接写出线段AP 长.24.(8分)如图,在ABCD 中,∠BAD =32°,分别以BC ,CD 为边向外作△BCE 和△DCF ,使BE =BC , DF =DC ,∠EBC =∠CDF ,延长AB 交边EC 于点H ,点H 在E ,C 两点之间,连接AE ,AF .(1)求证:△ABE ≌△FDA ;(2)当AE ⊥AF 时,求∠EBH 的度数.25.(10分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.实践操作:如图1,在矩形纸片ABCD 中,AB =4cm .第一步:如图2,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;第二步:如图3,再一次折叠纸片,使点A 落在EF 上点N 处,折叠BM 过点B 交AD 于M ,连接BN .图1 图2 图3解决问题(1)在图3中,EN 与AB 的关系是 ,EN = cm ;(2)在图3中,连接AN ,试判断△ABN 的形状,并给予证明;拓展应用(3)已知,在矩形ABCD 中,AB =4cm ,AD =8cm ,点P 在边AD 上,将△ABP 沿着BP 折叠,若点A 的对应点A '恰落在矩形ABCD 的对称轴上,则AP = cm .26.(12分)如图,点O 为坐标原点,四边形OABC 为矩形,边OC 、OA 分别在x 轴、y 轴上,A (0,a ),C(c ,0),且a 、c 满足2|4|(8)0a c -+-=.(1)求B ,C 两点的坐标;(2)把△ABC 沿AC 翻折,点B 落在B '处,线段AB 与x 轴交于点D ,求CD 的长;(3)在平面内是否存在点P ,使以A ,D ,C ,P 为顶点的四边形是平行四边形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.2023-2024学年度第二学期八年级期中考试数学试卷参考答案一、选择题(每小题3分,满分30分)1.D2.B3.A4.D5.B6.C7.A8.D9.B 10.C二、填空题(每小题3分,满分30分)11.x ≥-1且x ≠2 12.AD =BC (答案不唯一) 13.直角 1452 4116.262 17.25或213 18.74 19.20或12 20.7或1三、解答题(共60分)21解:(1)原式=64236320-+……(2分)=8-12+65-……(2分)=65--4……(2分)(2)原式=323(3231)2---+……(2分) =3234232--+……(2分) =322-……(2分) (3)解:原式=1()()()()()x y x y x y x y x y x y y x y ⎡⎤-++÷⎢⎥+-+-+⎣⎦=2()()()x y x y x y x y ⋅++- =2xy x y-.………………(4分) 当52,52x y =+=-时,原式=2(52)(52)21425252+-==+-+.………………(2分) 22.(1)证明:∵四边形ABCD 为平行四边形,∴AD ∥BC .∵AE ⊥BC 于E ,CF ⊥AD 于F ,∴∠AEB =∠EAD =∠BCF =∠CFD =90°.∴四边形AECF 为矩形.………………(2分)(2)解:图中所有的平行四边形为:四边形FDEB ,四边形ABCD ,四边形AECF ,四边形MFNE .……(4分)23.如图,AP =10=或5或310=1分,答案1分24.(1)在平行四边形ABCD 中,AB =DC .又DF =DC ,∴AB =DF .同理,EB =AD .……(2分)在平行四边形ABCD 中,∠ABC =∠ADC .又∠EBC =∠CDF ,∴∠ABE =∠ADF .∴△ABE ≌△FDA (SAS ).……(2分)(2)∵△ABE ≌△FDA .∴∠AEB =∠DAF .∵∠EBH =∠AEB +∠EAB ,∴∠EBH =∠DAF +∠EAB . ∵AE ⊥AF .∴∠EAF =90°……(2分)∵∠BAD =32°,∴∠DAF +∠EAB =90°-32°=58°. ∴∠EBH =58°……(2分)25.解:EN 垂直平分AB ,4分)(2)解:△ABN 为等边三角形;理由如下:∵EN 垂直平分AB ,∴AN =BN .……(2分)又∵AB =BN ,∴AB =BN =AN .∴△ABN 为等边三角形;……(2分)(3)AP 的长为4cm ……(2分) 26.解:(1)∵|a -4|+(8-c )2=0,∴a -4=0,8-c =0解得a =4,c =8……(2分)∴A (0,4),C (8,0).∵四边形AOCB 是矩形,∴AB =OC =8,BC =AO =4∴B (8,4).…………(1分)(2)∵四边形ABCD 是矩形,∴AB ∥CD .∴∠BAC =∠ACO .……(2分)∵由轴对称的性质得∴,BAC B AC BC B C ∠∠'='=.∴∠DAC -∠DCA .∴DA =DC .……(2分)设DA =DC =x ,则8DB AB AD x '=='--.在Rt DB C '中,222DB B C DC ''+= ,即222(8)4x x =-+,解得x =5,即CD =5……(2分)(3)P (-5,4)或P (5,4)或P (11,-4).……(3分)。
山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试题(含解析)
山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图形中是中心对称图形的是( )A.B.C.D.2.如图,屋顶钢架外框是等腰三角形,其中AB=AC,工人师傅在焊接立柱时,只用找到BC的中点D,这就可以说明竖梁AD垂直于横梁BC了,工人师傅这种操作方法的依据是( )A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”3.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标态.则通过该桥洞的车高x(m)的范围在数轴上可表示为( )A.B.C.D.4.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B′的坐( )A.(﹣4,0)B.(2,0)C.(﹣4,2)D.(2,2)5.若a<b,则下列不等式一定成立的是( )A.a﹣6>b﹣6B.3a>3b C.﹣2a<﹣2b D.a﹣b<06.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°7.已知点A(a﹣2,2a+6)在第二象限,则a的取值范围是( )A.a<﹣3或a>2B.﹣3<a<2C.a<2D.a>﹣38.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数( )A.35°B.75°C.55°D.65°9.如果不等式(a+1)x>a+1的解集为x<1,则a必须满足( )A.a<0B.a≤1C.a>﹣1D.a<﹣110.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为( )A.B.C.D.二.填空题(本大题共6小题,每小题3分,共18分)11.如图是环岛行驶的交通标志,表示在环形交叉路口中,车辆按逆时针方向绕行.将这个图案绕着它的中心旋转一定角度后与自身重合,则旋转的角度至少为 .12.某校举行“学以致用,数你最行”数学知识抢答赛,共有20道题,规定答对一道题得10分,答错或放弃扣4分,在这次抢答赛中,八年级1班代表队被评为优秀(88分或88分以上),则这个队至少答对 道题.13.如图,在△ABC中,∠ABC的平分线与BC的垂直平分线交于点P,连接CP.若∠A=75°,∠ABC=62°,则∠ACP的度数为 °.14.若不等式组的解集是x>3,则m的取值范围是 .15.如图,已知在四边形ABCD中,AD∥BC,AM平分∠BAD交BC于点M,BE⊥AM于点E,EF⊥AD 于点F,AB=7,EF=3,则△ABM的面积为 .16.如图,函数y=kx+b(k,b为常数,k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,下列结论:①点A的横坐标为2;②关于x的不等式kx+b<0的解集为x>2;③关于x的方程kx+b=2x的解为x=2;④关于x的不等式组0<kx+b<2x的解集为1<x<2.其中正确的是 (只填写序号).三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹.17.(4分)已知:如图,四边形ABCD;求作:点P,使点P在四边形ABCD内部,PD=PC,且点P到∠BAD两边的距离相等.四.解答题(本大题共7小题,共68分)18.(20分)计算:(1)解不等式x﹣1≥2x;(2)解不等式,并把解集表示在数轴上;(3)求不等式3(x﹣3)﹣6<2x﹣10的非负整数解;(4)解不等式组:;(5)解不等式组:.19.(6分)如图,BD,CE是△ABC的高,且BD=CE.(1)求证:△ABC是等腰三角形;(2)若∠A=60°,AB=2,求△ABC的高BD.20.(6分)△ABC的各顶点坐标分别为A(1,4),B(3,4),C(3,1),将△ABC先向下平移2个单位长度,再向左平移4个单位长度,得到△A1B1C1.(1)如果将△A1B1C1看成是由△ABC经过一次平移得到的,则平移的距离是 个单位长度;(2)在y轴上有点D,则AD+CD的最小值为 个单位长度;(3)作出△ABC绕点O顺时针旋转90°后的△A2B2C2.21.(8分)如图,已知△ABC,以AC为边构造等边△ACD,连接BD,在BD上取一点O,使∠AOD=60°,在OD上取一点E,使AO=AE,连接OC.(1)求证:△AOC≌△AED;(2)OA,OB,OC三条线段长度之和与图中哪条线段的长度相等?请说明理由.22.(9分)两个家庭暑假结伴自驾到某景区旅游,该景区售出的门票分为成人票和儿童票,小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元.(1)求成人票和儿童票的单价;(2)售票处规定:一次性购票数量达到30张,可购买团体票,即每张票均按成人票价的八折出售.若干个家庭组团到该景区旅游,导游收到通知该团成人和儿童共30人,估计儿童8至16人.导游选择哪种购票方式花费较少?23.(9分)【问题情境】如图①,△ABC的内角∠ABC,∠ACB的平分线BD,CD交于点D.【建立模型】(1)如图②,过点D作BC的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.(2)如图③,在图①的基础上,过点A作直线l∥BC,延长BD和CD,分别交l于点E,F,若AB=4,AC=3,请你直接写出EF的长度(不需要证明).【类比探究】如图④,△ABC的内角∠ABC的平分线BD,与它的外角∠ACG的平分线CD交于点D,过点D作BC 的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.24.(10分)如图,在长方形ABCD中,DC=3cm,AD=6cm,延长BC至点E,使CE=4cm,连接DE.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为2cm/s;连接PQ,DQ.当点Q停止运动时,点P也停止运动.设运动时间为t(s)(0<t≤3),解答下列问题:(1)当t为何值时,使点Q在∠PDC的平分线上?(2)当t为何值时,△DQE为等腰三角形?(3)设四边形PQED的面积为y(cm2),求y与t之间的关系式及四边形PQED面积的最大值.山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图形中是中心对称图形的是( )A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此即可得到答案.【解答】解:选项A、B、C中的图形都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项D中的图形能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:D.【点评】本题考查中心对称图形,关键是掌握中心对称图形的定义.2.如图,屋顶钢架外框是等腰三角形,其中AB=AC,工人师傅在焊接立柱时,只用找到BC的中点D,这就可以说明竖梁AD垂直于横梁BC了,工人师傅这种操作方法的依据是( )A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”【分析】根据等腰三角形的性质解答即可.【解答】解:∵AB=AC,BD=CD,∴AD⊥BC,故工人师傅这种操作方法的依据是等腰三角形“三线合一”,故选:D.【点评】本题考查等腰三角形的性质,熟知等腰三角形“三线合一”性质是解答的关键.3.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标态.则通过该桥洞的车高x(m)的范围在数轴上可表示为( )A.B.C.D.【分析】利用已知图表直接得出该桥洞的车高x(m)的取值范围.【解答】解:由题意可得:通过该桥洞的车高x(m)的取值范围是:0<x≤4.5.在数轴上表示如图:.故选:D.【点评】此题主要考查了在数轴上表示不等式的解集.根据图表理解题意是解题的关键.4.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B′的坐( )A.(﹣4,0)B.(2,0)C.(﹣4,2)D.(2,2)【分析】根据左减右加,上加下减的规律解决问题即可.【解答】解:∵将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,∴点B的对应点B'的坐标是(﹣1﹣3,1+1),即(﹣4,2).故选:C.【点评】本题考查坐标与图形变化﹣平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.5.若a<b,则下列不等式一定成立的是( )A.a﹣6>b﹣6B.3a>3b C.﹣2a<﹣2b D.a﹣b<0【分析】根据不等式的性质分析判断.【解答】解:A、已知a<b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,所以a﹣6>b﹣6错误;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,所以3a>3b错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b错误;D、a﹣b<0即a<b两边同时减去b,不等号方向不变.不等式一定成立的是a﹣b<0.故选:D.【点评】此题主要考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°【分析】熟记反证法的步骤,然后进行判断即可.【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.【点评】此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.已知点A(a﹣2,2a+6)在第二象限,则a的取值范围是( )A.a<﹣3或a>2B.﹣3<a<2C.a<2D.a>﹣3【分析】根据题意列出不等式组,解之即可得出答案.【解答】解:由题意知,,解得﹣3<a<2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数( )A.35°B.75°C.55°D.65°【分析】根据旋转的性质可得∠ACA′=35,∠A=∠A′,结合∠A′DC=90°,可求得∠A′,即可获得答案.【解答】解:根据题意,把△ABC绕C点顺时针旋转35°,得到△A′B′C,由旋转的性质,可得∠ACA′=35,∠A=∠A′,∵∠A′DC=90°,∴∠A′=90°﹣∠ADA′=55°,∴∠A=∠A′=55°.故选:C.【点评】本题主要考查旋转的性质、直角三角形两锐角互余等知识,熟练掌握旋转的性质是解题关键.9.如果不等式(a+1)x>a+1的解集为x<1,则a必须满足( )A.a<0B.a≤1C.a>﹣1D.a<﹣1【分析】根据不等式的解集,得到不等号方向改变,即a+1小于0,即可求出a的范围.【解答】解:∵不等式(a+1)x>(a+1)的解为x<1,∴a+1<0,解得:a<﹣1.故选:D.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.10.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为( )A.B.C.D.【分析】由角平分线的性质定理推出CD=MD,由勾股定理求出AC的长,由△ABC的面积=△ACD的面积+△ABD的面积,得到AC•BC=AC•CD+AB•MD,因此4×3=4CD+5CD,即可求出CD的长,得到DB的长.【解答】解:作DM⊥AB于M,由题意知AD平分∠BAC,∵DC⊥AC,∴CD=DM,∵∠C=90°,AB=5,BC=3,∴AC==4,∵△ABC的面积=△ACD的面积+△ABD的面积,∴AC•BC=AC•CD+AB•MD,∴4×3=4CD+5CD,∴CD=,∴BD=BC﹣CD=3﹣=.故选:D.【点评】本题考查勾股定理,角平分线的性质,作图—基本作图,三角形的面积,关键是由角平分线的性质得到CD=MD,由三角形面积公式得到AC•BC=AC•CD+AB•MD.二.填空题(本大题共6小题,每小题3分,共18分)11.如图是环岛行驶的交通标志,表示在环形交叉路口中,车辆按逆时针方向绕行.将这个图案绕着它的中心旋转一定角度后与自身重合,则旋转的角度至少为 120° .【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故答案为:120°.【点评】本题考查了利用旋转设计图案,仔细观察图形求出旋转角是120°的整数倍是解题的关键.12.某校举行“学以致用,数你最行”数学知识抢答赛,共有20道题,规定答对一道题得10分,答错或放弃扣4分,在这次抢答赛中,八年级1班代表队被评为优秀(88分或88分以上),则这个队至少答对 12 道题.【分析】设这个队答对了x道题,则答错或放弃(20﹣x)道题,利用得分=10×答对题目数﹣4×答错或放弃题目数,结合得分不低于88分,可列出关于x的一元一次不等式,解之取其中的最小值,即可得出结论.【解答】解:设这个队答对了x道题,则答错或放弃(20﹣x)道题,根据题意得:10x﹣4(20﹣x)≥88,解得:x≥12,∴x的最小值为12,即这个队至少答对12道题.故答案为:12.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.13.如图,在△ABC中,∠ABC的平分线与BC的垂直平分线交于点P,连接CP.若∠A=75°,∠ABC=62°,则∠ACP的度数为 12 °.【分析】根据线段的垂直平分线的性质得到PB=PC,得到∠PBC=∠PCB,根据角平分线的定义、三角形内角和定理及角的和差求解即可.【解答】解:∵BP是∠ABC的平分线,∠ABC=62°,∴∠ABP=∠CBP=∠ABC=31°,∵P是线段BC的垂直平分线上一点,∴PB=PC,∴∠PBC=∠PCB,∴∠ABP=∠CBP=∠PCB=31°,∵∠A=75°,∠ABC=62°,∠A+∠ABC+∠ACB=180°,∴∠ACP=∠ACB﹣∠PCB=12°,故答案为:12.【点评】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.若不等式组的解集是x>3,则m的取值范围是 m≤3 .【分析】先解第一个不等式得到x>3,由于不等式组的解集为x>3,根据同大取大得到m≤3.【解答】解:,解①得x>3,∵不等式组的解集为x>3,∴m≤3.故答案为m≤3.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.15.如图,已知在四边形ABCD中,AD∥BC,AM平分∠BAD交BC于点M,BE⊥AM于点E,EF⊥AD 于点F,AB=7,EF=3,则△ABM的面积为 21 .【分析】过E作EG⊥AB于G,则EG=EF=3,即可求出△ABE的面积,证明BE是△ABM的中线,由三角形中线的性质即可得出答案.【解答】解:过E作EG⊥AB于G,如图:∵AM平分∠BAD,∴EG=EF=3,∠DAM=∠BAM,∴S△ABE=×7×3=,∵AD∥BC,∴∠BAM=∠AMB,∴AB=BM,∵BE⊥AM,∴BE是△ABM边AM上的中线,∴S△ABM=2S△ABE=2×=21.故答案为:21.【点评】本题考查了角平分线的性质,平行线的性质、等腰三角形的判定与性质、三角形中线的性质等知识;熟练掌握角平分线的性质是解题的关键.16.如图,函数y=kx+b(k,b为常数,k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,下列结论:①点A的横坐标为2;②关于x的不等式kx+b<0的解集为x>2;③关于x的方程kx+b=2x的解为x=2;④关于x的不等式组0<kx+b<2x的解集为1<x<2.其中正确的是 ②④ (只填写序号).【分析】根据所给函数图象,利用数形结合的思想及一次函数与一元一次不等式的关系,对所给结论依次进行判断即可.【解答】解:由所给函数图象可知,A点的纵坐标为2,则2x=2,解得x=1,所以点A的横坐标为1.故①错误.因为点B坐标为(2,0),所以当x>2时,函数y=kx+b的图象在x轴下方,即kx+b<0,则不等式kx+b<0的解集为x>2.故②正确.因为函数y=2x和函数y=kx+b交点的横坐标为1,所以方程kx+b=2x的解为x=1.故③错误.由函数图象可知,当x>1时,函数y=kx+b的图象在函数y=2x图象的下方,即kx+b<2x,当x<2时,函数y=kx+b的图象在x轴上方,即kx+b>0,所以关于x的不等式组0<kx+b<2x的解集为1<x<2.故④正确.故答案为:②④.【点评】本题考查一次函数与一元一次不等式及一次函数与一元一次方程,数形结合思想的巧妙运用是解题的关键.三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹.17.(4分)已知:如图,四边形ABCD;求作:点P,使点P在四边形ABCD内部,PD=PC,且点P到∠BAD两边的距离相等.【分析】作∠BAD的角平分线,作CD的垂直平分线,两条线交于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查了作图﹣复杂作图,角平分线的性质,线段垂直平分线的性质,解决本题的关键是掌握角平分线和线段垂直平分线的作法.四.解答题(本大题共7小题,共68分)18.(20分)计算:(1)解不等式x﹣1≥2x;(2)解不等式,并把解集表示在数轴上;(3)求不等式3(x﹣3)﹣6<2x﹣10的非负整数解;(4)解不等式组:;(5)解不等式组:.【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1,并把解集表示在数轴上即可;(3)先求出不等式的解集,再求出其非负整数解即可;(4)(5)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)移项得,x﹣2x≥1,合并同类项得,﹣x≥1,x的系数化为1得,x≤﹣1;(2)去分母得,4+3x≤2(1+2x),去括号得,4+3x≤2+4x,移项得,3x﹣4x≤2﹣4,合并同类项得,﹣x≤﹣2,x的系数化为1得,x≥2,在数轴上表示为:;(3)去括号得,3x﹣9﹣6<2x﹣10,移项得,3x﹣2x<﹣10+9+6,合并同类项得,x<5,故其非负整数解为:0,1,2,3,4;(4),由①得,x≤1,由②得,x<3,故不等式组的解集为:x≤1;(5),由①得,x<,由②得,x≥1.故不等式组的解集为:1≤x<.【点评】本题考查的是解一元一次不等式组,解一元一次不等式及在数轴上表示不等式的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.19.(6分)如图,BD,CE是△ABC的高,且BD=CE.(1)求证:△ABC是等腰三角形;(2)若∠A=60°,AB=2,求△ABC的高BD.【分析】(1)由“HL”可证Rt△CDB≌Rt△BEC,可得∠ABC=∠ACB,即可求解;(2)由直角三角形的性质可求AD的长,由勾股定理可求解.【解答】(1)证明:∵BD,CE是△ABC的高,∴∠ADB=∠AEC=90°,在Rt△CDB和Rt△BEC中,,∴Rt△CDB≌Rt△BEC(HL),∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形;(2)解:∵∠A=60°,∠BDA=90°,∴∠ABD=30°,∴AD=AB=1,∴BD===.【点评】本题考查了全等三角形的判定和性质,直角三角形的性质,证明三角形全等是解题的关键.20.(6分)△ABC的各顶点坐标分别为A(1,4),B(3,4),C(3,1),将△ABC先向下平移2个单位长度,再向左平移4个单位长度,得到△A1B1C1.(1)如果将△A1B1C1看成是由△ABC经过一次平移得到的,则平移的距离是 2 个单位长度;(2)在y轴上有点D,则AD+CD的最小值为 5 个单位长度;(3)作出△ABC绕点O顺时针旋转90°后的△A2B2C2.【分析】(1)利用网格根据勾股定理计算即可;(2)取点A关于y轴的对称点A′,连接A′C交y轴于点D,可得AD+CD的最小值即为A′C的长度;(3)根据旋转的性质即可作出△ABC绕点O顺时针旋转90°后的△A2B2C2.【解答】解:(1)∵将△A1B1C1看成是由△ABC经过一次平移得到的,∴平移的距离是=2个单位长度;故答案为:2;(2)如图点D为所求,∴AD+CD的最小值为=5个单位长度;故答案为:5;(3)如图,△A2B2C2即为所求.【点评】本题考查了作图﹣旋转变换,平移变换,轴对称﹣最短路线问题,解决本题的关键是掌握旋转和平移的性质.21.(8分)如图,已知△ABC,以AC为边构造等边△ACD,连接BD,在BD上取一点O,使∠AOD=60°,在OD上取一点E,使AO=AE,连接OC.(1)求证:△AOC≌△AED;(2)OA,OB,OC三条线段长度之和与图中哪条线段的长度相等?请说明理由.【分析】(1)根据SAS证明三角形全等即可;(2)结论:BD=OA+OB+OC,理由全等三角形的性质证明.【解答】(1)证明:∵∠AOE=60°,AO=AE,∴△AOE是等边三角形,∴∠OAE=60°,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°=∠OAE,∴∠OAC=∠EAD,在△OAC和△EAD中,,∴△AOC≌△AED(SAS);(2)解:结论:BD=OA+OB+OC.理由:∵△AOE是等边三角形,∴OA=OE,∵△AOC≌△AED,∴OC=DE,∴BD=OB+OE+ED=OB+OA+OC.【点评】本题考查全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22.(9分)两个家庭暑假结伴自驾到某景区旅游,该景区售出的门票分为成人票和儿童票,小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元.(1)求成人票和儿童票的单价;(2)售票处规定:一次性购票数量达到30张,可购买团体票,即每张票均按成人票价的八折出售.若干个家庭组团到该景区旅游,导游收到通知该团成人和儿童共30人,估计儿童8至16人.导游选择哪种购票方式花费较少?【分析】(1)设成人票的单价是x元,儿童票的单价是y元,根据“小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元”,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设该团儿童有m人,则该团成人有(30﹣m)人,购买团体票所需费用为2400元,不购买团体票所需费用为(﹣50m+3000)元,分2400<﹣50m+3000,2400=﹣50m+3000及2400>﹣50m+3000三种情况,求出x的取值范围或x的值,再结合“估计儿童8至16人”,即可得出结论.【解答】解:(1)设成人票的单价是x元,儿童票的单价是y元,根据题意得:,解得:.答:成人票的单价是100元,儿童票的单价是50元;(2)设该团儿童有m人,则该团成人有(30﹣m)人,购买团体票所需费用为100×0.8×30=2400(元),不购买团体票所需费用为100(30﹣m)+50m=(﹣50m+3000)元,当2400<﹣50m+3000时,m<12,∴当8≤m<12时,购买团体票花费较少;当2400=﹣50m+3000时,m=12,∴当m=12时,两种购票方式花费一样多;当2400>﹣50m+3000时,m>12,∴当12<m≤16时,不购买团体票花费较少.答:当8≤m<12时,购买团体票花费较少;当m=12时,两种购票方式花费一样多;当12<m≤16时,不购买团体票花费较少.【点评】本题考查了二元一次方程组的应用、一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程).23.(9分)【问题情境】如图①,△ABC的内角∠ABC,∠ACB的平分线BD,CD交于点D.【建立模型】(1)如图②,过点D作BC的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.(2)如图③,在图①的基础上,过点A作直线l∥BC,延长BD和CD,分别交l于点E,F,若AB=4,AC=3,请你直接写出EF的长度(不需要证明).【类比探究】如图④,△ABC的内角∠ABC的平分线BD,与它的外角∠ACG的平分线CD交于点D,过点D作BC 的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.【分析】(1)先由角平分线定义得∠DBC=∠DBE,∠DCB=∠DCF,再由平行线的性质得∠BDE=∠DBC,∠CDF=∠DCB,则∠DBE=∠BDE,∠CDF=∠DCF,证出BE=DE,CF=DF,进而得出结论;(2)同(1)证出AE=AB,AF=AC,进而得出结论;(3)同(1)证出DE=BE,DF=CF,进而得出结论.【解答】解:(1)EF=BE+CF,理由如下:如图②,∵∠ABC和∠ACB的平分线相交于点D,∴∠DBC=∠DBE,∠DCB=∠DCF,∵EF∥BC,∴∠BDE=∠DBC,∠CDF=∠DCB,∴∠DBE=∠BDE,∠CDF=∠DCF,∴BE=DE,CF=DF,∴DE+DF=BE+CF,即EF=BE+CF;(2)EF=7;理由如下:如图③,∵∠ABC和∠ACB的平分线相交于点D,∴∠EBC=∠ABE,∠FCB=∠ACF,∵EF∥BC,∴∠AEB=∠EBC,∠FCB=∠AFC,∴∠ABE=∠AEB,∠ACF=∠AFC,∴AE=AB,AF=AC,∵AB=4,AC=3,∴EF=AE+AF=4+3=7;(3)EF=BE﹣CF,理由如下:如图④,∵∠ABC的平分线BD与∠ACG的平分线CD交于点D,∴∠DBC=∠ABD,∠ACD=∠DCG,∵DE∥BC,∴∠DBC=∠BDE,∠CDF=∠DCG,∴∠ABD=∠BDE,∠ACD=∠CDF,∴DE=BE,DF=CF,∵EF=DE﹣DF,∴EF=BE﹣CF.【点评】本题是三角形综合题,考查了等腰三角形的判定、角平分线定义、平行线的性质等知识;本题综合性强,熟练掌握平行线的性质和角平分线定义,证明三角形为等腰三角形是解题的关键,属于中考常考题型.24.(10分)如图,在长方形ABCD中,DC=3cm,AD=6cm,延长BC至点E,使CE=4cm,连接DE.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为2cm/s;连接PQ,DQ.当点Q停止运动时,点P也停止运动.设运动时间为t(s)(0<t≤3),解答下列问题:(1)当t为何值时,使点Q在∠PDC的平分线上?(2)当t为何值时,△DQE为等腰三角形?(3)设四边形PQED的面积为y(cm2),求y与t之间的关系式及四边形PQED面积的最大值.【分析】(1)由题意得:AP=t cm,CQ=2t cm,利用平行线的性质,角平分线的定义和等腰三角形的判定定理解答即可;(2)利用分类讨论的思想方法解答,分三种情形,利用等腰三角形的性质列出关于t的方程,解方程即可求得结论;(3)利用t的代数式表示出线段PD,EQ,利用图形的面积公式解答即可得出y与t之间的关系式,再利用一次函数的性质解答即可得出结论.【解答】解:(1)由题意得:AP=t cm,CQ=2t cm.∵点Q在∠PDC的平分线上,∴∠ADQ=∠CDQ,∵四边形ABCD为矩形,∴AD∥BC,∴∠ADQ=∠CQD,∴∠CQD=∠CDQ,∴CQ=CD,∴2t=3,∴t=.∴当t为s时,使点Q在∠PDC的平分线上.(2)①当ED=EQ时,如图,∵DC=3cm,CE=4cm,DC⊥CE,∴DE==5(cm),∴EQ=ED=5cm∴CQ=1cm.∴2t=1,∴t=.②当ED=DQ时,如图,∵ED=DQ,DC⊥CE,∴CQ=CE=4 cm,∴2t=4,∴t=2.③由于点Q在线段BC上,不存在QD=QE的情形.综上,当t为s或2s时,△DQE为等腰三角形.(3)由题意得:AP=t cm,CQ=2t cm,∴PD=AD﹣AP=(6﹣t)cm,QE=CQ+CE=(4+2t)cm,∴y=(PD+QE)•CD=3(6﹣t+4+2t)=t+15.∵>0,∴y随t的增大而增大,∵0<t≤3,∴当t=3时,y的最大值=3+15=19.5(cm2).【点评】本题主要考查了矩形的性质,角平分线的定义,平行线的性质,等腰三角形的性质,分类讨论的思想方法,梯形的面积,熟练掌握矩形的性质和应用分类讨论的思想方法解得是解题的关键.。
【人教版】数学八年级下学期《期中考试试题》(附答案解析)
人教版八年级下学期期中测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共6小题)1. 在式子 3.14π-,22a b +,5a +,23y -,21m +,||ab 中,是二次根式的有( )A. 3个B. 4个C. 5个D. 6个 2. 下列三角形中,不是直角三角形的是( )A. △ABC 中,∠A=∠B-∠CB. △ABC 中,a:b:c=1:2:3C. △ABC 中,a 2=c 2-b 2D. △ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn(m>n>0) 3. 如图,在矩形ABCD 中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( ) A . 1683-B. 1283-+C. 843-D. 423- 4. 实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b5. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A. 2B. 2C. 8D. 66. 甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y (米)与 时间x (秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )A. 4个B. 3个C. 2个D. 1个二.填空题(共6小题)7. 如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________. 8. 若二次根式25x +与3能合并,则x 可取的最小正整数是_________.9. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.10. 如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是_____cm.11. 如图,在菱形ABCD 中,点E 为AB 上一点,DE =AD ,连接EC .若∠ADE =36°,则∠BCE 的度数为_____.12. 如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,E为AD中点,点P在x轴上移动.若△POE为等腰三角形,请写出所有符合要求的点P的坐标________________.三.解答题(共11小题)13. 计算:(1)1 21231263+-⨯(2)8123|265|2-÷+--14. 已知y﹣3与2x﹣1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式.(2)当x=2时,求y的值.(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.15. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.16. 甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.(1)求甲车距离A地的路程(千米)与行驶时间(时)之间的函数关系式;(2)当x=2.8时,甲、乙两车之间的距离是千米;乙车到达B地所用的时间a的值为;(3)行驶过程中,两车出发多长时间首次后相遇?17. 请用无刻度的直尺作图.(1)在图1中,已知点E是正方形ABCD边AB的中点,画出CD的中点F;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.18. 如图,四边形ABCD中,AB∥CD,AB≠CD,AC=DB.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相平分.19. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:322)2,善于思考的小明进行了以下探索:设2)2(其中a、b、m、n均为整数),则有2=m2+2n22.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b3=(m+n3)2,用含m、n的式子分别表示a、b,得a= ,b=;(2)试着把7+43化成一个完全平方式.(3)若a是216的立方根,b是16的平方根,试计算:2.a b20. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.21. 已知动点P以每秒1cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=3cm,试回答下列问题(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?22. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.23. 在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.答案与解析一.选择题(共6小题)1. 在式子 3.14π-,22a b +,5a +,23y -,21m +,||ab 中,是二次根式的有( )A. 3个B. 4个C. 5个D. 6个【答案】B【解析】【分析】根据二次根式的定义形如a (a ≥0)的式子叫做二次根式,对被开方数的符号进行判断即可得.【详解】解:在所列式子中是二次根式的有 3.14π-,22a b +,21m +,||ab 这4个, 故选:B .【点睛】本题主要考查二次根式的定义.准确记忆二次根式的定义是解题的关键2. 下列三角形中,不是直角三角形的是( )A. △ABC 中,∠A=∠B-∠CB. △ABC 中,a:b:c=1:2:3C. △ABC 中,a 2=c 2-b 2D. △ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn(m>n>0) 【答案】B【解析】【分析】 对于直角三角形的判定我们可以从角的方面去判断,也可以利用勾股定理的逆定理来进行判断.【详解】解: A 、∠A+∠C=∠B ,则∠B=90°,则为直角三角形;B 、当三边比值为1:2:3时,则无法构成三角形;C 、根据题意可知:222+=a b c ,满足勾股定理的逆定理,则这个三角形就是直角三角形;D 、根据题意可知()()()22222222mn m n m n -+=+,满足勾股定理的逆定理,则这个三角形就是直角三角形.3. 如图,在矩形ABCD 中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( )A. 1683-B. 1283-+C. 843-D. 423-【答案】B【解析】【分析】 分别表示出空白矩形的长和宽,列式计算即可.【详解】解:空白矩形的长为12=23,宽为1612423-=-,∴面积=()23423=83-12-故选:B .【点睛】本题考查了二次根式的计算,根据题意表示出空白矩形的边长是解题关键.4. 实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b 【答案】C【解析】【分析】根据实数在数轴上对应点的位置,判断a ,a-b 的正负,再根据绝对值的意义、二次根式的性质进行化简即可得.【详解】由数轴上点的位置知,a<0<b ,则a-b <0,∴原式=-a+a-b=-b .故选C .【点睛】本题考查了实数与数轴,二次根式的化简等,准确识图,熟练掌握和灵活运用相关性质是解题的关键.5. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A. 82B. 42C. 8D. 6【答案】C【解析】【分析】首先由正方形ABCD的对角线长为22,即可求得其边长为2,然后由折叠的性质,可得A′M=AM,D′N=DN,A′D′=AD,则可得图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD,继而求得答案.【详解】解:∵正方形ABCD的对角线长为22,即2,∠A=90°,AB=AD,∠ABD=45°,∴AB=BD•cos∠2×22=2,∴AB=BC=CD=AD=2,由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,∴图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8.故选C.【点睛】此题考查了折叠的性质与正方形的性质.此题难度适中,注意数形结合思想与整体思想的应用.6. 甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y(米)与时间x(秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】 【详解】在100秒时甲,乙的距离是0,则起跑后100秒甲追上乙,故②说法正确;甲每100秒比乙多跑100m ,所以经过50秒时甲乙相距50米,故③说法正确;甲每100秒比乙多跑100m ,则在400秒时,相距300米,④说法正确;甲的速度为2000÷400=5m/s ,故可以得出甲的速度为5m/s ,故①正确. 故选A .【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二.填空题(共6小题)7. 如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________.【答案】k>12. 【解析】【分析】根据正比例函数的图像和性质进行解答即可.【详解】解:∵正比例函数(21)y k x =-的图像经过原点和第一、第三象限,∴2k-1>0,∴k>12. 故答案为: k>12. 【点睛】本题考查正比例函数的性质,解题关键是掌握正比例函数的图像经过第一、第三象限时,比例系数k>0的性质.8. 25x +3x 可取的最小正整数是_________.【分析】根据题意,它们化简后的被开方数相同,列出方程求解即可【详解】∵二次根式25x +与3能合并,∴253x +=,解得–1x = (舍去),2512x +=,解得 3.5x = (舍去),2527x +=,解得11x =.即当x 取最小正整数11时,二次根式25x +与3能合并.【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.9. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.【答案】2π【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.10. 如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是_____cm.【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解,【详解】如图所示:AB=22+=.345故答案是:5.【点睛】考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.11. 如图,在菱形ABCD中,点E为AB上一点,DE=AD,连接EC.若∠ADE=36°,则∠BCE的度数为_____.【答案】18°.【解析】【分析】由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【详解】解:∵四边形ABCD是菱形∴AD=CD,∠A=∠BCD,CD∥AB∵DE=AD,∠ADE=36°,∴∠DAE=∠DEA=72°∵CD∥AB∴∠CDE =∠DEA =72°,且DE =DC =DA∴∠DCE =54°∵∠DCB =∠DAE =72°∴∠BCE =∠DCB ﹣∠DCE =18°故答案为:18°【点睛】本题考查了菱形的性质,等腰三角形的性质.熟练掌握菱形边及对角线的性质,等腰三角形的性质是解题的关键.12. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC=6,BD=8,E 为AD 中点,点P 在x 轴上移动.若△POE 为等腰三角形,请写出所有符合要求的点P 的坐标________________.【答案】(2.5,0)或(-2.5,0)或(4,0)或(2516,0). 【解析】【分析】 根据菱形的对角线互相垂直平分求出OA 、OD ,再利用勾股定理列式求出AD ,然后根据直角三角形斜边上的中线等于斜边的一半求出OE ,然后分①OE=OP 时,求出点P 的坐标,②OE=PE 时点P 和点D 重合,③OP=OE 时,点P 在OE 的垂直平分线上,求出OP 的长度,然后写出点P 的坐标即可.【详解】解:∵在菱形ABCD 中对角线AC=6,BD=8,∴OA=3,OD=4,∴22OA OD +22345+=,∵E 为AD 中点,∴OE=12AD=12×5=2.5, ①OE=OP 时,OP=2.5,∴点P的坐标为(2.5,0)或(-2.5,0),②OE=PE时点P和点D重合,P(4,0),③③如图,当OP=EP时,过点E作EK⊥BD于K,作OE的垂直平分线PF,交OE于点F,交x轴于点P,∴EK∥OA,∴EK:OA=ED:AD=1:2,∴EK=12OA=32,∴OK=2,∵∠PFO=∠EKO=90°,∠POF=∠EOK,∴△POF∽△EOK,∴OP:OE=OF:OK,即OP:52=54:2,解得:OP=25 16,∴点P(2516,0),综上所述,点P的坐标为(2.5,0)或(-2.5,0)或(4,0)或(2516,0).故答案为:(2.5,0)或(-2.5,0)或(4,0)或(2516,0).【点睛】本题考查了菱形的性质,主要利用了菱形的对角线互相垂直平分的性质,等腰三角形的性质,难点在于要分情况讨论.三.解答题(共11小题)13. 计算:(1)1 21231263(28123|2652-【答案】(1)(22+【解析】【分析】(1)先化简二次根式,进行乘法计算,再进行减法计算;(2)先根据二次根式和绝对值进行化简得到22(2+-,再去括号进行有理数的加减计算即可得到答案.【详解】(1)=3==(2|2-=22(2-=222+-+=2【点睛】本题考查二次根式的化简、有理数的四则运算和绝对值,解题的关键是掌握二次根式的化简、有理数的四则运算和求绝对值.14. 已知y ﹣3与2x ﹣1成正比例,且当x =1时,y =6.(1)求y 与x 之间的函数解析式.(2)当x =2时,求y 的值.(3)若点A (x 1,y 1),B (x 2,y 2)都在该函数的图象上,且y 1>y 2,试判断x 1,x 2的大小关系.【答案】(1)y =6x ;(2)12;(3)12x x >.【解析】【分析】(1)利用正比例函数的定义得到y ﹣3=k (2x ﹣1),然后把已知的对应值代入求出k ,从而得到y 与x 之间的函数解析式;(2)把x =2代入(1)中的解析式中计算出对应的函数值;(3)利用61x >62x ,可得到1x ,2x 的大小关系.【详解】解:(1)设y ﹣3=k (2x ﹣1),把x =1,y =6代入得6﹣3=k (2×1﹣1),解得k =3,则y ﹣3=3(2x ﹣1), 所以y 与x 之间的函数解析式为y =6x ;(2)由(1)知,y =6x∴当x =2x 时,y =62⨯=12;(3)∵11226,6y x y x ==,而12y y >,∴1266x x >∴12x x >【点睛】本题综合考查了一次函数的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征等知识,一次函数图象上的点的坐标都满足该函数的解析式15. 如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:四边形ADCF 是菱形;(3)若AC =6,AB =8,求菱形ADCF 的面积.【答案】(1)详见解析;(2)24【解析】【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案. 【详解】(1)证明:∵E 是AD 的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中AFE DBEDEB AEF AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF≌△DEB(AAS)∴AF=DB∵D是BC的中点∴BD=CD=AF∴四边形ADCF是平行四边形∵∠BAC=90°,∴AD=CD=12BC∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8∴S菱形ADCF=CD•h=12BC•h=S△ABC=12AB•A C=168242⨯⨯=.【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.16. 甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.(1)求甲车距离A 地的路程(千米)与行驶时间(时)之间的函数关系式;(2)当x=2.8时,甲、乙两车之间的距离是 千米;乙车到达B 地所用的时间a 的值为 ; (3)行驶过程中,两车出发多长时间首次后相遇?【答案】(1)60y x =;(2)68,5.4;(3)4.5小时【解析】 试题分析:(1)由题意设函数关系式为,根据待定系数法即可求得结果;(2)把x=2.8代入(1)中的函数关系式即可得到甲车的路程,从而得到甲、乙两车之间的距离;先求出乙车开始的行驶速度,即可得到修好后乙车的行驶速度,从而得到a 的值;(3)设修好后乙车距离A 地的路程(千米)与行驶时间(时)的函数关系式为,根据待定系数法求得函数关系式后,再与(1)中的函数关系式组成方程组求解即可.(1)设函数关系式为 ∵图象过点(6,360) ∴,∴甲车距离A 地的路程(千米)与行驶时间(时)之间的函数关系式为60y x =;(2)在60y x =中,当x=2.8时,千米;则甲、乙两车之间的距离由图可得乙车开始的行驶速度为千米/时则修好后乙车的行驶速度为千米/时所以;(3)设修好后乙车距离A地的路程(千米)与行驶时间(时)的函数关系式为∵图象过点(2.8,100),(5.4,360)∴,解得∴函数关系式为由题意得,解得答:行驶过程中,两车出发4.5小时时间首次后相遇.考点:一次函数的应用点评:一次函数是常用的解答实际问题的数学模型,本题即是利用一次函数的有关知识解答实际应用题,是中考的常见题型.17. 请用无刻度的直尺作图.(1)在图1中,已知点E是正方形ABCD边AB的中点,画出CD的中点F;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)连接AC,BD交于点O,连接EO并延长交CD于点F,则点F即为所求;(2)连接AC,交BD于点O,延长AE交CD于点G,连接GO并延长交AB于点H,连接HC交BD于点F,则四边形AFCE即为所画的菱形.【详解】解:(1)如图,点F即为所求;(2)如图,四边形AFCE即为所画的菱形.【点睛】本题主要考查无刻度直尺作图,掌握正方形的性质和菱形的判定方法是解题的关键.18. 如图,四边形ABCD中,AB∥CD,AB≠CD,AC=DB.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相平分.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)由平行四边形的性质易得AC=BM=BD,∠BDC=∠M=∠ACD,由全等三角形判定定理及性质得出结论;(2)连接EH,HF,FG,GE,E,F,G,H分别是AB,CD,AC,BD的中点,易得四边形HFGE为平行四边形,由平行四边形的性质及(1)结论得▱HFGE 为菱形,易得EF 与GH 互相垂直平分.【详解】证明:(1)过点B 作BM ∥AC 交DC 的延长线于点M ,如图1,∵AB ∥CD∴四边形ABMC 为平行四边形.∴AC =BM =BD ,∠BDC =∠M =∠ACD .在△ACD 和△BDC 中,===AC BD ACD BDC CD DC ⎧⎪∠∠⎨⎪⎩,∴△ACD ≌△BDC (SAS ),∴AD =BC ;(2)连接EH ,HF ,FG ,GE ,如图2,∵E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,∴HE ∥AD ,且HE =12AD ,FG ∥AD ,且FG =12, ∴四边形HFGE 为平行四边形,由(1)知,AD =BC ,∴HE =EG ,∴▱HFGE 为菱形,∴EF 与GH 互相垂直平分.【点睛】此题考查中点四边形和三角形中位线定理,平行四边形的性质及判定,全等三角形的性质与判定,菱形的判定及性质,综合运用平行四边形的性质及判定,全等三角形的性质与判定是解题的关键.19. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3)2,善于思考的小明进行了以下探索:设)2(其中a、b、m、n均为整数),则有=m2+2n2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若)2,用含m、n的式子分别表示a、b,得a= ,b=;(2)试着把7(3)若a是216的立方根,b是16【答案】(1)m2+3n2;2mn;(2)7+)2;(3)2.【解析】【分析】(1)根据完全平方公式展开,根据题意寻找恒等对应关系;(2)根据完全平方公式,从积的2倍入手,将看成2⨯,从而确定“首平方”底数和“尾平方”底数;(3)先求出a、b的值,再代入求值.【详解】解:(1)2am+=+(,22332a b m n+=++2232.a m nb mn∴=+=,(2)22272222+=++⨯=+(;(3)21616a b是的立方根,是的平方根,64a b∴==±,,2===±【点睛】本题考查了平方根、立方根、完全平方公式、算术平方根等知识点,能灵活运用完全平方公式进行变形是解此题的关键.20. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.【答案】(1)证明见解析;(2)2【解析】试题分析:(1)由△BEC≌△DFA得到BE=DF,则结合已知条件证得结论;(2)根据矩形的性质计算即可.试题解析:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE.又∵BE∥DF,∴∠BEC=∠DFA.在△BE C与△DFA中,∵∠BEC=∠DFA,∠BCE=∠DAF,BC=AD,∴△BEC≌△DFA(AAS),∴BE=DF.又∵BE∥DF,∴四边形BEDF为平行四边形;(2)连接BD,BD与AC相交于点O,如图,∵AB⊥AC,AB=4,BC=213,∴AC=6,∴AO=3,∴Rt△BAO 中,BO=5,∵四边形BEDF是矩形,∴OE=OB=5,∴点E在OA的延长线上,且AE=2.考点:1.平行四边形的判定与性质;2.全等三角形的判定与性质;3.矩形的性质.21. 已知动点P以每秒1cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=3cm,试回答下列问题(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?【答案】(1)4cm;(2)6cm2;(3)15cm2;(4)17秒【解析】【分析】(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=3cm,可以计算出△ABP的面积,即可得到a的值;(3)分析图形可得,甲中的图形面积等于AB×AF﹣CD×DE,根据图象求出CD,DE,AF的长,代入数据计算可得答案;(4)计算BC+CD+DE+EF+F A的长度,又由P的速度,计算可得b的值.【详解】解:(1)动点P在BC上运动时,对应的时间为0到4秒,易得:BC=1cm/秒×4秒=4cm;故图甲中的BC长是4cm.(2)由(1)可得,BC=4cm,则:a=12×BC×AB=6cm2;图乙中的a是6cm2.(3)由图可得:CD=2×1=2cm,DE=1×3=3cm,则AF=BC+DE=7cm,又由AB=3cm,则甲图的面积为AB×AF﹣CD×DE=3×7﹣2×3=15cm2,图甲中的图形面积为15cm2.(4)根据题意,动点P共运动了BC+CD+DE+EF+F A=4+2+3+1+7=17cm,其速度是1cm/秒,则b=171=17秒,图乙中的b是17秒.【点睛】本题主要考查动点问题的函数图象,能够从图象中获取信息是解题的关键.22. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【答案】(1)32)菱形,理由见解析(3)t=5.2或t=7时,△BEM为等腰三角形【解析】【分析】(1)利用直角三角形中30°角所对的直角边等于斜边的一半求得平行四边形的定和高,再利用底乘以高计算面积;(2)结合∠EMC=90°以及平行四边形的性质,可证明四边形DCEF是平行四边形,再通过计算得到平行四边形CDFE的一组邻边相等即可证得结论;(3)探究△BEM为等腰三角形,要分三种情况进行讨论:EB=EM,EB=BM,EM=BM.通过相应的计算表示出BE,EM,BM,然后利用边相等建立方程进行求解.【详解】(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC223AD CD又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×33(2)如图1,当∠EMC=90°时,四边形DCEF是菱形.∵∠EMC=∠ACD=90°,∴DC∥EF.∵BC∥AD,∴四边形DCEF是平行四边形,∠BCA=∠DAC.由(1)可知:CD=4,AC=43.∵点M为AC的中点,∴CM=23.在Rt△EMC中,∠CME=90°,∠BCA=30°.∴CE=2ME,可得ME2+(23)2=(2ME)2,解得:ME=2.∴CE=2ME=4.∴CE=DC.又∵四边形DCEF是平行四边形,∴四边形DCEF是菱形.(3)点E在运动过程中能使△BEM为等腰三角形.理由:如图2,过点B作BG⊥AD与点G,过点E作EH⊥AD于点H,连接DM.∵DC∥AB,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°−30°−90°=60°.∴∠ABG =30°.∴AG =12AB =2,BG. ∵点E 的运动速度为每秒1个单位,运动时间为t 秒,∴CE =t ,BE =8−t .在△CEM 和△AFM 中BCM MAF MC AMCME AMF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CEM ≌△AFM .∴ME =MF ,CE =AF =t .∴HF =HG−AF−AG =BE−AF−AG =8−t−2−t =6−2t .∵EH =BG =∴在Rt △EHF 中,ME =12EF =1212∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM =BM .∵在Rt △DBG 中,DG =AD +AG =10,BG =∴=故BM =12×= 要使△BEM 为等腰三角形,应分以下三种情况:当EB =EM 时,有(8−t)2=14[12+(6−2t)2], 解得:t =5.2.当EB =BM 时,有8−t=,解得:t =.当EM =BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t =5.2或t =时,△BEM 为等腰三角形.【点睛】本题主要考查的是平行四边形的性质、菱形的性质和判定、全等三角形的性质和判定、含30度直角三角形的性质、等腰三角形的性质、勾股定理的应用,分三种情况EB =EM ,EB =BM ,EM =BM 讨论是解题的关键.23. 在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°. (1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N(如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF 2=2BE 2+2DF 2.【解析】试题分析:(1)根据旋转的性质可知AF=AG ,∠EAF=∠GAE=45°,故可证△AEG≌△AEF ;(2)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,连结GM .由(1)知△AEG≌△AEF ,则EG=EF .再由△BME 、△DNF 、△CEF 均为等腰直角三角形,得出CE=CF ,BE=BM ,2DF ,然后证明∠GME=90°,MG=NF ,利用勾股定理得出EG 2=ME 2+MG 2,等量代换即可证明EF 2=ME 2+NF 2;(3)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,根据旋转的性质可以得到△ADF≌△ABG ,则DF=BG ,再证明△AEG≌△AEF ,得出EG=EF ,由EG=BG+BE ,等量代换得到EF=BE+DF .试题解析:(1)∵△ADF 绕着点A 顺时针旋转90°,得到△ABG ,∴AF=AG ,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE 与△AFE 中,{45AG AFGAE FAE AE AE=∠===,∴△AGE≌△AFE (SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,2,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,22,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题。
山东省德州市乐陵市2023-2024学年八年级下学期4月期中考试数学试卷(含解析)
2023-2024学年度第二学期期中质量检测八年级数学试题(满分150分,时间120分钟)亲爱的同学们:打开试卷的同时,你半个学期辛勤努力即将会有一番见证.望你沉着冷静,耐心思考,勇敢接受挑战,争取考出自己的最佳水平!一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确得选项选出来.每小题选对得4分,选错、不选或选出得答案超过一个均记零分.1. 下列根式中是最简二次根式的是( )A. B. C. D.答案:B解析:A、,故此选项错误;B、是最简二次根式,故此选项正确;C、,故此选项错误;D、,故此选项错误;故选:B.2. 下列计算正确的是()A. B. C. D.答案:A解析:解:A、,此选项正确,故符合题意;B、与,不是同类二次根式不能合并,此选项错误,故不符合题意;C、,此选项错误,故不符合题意;D、3与不是同类二次根式不能相加,此选项错误,故不符合题意,故选:A.3. 下列二次根式中能与合并的是()A. B. C. D.答案:C解析:解:A.与不是同类二次根式,不能合并,故不符合题意;B.与不是同类二次根式,不能合并,故不符合题意;C.与是同类二次根式,能合并,故符合题意;D.与不是同类二次根式,不能合并,故不符合题意;故选:C.4. 在平面直角坐标系中,点到原点的距离是()A. 1B.C.D.答案:C解析:解:点到原点的距离是.故选:C.5. 下列四组线段中,可以构成直角三角形的是()A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,,3答案:B解析:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、,不可以构成直角三角形,故本选项错误.故选:B6. 图1是一面旗帜,图2是其示意图,四边形是平行四边形,点E在线段的延长线上,若,则()A. B. C. D.答案:C解析:四边形是平行四边形,,,,故选:C.7. 两张对边平行的纸条,随意交叠放在一起,转动其中一张,重合的部分构成一个四边形,这个四边形是( )A 矩形 B. 平行四边形 C. 菱形 D. 正方形答案:B解析:解:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.故选:B.8. 如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为( )A. B. C. D.答案:D解析:解:由勾股定理得:AC==,∵S△ABC=3×3﹣=,∴,∴,∴BD=,故选:D.9. 如图,菱形,点、、、均在坐标轴上,,点,点是的中点,点是上的一动点,则的最小值是()A. 3B. 5C.D.答案:A解析:如图:连接BE,,∵菱形ABCD,∴B、D关于直线AC对称,∵直线AC上的动点P到E、D两定点距离之和最小∴根据“将军饮马”模型可知BE长度即是PD+PE的最小值.,∵菱形ABCD,,点,∴,,∴∴△CDB是等边三角形∴∵点是的中点,∴,且BE⊥CD,∴故选:A.10. 某周五学校举行了家长开放日活动,在以“纸片的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:将矩形纸片的一端,利用图①的方法折出一个正方形,然后把纸片展平;第二步:将图①中的矩形纸片折叠,使点恰好落在点处,得到折痕,如图②.根据以上的操作,若,,则线段的长是()A. 3B.C. 2D. 1答案:D解析:解:设,∵四边形是矩形,∴,∵四边形是正方形,∴,,∵将图①中的矩形纸片折叠,使点恰好落在点处,得到折痕,∴,在中,,∴,解得:,即.故选:D.11. 如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A. B. C. D.答案:A解析:解: 连接BE,BD,如图,∵四边形ABCD为菱形,∠A=60°,∴△BDC为等边三角形,∠C=∠A=60°,∴∠CBE=90°-60°=30°.∵E点为CD中点,∴CE=DE=1,BE⊥CD.在Rt△BCE中,BC=2CE=2,BE= .∵AB∥CD,∴BE⊥AB.∵菱形纸片翻折,使点A落在CD的中点E处,∴EF=AF.设EF=AF=x,则BF=2-x,Rt△BEF中,,解得 .故选A.12. 如图,在矩形中,,连接,分别以点,为圆心,大于的长为半径画弧,两弧交于点,,直线分别交,于点,.下列结论:①四边形是菱形;②;③;④若平分,则.其中正确结论的个数是( )A. 4B. 3C. 2D. 1答案:C解析:解:设交于点由作图知,垂直平分在矩形中,四边形是菱形∴①正确四边形是菱形∴②正确∴③错误平分∴④错误.故选C.二、填空题(本大题共6小题,共24分)13. 二次根式有意义,则符合条件的非正整数是_________.答案:解析:解:∵二次根式有意义,∴,解得:.故答案为.14. 如图,一架秋千静止时,踏板离地的垂直高度DE=0.5m,将它往前推送1.5m(水平距离BC=1.5m)时,秋千的踏板离地的垂直高度BF=1m,秋千的绳索始终拉直,则绳索AD的长是_____m.答案:2.5解析:解:∵BF⊥EF,AE⊥EF,BC⊥AE,由平行线间距离处处相等可得:CE=BF=1m,∴CD=CE-DE=1-0.5=0.5(m),而设绳索AD的长为x m,则AB=AD=x m,AC=AD-CD=(x-0.5)m,在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即(x-0.5)2+1.52=x2,解得:x=2.5(m),即绳索AD的长是2.5m,故答案为:2.5.15. 已知的整数部分为,小数部分为,则的值是__________.答案:解析:解:,,即,,的整数部分为,小数部分为,,,,故答案为:.16. 小明将一副三角板按如图所示方式摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长.若已知,则________.答案:##解析:解:,,,在中,,∴,设,则,,,,,(负值舍去),∴,故答案为:.17. 如图,在矩形中,为边上一点,将沿翻折,点B落在点F处,当为直角三角形时,_________.答案:7或.解析:当为直角三角形时,有两种情况:①当点落在矩形内部时,如下图所示.连接,在中,,,,沿折叠,使点落在点处,,当为直角三角形时,只能得到,点、、共线,即沿折叠,使点落在对角线上的点处,∴,,,设,则,在中,,,解得,;②当点落在边上时,如下图所示,此时为正方形,∴.综上所述,的长为7或.18. 如图,在菱形中,边长为1,.顺次连接菱形各边中点,可得四边形;顺次连接四边形各边中点,可得四边形,顺次连接四边形各边中点,可得四边形;…;按此规律继续下去.四边形的面积是_________.答案:##解析:解:菱形,,,为等边三角形,,等边的高为,,顺次连接菱形各边中点,可得四边形,四边形为矩形,,同理可得,,…….故答案为:.三.解答题(本大题共7小题,共78分)19. 计算下列各题:(1)(2)答案:(1)(2)小问1解析:解:;小问2解析:.20. “儿童散学归来早,忙趁东风放纸鸢”,又到了放风筝的最佳时节.某校八年级某班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为12米;②根据手中剩余线的长度计算出风筝线BC的长为20米;③牵线放风筝的小明的身高为1.7米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降7米,则他应该往回收线多少米?答案:(1)17.7米(2)5米小问1解析:根据题意有:BD=12米,BC=20米,CD⊥BD,AB=DE=1.7米,∴在Rt△BCD中,(米),∴CE=CD+DE=16+1.7=17.7(米),即风筝的垂直高度为17.7米;小问2解析:∵风筝沿CD方向下降7米,DE保持不变,∴此时的CD=16-7=9(米),即此时在Rt△BCD中,BD=12米,有(米),相比下降之前,BC缩短长度为:20-15=5(米),即小明应该回收线5米.21. 如图,在3×3的正方形网格中,以线段为对角线作平行四边形,使另两个顶点也在格点上,则这样的平行四边形最多可以画个,请一一在下图中画出来.答案:5,图见解析解析:解:在直线的左下方有5个格点,都可以成为平行四边形的顶点,所以这样的平行四边形最多可以画5个,如下图:故答案为:5.22. 某居民小区有块形状为长方形的绿地,长方形绿地的长为,宽为,现要在长方形绿地中修建一个长方形花坛(图中阴影部分),长方形花坛的长为,宽为.(1)求长方形的周长;(2)除去修建花坛的地方,其他地方全修建成通道,通道上要铺上造价为5元的地砖,则购买地砖需要花费多少元?(结果化为最简二次根式)答案:(1)(2)元小问1解析:长方形的周长,答:长方形的周长是;小问2解析:购买地砖需要花费(元;答:购买地砖需要花费元.23. 下面是证明直角三角形的一个性质的两种添加辅助线的方法,请根据提示分别完成证明.性质:直角三角形斜边上的中线等于斜边的一半.已知:如图,在中,是斜边的中线.求证:.方法一证明:如图,延长至点D ,使得,连接.方法二证明:如图,取的中点D ,连接.答案:证明见解析解析:证明:方法一:∵点是边的中点,∴,又∵,∴四边形是平行四边形,∵,∴四边形是矩形,∴,∴;方法二:∵是斜边的中线,∴点O是的中点,∵的中点D,∴是的中位线,∴,∴,∴垂直平分线,∴,∵,∴.24. 小明在探究二次根式时发现了下列两个有趣的变形:(一)一些分母含有二次根式加减的式子也可以分母有理化,如:;.(二)一些含根号的式子可以写成另一个式子的平方,如:;.请回答下列问题:(1)归纳:观察上面的解题过程,请直接写出下列各式的结果.①=______;②=______.(2)应用:求的值.(3)拓广:直接写出的值.答案:(1)①;②(2)(3)小问1解析:解:①,故答案为:;②,故答案为:;小问2解析:解:;小问3解析:解:.25. 已知:在中,,,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,①求证:≌;②的大小=______°;③若,,则CF的长=______;(2)如图②,当点D在线段BC的延长线上时,其它条件不变,则CF、BC、CD三条线段之间的关系是:______;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①CF、BC、CD三条线段之间的关系是:______;②若连接正方形的对角线AE、DF,交点为O,连接OC,探究的形状,并说明理由.答案:(1)①见解析;②45;③6(2)(3)①;②等腰三角形,见解析小问1解析:(1)①证明:∵四边形ADEF是正方形,∴,,∵,∴,在和中,,∴≌(SAS).②∵≌,∴,∵,,∴,∴.故答案为:45.③∵≌,∴,∵.∴CF=6,故答案为:6.小问2解析:(2),由(1)同理可证≌得:.故答案为:.小问3解析:(3)①由(1)同理可证≌得:.故答案为:.②为等腰三角形,理由如下:∵,,∴,∵四边形ADEF是正方形,∴,,∴,同理可证≌,∴,∴,∴为直角三角形,∵正方形ADEF中,O为DF的中点,∴,,,∴,∴是等腰三角形.。
山东省青岛市部分学校2023-2024学年八年级下学期4月期中考试数学试卷(含答案)
数学(考试时间:120分钟;满分:120分)亲爱的同学们,经过一段时间的初中数学学习,你一定是收获满满!今天我们就一起来做一次回顾之旅吧!温馨提示:客观题需用2B铅笔把答题卡上对应题目的答案标号涂黑.主观题需将答案写在答题卡对应题号位置上.写在本试卷上无效.本试卷共三道大题,含26道小题.第1-10小题为“选择”;11-16小题为“填空”;17-25小题为“解答题”.一、选择题(共10小题,每小题3分,共30分)1. 在下面的四个图形中,能由左图经过平移得到的图形是()A. B. C. D.答案:D解析:详解:解:D选项图形中,是由如图经过平移得到的图形,故选:D.2. 已知,则下列不等式一定成立的是()A. B. C. D.答案:D解析:详解:解:A、∵,根据不等式两边同时加上一个数,不等号方向不变可知:,当不一定小于,故选项不成立,不符合题意;B、∵,根据不等式两边同时乘以一个负数,不等号方向改变可知:,故选项不成立,不符合题意;C、∵,当时,不等式不成立,故选项不成立,不符合题意;D、∵,根据不等式两边同时除以一个正数,不等号方向不变可知:,故选项成立,符合题意;故选:D.3. 下列从左到右的变形,是分解因式的是( )A. B.C. D.答案:A解析:详解:A、是把一个多项式化为几个整式的积的形式,此选项符合题意;B、中含有分式,此选项不符合题意;C、不是把一个多项式化为几个整式的积的形式,此选项不符合题意;D、不是把一个多项式化为几个整式的积的形式,此选项不符合题意.故选:A.4. 已知点在第四象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.答案:C解析:详解:解:∵点在第四象限,∴,解不等式①得:,解不等式②得:,∴,在数轴上表示如下:5. 用反证法证明命题:“在中,,则”.应先假设()A. B. C. D.答案:D解析:详解:∵命题:“在中,,则”,∴假设为:,故选:D6. 如图,已知中,,,将绕点A顺时针方向旋转到的位置,连接,则的大小为()A. B. C. D.答案:A解析:详解:解:∵在中,,,∴,又将绕点A顺时针方向旋转到的位置,∴,∴,故选:A7. 如图,在中,,是的垂直平分线,恰好平分.若,则的长为()A. 4B. 3C.D.解析:详解:解:∵是的垂直平分线,∴,∴,∵平分,且,∴,,∴,∵,∴,∴,∴,∴,∴,∴,故选:A.8. 如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着方向平移到的位置,若,则阴影部分的面积等于()A. B. C. D.答案:B解析:详解:解:由平移的性质可知,,,,∴,∴,故选:B.9. 王老师准备用60元买钢笔和墨囊,已知一支钢笔5元;一盒墨囊8元,他购买了5支钢笔,则他最多还能买()盒墨囊.A. 3B. 4C. 5D. 6答案:B解析:详解:解:设他还能买x盒墨囊,根据题意,得:,解得:,∵x为整数,∴他最多还能买4盒墨囊.故选:B.10. 如图,在△ABC中,,按以下步骤作图.若,则的长是()①以点B为圆心,以任意长为半径作弧,分别交于点E,F;②分别以点E,F为圆心,以大于的长为半径作弧,两弧交于点O;③作射线,交于点D;④以点D为圆心,以适当长为半径作弧,分别交于点M,N;⑤分别以点M,N为圆心,以大于的长为半径作弧,两弧交于点G,连接交于点HA. B. 4 C. 3 D.答案:B解析:详解:解:过D点作于K,如图,由作法得:平分,∴,∵,∴,∴,∴,∴,∴,∴.故选:B.二、填空题(共6小题,每题3分,共18分)11. 分解因式:______.答案:解析:详解:解:.故答案为:12. 不等式的解集,则m的取值范围为____.答案:解析:详解:解:∵不等式的解集,∴,解得:.故答案为:.13. 线段的两端点坐标分别为,,经过平移后,点A的对应点,则点B的对应点坐标为______.答案:解析:详解:解:∵点经过平移后得到像点,∴点A的平移方式是先向右平移3个单位,再向下平移2个单位,∴点经过平移后得到的像点的坐标为;故答案为:.14. 如图,函数与的图象相交于点,则关于的不等式的解集是______.答案:##解析:详解:函数和的图象相交于点不等式,即解集为:函数的图像在的函数图像上方的范围观察图可知,解集为将代入中,得:解得:因此,当时,即函数与轴的交点为:,即解集为:函数的图像在轴上方的范围解集为:综上:不等式的解集为:故答案为:15. 若等边内一点P到三边的距离分别为3,4,5,则的面积为______.答案:解析:详解:解:如图,连接,,,过点P作于点D,于点E,于点F,∴,,,设等边的边长为a,即,∴,过点A作于点H,则,∴在中,,∴,∴,解得或(不合题意,舍去)∴.故答案为:16. 如图,在中,,于,的平分线交于点,交于,于,的延长线交于点,下列五个结论:①;②;③;④;⑤连接,若,则,其中正确的结论有______.(填序号)答案:①②③⑤解析:详解:解:∵,∴,∵是的平分线,∴,在和中,∴,∴,故①正确;∵,∴,∵,,∴,又∵,∴,∵,∴,∴,∵,∴,在和中,,∴,∴,故②正确;∵,∴,∴,故③正确;根据题意无法确定的大小、的大小关系,∴无法得到,故④错误;∵,∴,,∴,即,又∵,∴,故⑤正确.综上所述,正确的有①②③⑤.故答案为:①②③⑤.三、解答题(共72分)17. 如图,已知A,B,C是平面直角坐标系上的三个点.(1)请画出关于原点O对称的;(2)将向右平移8个单位得到,请画出;(3)与是否也关于某个点成中心对称?如果是,请写出它们对称中心的坐标,如果不是,请说明理由.答案:(1)见解析(2)见解析(3)与关于点对称,理由见解析解析:小问1详解:解:如图所示,即为所求;小问2详解:解:如图所示,即为所求;小问3详解:解:与关于点对称,理由如下:由题意得,,,,,,,∴的中点坐标分别为,,,即的中点是同一点,∴与关于点对称.18. 尺规作图:如图所示,一条铁路经过、两地,计划修一条经过到铁路的最短公路,并在公路上建一个维修站,使得到、距离相等.答案:见解析解析:详解:如图所示,点即为所求;19. (1)解不等式,并把解集表示在数轴上.(2)求不等式组的解集.(3)因式分解:.答案:(1);数轴见解析;(2);(3)解析:详解:解:(1),去括号得:,移项,合并同类项得:,系数化为1得:,把解集表示在数轴上,如图所示:(2),解不等式①得:,解不等式②得:,∴不等式组的解集为:;(3).20. 如图,中,,,,过的垂直平分线上一点作于,延长线于;且,连接.(1)求证:;(2)的长为______.答案:(1)见解析(2)解析:小问1详解:解:∵,∴,在中,∴,∴,小问2详解:∵中,,,,∴∵是的垂直平分线,∴,,,又∵∴∴四边形是矩形,∴,,设,则,,∴,在中,,在中,∵∴解得:,∴,在中,.故答案为:.21. 某印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数表达式是,乙种收费的函数表达式是.(2)请你根据不同的印刷数量帮忙确定选择哪种印刷方式较合算.答案:(1)y=0.1x+6(x≥0);y=0.12x(x≥0)(2)当0≤x<300时,选择乙种方式较合算;当x=300时,选择甲乙两种方式都可以;当x>300时,选择甲种方式较合算.解析:详解:解:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,由题意,得,12=100k1,解得:,k1=0.12,∴y1=0.1x+6(x≥0),y2=0.12x(x≥0);(2)由01x+6>0.12x,得x<300;由0.1x+6=0.12x,得x=300;由0.1x+6<0.12x,得x>300.由此可知:当0≤x<300时,选择乙种方式较合算;当x=300时,选择甲乙两种方式都可以;当x>300时,选择甲种方式较合算.22. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC,CD于E、F.(1)试说明△CEF是等腰三角形.(2)若点E恰好在线段AB的垂直平分线上,试说明线段AC与线段AB之间的数量关系.答案:(1)见解析(2)见解析解析:详解:解:(1)∵∠ACB=90°,∴∠B+∠BAC=90°,∵CD⊥AB,∴∠CAD+∠ACD=90°,∴∠ACD=∠B,∵AE是∠BAC的平分线,∴∠CAE=∠EAB,∵∠EAB+∠B=∠CEA,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF,∴CF=CE,∴△CEF是等腰三角形;(2)∵点E恰好在线段AB的垂直平分线上,∴AE=BE,∴∠EAB=∠B,∵AE是∠BAC的平分线,∴∠CAE=∠EAB,∴∠CAB=2∠B,∵∠ACB=90°,∴∠CAB+∠B=90°,∴∠B=30°,∴AC=AB.23. 要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为的正方体无盖木盒,B种规格是长、宽、高各为,,的长方体无盖木盒,如图1.现有200张规格为的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒__________个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材__________张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.答案:(1),(2)制作A种木盒100个,B种木盒100个;使用甲种方式切割的木板150张,使用乙种方式切割的木板50张(3)A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元解析:小问1详解:解:∵要制作200个A,B两种规格的顶部无盖木盒,制作A种木盒x个,故制作B种木盒个;∵有200张规格为的木板材,使用甲种方式切割的木板材y张,故使用乙种方式切割的木板材张;故答案为:,.小问2详解:解:使用甲种方式切割的木板材y张,则可切割出个长、宽均为的木板,使用乙种方式切割的木板材张,则可切割出个长为、宽为的木板;设制作A种木盒x个,则需要长、宽均为的木板个,制作B种木盒个,则需要长、宽均为的木板个,需要长为、宽为的木板个;故解得:,故制作A种木盒100个,制作B种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,小问3详解:解:∵用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,故总成本为(元);∵两种木盒的销售单价均不能低于7元,不超过18元,即,解得:,故的取值范围为;设利润为,则,整理得:,∵,故随的增大而增大,故当时,有最大值,最大值为,则此时B种木盒的销售单价定为(元),即A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.24. 通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=CD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据 ,易证△AFG≌ ,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不直角,则当∠B与∠D满足等量关系 时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC 应满足的等量关系,并写出推理过程.答案:解:(1)SAS;△AFE.(2)∠B+∠D=180°.(3)BD2+EC2=DE2.理由见解析解析:详解:解:(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图1,AI∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,则∠DAG=∠BAE,AE=AG,BE=DG,∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°-45°=45°=∠EAF,即∠EAF=∠FAG,在△EAF和△GAF中,,∴△AFG≌△AEF(SAS).∴EF=FG=DG+DF=BE+DF;故答案为:SAS;△AFG;(2)类比引申∠B+∠ADC=180°时,EF=BE+DF;理由如下:∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图2所示:∴∠BAE=∠DAG,BE=DG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,∴△AFE≌△AFG(SAS),∴EF=FG,∵FG=DG+DF,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)联想拓展猜想:DE2=BD2+EC2.理由如下:把△ACE绕点A逆时针旋转90°到ABF的位置,连接DF,如图3所示:则△ABF≌△ACE,∠FAE=90°,∴∠FAB=∠CAE.BF=CE,∠ABF=∠C,∴∠FAE=∠BAC=90°,∵∠DAE=45°,∴∠FAD=90°-45°=45°,∴∠FAD=∠DAE=45°,在△ADF和△ADE中,∴△ADF≌△ADE(SAS),∴DF=DE,∵∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,∴∠C=∠ABF=45°,∴∠DBF=∠ABF+∠ABC=90°,∴△BDF是直角三角形,∴BD2+BF2=DF2,∴BD2+EC2=DE2.25. 在平面直角坐标系中,点A在轴的正半轴上,点在第一象限,作射线.给出如下定义:如果点在的内部,过点作于点,于点,那么称与的长度之和为点关于的“内距离”,记作,即.(1)如图1,若点在的平分线上,则___________,___________,___________;(2)如图2,若,点(其中)满足,求的值;(3)若,点在的内部,用含,的式子表示(直接写出结果).答案:(1)2;2;4(2)(3)解析:小问1详解:解:∵点在的平分线上,∴,,故答案:2;2;4.小问2详解:解:过点C作轴于点M,过点C作于点N,∵点(其中),∴,,是等腰直角三角形,∵,∴,∴,,∵,∴,解得:;小问3详解:解:过点Q作轴于点C,交于点D,则四边形是矩形,∵,∴,,∵,∴,∵,∴,∴,∵∴,∴,∴,同理可得,∴,∴,∴.故答案为:.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学数下册期中试卷考生须知1.本试卷共八页,共三道大题, 25道小题。
满分100分。
考试时间 120 分钟。
2.在试卷和答题纸上准确填写班级、姓名和学号。
3.试卷答案一律书写在答题纸上,在试卷上作答无效。
4.答题纸上用黑色字迹签字笔作答,作图题请用铅笔。
一.选择题(请将唯一正确答案填入后面的括号中,每题2分,共20分) 1.一元二次方程022=+-x x 的根的情况是() A .有两个相等的实数根B .有两个不相等的实数根 C.无实数根D .无法确定2.如果方程26302x x -+=的两个实数根分别为x x 12、,那么x x 12的值是() A . 3B .-3C.-32D .323.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( ) A .平均数B .中位数C .众数D .方差4.三角形的两边长分别为3和6,第三边的长是方程0862=+-x x 的一个根,则 此三角形的周长为() A .10 B .11C.13D .11或135.如图,□ABCD 中,对角线AC 、BD 交于点O ,点 E 是BC 的中点.若OE =3 cm ,则AB 的长为() A .12 cm B .9 cm C.6 cm D .3 cm6.如图,菱形花坛ABCD 的面积为12平方米,其中沿 对角线AC 修建的小路长为4米,则沿对角线BD 修建 的小路长为()A .3米B .6米C .8米D .10米7.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是()A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位8.已知二次函数2241y x x =+-的图象上有点A 1(1)y -,,B 2(2)y -,,C 3(3)y -,,则y 1、y 2、y 3的大小关系为()A .y 3>y 2>y 1B .y 3>y 1>y 2C.y 2>y 3> y 1 D .y 1 >y 2>y 39.在学完二次函数的图象及其性质后,老师让学生们说出223y x x =--的图象 的一些性质,小亮说:“此函数图象开口向上,且对称轴是1x =”;小丽说:“此 函数图象肯定与x 轴有两个交点”;小红说:“此函数与y 轴的交点坐标为(0,-3)”; 小强说:“此函数有最小值,3y =-”……请问这四位同学谁说的结论是错误的 ()A.小亮B.小丽C.小红D.小强10.如图,正方形ABCD 中,AB =8cm ,对角线AC , BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发, 以1cm /s 的速度沿BC ,CD 运动,到点C ,D 时停止 运动.设运动时间为t (s ),△OEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为()ABCD二.填空题(每空2分,共24分)11.方程250x x k -+=的一个根是2,那么另一根是 ,k =_______. 12.若关于x 的方程20x mx m -+=有两个相等实根,则代数式2281m m -+ 的值为.13.关于x 的方程2(1)210m x x ---=有两个实数根,则实数m 的取值范围是__________________.14.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔 过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手 甲 乙 平均数(环) 9.5 9.5方差 0.035 0.015请你根据上表中的数据选一人参加比赛,最适合的人选是 ____,理由是_________________________________________.15.请写出一个开口向下,且经过(0,3)的抛物线的解析式______________________________.16.二次函数22y x x m =-+的图象与x 轴只有一个公共点,则m 的值为 .17.如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B 、F 为圆心,大于长为半径画弧,两弧交于一点P ,连接AP 并延长交BC 于点E ,连接EF .(1)四边形ABEF 是_____________;(选填矩形、菱形、正方形、无法确定)(2)AE ,BF 相交于点O ,若四边形ABEF 的周长为40,BF =10,则AE 的长为________,∠ABC =________.18.小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,BF 21 A B EO下图为二人测试成绩折线统计图,下列说法合理的是_____________.①小亮测试成绩的平均数比小明的高 ②小亮测试成绩比小明的稳定③小亮测试成绩的中位数比小明的高④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理三.解答题(19题每小题4分,20、 21、22、24题每题6分,23、25题每题8分,共56分)19.解方程:(1)22(4)(12)x x +=-(2)23510x x +-=(3)4(21)3(21)x x x -=-(4)22410x x -+=(用配方法)20.(列方程解决问题)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.求该企业从2015年到2017年利润的年平均增长率.21.关于x 的一元二次方程()222110x m x m +-+-=有两个不相等的实数根12,x x .(1)求实数m 的取值范围; (2)若120x x =,求m 的值.22.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对初二年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:(1)统计表中的a =,b =,c =;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校初二年级共有600名学生,请你估计该校初二年级学生课外阅读7本及以上的人数.本数(本) 频数(人数) 频率 5 a 0.26 18 0.367 14 b8 8 0.16 合计c123.二次函数图象上部分点的横坐标x ,纵坐标y 的对应值如下表:x (2)-1-0 1 234… y…1y 03432y5-…(1)表格中的1=,2=;(2)求这个二次函数的表达式; (3)在右图中画出此二次函数的图象; (4)此抛物线在第一象限内的部分记为 图象G ,如果过抛物线顶点的直线 y =mx +n (m ≠0G 有唯一公共 m 的取值范围 _________________________________.24.在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD 中,点E 为BC 边上任意一点(点E 不与B 、C 重合),点F 在线段AE 上,过点F 的直线MN ⊥AE ,分别交AB 、CD 于点M 、N . 求证:AE=MN ;同学们发现,过点D 作DP ∥MN ,交AB 于P ,构造□DNMP ,经过推理能够使问题得到解决(如图2).请你完成证明过程.(2)如图3,当点F 为AE 中点时,其他条件不变,连接正方形的对角线BD , MN 与BD交于点G ,连接BF ,求证:BF= FG .25.在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:如果x y 1 1 O 图1xy O ()()0'0y x y y x ⎧⎪=⎨-⎪⎩≥<,那么称点Q 为点P 的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6). (1)点(2,1)的“关联点”为; (2)如果点N *(m +1,2)是一次函数y =x +3图象上点N 的“关联点”,求点N的坐标.(3)如果点P 在函数24(2)y x x a =-+-<≤的图象上,其“关联点”Q 的纵坐标y ′的取值范围是-4<y ′≤4,则a 的取值范围是_________________.参考答案:1.C2.D3.B4.C5.C6.B7.D8.A9.D 10.B11.3,6 12.1 13.m ≥0且m ≠1 14.乙,方差较小,成绩相对稳定.15.如y=-x 2+3等 16.m =1 17.菱形,︒18.②④19.(1)5,-1 (2)156x -+=,256x -=(3)31,42(4)12x x ==, 20.20% 21.(1)1m <(2)1m =-22.(1)10,0.28,50;(2)略;(3)6.4;(4)26423.(1)-5,0 (2)223y x x =-++(3)略(3)m ≥1或m ≤-2 24.略 25.(1)(2,1)(2)N (-5,-2)(3)2≤a <。