八年级下数学期中考试数学试卷有答案-最新
山东省泰安市岱岳区(五四制)2023-2024学年八年级下学期期中考试数学试卷(含解析)

八年级数学练习题一、选择题,每小题4分,共48分.1. 下列二次根式中,是最简二次根式的是()A. B. C. D. 【答案】A解析:解:A是最简二次根式,故A符合题意;B,故B不符合题意;C,故C不符合题意;D,故D不符合题意;故选:A.2. 已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当时,它是菱形B. 当时,它是矩形C. 当时,它矩形D. 当时,它是菱形【答案】A解析:解:、由是平行四边形可得,该选项错误,符合题意,、对角线相等的平行四边形是矩形,该选项正确,不符合题意,、有一个角是直角的平行四边形是矩形,该选项正确,不符合题意,、对角线互相垂直的平行四边形是菱形,该选项正确,不符合题意,故选:A.3. 下列二次根式中,与是同类二次根式的是()A. B. C. D. 【答案】C解析:解:的被开方数是2.A,是整数,所以与不是同类二次根式,故本选项不合题意;B.该二次根式的被开方数是6,所以与不是同类二次根式,故本选项不合题意;C,被开方数是2,所以与是同类二次根式,故本选项符合题意;D,被开方数是3,所以与不是同类二次根式,故本选项不合题意;故选:C.4. 用配方法解方程方程应变形为()A.B.C. D. (x-1)2=1【答案】B解析:解:,,;故选:B.5. 在下列方案中,能够得到是的平分线的是()方案Ⅰ:作菱形,连接.方案Ⅱ:取,以为顶点作矩形,连接交于点,连接.A. 方案Ⅰ可行,方案Ⅱ不可行B. 方案Ⅰ、Ⅱ都可行C. 方案Ⅰ不可行,方案Ⅱ可行D. 方案Ⅰ、Ⅱ都不可行【答案】B解析:方案Ⅰ,证明:菱形,(菱形的性质),是的平分线;方案Ⅱ,证明:矩形,(矩形的性质),,,,是的平分线;故选B.6. 下列一元二次方程没有实数根的是()A. B.C. D.【答案】C解析:解:A.,方程有两个不相等实数根,不合题意;B.,方程有两个不相等的实数根,不合题意;C.,方程没有实数根,符合题意;D.,方程有两个相等的实数根,不合题意.故选:C.7. 下列各式计算正确的是()A. B.C. D.【答案】C解析:解:A、,故选项的计算错误;B、不能合并,故选项的计算错误;C、,故选项的计算正确;D、,故选项的计算错误;故选C.8. 用因式分解法解方程,下列方法中正确的是()A. ,∴或B. ,∴或C. ,∴或D. ,∴【答案】A解析:解:用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是,.所以第一个正确.故选∶A.9. 如图,、分别是正方形的边,上的点,且,,相交于点,下列结论:①;②;③;④中,正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】C解析:解:四边形是正方形,,,,,在和中,,,(故①正确);∴∵∴(故④正确);,,一定成立(故②正确);假设,,(线段垂直平分线上的点到线段两端点的距离相等),在中,,,这与正方形的边长相矛盾,假设不成立,(故③错误);故选:C.10. 如图,边长为4的菱形中,,点E、F分别是、的中点,则的周长是()A. 12B.C. 6D. 【答案】D解析:解:四边形是菱形,,,、分别是、的中点,,在和中,,,,.如图,连接,,与是等边三角形,又、分别是、的中点,,(三线合一),,,是等边三角形.又中,,周长是.故选:D.11. 对于任意两个正数,定义运算※为:,计算的结果为()A. B. C. 5 D. 或5【答案】C解析:解:※※.故选:C.12. 四边形是一张正方形纸片,将其对折,使对折的两部分完全重合,得到折痕,展开后再沿折叠,使点A正好落在上.下列说法:①②③是等边三角形④正确的有()个A. 1B. 2C. 3D. 4【答案】C解析:解:对折正方形纸片,使与重合,得到折痕,,,沿折叠,使点落在上的点处,,,,在中,,∴,;故②正确在中∵,∴,∴故①不正确∵∴,∴∴是等边三角形,故③正确;∴而∴故④正确故选:C二、填空题,每小题4分,共24分.13. 若二次根式有意义,则的取值范围是_________.【答案】解析:解:由题意,得,解得,故答案为:.14. 如图,已知直角三角形的斜边,则斜边上的中线______.【答案】5解析:解:∵直角的斜边,∴斜边上的中线,故答案为:5.15. 关于x的一元二次方程有两个不相等的实数根,则a的取值范围是______.【答案】且##且解析:解:根据题意得:且,解得:且.故答案为:且.16. 如图,在中,以点A为圆心AB长为半径作弧交于点F,分别以点B、F为圆心,大于的长度为半径作弧,交于点G,连接并延长交于点E,若,,则的长为______.【答案】解析:解:如图,连接,由作图可知:,,,,∴,∵,,∴,∴,,∴四边形是平行四边形,∵,∴四边形是菱形,∴.故答案为:.17. 如图,把一张大正方形的内部剪去两个面积分别为8和18的小正方形,那么剩下的纸片的面积是______.【答案】24解析:解:大正方形的边长为,∴剩下的纸片的面积,故答案为:24.18. 如图1,在矩形中,动点从点出发,沿、、运动至点停止,设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则矩形的对角线长为______.【答案】解析:解:动点从点出发,沿、、运动至点停止,而当点运动到点,之间时,的面积不变,函数图象上横轴表示点运动的路程,时,开始不变,说明,时,接着变化,说明,,,矩形的对角线长为.故答案为:.三、解答题:19. 计算:(1);(2).【答案】(1)(2)【小问1解析】解:【小问2解析】20. 如图,菱形的对角线、相交于点O,,,与交于点F,.(1)求证:是矩形;(2)求的长.【答案】(1)见解析(2)12【小问1解析】解:∵,四边形是平行四边形.又菱形对角线交于点,,即.四边形是矩形;【小问2解析】解:∵四边形是矩形∴是的中点,∵四边形是菱形∴是的中点,∴,∵,∴,∵四边形是菱形,∴21. 解方程.(1);(2).【答案】(1),(2),【小问1解析】解:∵,∴,∴,.【小问2解析】解:,,,∴,.22. 如图,四边形为矩形,O为中点,过点O作的垂线分别交、于点E、F,连接、.(1)求证:四边形是菱形;(2)若,,求的长.【答案】(1)见解析(2)【小问1解析】证明:为中点,,为的垂直平分线,,,则,.∵四边形是矩形,,,,∴,四边形平行四边形.又,四边形是菱形;【小问2解析】解:∵四边形是菱形,,,,,,设,在中,,在中,.,解得,.23. 课本知识再现:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.(1)化简:______;______;(2)在有关二次根式得计算中,当出现分母且分母中出现二次根式时,我们往往将分母中得二次根式通过相关知识使分母不含二次根式,如:;我们思考“如何化简”的问题.为了使分母之中不含根号,我们想到平方差公式“”,其特点是类比分数的基本性质和平方差公式,使进行变形:这样计算过程数学上称之为“分母有理化”.请把分母有理化;(3)计算:.【答案】(1),(2)(3)【小问1解析】解:;.故答案为:,.【小问2解析】解:.【小问3解析】解:.24. 在平面直角坐标系中,O是坐标原点,正方形的边长为2,且边、分别在x轴和y轴上.(1)直接写出B点坐标;(2)正方形绕点A顺时针旋转,求点B的对应点的坐标;(3)正方形绕点A顺时针旋转,当点C恰好落在AB延长线上时,直接写出点B的对应点的坐标.【答案】(1)(2)(3)【小问1解析】解:∵正方形的边长为2,∴∵点B在第一内,∴.【小问2解析】解:过点作于E,如图,由旋转可得:,,∴,∴,在中,,∴,,∴.【小问3解析】解:当点C恰好落在AB延长线上时,如图,过点作于D,∵正方形∴∴∵于D,∴∴∵∴∴∴.25. 阅读材料:如果关于x的一元二次方程有两个实数根,且其中一个实数根比另一个大1,称这样的方程为“连根方程”,如方程就是一个连根方程.(1)问题解决:请你判断方程是否是连根方程;(2)问题拓展:若关于x的一元二次方程(m是常数)是连根方程,求m的值;(3)方法总结:如果关于x的一元二次方程(b、c是常数)是连根方程,请直接写出b、c 之间的关系式.【答案】(1)方程是连根方程(2)(3)【小问1解析】解:∵,∴,解得:,∵,∴是连根方程.【小问2解析】解:∵方程(是常数)是“连根方程”,设的两个根为,∴,∴,∴,解得:.【小问3解析】解:方程(b、c是常数)是“连根方程”,设方程的两个根为:,且,∴,∴,∴,∴;∴.。
北京市育才中学2023-2024年八下期中数学试卷及答案

2023—2024学年度第二学期北京市育才学校八年级数学学科期中考试试卷一.选择题:(每小题2分,共20分). 1. 下列各式中,是最简二次根式的是( ).A .BC D2. 以下列各组数为边长,不能构成直角三角形的是( ).A. 3,4,5B. 4,5,6C.D. 1, 23. 下列计算,正确的是( ).A B . C = D 2=4. 关于四边形对角线的性质,下列描述错误的是( ). A .平行四边形的对角线互相平分 B .矩形的对角线互相垂直C .菱形的每一条对角线平分一组对角D .正方形的对角线相等5. 一次函数21y x =+的图象一定经过下列四个点中的( ). A .(12,1) B .(12−,1−) C .(1,3) D .(1−,0) 6. 若△ABC 的面积为12,则以△ABC 三边的中点为顶点的三角形的面积等于( ). A. 6B. 4C. 3D. 27. 一次函数y kx b =+满足0kb >,且y 随x 的增大而减小,则此函数的图象一定 不经过( ). A .第一象限B .第二象限C .第三象限D .第四象限8. 如图,网格中每个小正方形边长均为1,点A ,B ,C 都在格点上,以A 为圆心,AB 长为半径画弧,交最上方的网格线与点D ,则CD 的长为( ). A.5 B. 0.8 C. 52− D. 35−9. 在学校科技节活动中,聪聪用四根长度相同的木条制作了能够活动的菱形学具.他先活动学具成为图1所示菱形,并测得120B ∠=︒,接着活动学具成为图2所示正方形,并测得对角线20AC =cm ,则图1中对角线AC 的长为( ).A .102cmB .202cmC .106cmD .56cm10. 如图1,四边形ABCD 是平行四边形,连接BD ,动点P 从点A 出发,沿折线AB →BD →DA 匀速运动,回到点A 后停止. 设点P 运动的路程为x ,线段AP 的长为y ,图2是y 与x 的函数关系的大致图象,则平行四边形ABCD 的面积为( ).A. 245B. 165C. 125D. 36CB DAP 图1xy68126O 图2D Axyy = 6 xy = k ∙x2ODEBC A17题图x二.填空题:(每小题2分,共16分).11. 若1x −在实数范围内有意义,则实数x 的取值范围是_______. 12. 已知23a =,则a =_______.13. 已知点(2−,1y ),(1,2y )都在直线23y x =−上,则1y _______2y (填“>”,“=”或“<”).14. 函数2y tx t =++为正比例函数,则t 的值为_______.15. 在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D , ∠ACD =3∠BCD ,E 是斜边AB的中点,则∠DCE =_______°.16. 函数y kx =与6y x =−的图象如图所示,则k =_______.17. 如图,一支17cm 的铅笔放在圆柱体笔筒中(铅笔的粗细不计),笔筒内部底面直径为9cm ,内壁高12cm ,那么这支铅笔露在笔筒外的部分长度x (cm )的范围是_______.18. 矩形ABCD 中,点E 是AD 上一点,AE =2,DE =3,DC =6,点F 是AB 边上的动点,以EF 为一边作菱形EFGH ,使顶点H 落在CD 上,连接CG ,则EF 的最小值为_______,△HCG 面积的最小值为_______.GHCDABE F18题图三.解答题:(共8小题,共64分) 19. 计算:(共2小题,每小题4分)(1); (2)22)+.20.(6分)如图,在ABCD 中,点E ,F 分别在BC ,AD 上,且BE =DF .求证:AE ∥CF .21.(8分)如图,折叠矩形ABCD 的一边BC ,使点B 落在AD 边上的点F 处,折痕为CE ,若AD =5,CD =3,求AE 的长.22.(8分)在平面直角坐标系xOy 中, A (1−,4), B (3,0),C (2−,0).(1)求直线AB 所对应的函数的解析式,并画 出直线AB ;(2)直接写出∠OBA 的度数为_______°; (3)若点P 是直线AB 上一点,当△BCP 的面 积为5时,求点P 的坐标.EA B23.(6分)尺规作图:过直线外一点作这条直线的平行线.已知:如图,直线l 和直线l 外一点A . 求作:直线m ,使得m ∥l ,且m 经过点A . 作法:①在直线l 上任取一点B ,以点B 为圆心,任意长为半径作弧,交l 于点C ; ②连接AC ,分别以A ,C 为圆心,大于12AC 长为半径作弧,两弧交于P ,Q 两点;③作直线PQ ,交AC 于点O ;④作射线BO ,在线段BO 的延长线上取点D ,使得DO =BO ; ⑤作直线AD ,则AD 即为所求作直线m .(1)使用直尺和圆规,依作法补全图形(保留作图痕迹); (2)完成下面的证明.证明:连接AB ,CD ,∵PQ 是线段AC 的垂直平分线,垂足为O ,∴AO =CO .又∵DO =BO , ∴四边形ABCD 为( )(用汉字填四边形名称)(_____________________________________)(填推理依据).∴AD ∥BC (____________________________________)(填推理依据).即m ∥l .lAlA24.(9分)探究函数y=|x+1|的图象与性质.请将探究过程补充完整:(1)函数y=|x+1|的自变量x的取值范围是;(2)下表是x与y的几组对应值:m=,n= ;(3)在如图网格中,建立平面直角坐标系xOy,描出上表中各对对应值为坐标的点,并画出该函数的图象;−|+1的图象可以看作是由函数y=|x+1|的图象向(填“左”(4)函数y=|x2或“右”)平移个单位长度,再向(填“上”或“下”)平移个单位长度而得到;(5)以下关于函数y=|x+1|的结论,正确的是.(只填序号)①函数有最小值为0;−时,y随x的增大而减小;②当x>1−,0)且垂直于x轴的直线对称.③图象关于过点(125.(9分)如图,Rt △ABC 中,∠ABC =90°,点D ,E 分别是AC ,AB 的中点,CF //DB ,BF //DC .(1)求证:四边形DBFC 是菱形;(2)若AD =3,DE =1,求四边形DBFC 的面积.26.(10分)如图1,正方形ABCD ,点E 为对角线BD 上任意一点(不与B ,D 重合),连接AE ,过点E 作EF ⊥AE ,交线段BC 于点F ,以AE ,EF 为邻边作矩形AEFG ,连接BG . (1)求证:AE=EF ;(2)猜想线段AB ,BE ,BF 之间的数量关系(用等式表示),并证明. (3)若正方形ABCD 的边长为2,设四边形AGBE 的周长为m ,直接写出m 的取值范围.附加题:(共2小题,第1小题4分,第2小题6分,共10分) 1. 已知m ,n 是两个连续的正偶数,m <n ,a =mn,q = (1)当m =4时,q = ;(2)当m 为任意正偶数时,q 的值是定值吗?如果是,求出这个定值,如果不是,请说明理由.G2. 在平面直角坐标系xOy 中,正方形ABCD 四个顶点的坐标分别是A (2−,2),B (2−,2−),C (2,2−),D (2,2),点M 为正方形ABCD 边上任意一点,点P 为线段OM 上一点(点P 不与点O 、M 重合),且OM nOP =. 若射线OM 上存在一点Q ,满足2OQ OP OM +=,则称线段PQ 是正方形ABCD 关于点M 的n 倍拓展线段.(1)如图2,当点M 的坐标为(2,1)时,在E 1(12,14),E 2(32,34),E 3(3,32) 中, 是正方形ABCD 关于点M 的2倍拓展线段上的点; (2)若点H (m ,2m )是正方形ABCD 关于点M 的2倍拓展线段上的点,请直接写出m 的取值范围;(3)已知点F (0,12),G (32,0),若线段FG 上的所有点都是正方形关于点M 的n 倍拓展线段上的点,请直接写出n 的取值范围.图1 图2P M xOy 12345-1-2-3-4-512345-1-2-3-4-5ADC BM BC D A-5-4-3-2-154321-5-4-3-2-154321y OxxOy12345-1-2-3-4-512345-1-2-3-4-5AD CBxOy 12345-1-2-3-4-512345-1-2-3-4-5A DCB备用图1 备用图22023—2024学年度第二学期北京市育才学校八年级数学学科期中考试试卷参考答案及评分标准一.选择题:(每小题2分,共20分).二.填空题:(每小题2分,共16分)三.解答题(共8小题,满分64分)19. (1; (2)22)+−+− ……3分 =342−+ ……3分 = ……4分 =1 ……4分20. 证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC . ……2分 ∴AF ∥EC . ∵BE =DF ,∴AD −DF =BC −BE ,即AF =EC , ……4分 ∴四边形AECF 是平行四边形. ……5分 ∴AE ∥CF . ……6分21.解:∵四边形ABCD 是矩形,∴AD =BC =5,CD =AB =3,∠A =∠D =90°. ……2分 ∵沿CE 折叠,∴CF =CB =5,BE =EF , ……4分 ∴在Rt △CDF 中,2222534DF CF CD =−=−=, ……5分 ∴AF =AD −DF =5−4=1. ……6分 设AE =x ,则BE =EF =3−x .在Rt △EAF 中,由222AE AF EF +=得:2221(3)x x +=− , ……7分 解得:43x =. 43AE 即的长为. ……8分 22.解:(1)l AB 如图所示 ……1分 设l AB :y kx b =+(k 、b 为常数,且0k ≠)由430k b k b −+=⎧⎨+=⎩, ……3分 解得13k b =−⎧⎨=⎩. 所以l AB :3y x =−+; ……5分 (2)45 ……6分(3)依题意:1=52BCP p S BC y ⋅= ,且BC =5,所以2P y =±.当2P y =时,由23x =−+得:1x =,所以(12)P ,; 当2P y =−时,由23x −=−+得:5x =,所以(52)−,, ……8分 综上所述,(12)P ,或(52)−,. EA B CDF -4-3-2-14321-4-3-2-14321y xO23.(1)如图所示:……3分(2)平行四边形; ……4分 对角线互相平分的四边形是平行四边形; ……5分平行四边形的对边平行. ……6分 24. (1)全体实数; ……1分(2)m =1,n =3; ……3分(3)如图所示……5分(4)右,3;上,1 ……7分 (5)①③ ……9分m25. (1)证明:∵CF//DB,BF// DC,∴四边形DBFC是平行四边形. ……2分∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴BD=CD=12AC. ……3分∴平行四边形DBFC是菱形. ……4分(2)解:∵D,E分别是AC,AB的中点,∴DE是△ABC的中位线.∵AD=3,DE=1,∴AC=2AD =6,BC=2DE =2,……6分∴AB===. ……7分∵四边形DBFC是菱形,∴S四边形DBFC =2S△DBC= S△ABC……8分=11222AB BC⋅=⨯=……9分26.(1)连接EC,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,……1分∴∠ABE=∠EBC =45°.∵BE=BE,∴△ABE≌△CBE(SAS),……2分∴AE=EC,∠BAE=∠BCE.G∵AE ⊥EF ,∠ABC =90°,∴∠BAE+∠BFE =180°. ……3分 ∵∠EFC+∠BFE =180°, ∴∠BAE =∠EFC , ∴∠EFC =∠ECF ,∴EF =EC , ……4分 ∴AE=EF .(2)+AB BF = ……5分 过点E 作EH ⊥BC 于H , ∵∠EBC =45°∴BE, ……6分 ∴FH = BH −BF=2BE BF − ∵EF =EC ,EH ⊥BC , ∴FH =HC=12FC , ……7分∴22FC FH BF ==−, ……8分∴+FC BF BF =−即AB BF =−∴+AB BF =(3)4m ≤<+ ……10分G附加题:1.(1)2 ……1分 (2)是定值 ……2分证明:将n =m +2,a =mn 代入q =q == ……3分=2n m =−= ……4分2. (1)2E ,3E ; ……2分(2)1322m ≤≤或3122m −≤≤−; ……4分 (3)163n ≥. ……6分。
最新人教版八年级(下)期中模拟数学试卷(含答案)

最新人教版八年级(下)期中模拟数学试卷(含答案)一、选择题(共10小题,每小题3分,共30分)下列各题均有四个备选选项,其中有且只有一个正确,请在答题卷上将正确答案的字母涂黑.1x 的取值范围是A .1x ≥B . 1x > C. 1x ≤ D .1x < 2.下列计算错误..的是A.B.C. ÷D. 3.下列各组数是三角形的三边,不能组成直角三角形的一组数是 A. 3,4,5 B. 6,8,10 C. 1,1,2D. ,,4.点(3,-1)到原点的距离为 A.B .3C .1 D5.已知实数x 、y()210y +=,则x ﹣y 等于A. 3B. ﹣3C. 1D. ﹣16.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠A BE 为A. 100B.150C.200D. 2507.()21计算的结果为A.28-.10-28-.10-8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为 A1) B .(2,1)C .(2D.(19.如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A .当E ,F ,G ,H 是各边中点,且AC=BD 时,四边形EFGH 为菱形EB .当E ,F ,G ,H 是各边中点,且AC ⊥BD 时,四边形EFGH 为矩形 C .当E ,F ,G ,H 不是各边中点时,四边形EFGH 可以为平行四边形 D .当E ,F ,G ,H 不是各边中点时,四边形EFGH 不可能为菱形10.如图,三个相同的正方形拼成一个矩形ABCD ,点E 在BC 上,BE=2,EC=10,FM ⊥AE 交AB 于F ,交CD 的延长线于M ,则FM 的长为A .58B .56C .262D .372二、填空题(共6小题,每小题3分,共18分) 11= .12.在实数范围内分解因式:52x = .13.在菱形ABCD 中,对角线AC =2,BD =4, 则菱形ABCD 的周长是 . 14.如图,在矩形ABCD 中,∠DAC=65°,点E 是CD 上一点,BE 交AC 于点F ,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C ′处,则∠AFC ′= .15.AD 是△ABC 的高,AB=4,AC=5,BC=6,则BD= .16.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则ADBC 的值为__________.三、解答题(共8小题,共72分)ABCD第15题图17.(本题8分)计算:(1) (2))(8381412---.18.(本题8分)已知:1a =,1b =.求:(1)a b -的值;(2)ab 的值;(3)a bb a+的值.19.(本题8分)如图,某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行163n mile,“海天”号每小时航行 4n mile.它们离开港口一个半小时后分别位于点Q 、R 处,且相距10n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?20.(本题8分)已知:如图,在ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.21.(本题8分)如图,每个小正方形的边长都为1.ABODFCE(1)请直接写出:四边形ABCD 的面积是 ; (2)求点B 到AD 的距离.22.(本题10分)如图,在矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(1)若PCD ∆是等腰三角形时,求AP 的长; (2)求证:PC ⊥CF .23.(本题10分)已知在Rt △ABC 中,∠ACB=90°.(1)如图1,点O 是AB 的中点,OM ⊥AC 于M ,求证:AM=CM ;CBDA2017∼2018学年度下学期八年级期中考试数学参考答案1 .A 2.B 3.D 4.D 5.A 6.B 7.C 8.C 9.D 10.B 11.2 12.(x x 13. 14. 40︒ 15. 9416. 217.(1)解:原式=263⨯=. (4分) (2)解:原式=(8分)18.(1) 解:原式)11-=2-. (2分)(2) 解:原式=)11=1. (4分)(3)解:原式2211(8分)19.根据题意,161.58,4 1.56,10.3PQ PR QR =⨯==⨯==(2分)222228610,P QP RQ R +=∴+=.(4分) 90QPR ∴∠=︒.(6分)由"远航"号沿东北方向航行可知,45,45NPQ RPN ∠=︒∴∠=︒.(7分) 答:"海天"号沿西北方向航行.(8分)20.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,(2分)∴∠F =∠E ,∠DCA =∠CAB ,(4分) ∵AB =CD ,FD =BE ,∴CF =AE ,(5分) ∴△COF ≌△AOE ,(7分) ∴OE =OF .(8分)(方法二:连接FA 、CE,证四边形FAEC 是平行四边形,也可.)21 . 解:(1)14.5 (4分)(2)连BD ,设B 到AD 的距离为d ,可求90BCD ∠=︒ , AD ==5分)152B C D S=⨯=(6分)114.552ABD S h ∆∴=-=(7分) h ∴=(8分)22.解:(1)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,;(1分)要使△PCD 是等腰三角形,有如下三种情况: ①当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2分)②当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD =∠PDC+∠PDA=90°, ∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3分) ③当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC = 185= ,∴PC=2CQ =365,∴AP=AC-PC=145 .(6分)综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145.(2)连接PF 、DE ,记PF 与DE 的交点为O ,连接OC , 四边形ABCD 是矩形,190,,2BCD OE OD OC ED ∴∠=︒=∴=(7分)在矩形PEFD中,PF DE =,∴12OC PF =,(8分)12OP OF PF ==,OC OP OF ∴==, OCF OFC ∴∠=∠,OCP OPC ∠=∠(9分)又180OPC OFC PCF ∠+∠+∠=︒,22180O C P O C F ∴∠+∠=︒,90PCF ∴∠=︒(10分),ACB ∠=O A 又OM AC ⊥ ②证明:取AB 的中点E ,AC 的中点F ;连接EF,DF ,过P 作PH AQ ⊥于H ,在Rt APH ∆中 2AP t = 30A ∠=︒,AH ∴=又CQ =, AF=CFHF QF ∴=(7分) 又∵D 是PQ 的中点 DF PH ∴PH AC ⊥90ACB ∠=︒PH BC ∴DF BC ∴(8分) ∵E 、F 分别是AB 、AC 的中点 EF BC ∴(9分)∴D 在△ABC 的中位线EF 上.(10分)24.证明:(1)∵EM 垂直平分BD 90EOD MOB ∴∠=∠=︒ OB=OD ∵四边形ABCD 是平行四边形 AD BC ∴ ADB CBD ∴∠=∠ ∴△DOE ≌△BOM ∴OE=OM(2分)又OB=OD EM ⊥BD ∴四边形BMDE 是菱形(3分)(2)延长MN 分别交AB 、AD 的延长线于点E 、F ,作M A F M A E'∠=∠,截取AM AM '=,连接,M N M F '',则有45AFN FND CNM CMN BME E ∠=∠=∠=∠=∠=∠=︒, 45M AN M AF FAN MAE FAN MAN ''∠=∠+∠=∠+∠=︒=∠,又∵AM AM '=AN AN =,MAN ∴∆≌M AN '∆(4分) M N MN '∴=,45MFA E ︒∠=∠= AF AE ∴= 又∵AM AM '= MAF MAE '∠=∠MAF '∴∆≌MAE ∆(5分) ∴M F ME '= M FA E '∠=∠ 则90M FN '∠=︒, 在Rt M FN '∆中,222M N FN M F ''=+,(6分)在Rt MBE ∆中,222ME MB =, 在Rt FDN ∆中,222FN DN =,在Rt MCN ∆中,222MN MC =,2222222M C M N M NBM D N '∴===+,222MC BM DN ∴=+(8分)(3)在矩形ABCD 及四边形EFMN 是平行四边形可证明AF=CN, (9分)如图,延长DC 至N ’,截CN ’=CN,连接FN ’交BC 于M ’,连接MN ’、AC.则有MN ’=MN, 由三角形中两边之和大于第三边易知,无论F 点在什么位置,点M 在M ’处时 FM+MN=FN ’=AC=, (11分) 故四边形EFMN 周长的最小值为.(12分)最新八年级下册数学期中考试题及答案AD FB N 图3CM EM人教版八年级下学期期中数学试卷八年级数学一、选择题1、若二次根式5-x 有意义,则x 的取值范围是( a )A 、5≥xB 、5≤xC 、5 xD 、5 x 2、下面各式是最简二次根式的是( d )A 、8B 、21C 、9D 、2 3、下列各组数中不能作为直角三角形的三边长的是( c )A 、6,8,10B 、5,12,13C 、1.5,2,3D 、9,12,15 4、下列计算正确的是( c ) A 、532=+ B 、3223=- C 、632=⨯ D 、322324= 5、在平面直角坐标系中,点P (1,-3)到原点的距离是( b )A 、4B 、10C 、22D 、无法确定 6、如图所示,在平行四边形ABCD 中,已知AC=3cm ,若△ABC 的周长为9cm , 则平行四边形的周长为( b )A 、6cmB 、12cmC 、16cmD 、11cm 7、下列命题是真命题的是( c )A 、一组对边平行,另一组对边相等的四边形是平行四边形B 、对角线互相垂直的平行四边形是矩形C 、四条边相等的四边形是菱形D 、对角线相等的矩形是正方形8、甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发, 他们离出发地的距离s (km )和骑行时间t (h )之间的函数关系如图所示, 根据图像信息,以上说法正确的是( d )A 、甲和乙两人同时到达目的地;B 、甲在途中停留了0.5h;C 、相遇后,甲的速度小于乙的速度;D 、他们都骑了20km9、已知菱形的面积为24cm ²,一条对角线长为6cm ,则这个菱形的边长是( b )cm A 、8 B 、5 C 、10 D 、410如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于E ,PF ⊥CD 于 F ,连接EF ,给出下列四个结论:①AP=EF,②△APD 一定是等腰三角形,G ,③∠PFE=∠BAP,④PD=2EC.其中正确结论的序号是( d ) A 、①②④ B 、②④ C 、①②③ D 、①③④ 二、填空题11、=÷218__3_____12、在实数范围内因式分解:32-x =__)3)(3(-+x x _13、如图,在直角三角形ABC 中,点D 为AC 的中点,BC=3,AB=4,则BD=____2.5______ 14、“全等三角形的对应角相等”的逆命题 对应角相等的三角形是全等三角形 ,这个命题是__假__命题。
人教版数学八年级下册《期中考试试卷》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是( ) A. 4 B. 5 C. 0.2 D. 132. 使二次根式2x -有意义的x 的取值范围是( )A. x≠2B. x >2C. x≤2D. x≥2.3. 下列计算正确的是( )A. 103=7-B. 23=5+C. 333=23-D. 22=22+ 4. 下列各组数中,以a 、b 、c 为边三角形不是直角三角形的是( )A. a =1,b =2,c =3B. a =32,b =2,c =52C. a =5,b =12,c =13D. a =7,b =24,c =255. 在平行四边形ABCD 中,∠A 比∠B 大40°,那么∠C 的度数为( )A 60° B. 70° C. 80° D. 110°6. 在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A. AB =BC ,CD =DAB. AB //CD ,AD =BCC. AB //CD ,∠A =∠CD. ∠A =∠B ,∠C =∠D7. 如图,正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为( )A 13 B. 4 C. 17 D. 58. 菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=( )A72B. 3C.512D.539. 将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是( )A. B.C. D.10. 将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则FMFG的值为( )A. 622-B. 22C. 255D. 522- 二、填空题(每小题3分,共18分)11. 化简:()()2255-+=_____. 12. 若a =2+3,b =2﹣3,则ab 的值为_____.13. 点D 、E 、F 分别是△ABC 三边的中点,若△ABC 的周长是16,则△DEF 的周长是_____.14. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A ,B ,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D ,则CD 的长为_____.15. △ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于D ,分别以AD 、BD 、CD 为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G 刚好在AE 的延长线上,则其中一个菱形AEDF 的面积为_____.16. △ABC 中,AD ⊥BC 于D ,AB =m ,AC =n ,∠ACB =2∠BAD ,用m 、n 表示AD 的长为_____.三、解答题(共72分)17. 计算:(1)1 27123-+=(2)(3622)2-÷=18. 已知:如图,点E,F分别在□ABCD的AB,DC边上,且AE=CF,联结DE,BF.求证:四边形DEBF是平行四边形.19. 已知=51-,求代数式256x x+-的值.20. 如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)直接写出AC的长为,△ABC的面积为;(2)请在如图所示网格中,用无刻度的直尺作出AC边上的高BD,并保留作图痕迹;(3)求BD的长.21. 如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED是菱形.22. 在△ABC中,AB=AC=5.(1)若BC=6,点M、N在BC、AC上,将△ABC沿MN折叠,使得点C与点A重合,求折痕MN的长;(2)点D在BC的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD是直角三角形.23. ▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=12时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.24. 书籍和纸张的长与宽比值都有固定的尺寸,如常用的A3、A4、A5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD长与宽之比也满足以上条件,其中宽AB=2.①点P是AD上一点,将△BP A沿BP折叠得到△BPE,当BE垂直AC时,求AP的长;②若将长方形ABCD绕点B旋转得到长方形A1BC1D1,直线CC1交DD1于点M,N为BC的中点,直接写出MN的最大值:.答案与解析一、选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是()B. C. D.A.[答案]B[解析][分析]根据最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式,可得答案.[详解]解:A.=2,故不符合题意;B.C.,故不符合题意;5D. ,故不符合题意故选:B.[点睛]本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式.2. x的取值范围是( )A. x≠2B. x>2C. x≤2D. x≥2.[答案]D[解析][分析]根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.[详解]解:由题意得,x-2≥0,解得x≥2,故选:D.[点睛]本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.3. 下列计算正确的是( )C. D. 2[答案]C[解析][分析]先把各个二次根式化成最简二次根式再合并判断即可.[详解]解:A,故该选项不符合题意;B不能计算,故该选项不符合题意;C、正确,符合题意;D,故该选项不符合题意;故选:C.[点睛]此题考查二次根式的加减,关键是先把各个二次根式化成最简二次根式再合并解答.4. 下列各组数中,以a、b、c为边的三角形不是直角三角形的是( )A. a=1,b,cB. a=32,b=2,c=52C. a b,cD. a=7,b=24,c=25[答案]C[解析][分析]根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.[详解]解:A、12+2=2,符合勾股定理的逆定理,是直角三角形,故此选项错误;B、22+(32)2=(52)2,符合勾股定理的逆定理,是直角三角形,故此选项错误;C、2+)2≠2,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;D、72+242=252,符合勾股定理的逆定理,是直角三角形,故此选项错误.故选:C.[点睛]本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5. 在平行四边形ABCD中,∠A比∠B大40°,那么∠C的度数为( )A. 60°B. 70°C. 80°D. 110°[答案]D[解析][分析]根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.[详解]画出图形如下所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠C=110°.故选D.[点睛]此题考查了平行四边形的性质.理解平行四边形的对角相等,邻角互补是解题的关键.6. 在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A. AB=BC,CD=DAB. AB//CD,AD=BCC. AB//CD,∠A=∠CD. ∠A=∠B,∠C=∠D[答案]C[解析]分析]根据平行四边形的判定定理,分别进行判断,即可得到答案.[详解]解:如图:A、根据AB=BC,AD=DC,不能推出四边形ABCD是平行四边形,故本选项错误;B、根据AB∥CD,AD=BC不能推出四边形ABCD平行四边形,故本选项错误;C、由AB∥CD,则∠A+∠D=180°,由∠A=∠C,则∠D+∠C=180°,则AD∥BC,可以推出四边形ABCD是平行四边形,故本选项正确;D、∵∠A=∠B,∠C=∠D,∠A+∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB∥CD,但不能推出其它条件,即不能推出四边形ABCD是平行四边形,故本选项错误;故选:C.[点睛]本题考查了对平行四边形判定定理和等腰梯形的判定的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形,等腰梯形的定义是两腰相等的梯形.7. 如图,正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A点出发,到达B点,则它运动的最短路程为( )13 B. 417 D. 5[答案]A[解析][分析]正方体侧面展开为长方形,确定蚂蚁的起点和终点,根据两点之间线段最短、勾股定理即可求出最短路径长.[详解]一.如图,它运动的最短路程22(22)21721AB⎛⎫=++⨯=⎪⎝⎭二、如图,它运动的最短路程2222+21312AB⎛⎫=+⨯=⎪⎝⎭故选:A.[点睛]本题考查了正方体的侧面展开图、两点之间线段最短、勾股定理,掌握正方体的侧面展开图是解题关键.8. 菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=( )A723 C.512D.53[答案]A [解析][分析]连接BF、BD,根据菱形ABCD的边长为2,可得AB=BC=CD=2,由∠A=60°,可得△BCD是等边三角形,进而可求∠DBF=90°,再根据勾股定理分别求出BF、DF的长,进而可得PB的长.[详解]解:如图,连接BF、BD,∵菱形ABCD的边长为2,∴AB=BC=CD=2,∵∠A=60°,∴△BCD是等边三角形,∴BD=BC=2,∠DBC=60°,∴∠DBA=60°,∵点G为AB的中点,∴菱形BEFG的边长为1,即BE=EF=BG=1,∵点E在CB的延长线上,∠GBE=60°,∴∠FBG=30°,连接EG,∴EG⊥FB于点O,3∴OB∴FB3∵∠DBF=∠DBA+∠FBG=90°,根据勾股定理,得DF227DB BF ,∵点P为FD的中点,∴PB =12DF =72. 故选:A .[点睛]本题考查了菱形的性质、等边三角形的判定与性质、直角三角形斜边上的中线、勾股定理,解决本题的关键是掌握菱形的性质.9. 将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是( )A. B.C. D.[答案]B[解析][分析]直接验证三角形三边的平方之间的关系即可作出判断.[详解]解:对于A 选项,((2255160100+=>,三角形为锐角三角形,合理;对于B 选项,102+42<112,说明边长为11的边所对的角是钝角,这个时候三角形不可能完全处在正方形内,故不合理;对于C 选项,(22210839+>,说明边长为239,三角形为锐角三角形,合理; 对于D 选项,62+72<102,说明边长为10的边所对的角为钝角,合理.故选:B .[点睛]本题主要考查了正方形的性质和勾股定理,正确判断各三角形的形状是解答的关键.10. 将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则FMFG的值为( )A. 622-B.22C.255D.522-[答案]A[解析][分析]连接HF,直线HF与AD交于点P,根据正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH 与五边形MCNGF的面积为4x2,5x2,可得GF=2x,根据折叠可得正方形ABCD的面积为24x2,进而求出FM,最后求得结果.[详解]如图,连接HF,直线HF与AD交于点P,∵正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH与五边形MCNGF的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF22GF=2,由折叠可知:正方形ABCD的面积为:4x2+4×5x2=24x2,∴PM 2=24x 2,∴PM =x ,∴FM =PH =12(PM ﹣HF )=12(x ﹣x )=)x ,∴FM GF = 故选:A .[点睛]本题考查了剪纸问题,解决本题的关键是掌握对称的性质.二、填空题(每小题3分,共18分)11. 2=_____. [答案]10[解析][分析]根据二次根式的性质计算.[详解]2 =5+5=10.故答案为:10.[点睛]本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12. 若a =,b =2则ab 的值为_____.[答案]1[解析][分析]直接利用平方差公式计算得出答案.[详解]解:∵22a b ==∴ab =(22+=4﹣3=1.故答案为:1.[点睛]此题主要考查了二次根式的化简求值,正确运用乘法公式是解题关键.13. 点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是_____.[答案]8.[解析][分析]据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.[详解]如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF12=BC,FE12=AB,DE12=AC,∴DF+FE+DE12=BC12+AB12+AC12=(AB+BC+CA)12=⨯16=8.故答案为8.[点睛]本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.14. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为_____.[答案]37[解析][分析]由勾股定理求出AB,再由勾股定理求出DE,即可得出CD 的长.[详解]解:连接AB ,AD ,如图所示:∵AD =AB =222222+=,∴DE =()222217-=,∴CD =37-.故答案为:37-.[点睛]本题考查了勾股定理,由勾股定理求出AB 、DE 是解题的关键.15. △ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于D ,分别以AD 、BD 、CD 为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G 刚好在AE 的延长线上,则其中一个菱形AEDF 的面积为_____.[答案]222[解析][分析]如图所示,连接HG ,设EG 交DH 于点K ,先证明△GDE 是等腰直角三角形,再证明∠GKD =90°,从而在Rt △GHK 中,由勾股定理得x 2+22)x x -=4,求得x 2的值,再根据菱形的面积等于底乘以高,得出菱形BGDH 的面积,即菱形AEDF 的面积.[详解]如图所示,连接HG ,设EG 交DH 于点K ,则HG =2,∵三个菱形全等,∴GD =ED ,∠ADE =∠BDG ,∵AD ⊥BC 于D ,∴∠ADB =∠ADE+∠BDE =90°,∴∠GDE =∠BDG+∠BDE =90°,∴△GDE 是等腰直角三角形,∴∠EGD =∠GED =45°,∵四边形AEDF 为菱形,∴AE ∥DF ,∴∠EDF =∠GED =45°,∴∠GDK =45°,∴∠GKD =90°,设GK =DK =x ,则GD =DH 2x ,HK 2x ﹣x ,在Rt △GHK 中,由勾股定理得:x 2+2(2)x x =4,解得:x 2=2∴菱形BGDH 的面积为:DH•GK 2x•x 2x 2=2+2,∴菱形AEDF 的面积为:2+2.故答案为:2+2.[点睛]本题考查了菱形的性质、菱形的面积计算、等腰直角三角形的判定及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.16. △ABC 中,AD ⊥BC 于D ,AB =m ,AC =n ,∠ACB =2∠BAD ,用m 、n 表示AD 的长为_____.[答案]2242-m n m n[解析][分析]延长BC 至E ,使CE =AC ,连接AE ,根据三角形的外角性质、等腰三角形的性质得到∠B =∠BAC ,得到BC =AC =n ,根据勾股定理、三角形的面积公式计算即可.[详解]延长BC 至E ,使CE =AC ,连接AE ,则∠CAE =∠E ,∵∠ACB =∠CAE+∠E ,∴∠CAE =∠E =12∠ACB , ∵∠ACB =2∠BAD ,∴∠E =∠BAD ,∵AD ⊥BC ,∴∠B+∠BAD =90°,∴∠B+∠E =90°,即∠BAE =90°,∴∠BAC+∠CAE =90°,∵∠B+∠E =90°,∠CAE =∠E ,∴∠B =∠BAC ,∴BC =AC =n ,由勾股定理得,AE 22BE AB -224n m -S △BAE =12×AB×AE =12×BE×AD ,即m×224n m -=2n×AD ,解得:AD 224-m n m , 224-m n m . [点睛]本题考查的是等腰三角形的性质、直角三角形的性质、勾股定理,掌握三角形的外角性质、灵活运用三角形的面积公式是解题的关键.三、解答题(共72分)17. 计算:(1127123= (2)(3622)2÷=[答案](1)33;(2)332. [解析][分析](1)先化简二次根式,再计算二次根式的加减法即可;(2)利用二次根式除法的分配律进行计算即可.[详解](1)原式323333= 433=; (2)原式362222=332=.[点睛]本题考查了二次根式的加减法、除法运算,熟记运算法则是解题关键.18. 已知:如图,点E ,F 分别在□ABCD 的AB ,DC 边上, 且AE=CF ,联结DE ,BF .求证:四边形DEBF 是平行四边形.[答案]见解析[解析][分析]由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,再说明EB=DF ,从而根据一组对边既平行又相等的四边形是平行四边形即可得证.[详解]∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,即EB ∥DF.∵AE =CF ,∴AB -AE =CD -CF ,即EB =DF .∴四边形DEBF 是平行四边形.[点睛]本题主要考查了平行四边形的性质与判定,熟练掌握平行四边形的性质定理与判定定理是解答本题的关键.19. 已知51,求代数式256x x +-的值.[答案]535-+[解析][分析]把x 的值代入多项式进行计算即可.[详解]当51时,256x x +-=))2515516+-=6255556--=535-+[点睛]本题考查了二次根式的化简求值,掌握完全平方公式是解题的关键.20. 如图,在每个小正方形边长为1的网格中,点A 、B 、C 均在格点上.(1)直接写出AC 的长为 ,△ABC 的面积为 ;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD ,并保留作图痕迹;(3)求BD 的长.[答案](1)29,9;(2)见解析;(3)182929[解析][分析](1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据题意画出线段BD即可;(3)根据三角形的面积公式即可得到结论.[详解](1)AC=2225+=29,S△ABC=4×5﹣12×2×4﹣12×2×5﹣12×1×4=9,故答案为:29,9;(2)如图所示,BD即为所求,(3)∵S△ABC=12AC•BD=1292BD=9,∴BD 1829.[点睛]本题考查了作图﹣应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.21. 如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED 是菱形.[答案]见解析[解析][分析]首先根据两对边互相平行的四边形是平行四边形证明四边形OCED 是平行四边形,再根据矩形的性质可得OC=OD ,即可利用一组邻边相等的平行四边形是菱形判定出结论.[详解]证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴OC=OD=12AC=12BD ∴四边形OCED 是菱形.22. 在△ABC 中,AB =AC =5.(1)若BC =6,点M 、N 在BC 、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC :CD =2:3,若AD =10,求证:△ABD 是直角三角形.[答案](1)103;(2)见解析 [解析][分析] (1)如图1,过作AD BC ⊥于,根据等腰三角形的性质得到3BD CD ==,求得4=AD ,根据折叠的性质得到AM CM =,1522AN AC ==,设AM CM x ==,根据勾股定理即可得到结论; (2)如图2,过作AE BC ⊥于,根据等腰三角形的性质得到12BE CE BC ==,设2BC t =,3CD t =,AE h =,得到BE CE t ==,根据勾股定理和勾股定理的逆定理即可得到结论.[详解]解:(1)如图1,过作AD BC ⊥于,5AB AC ==,6BC =,3BD CD ∴==,4AD ∴=,将ABC ∆沿MN 折叠,使得点与点重合,AM CM ∴=,1522AN AC ==, 设AM CM x ==,3MD x ∴=-,222AD DM AM +=,2224(3)x x ∴+-=, 解得:256x , 222225510()()623MN AM AN ∴=-=-=; (2)如图2,过作AE BC ⊥于, AB AC =,12BE CE BC ∴==, :2:3BC CD =,设2BC t =,3CD t =,AE h =,BE CE t ∴==, 5AB =,10AD =,2225h t ∴+=,222(4)10h t +=,联立方程组解得,5t =(负值舍去),55BD ∴=222222510125(55)AB AD BD+=+===,ABD∴∆是直角三角形.[点睛]本题考查了翻折变换(折叠问题),等腰三角形的性质,勾股定理的逆定理,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.23. ▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=12时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.[答案](1)见解析;(2)见解析;(339[解析][分析](1)根据菱形的判定定理得到平行四边形ABCD为菱形,得到△ACD为等边三角形,证明△F AC≌△EAB,根据全等三角形的性质得到AF=AE,根据等边三角形的判定定理证明结论;(2)延长AF至N,使DN=AD,延长AF至P,使FP=AF,延长BC、NP交于点H,根据菱形的判定定理得到四边形ABHN为平行四边形,根据(1)中结论解答;(3)延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,求出PE的长,证明△F AE≌△P AE,根据全等三角形的性质得到EF=PE,得到答案.[详解](1)证明:当n=1时,AD=AB,∴平行四边形ABCD 为菱形,∴∠ACD =12∠BCD =60°,∠CAB =60°, ∴△ACD 为等边三角形,∴AC =AD =AB ,∵∠EAF =60°,∴∠F AE =∠CAB ,∴∠F AC =∠EAB ,在△F AC 和△EAB 中,FAC EAB AC ABFCA EBA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△F AC ≌△EAB (ASA )∴AF =AE ,又∵∠EAF =60°,∴△AEF 为等边三角形;(2)证明:如图2,延长AF 至N ,使DN =AD ,延长AF 至P ,使FP =AF ,延长BC 、NP 交于点H ,∵DN =AD ,FP =AF ,∴DF 是△ANP 的中位线,∴NP ∥AB ,又AN ∥BH ,∴四边形ABHN 为平行四边形,∵AB =AN ,∴平行四边形ABHN 为菱形,由(1)可知,△APE 为等边三角形,∵AF =FP ,∴EF ⊥AP ,∴∠AFE =90°;(3)解:如图3,延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,∵CF=CE,∴∠CFE=∠CEF=30°,∵AG∥BC,∴∠G=∠CEF=30°,∴∠G=∠DFG,∴DG=DF,又DM⊥FG,∴GM=MF,在Rt△DMF中,∠DFM=30°,∴DM=12DF=2,由勾股定理得,MF2223DF DM-=∴GF=3∴PH=GF=3,同理,∠BHE=30°,EH=3,∴∠PHN=60°,∴∠NPH=30°,∴NH=12PH=3∴EN=EH﹣NH3,由勾股定理得,PN22PH NH-6, ∴PE2239PN EN-=∵∠F AE =60°,∠BAD =120°,∴∠DAF +∠EAB =60°,∴∠HAP +∠EAB =60°,即∠EAP =60°,∴∠F AE =∠EAP ,在△F AE 和△P AE 中,AF AP FAE PAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△F AE ≌△P AE (SAS )∴EF =PE =39, 故答案为:39.[点睛]本题考查的是菱形的判定和性质、全等三角形的判定和性质、等边三角形的性质、旋转变换的应用,正确作出辅助线、掌握全等三角形的判定定理和性质定理是解题的关键.24. 书籍和纸张的长与宽比值都有固定的尺寸,如常用的A 3、A 4、A 5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD 长与宽之比也满足以上条件,其中宽AB =2.①点P 是AD 上一点,将△BP A 沿BP 折叠得到△BPE ,当BE 垂直AC 时,求AP 的长; ②若将长方形ABCD 绕点B 旋转得到长方形A 1BC 1D 1,直线CC 1交DD 1于点M ,N 为BC 的中点,直接写出MN 的最大值: .[答案](1)2a b;(2)①232231 [解析][分析] (1)设长方形的长与宽分别为a ,b .根据对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等,构建关系式解决问题即可;(2)①如图1中,延长PE 、BC 交于点G ,证明AC =PG ,PG =BG 即可解决问题;②如图2中,连接BM ,取BD的中点O ,连接OM ,ON ,延长CC 1到K ,使得C 1K =CC 1在MK 的延长线上取一点J ,使得D 1J =D 1K .想办法证明DM =MD 1,推出BM ⊥DD 1,求出OM ,ON 即可解决问题.[详解](1)设长方形的长与宽分别为a ,b . 由题意:2a b a b =,∴a 2=2b 2,∴2a b=; (2)①如图1中,延长PE 、BC 交于点G ,∵∠PEB =90°,∴PE ⊥BE ,∵BE ⊥AC ,BE ⊥PE ,∴PG ∥AC ,∵四边形ABCD 是矩形,∴AB =CD =2,AD =BC =2,AD ∥BG ,∠ABC =90°, ∴四边形APGC 是平行四边形,∴PG =AC 22AB BC +222(22)+23∵AD ∥BC , ∴∠APB =∠GBP ,∵∠APB =∠GPB ,∴∠GBP =∠GPB ,∴GP =GB =3,∴AP =CG =BG =BC =32;②如图2中,连接BM,取BD的中点O,连接OM,ON,延长CC1到K,使得C1K=CC1在MK的延长线上取一点J,使得D1J=D1K,连接BD1.∵BC=BC1,∴∠BCC1=∠BC1C,∵∠BC1D1=∠BCD=90°,∴∠D1C1K+∠BC1C=90°,∠BCC1+∠DCC1=90°,∴∠D1C2K=∠DCC1,∵CD=C1D1,CC1=C1K,∴△DCC1≌△D1C1K(SAS),∴DC1=KD1=JD1,∠CC1D=∠C1KD1,∵∠JKD1+∠C1JKD1=180°,∠CC1D+∠DC1M=180°,∴∠DC1M=∠D1KJ,∵D1J=D1K,∴∠J=∠D1KJ,∴∠J=∠DC1M,∵∠D1MJ=∠DMC1,∴△D1MJ≌△DMC1(AAS),∴D1M=DM′,∵BD=BD1,∴BM⊥DD1,取BD的中点O,连接OM,ON,∵∠BMD=90°,∴OM=12BD3∵BO=OD,BN=CN,∴ON=12CD=1,∵MN≤OM+ON,∴,∴MN+1..[点睛]本题属于几何变换综合题,考查了矩形的性质,旋转变换,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加辅助线构造全等三角形解决问题,属于中考压轴题.。
人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。
八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
安徽省芜湖市部分学校2023-2024学年八年级下学期期中考试数学试卷(含答案)

八年级数学(答题时间120分钟,满分150分)温馨提示:本卷共八大题,计23小题,满分150分,考试时间120分钟。
一、选择题(本题共10小题,每小题4分,共40分)1.下列各式中,计算正确的是().A.B.C.D.2.下列各式中属于最简二次根式的是().A.B.C.D.3.估计的值应在().A.4和5之间B.5和6之间C.6和7之间D.7和8之间4.如图,一架靠墙摆放的梯子长5米,底端离墙脚的距离为3米,则梯子顶端离地面的距离为().A.5米B.4米C.3米D.2米5.勾股定理从被发现到现在已有五千年的历史,人们对这个定理的证明找到了很多方法.我国数学家刘徽利用“出入相补”原理(一个平面图形从一处移到另一处,面积不变;又若图形分成若干块,则各部分的面积和等于原来图形的面积)也证明了勾股定理,如图所示,这种证法体现的数学思想是().A.数形结合思想B.分类思想C.函数思想D.归纳思想6.在一个三角形地块中分出一块(阴影部分)种植花草,尺寸如图,则PQ的长度是().A.1m B.2m C.3m D.4m7.如图,在四边形ABCD中,对角线AC和BD交于点O,下列条件能判定四边形ABCD为平行四边形的是().A.,B.,C.,D.,8.如图,在“V”字形图形中,,,,,,若要求出这个图形的周长,则需添加的一个条件是().A.BE的长B.DE的长C.AB的长D.AB与BE的和9.如图所示,有一块直角三角形纸片,,,,将斜边AB翻折,使得点B 恰好落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为().A.2cm B.C.D.5cm10.如图,在中,,,,D为AB边上一动点(不与点A重合),为等边三角形,过点D作DE的垂线,F为垂线上任意一点,连接EF,G为EF的中点,连接BG、CG,则的最小值是().A.B.C.D.10二、填空题(本大题共4小题,每小题5分,满分20分)11.请写出一组勾股数______.12.已知:,,则=______.13.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):若一个三角形的三边长分别为a,b,c,则这个三角形的面积.若一个三角形的三边长a,b,c分别为,,,则这个三角形的面积为______.14.如图,C为平行四边形ABDG外一点,连接BC,DC,分别交边AG于点F,E,使,,,若,,则(1)CE的长为______;(2)AB的长为______.三、(本大题共2小题,每小题8分,满分16分)15.已知实数a在数轴上的对应点位置如图,化简.16.在平面直角坐标系中,按要求完成下列各题:(1)描出下列各点,,,将这些点依次用线段连接,并写出点C关于y轴对称的点的坐标为______;(2)在y轴上有点D,则的最小值为______;(3)证明:是直角三角形.四、(本大题共2小题,每小题8分,满分16分)17.请观察式子:,.仿照上面的方法解决下列问题:(1)化简:①=______;②=______;③=______.(2)把中根号外的因式移到根号内,化简的结果是______.18.如图,在平行四边形ABCD中,∠ABC、∠BCD的角平分线交于边AB上一点E,且.(1)求证:;(2)求线段CE的长.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平行四边形ABCD中,点E在BA的延长线上,点F在DC的延长线上,连接BF、DE、EF,EF交AD于点G,交BC于点H,.求证:四边形EBFD是平行四边形.20.定义:若一个三角形一边上的中线、高线与这条边均有交点,则这两个交点之间的距离称为这条边上的“中高距”.如图,中,AD为BC边上的中线,AE为BC边上的高线,则DE的长称为BC边上的“中高距”.(1)若BC边上的“中高距”为0,则的形状是______三角形;(2)若∠B=30°,∠C=45°,AB=4,求BC边上的“中高距”.六、(本题满分12分)21.高空抛物是一种不文明的危险行为,据研究,从高处坠落的物品,其下落的时间t(s)和高度h(m)近似满足公式(不考虑空气阻力的影响).(1)求物体从40m的高空落到地面的时间;(2)已知从高空坠落的物体所带能量(单位:J)E=10×物体质量(kg)×高度(m),某质量为0.05kg的鸡蛋经过6s落在地上,这个鸡蛋在下落过程中所带能量有多大?你能得到什么启示?(注:65J的能量就可以杀伤无防护的人体)七、(本题满分12分)22.如图,在中,,延长AC到点D,在BC边上取一点H,连接HD,设E和F 分别是AB和HD的中点,连接EF,若EF恰好与BC垂直,垂足为K.已知,试求EF的长.八、(本题满分14分)23.在和中,点D在BC边上,,.(1)若.①如图1,当时,连接EC,证明:;②如图2,当时,过点A作DE的垂线,交BC边于点F,若,,求线段CF的长;(2)如图3,已知,作∠DAE的角平分线交BC边于点H,若,,当时,请直接写出线段BD的长.八年级数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)题号12345678910答案C D D B A B B C B A第10题解析取的中点,连接,则三点共线,进而得到点在直线上运动,作点关于的对称点,连接,得到,进而得到三点共线时,的值最小,作,∵,,∴.即的最小值是.二、填空题(本大题共4小题,每小题5分,满分20分)11.3,4,5(不唯一);12.4;13.;14.(1)2(2分);(2)(3分)三、(本大题共2小题,每小题8分,满分16分)15.解:由图知:,,.(4分)原式.(8分)16.(1)解:如下左图(2分)点关于轴对称的点的坐标为(4分)(2)解:如上右图,点D即为所求(5分)此时.(6分)(3)解:,,,∴,∴是直角三角形.(8分)四、(本大题共2小题,每小题8分,满分16分)17.(1)解:①,②,③.(6分)(2).(8分)(注:只写最后结果不扣分)18.(1)证明:四边形是平行四边形,,,,,,、的角平分线交于边上一点,,,..即.(4分)(2)解:∵,,,,,,由(1)可知.(8分)五、(本大题共2小题,每小题10分,满分20分)19.证明:在平行四边形ABCD中,,,∴,∵∴,即.在和中,∴.(8分)∴,又,∴四边形是平行四边形.(10分)20.解:(1)等腰(4分)(2)在中,,,∴,∴.在中,,,∴,∴.(8分)∵点D为的中点,∴,∴.(10分)六、(本题满分12分)21.解:(1)∵,,∴.(4分)(2)∵,,∴,∴(8分)∴,∴.(10分)严禁高空抛物.(12分)七、(本题满分12分)22.解:如图,分别取AC,CD的中点P、Q,连接PE,FQ,作垂足为M.(2分)∵点、F分别为、的中点,∴分别是、的中位线,∴,.∴,.∵,∴.∵P、Q分别为的中点,∴.∴.∴.∴.(10分)∵,,∴,∵,∴,又∵,∴四边形为平行四边形,∴.(12分)八、(本题满分14分)23.(1)①证明:,,在和中,,.(2分),,,,.(4分)②解:如图2,连接,作交的延长线于点G,,,,,、都是等边三角形,在和中,,.(6分),,,,,,,,,,是的垂直平分线,.(8分)设,则,在中,,即,解得,即线段的长为.(10分)线段的长为5.6.(14分)具体过程如下:如图3,延长至N,使,连接,交的延长线于点M,连接,作于P,,.,,,,在和中,,,,,,,.中,,,,即,.,,.,是的角平分线,,是线段的垂直平分线,.设,则,,在中,,即,解得,.(说明:以上解答方法不唯一,只要合理,均要赋分)。
辽宁省本溪市第十二中集团2023-2024学年八年级下学期期中数学试题(含答案)

本溪市第十二中学教育集团2023—2024学年(下)期中考试八年数学试卷(本试卷共23道题 满分120分 考试时间120分钟)考生注意:请在答题卡各题目规定答题区域内作答,答在本试卷上无效第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果,那么下列运算正确的是( )A .B .C .D .2.在中,,,则的度数为()A .B .C .D .3.我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘徽割圆术”“赵爽弦图”中,中心对称图形是( )A .B .C .D .4.下面各式从左到右的变形,属于因式分解的是()A .B .C .D .5.利用数轴确定不等式组的解集,正确的是( )A .B .C .D .6.分式的值为0,则的值是( )A .0B .C .1D .或17.如图,的顶点,顶点分别在第一、四象限,且轴,若,,则点的坐标是( )a b >33a b -<-33a b +<+33a b-<-22a b<ABC △AB AC =40A ∠=︒ABC ∠70︒40︒110︒65︒()2111x x x x --=--()()2632x x x x --=-+()2211x x -=-()21x x x x-=-12x x ≤-⎧⎨>⎩211x x --x 1-1-OAB △()0,0O ,A B AB x ⊥6AB =5OA OB ==A第7题图A .B .C .D .8.在芦山地震抢险时,某镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不足90人.设预定每组分配的人数是,则应满足的不等式组是( )A .B .C .D .9.如图,中,,将逆时针旋转,得到,交于.当时,点恰好落在上,此时等于( )第9题图A .B .C .D .10.如图1,在中,动点从点运动到点再到点后停止,速度为2单位,其中长与运动时间(单位:)的关系如图2,则的长为()()5,4()3,4()5,3()4,3x x ()()811008190x x ⎧+≥⎪⎨-≤⎪⎩()()811008190x x ⎧-≥⎪⎨+≤⎪⎩()()811008190x x ⎧+>⎪⎨-<⎪⎩()()811008190x x ⎧->⎪⎨+<⎪⎩ABC △55BAC ∠=︒ABC △()055αα<<︒︒ADE △DE AC F 42α=︒D BC AFE ∠80︒82︒84︒86︒Rt ABC △P A B C /s BP t s AC第10题图ABC .D .17第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.分解因式:______.12.如图,已知点的坐标分别为,将沿轴向右平移,使点平移到点,得到,若,则点的坐标为______.第12题图13.如图,在中,的垂直平分线交于点,交于点,连接.若,,则的度数为______.22a ab -=,A B ()()2,4,6,0OAB △x B E DCE △8OE =C ABC △BC BC D AB E CE CE CA =40ACE ∠=︒B ∠第13题图14.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,间店为让利于顾客,计划以利润率不低于的价格降价出售,则该护眼灯最多可降价______元.15.如图,在中,,点为边上一点,连接,将沿折叠,使点落在射线上的点处,若,的面积为______.第15题图三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(每题5分,共计10分)(1)解不等式:,(2)计算:.17.(本小题8分)如图,在由边长为1个单位长度的小正方形组成的网格中,线段的端点均为网格线的交点.(1)将线段先向上平移4个单位长度,再向右平移3个单位长度得到线段,画出线段;(2)将线段绕点顺时针旋转得到线段,画出线段;20%ABC △AB AC =D AC BD ABD △BD A BC E 30BAC ∠=︒CD =CDE △4233x x --≤2211211a a a a a a -⋅--+-1010⨯AB A B 、AB 11A B 11A B 11A B 1A 90︒12A B 12A B(3)连接,直接写出______.18.(本小题8分)如图,平分,,,垂足分别为点,,.(1)求证:;(2)如果,,求证:.19.(本小题8分)小华山大桥是连接太子城、解放北路的交通要道,该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A 部件和3个部件组成,这种设备必须成套运输.已知1个部件和2个部件的总质量为2.8吨,2个部件和3个部件的质量相等.(1)求1个部件和1个部件的质量各是多少;(2)该卡车要运输这种成套设备通过此大桥,一次最多可运输多少套这种设备.20.(本小题9分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合函数图象研究函数性质及其应用的过程.下面,我们对函数展开探索,请补充完整以下探索过程:(1)列表:02468525直接写出的值,______,______.(2)在给出的平面直角坐标系中,利用表格中的数据描点、连线画出该函数图象.12B B 112A B B S =△AD BAC ∠DE AB ⊥DF AC ⊥E F DB DC =BE CF =BD AC ∥15DAF ∠=︒2AB DF =B A B A B A B 332y x m =--x ⋅⋅⋅4-2-⋅⋅⋅y ⋅⋅⋅1-4-1-n⋅⋅⋅,m n m =n =(3)已知函数的图象如图所示,结合你所画的函数图象,则不等式的解集为______.21.(本小题8分)【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:菜价3元/千克第一次质量金额甲2千克6元乙2千克6元菜价2元/千克第二次质量金额甲2千克______元乙______千克6元(1)完成上表;(2)计算甲两次买菜的均价和乙两次买菜的均价.(均价总金额总质量)(3)数学思考:设甲每次买质量为2千克的菜,乙每次买金额为6元的菜,两次的单价分别是元/千克、元/千克,用含有的式子,分别表示出甲、乙两次买菜的均价、,并比较、的大小.22.(本小题12分)(1)如图1,为等边三角形,点为边上一点,将线段绕点逆时针方向旋转得到线112y x =-+313122x m x --≥-+=÷a b a b 、x 甲x 乙x 甲x 乙ABC △D BC AD A 60︒段,连接,求证:(2)如图2,在中,,,点为边上一点,将线段绕点逆时针方向旋转得到线段,连接,若,求线段的长度.(3)如图3,在中,,,点为右侧一点,连接,若,,请直接写出线段的长度.第22题图1 第22题图2 第22题图323.(本小题12分)已知:若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角和是,则称这个两个顶点关于这条底边互为勾股顶针点.如图1,四边形中,是一条对角线,,则点与点关于互为顶针点:若再满足,则点与点关于互为勾股顶针点.【初步思考】(1)如图2,在中,,,为外两点,,,为等边三角形.①点与点______关于互为顶针点;②求证:点与点关于互为勾股顶针点.【实践操作】(2)在长方形中,.①如图3,点在边上,点在边上,请用圆规和无刻度的直尺作出点、,使得点与点关于互为勾股顶针点.(不用证明,不写作法,保留作图痕迹)【思维探究】②如图4,点是线段上的动点,点是平面内一点,点与点关于互为勾股顶针点,直线与直线交于点,在点运动过程中,当线段与线段的长度相等时,求的长.AE,DE CE BD CE=ABC△AB AC=90BAC∠=︒D BC AD A 90︒AE,DE BE3,4AB BD==BEABC△AB AC=120BAC∠=︒D AB,AD BD 4AD=BD=30ADB∠=︒CD180︒ABCD BC,AB AC DB DC==A D BC180BAC BDC∠+∠=︒A D BCABC△AB AC=30ABC∠=︒D E、ABC△EB EC=45EBC∠=︒DBC△A BCD A BCABCD4,6AB AD==E CDF AD E F E B CFE AB P E C BPCP AD F E BE AF AE第23题图1 第23题图2 第23题图3第23题图4 第23题备用图参考答案(仅供参考)1-5 CACBA 6-10 BDABD11.12.13.14.321516.【解答】解(1),②①得:,把代入①得:,解得:,故原方程组的解是:;(2)()2a a b -()4,435︒2335x y x y +=⎧⎨+=⎩①②-2x =2x =43y +=1y =-21x y =⎧⎨=-⎩2211211a a a a a a -⋅--+-17.【解答】解:(1)如图1,线段即为所求;图1(2)如图2,线段即为所求:图2(3)如图3,()221111a a a a a -=⋅---111111a a a a a -=-==---11A B 12A B图3.故答案为:5.18.【解答】证明:(1)平分,,,,;在和中,,,;(2)平分,,,,,,,,,在中,,,,平分,,,,,19.【解答】解:(1)设1个部件的质量为吨,1个部件的质量为吨,由题意得:,解得:,答:1个部件的质量为1.2吨,1个部件的质量为0.8吨.(2)解:设该卡车一次可运输套这种设备通过此大桥.根据题意得:,解得:.为整数,取最大值,.答:该卡车一次最多可运输6套这种设备通过此大桥112111431313245222B A B S =⨯-⨯⨯-⨯⨯-⨯⨯=△AD BAC ∠DE AB ⊥DF AC ⊥DE DF ∴=90E DFC ∠=∠=︒Rt BDE △Rt DFC △BD CD DE DF =⎧⎨=⎩()Rt Rt HL BDE DFC ∴≌△△BE CF ∴=AD BAC ∠15DAF ∠=︒30BAC ∴∠=︒BAD DAF ∠=∠BD AC ∥30DBE BAC ∴∠=∠=︒DAF BDA ∠=∠BAD BDA ∴∠=∠AB BD ∴=Rt BDE △30DBE ∠=︒2BD DE ∴=2AB DE ∴=AD BAC ∠DE AB ⊥DF AC ⊥DE DF ∴=2AB DF ∴=A x B y 2 2.823x y x y +=⎧⎨=⎩ 1.20.8x y =⎧⎨=⎩A B m ()1.20.83830m +⨯⋅+≤559m ≤m m ∴6m ∴=20.【解答】解:(1)把,代入中得:,,当时,,故答案为;4,2;(2)如图所示:(3)由图象可得,不等式的解集为或.21.【解答】解:根据题意,(1)(元),(元/千克).填表如下;菜价2元/千克质量金额甲2千克2元乙3千克6元(2)甲两次买菜的均价为:(元/千克)乙两次买菜的均价为:(元/千克)甲两次买菜的均价为2.5元/千克,乙两次买菜的均价为2.4元/千克.【数学思考】,,0x =1y =-332y x m =--13m -=-4m ∴=6x =363422n =⨯--=313122x m x --≥-+2x ≤-4x ≥224⨯=623÷=()644 2.5+÷=()()6623 2.4+÷+=∴2a b x +=甲2ab x a b=+乙,.22.(1)略 (2(323.【解答】解:(1)根据互为顶针点,互为勾股顶针点的定义可知:①点与点和关于互为顶针点;故答案为:和;②点与点关于互为勾股顶针点,理由:如图2中,图2是等边三角形,,,,,,,,点与点关于互为勾股顶针点;(2)①如图所示,点,点即为所求;()()22022a b a b ab x x a b a b -+-=-=≥++甲乙x x ∴≥甲乙A D E BC D E D A BC BDC △60D ∴∠=︒BD CD=AB AC = 30ABC ∠=︒30ABC ACB ∴∠=∠=︒120BAC ∴∠=︒180A D ∴∠+∠=︒AB AC = BD CD=∴D A BC E F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学数下册期中试卷考生须知1.本试卷共八页,共三道大题, 25道小题。
满分100分。
考试时间 120 分钟。
2.在试卷和答题纸上准确填写班级、姓名和学号。
3.试卷答案一律书写在答题纸上,在试卷上作答无效。
4.答题纸上用黑色字迹签字笔作答,作图题请用铅笔。
一.选择题(请将唯一正确答案填入后面的括号中,每题2分,共20分) 1.一元二次方程022=+-x x 的根的情况是() A .有两个相等的实数根B .有两个不相等的实数根 C.无实数根D .无法确定2.如果方程26302x x -+=的两个实数根分别为x x 12、,那么x x 12的值是() A . 3B .-3C.-32D .323.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( ) A .平均数B .中位数C .众数D .方差4.三角形的两边长分别为3和6,第三边的长是方程0862=+-x x 的一个根,则 此三角形的周长为() A .10 B .11C.13D .11或135.如图,□ABCD 中,对角线AC 、BD 交于点O ,点 E 是BC 的中点.若OE =3 cm ,则AB 的长为() A .12 cm B .9 cm C.6 cm D .3 cm6.如图,菱形花坛ABCD 的面积为12平方米,其中沿 对角线AC 修建的小路长为4米,则沿对角线BD 修建 的小路长为()A .3米B .6米C .8米D .10米7.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是()A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位8.已知二次函数2241y x x =+-的图象上有点A 1(1)y -,,B 2(2)y -,,C 3(3)y -,,则y 1、y 2、y 3的大小关系为()A .y 3>y 2>y 1B .y 3>y 1>y 2C.y 2>y 3> y 1 D .y 1 >y 2>y 39.在学完二次函数的图象及其性质后,老师让学生们说出223y x x =--的图象 的一些性质,小亮说:“此函数图象开口向上,且对称轴是1x =”;小丽说:“此 函数图象肯定与x 轴有两个交点”;小红说:“此函数与y 轴的交点坐标为(0,-3)”; 小强说:“此函数有最小值,3y =-”……请问这四位同学谁说的结论是错误的 ()A.小亮B.小丽C.小红D.小强10.如图,正方形ABCD 中,AB =8cm ,对角线AC , BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发, 以1cm /s 的速度沿BC ,CD 运动,到点C ,D 时停止 运动.设运动时间为t (s ),△OEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为()ABCD二.填空题(每空2分,共24分)11.方程250x x k -+=的一个根是2,那么另一根是 ,k =_______. 12.若关于x 的方程20x mx m -+=有两个相等实根,则代数式2281m m -+ 的值为.13.关于x 的方程2(1)210m x x ---=有两个实数根,则实数m 的取值范围是__________________.14.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔 过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手 甲 乙 平均数(环) 9.5 9.5方差 0.035 0.015请你根据上表中的数据选一人参加比赛,最适合的人选是 ____,理由是_________________________________________.15.请写出一个开口向下,且经过(0,3)的抛物线的解析式______________________________.16.二次函数22y x x m =-+的图象与x 轴只有一个公共点,则m 的值为 .17.如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B 、F 为圆心,大于长为半径画弧,两弧交于一点P ,连接AP 并延长交BC 于点E ,连接EF .(1)四边形ABEF 是_____________;(选填矩形、菱形、正方形、无法确定)(2)AE ,BF 相交于点O ,若四边形ABEF 的周长为40,BF =10,则AE 的长为________,∠ABC =________.18.小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,BF 21 A B EO下图为二人测试成绩折线统计图,下列说法合理的是_____________.①小亮测试成绩的平均数比小明的高 ②小亮测试成绩比小明的稳定③小亮测试成绩的中位数比小明的高④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理三.解答题(19题每小题4分,20、 21、22、24题每题6分,23、25题每题8分,共56分)19.解方程:(1)22(4)(12)x x +=-(2)23510x x +-=(3)4(21)3(21)x x x -=-(4)22410x x -+=(用配方法)20.(列方程解决问题)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.求该企业从2015年到2017年利润的年平均增长率.21.关于x 的一元二次方程()222110x m x m +-+-=有两个不相等的实数根12,x x .(1)求实数m 的取值范围; (2)若120x x =,求m 的值.22.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对初二年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:(1)统计表中的a =,b =,c =;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校初二年级共有600名学生,请你估计该校初二年级学生课外阅读7本及以上的人数.本数(本) 频数(人数) 频率 5 a 0.26 18 0.367 14 b8 8 0.16 合计c123.二次函数图象上部分点的横坐标x ,纵坐标y 的对应值如下表:x (2)-1-0 1 234… y…1y 03432y5-…(1)表格中的1=,2=;(2)求这个二次函数的表达式; (3)在右图中画出此二次函数的图象; (4)此抛物线在第一象限内的部分记为 图象G ,如果过抛物线顶点的直线 y =mx +n (m ≠0G 有唯一公共 m 的取值范围 _________________________________.24.在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD 中,点E 为BC 边上任意一点(点E 不与B 、C 重合),点F 在线段AE 上,过点F 的直线MN ⊥AE ,分别交AB 、CD 于点M 、N . 求证:AE=MN ;同学们发现,过点D 作DP ∥MN ,交AB 于P ,构造□DNMP ,经过推理能够使问题得到解决(如图2).请你完成证明过程.(2)如图3,当点F 为AE 中点时,其他条件不变,连接正方形的对角线BD , MN 与BD交于点G ,连接BF ,求证:BF= FG .25.在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:如果x y 1 1 O 图1xy O ()()0'0y x y y x ⎧⎪=⎨-⎪⎩≥<,那么称点Q 为点P 的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6). (1)点(2,1)的“关联点”为; (2)如果点N *(m +1,2)是一次函数y =x +3图象上点N 的“关联点”,求点N的坐标.(3)如果点P 在函数24(2)y x x a =-+-<≤的图象上,其“关联点”Q 的纵坐标y ′的取值范围是-4<y ′≤4,则a 的取值范围是_________________.参考答案:1.C2.D3.B4.C5.C6.B7.D8.A9.D 10.B11.3,6 12.1 13.m ≥0且m ≠1 14.乙,方差较小,成绩相对稳定.15.如y=-x 2+3等 16.m =1 17.菱形,︒18.②④19.(1)5,-1 (2)156x -+=,256x -=(3)31,42(4)12x x ==, 20.20% 21.(1)1m <(2)1m =-22.(1)10,0.28,50;(2)略;(3)6.4;(4)26423.(1)-5,0 (2)223y x x =-++(3)略(3)m ≥1或m ≤-2 24.略 25.(1)(2,1)(2)N (-5,-2)(3)2≤a <。