初一期中考试数学试卷

合集下载

湖南省长沙市雅礼教育集团2023-2024学年上学期七年级期中考试数学试卷

湖南省长沙市雅礼教育集团2023-2024学年上学期七年级期中考试数学试卷

23年秋初一雅礼教育集团期中考试数学试卷 一、单项选择题 (每小题3分,共30分)−1.(3分)2023的相反数是()A . −20231−B .2023C .20231D .20232.(3分)我国幅员辽阔,南北冬季温差较大,12月份的某天同一时刻,我国最南端南沙群岛的曾母暗沙的气温是︒28C ,而北端漠河县的气温是︒ −25C ,则该时刻曾母暗沙的气温比漠河县的气温高()A .︒B 53C .︒−53CC .︒D 43C .︒ 3C3.(3分)2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()310⨯A .8310⨯B .9310⨯C .10 310⨯D .114.(3分)用四舍五入法,把3.90456精确到百分位,取得近似值为()A .3.9B .3.90C .3.91D .3.905 5.(3分)下列计算正确的是() −=−36A .2B .a a 22321−=−−=C .110D .−=−a b a b 2(2)42−x 2+66.(3分)在代数式,1x x −+34,2,π, x57x ,3中,整式的个数有() A .2个B .3个C .4个D .5个 7.(3分)如图所示,直角三角尺的面积是()A .ab 21ab r −πB .2C .21ab r −π2D .21ab r −2 m n −+−=8.(3分)若|2|(3)02 −2024,则m n ()的值是()−A .1B .1C .2023 −D .20239.(3分)下列说法中正确的个数有 ( )±1①0是绝对值最小的有理数;②倒数等于本身的数有0和;a 的次数是1;④正整数、0③单项式和负整数统称为整数.A .1个B .2个C .3个D .4个10.(3分)多项式m x mx −+−|1|m (3)3− 是关于x 的二次三项式,则m 取值为()A .3−B .1−C .3或1−D .3或1二、填空题 (每小题3分,共18分)11.(3分)81的倒数等于.12.(3分)点A 、B −在数轴上对应的数分别为2 和10,则A 、B 两点间的距离为. −13.(3分)比较两个数的大小:0 5.14.(3分)单项式−x y 722的系数是.m n −2x y m 46x y 52n 15.(3分)单项式与是同类项,则+=.16.(3分)已知关于x 的多项式−+−−+x x mx x 4352122 化简后不含x 2 项,则m 的值是.三、解答题 (本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每题10分,共72分)17.(6分)(1) −÷+−⨯−2(24)4(4)()3(2;)−−+⨯−313518()22. 18.(6分)化简:(1)++−−−a a a a 62352222;x x x (2)−−−3[52(4)].+−−−2219.(6分)先化简,再求值:xy xy y xy y 2(32)2(),其中x =−1,y =2.20.(8分)近些年来我们的生活水平不断提高,曾经的奢侈品小轿车也越来越多地进入更多的家庭.小明家中买了一辆小轿车,他连续7天记录了小轿车每天行驶的路程(如表),以50km 为标准,多于50km 的部分记为“+”,不足50km 的部分记为“−”,刚好50km 的记为“0”.(1)求第三天行驶了多少千米;(2)求出这7天中平均每天行驶多少千米?21.(8分)理解与思考:“整体思想”是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛.例如:如果2231x x +=,求代数式2232022x x ++的值. 我们可以将223x x +作为一个整体代入:22232022(23)2022120222023x x x x ++=++=+=. 请仿照上面的解题方法,完成下面的问题:(1)如果2231x x +=−,求代数式2232025x x ++的值; (2)如果3x y +=,求代数式6()332017x y x y +−−+的值.22.(9分)本学期的十月份,正是秋高气爽的时节,某学校七年级甲班的4名老师决定带领本班m名学生去长沙县某茶叶庄园参加秋季劳动实践活动.已知该活动基地每张门票的票价为30元,现有A、B两种购票方案可供选择:方案A:教师全价,学生半价;方案B:不分教师与学生,全部六折优惠.(1)若该班级按方案A购票,4名老师全价购票的总费用为元,m名学生半价购票的总费用为元;若该班级按方案B购票,4名老师按6折优惠购票总费用为元,m 名学生按6折优惠购票总费用为元(请分别用数字或含m的代数式表示).(2)当学生人数40m=,且只能从A、B两种方案中选择一种购票时,请通过计算按A、=B两种方案购票分别所需的总费用来说明选择哪种方案更为优惠.(每种方案的总费用4+名学生购票所需总费用)名教师购票所需总费用m23.(9分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b−0,c a−0,a b−0.(2)化简:||||||−+−−−.c b a b c a24.(10分)我们规定:使得a b ab −=成立的一对数a ,b 为“积差等数对”,记为(,)a b .例如:因为1.50.6 1.50.6−=⨯,(2)2(2)2−−=−⨯,所以数对(1.5,0.6),(2,2)−都是“积差等数对”.(1)判断下列数对是否是“积差等数对”: ①1(1,)2(填“是”或者“否” );②(2,1) (填“是”或者“否” ); ③1(2−,1)− (填“是”或者“否” );(2)若数对(,3)m 是“积差等数对”,求m 的值;(3)若数对(,)a b 是“积差等数对”,求代数式224[32(2)]2(32)6ab a ab a b a −−−−−+的值.25.(10分)如图所示,点A 、B 、C 、D 在数轴上对应的数分别为a 、b 、c 、d ,其中a 是最大的负整数,b 、c 满足2(9)|12|0b c −+−=,且BC CD =.(1)a = ;d = ;线段BC = ;(2)若点A 以每秒3个单位长度的速度向左运动,同时点C 以每秒5个单位长度的速度向左运动,设运动的时间为t 秒,当A 、C 两点之间的距离为11个单位长度时,求运动时间t 的值;(3)若线段AB 和CD 同时开始向右运动,且线段AB 的速度小于线段CD 的速度.在点A 和点C 之间有一点M ,始终满足AM CM =,在点B 和点D 之间有一点N ,始终满足BN DN =,此时线段MN 为定值吗?若是,请求出这个定值,若不是,请说明理由.23年秋初一雅礼教育集团期中考试数学试卷参考答案与试题解析 一、单项选择题 (每小题3分,共30分)−1.(3分)2023的相反数是()A . −20231−B .2023C .20231D .2023 【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.−【解答】解:2023的相反数为2023.故选:D .【点评】本题主要考查相反数,关键是掌握相反数的定义.2.(3分)我国幅员辽阔,南北冬季温差较大,12月份的某天同一时刻,我国最南端南沙群岛的曾母暗沙的气温是︒28C ,而北端漠河县的气温是︒ −25C ,则该时刻曾母暗沙的气温比漠河县的气温高()A .︒B 53C .︒−53CC .︒D 43C .︒3C 【分析】认真读懂题意,列算式,进行有理数的减法运算.【解答】解:−−=53(C)︒=+28(25)2825,故选:A .【点评】本题考查了有理数减法运算的应用,做题的关键是读懂题意理解正负数的意义,列出正确的减法算式.3.(3分)2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()310⨯A .8310⨯B .9 310⨯C .10 310⨯D .11【分析】运用科学记数法进行变形、求解.=⨯=⨯300010310811【解答】解:3000亿, 故选:D . 【点评】此题考查了科学记数法的应用能力,关键是能准确理解并运用以上知识.4.(3分)用四舍五入法,把3.90456精确到百分位,取得近似值为(A .3.9B .3.90)D .C .3.91 3.905【分析】对千分位数字4进行四舍五入即可得.【解答】解:把3.90456精确到百分位,取得的近似值为3.90. 故选:B .【点评】本题考查近似数和有效数字,掌握四舍五入法解答是关键. 5.(3分)下列计算正确的是( ) A .236−=− B .22321a a −=C .110−−=D .2(2)42a b a b −=−【分析】根据合并同类项法则:把系数合并,字母部分不变;有理数的减法法则:减去一个数等于加上它的相反数;负整数指数幂:1((0p pa a a −=≠,p 为正整数)分别进行计算即可. 【解答】解:A 、239−=−,故原题计算错误;B 、22232a a a −=,故原题计算错误;C 、112−−=−,故原题计算错误;D 、2(2)42a b a b −=−,故原题计算正确; 故选:D .【点评】此题主要考查了合并同类项、有理数的减法、负整数指数幂,关键是掌握各计算法则.6.(3分)在代数式26x +,1−,234x x −+,π,5x,37x 中,整式的个数有( ) A .2个B .3个C .4个D .5个【分析】利用整式定义可得答案.【解答】解:在代数式26x +,1−,234x x −+,π,5x,37x 中,其中26x +,1−,234x x −+,π,37x 是整式,共有5个,故选:D .【点评】此题主要考查了整式,关键是掌握单项式和多项式合称为整式. 7.(3分)如图所示,直角三角尺的面积是( )A .12abB .2ab r π−C .212ab r π−D .212ab r −【分析】用三角形面积减去圆的面积即可.【解答】解:由三角形面积公式和圆的面积公式可得,直角三角尺的面积是212ab r π−,故选:C .【点评】本题考查列代数式,解题的关键是掌握三角形面积公式和圆的面积公式. 8.(3分)若2|2|(3)0m n −+−=,则2024()m n −的值是( ) A .1−B .1C .2023D .2023−【分析】根据非负数的性质,可求出m 、n 的值,然后代入代数式求解即可. 【解答】解:2|2|(3)0m n −+−=,20m ∴−=,30n −=, 解得2m =,3n =,20242024()(1)1m n ∴−=−=. 故选:B .【点评】本题考查了非负数的性质:偶次方,绝对值都是非负数,几个非负数的和为0时,这几个非负数都为0.9.(3分)下列说法中正确的个数有( )①0是绝对值最小的有理数;②倒数等于本身的数有0和1±; ③单项式a 的次数是1;④正整数、0和负整数统称为整数. A .1个B .2个C .3个D .4个【分析】根据绝对值,倒数,单项式的定义,有理数的分类逐项进行判断即可. 【解答】解:①0是绝对值最小的有理数,故符合题意; ②倒数等于本身的数有1±,故不符合题意; ③单项式a 的次数是1,故符合题意;④正整数、0和负整数统称为整数,故符合题意. 故选:C .【点评】本题考查单项式,绝对值,倒数,有理数的分类,掌握这些定义是正确判断的前提. 10.(3分)多项式|1|(3)3m m x mx −−+−是关于x 的二次三项式,则m 取值为( ) A .3B .1−C .3或1−D .3−或1【分析】多项式中次数最高的项的次数叫做多项式的次数,单项式的个数就是多项式的项数,由此即可计算.【解答】解:多项式|1|(3)3m m x mx −−+−是关于x 的二次三项式,∴−=m |1|2∴=m ,3m =−,或1m −≠,30,∴=−m1,B 故选:.【点评】本题考查多项式的有关概念,绝对值的概念,关键是掌握多项式的次数,项的概念,并注意多项式的二次项不等于0.二、填空题 (每小题3分,共18分)11.(3分)818的倒数等于.. 【分析】根据倒数的定义即可得到结论.【解答】解:81的倒数等于8,故答案为:8.【点评】此题考查倒数的定义.此题比较简单,解题的关键是掌握倒数的定义.12.(3分)点A 、B −在数轴上对应的数分别为2 和10,则A 、B 两点间的距离为12. 【分析】求数轴上两点间的距离,用较大数减去较小数即可.【解答】解:−−= 10(2)12 , 故答案为:12.【点评】本题考查了求数轴上两点间的距离的方法,知道用较大数减较小数是即可.13.(3分)比较两个数的大小:0 >−5. 【分析】根据负数都小于0解答即可.−【解答】解:5 ∴>−是负数,05. 故答案为:>.【点评】本题考查的是有理数的大小比较,熟知正数都大于0,负数都小于0是解题的关键.14.(3分)单项式 −72x y 2的系数是−72. 【分析】根据单项式系数的定义解答.【解答】解:单项式−x y 722的系数是−2.7故答案为:− 72.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数是解题的关键. 6x y 5215.(3分)单项式n−2x y m 与4m n 是同类项,则+=7.m =5【分析】根据同类项的定义求出,m n +n =2,再代入求出答案即可.【解答】解:6x y 52单项式n−2x y m 与4是同类项,∴=m 5n ,=24∴=n ,2m n +=+=,解得:527,故答案为:7.【点评】本题考查的是同类项的含义,熟记同类项的定义是解本题的关键.16.(3分)已知关于x 的多项式−+−−+x x mx x 4352122化简后不含x 2 项,则 m 的值是2.【分析】先合并同类项,再根据题意列出方程,解方程得到答案.【解答】解:−+−−+x x mx x 4352122=−−+m x x (42)462,由题意得:−=m 420m =,解得:2,故答案为:2.【点评】本题考查的是合并同类项,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.三、解答题 (本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每题10分,共72分)17.(6分)(1)−÷+−⨯−2(24)4(4)()3;(2)−−+⨯−313518()22.【分析】(1)先算乘除法,再算加法即可;(2)先算乘方,再算乘法,最后算加减法即可.【解答】解:(1)−÷+−⨯−2(24)4(4)()3 ==−+(6)60;(2)−−+⨯−313518()22=−−+⨯995181=−=−−+95212.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.18.(6分)化简:(1)x x x ++−−−;(2a a a a 62352222)−−−3[52(4)].【分析】(1)原式合并同类项即可;(2)原式去括号合并即可得到结果.【解答】解:(1)++−−−a a a a 62352222=−+−+−=+a 21a a a a 65223222;x x x (2)−−−3[52(4)]=−−+x x x 3(528)=−+−x x x 3528=−8.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.+−−−2219.(6分)先化简,再求值:xy xy y xy y 2(32)2(),其中x =−1,y =2.【分析】利用整式的运算,化简代数式,代入数据求值.【解答】解:1x =−,2y =,222(32)2()xy xy y xy y ∴+−−−2223222xy xy y xy y =+−−+3xy =3(1)2=⨯−⨯6=−.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.20.(8分)近些年来我们的生活水平不断提高,曾经的奢侈品小轿车也越来越多地进入更多的家庭.小明家中买了一辆小轿车,他连续7天记录了小轿车每天行驶的路程(如表),以50km 为标准,多于50km 的部分记为“+”,不足50km 的部分记为“−”,刚好50km 的记为“0”.(1)求第三天行驶了多少千米;(2)求出这7天中平均每天行驶多少千米?【分析】(1)根据正负数的意义求出第三天的路程即可;(2)根据平均数的定义计算即可.【解答】解:(1)第三天行驶了(5014)36−=(千米),答:第三天行驶了36千米;(2)平均每天行驶的路程为811148411650507−−−++−+=(千米), 答:这7天中平均每天行驶50千米.【点评】本题考查正负数的意义,解题的关键是理解用正负数表示两种具有相反意义的量.21.(8分)理解与思考:“整体思想”是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛.例如:如果2231x x +=,求代数式2232022x x ++的值.我们可以将223x x +作为一个整体代入:22232022(23)2022120222023x x x x ++=++=+=. 请仿照上面的解题方法,完成下面的问题:(1)如果2231x x +=−,求代数式2232025x x ++的值;(2)如果3x y +=,求代数式6()332017x y x y +−−+的值.【分析】将各式变形后代入已知数值计算即可.【解答】解:(1)2231x x +=−,∴原式12025=−+2024=;(2)3x y +=,∴原式6()3()2017x y x y =+−++3()2017x y =++332017=⨯+92017=+2026=.【点评】本题考查整式的化简求值,将原式进行正确的变形是解题的关键.22.(9分)本学期的十月份,正是秋高气爽的时节,某学校七年级甲班的4名老师决定带领本班m 名学生去长沙县某茶叶庄园参加秋季劳动实践活动.已知该活动基地每张门票的票价为30元,现有A 、B 两种购票方案可供选择:方案A :教师全价,学生半价;方案B :不分教师与学生,全部六折优惠.(1)若该班级按方案A 购票,4名老师全价购票的总费用为 120 元,m 名学生半价购票的总费用为 元;若该班级按方案B 购票,4名老师按6折优惠购票总费用为 元,m 名学生按6折优惠购票总费用为 元(请分别用数字或含m 的代数式表示). (2)当学生人数40m =,且只能从A 、B 两种方案中选择一种购票时,请通过计算按A 、B 两种方案购票分别所需的总费用来说明选择哪种方案更为优惠.(每种方案的总费用4=名教师购票所需总费用m +名学生购票所需总费用)【分析】(1)根据题意列出两个代数式即可;(2)把40m =代入(1)中的两个代数式进行计算,即可得出答案.【解答】解:(1)4名老师全价购票的总费用为430120⨯=(元),m 名学生半价购票的总费用为130152m m ⨯=(元), 4名老师按6折优惠购票总费用为43060%72⨯⨯=(元),m 名学生按6折优惠购票总费用为3060%18m m ⨯=;故答案为:120;15m ;72;18m ;(2)当40m =时,选择方案A 所需的费用为:1201540720+⨯=(元),选择方案B 所需的费用为:184072792⨯+=(元),720792<,∴选择方案A 更为优惠.【点评】本题考查了列代数式及代数式求值,理解题意正确列出代数式是解题的关键.23.(9分)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b − > 0,a b − 0,c a − 0.(2)化简:||||||c b a b c a −+−−−.【分析】(1)直接利用数轴进而分析得出各部分的符号;(2)利用绝对值的性质化简得出答案.【解答】解:(1)由数轴可得:0c b −>,0a b −<,0c a −>,(2)||||||c b a b c a −+−−−c b b a c a =−+−−+0=.【点评】此题主要考查了有理数比较大小,正确利用数轴分析是解题关键.24.(10分)我们规定:使得a b ab −=成立的一对数a ,b 为“积差等数对”,记为(,)a b .例如:因为1.50.6 1.50.6−=⨯,(2)2(2)2−−=−⨯,所以数对(1.5,0.6),(2,2)−都是“积差等数对”.(1)判断下列数对是否是“积差等数对”: ①1(1,)2(填“是”或者“否” );②(2,1) (填“是”或者“否” ); ③1(2−,1)− (填“是”或者“否” ); (2)若数对(,3)m 是“积差等数对”,求m 的值;(3)若数对(,)a b 是“积差等数对”,求代数式224[32(2)]2(32)6ab a ab a b a −−−−−+的值.【分析】(1)根据新定义内容进行计算,从而作出判断;(2)根据新定义内容列方程求解;(3)将原式去括号,合并同类项进行化简,然后根据新定义内容列出等式并化简,最后代入求值.【解答】解:(1)①111122−=⨯,1(1,)2∴是“积差等数对”; ②2121−≠⨯,(2,1)∴不是“积差等数对”;③11(1)(1)22−−−=−⨯−,1(2∴−,1)−是“积差等数对”; 故答案为:是;否,是;(2)(,3)m 是“积差等数对”,33m m ∴−=,解得:32m =−,m ∴的值为32−; (3)原式224(322)646ab a ab a b a =−−+−++2212488646ab a ab a b a =−−+−++ 44416ab a b =−++,(,)a b 是“积差等数对”,a b ab ∴−=,∴原式44()16ab a b =−−+4416ab ab =−+16=. 【点评】本题属于新定义内容,考查解一元一次方程,整式的加减—化简求值,理解“积差等数对”的定义,掌握解一元一次方程的步骤以及合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“−”号,去掉“−”号和括号,括号里的各项都变号)是解题关键.25.(10分)如图所示,点A 、B 、C 、D 在数轴上对应的数分别为a 、b 、c 、d ,其中a 是最大的负整数,b 、c 满足2(9)|12|0b c −+−=,且BC CD =.(1)a = ;d = ;线段BC = ;(2)若点A 以每秒3个单位长度的速度向左运动,同时点C 以每秒5个单位长度的速度向左运动,设运动的时间为t 秒,当A 、C 两点之间的距离为11个单位长度时,求运动时间t 的值;(3)若线段AB 和CD 同时开始向右运动,且线段AB 的速度小于线段CD 的速度.在点A 和点C 之间有一点M ,始终满足AM CM =,在点B 和点D 之间有一点N ,始终满足BN DN =,此时线段MN 为定值吗?若是,请求出这个定值,若不是,请说明理由.【分析】(1)根据题意列式计算即可;(2)由于点A 、C 同时向左,C 点的速度较快,因此点C 可能在点A 左侧,也可能点A 右侧,根据题意列方程即可得到结论;(3)设运动的时间为t 秒,线段AB 的速度为a ,线段CD 的速度为()b a b <,根据题意列方程即可得到结论.【解答】解:(1)a 是最大的负整数,1a ∴=−;2(9)|12|0b c −+−=,90b ∴−=,120c −=,9b ∴=,12c =,1293BC CD ∴==−=,33915d ∴=++=,(2)由于点A 、C 同时向左,C 点的速度较快,因此点C 可能在点A 左侧,也可能点A 右侧,∴点A 表示的数为:13t −−,点C 表示的数为:125t −,|(13)(125)||213|11AC t t t ∴=−−−−=−=,解得1t =或12;(3)线段MN 为定值,设运动的时间为t 秒,线段AB 的速度为a ,线段CD 的速度为()b a b <,则点:1A at −+,点:9B at +,点:12C bt +,点:15D bt +,由题意可知:点M 为AC 中点,点N 为BD 中点,因此,可求得:11211:222at bt a b M t −++++=+;915:1222at bt a b N t ++++=+, 111312()2222a b a b MN t t ++=+−+=. 【点评】本题考查一元一次方程的应用,解题的关键是学会设未知数,构建方程解决问题.。

初一数学试卷期中考试题目

初一数学试卷期中考试题目

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 22. 已知一个数的平方是25,那么这个数可能是()A. 5B. -5C. 5或-5D. 无法确定3. 在下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形4. 下列代数式中,正确的是()A. 3a + 2b = 5a + bB. 2(a + b) = 2a + 2bC. (a + b)^2 = a^2 + b^2D. a^2 - b^2 = (a + b)(a - b)5. 一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是()A. 13厘米B. 26厘米C. 33厘米D. 40厘米6. 一个正方形的对角线长是10厘米,那么这个正方形的面积是()A. 25平方厘米B. 50平方厘米C. 100平方厘米D. 200平方厘米7. 下列分数中,最简分数是()A. $\frac{4}{6}$B. $\frac{8}{12}$C. $\frac{3}{4}$D. $\frac{5}{10}$8. 已知一个数的5倍加上3等于13,那么这个数是()A. 2B. 3C. 4D. 59. 下列方程中,正确的是()A. 2x + 3 = 5x + 1B. 3x - 2 = 2x + 4C. 4x + 5 = 3x - 2D. 5x + 2 = 4x + 310. 下列函数中,自变量的取值范围是全体实数的是()A. y = x^2 + 2x + 1B. y = $\sqrt{x}$C. y = $\frac{1}{x}$D. y = $\log_2(x)$二、填空题(每题3分,共30分)11. -2的平方根是________,$\frac{1}{3}$的倒数是________。

12. 等腰三角形的底边长是8厘米,腰长是6厘米,那么这个三角形的面积是________平方厘米。

初一期中考试的数学试卷

初一期中考试的数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-16C. πD. 0.1010010001…2. 下列运算正确的是()A. 3 + (-2) = 5B. (-3) × (-4) = 12C. 5 ÷ (-2) = -2.5D. 6 × 2 = 123. 若 |x| = 5,则 x 的值为()A. ±5B. 5C. -5D. 04. 下列图形中,轴对称图形是()A. 长方形B. 正方形C. 等腰三角形D. 以上都是5. 若 a > b,则下列不等式成立的是()A. a + 3 > b + 3B. a - 3 < b - 3C. a + 3 < b + 3D. a - 3 > b - 36. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 3x^3 + 2x^2 - x + 1D. y = 2x^2 - 4x + 37. 若 a、b、c 是等差数列,且 a + b + c = 15,则 b 的值为()A. 5B. 7C. 9D. 118. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^29. 下列命题中,正确的是()A. 如果 a > b,则 a^2 > b^2B. 如果 a > b,则 -a < -bC. 如果 a > b,则 a - b > 0D. 如果 a > b,则 a + b > 010. 下列关于平行四边形的说法中,正确的是()A. 对角线互相平分B. 对边互相平行C. 对角线互相垂直D. 以上都是二、填空题(每题5分,共50分)11. 若 a = -2,b = 3,则 a^2 + b^2 的值为________。

湖南省长沙市华益中学2023-2024学年上学期七年级期中考试数学试卷

湖南省长沙市华益中学2023-2024学年上学期七年级期中考试数学试卷

23年秋初一华益中学期中考试数学试卷 一、选择题 (在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分) −1.(3分)2的相反数是()A .2−B .2C .21D . −21 2.(3分)2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国 聘行动”.数据“1160万”用科学记数法表示为()1.1610⨯A .81.1610⨯B .711.610⨯C .6 0.11610⨯D .83.(3分)下列各组数中,相等的一组是()−−A .(2)−−与|2|(1)−−12B .与2(2)−C .3−2与3D .322与 32()2 a b +<4.(3分)若0 ab <,0,则下列说法正确的是()A .a ,b 同号B . a ,b 异号且负数的绝对值较大C .a ,b 异号且正数的绝对值较大D .以上均有可能5.(3分)关于整式,下列说法正确的是() A .x y 2的次数是2B .0不是单项式3πC .mn 的系数是3x x −−D .2332是三次三项式−2a b n 6.(3分)若5 5a b 32m n 与+的差仍是单项式,则m n的值是()A .2B .0 −C .1D .17.(3分)下列各式运用等式的性质变形,错误的是() a b =A .若,则+=+a b =B a c b c .若,则=c ca ba b =C .若,则=a b =D ac bc .若,则−=−a c b c −1A 8.(3分)如果数轴上的点对应的数为,点B 与 A 点相距3个单位长度,则点 B 所对 应的有理数为()A .2−B .4−C .2或4−D .2或49.(3分)某同学在解关于x x mx 的方程−=+313时,把m x =看错了,结果解得4,则该同m 学把看成了()−A .2B .2C .34D .27 10.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出八,盈十一;人出五,不足十三.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出八钱,那么多了十一钱;如果每人出五钱,那么少了十三钱.问:共有几个人?”设共有x 个人共同出钱买鸡,则下面所列方程正确的是() x x A .−=+x x B 811513.+=−811513x x C .−=+x x D 511813.+=−8(11)5(13)二、填空题 (本大题共6个小题,每小题3分,共18分)11.(3分)某地上午气温为︒16C ,下午上升︒3C ,到半夜又下降︒ 20C,则该地半夜的气温为. 12.(3分)用“四舍五入”法将3.896精确到0.01,所得到的近似数为.13.(3分)已知a ,b a b ++−=满足|3|(2)02+,则a b ()2023的值是.14.(3分)已知轮船在逆水中前进的速度是a 千米时,水流的速度是5/千米 /时,则这轮船在顺水中前进的速度是/千米时. a a 2+−=1015.(3分)已知,则代数式 a a 2222021++的值是.16.(3分)若k x −−=||4k (5)60− 是关于x的一元一次方程,则k 的值为.三、解答题 (本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每17.(6分)−+−−⨯−2|23|2(1)32023.18.(6分)解方程:x x =−+−6312152.19.(6分)先化简,再求值:+−−−m m n m n 2(32)6()22,其中=−m 3,=n 3.20.(8分)(1)已知有理数a ,b ,c 在数轴上对应的点如图所示,化简:−+−−−b a a c c b ||||||; (2)已知=−A x x 532,=−+B x x 1162,求当=x 1时,求−A B 的值.21.(8分)如图,在长为++a ab 12,宽为−a ab 22的长方形纸板上裁去一个边长为b 的正方形.(1)求剩余纸板的周长C (用含a ,b 的代数式表示); (2)当=a 3,=b 1时,求C 的值.22.(9分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克? (2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元/千克收购,按9.5元/千克进行苹果销售,运费及包装费等平均为2.5元/千克,则李军该周销售苹果一共收入多少元?23.(9分)已知关于x 的整式=+−+A x ax x 3322,整式=+−+B x ax x 24222,若a 是常数,且−A B 3不含x 的一次项. (1)求a 的值;(2)若b 为整数,关于x 的一元一次方程+−=bx x 230的解是整数,求+a b 5的值.24.(10分)1990年,著名社会学家费孝通先生总结出了“各美其美,美人之美,美美与共,天下大同”这一处理不同文化关系的十六字“箴言”.在数学上,我们不妨约定:若关于x 的方程110a x b +=与220a x b +=同时满足21221||()0a b a b −+−=,则称方程110a x b +=与220a x b +=互为“美美与共”方程.根据该约定,回答下列问题.(1)已知关于x 的方程20x m −=与0ax b +=互为“美美与共”方程,且方程20x m −=的解为12,则m = ,a = ,b = ; (2)是否存在有理数k ,使关于x 的方程30x k +=与其“美美与共”方程的解都是整数,若存在,求出k 的值,若不存在,请说明理由;(3)若方程12(21)x x −=−的解也是方程0ax b +=的解,求方程0ax b +=的“美美与共”方程的解.25.(10分)如图,在长沙市华益中学迎面50米接力比赛中,设运动时间为t秒,甲班的A 同学在数轴上位置C拿到最后一棒接力棒时,记为0t=,此时乙班的B同学已经位于数轴上数10的位置,A同学以每秒8米向左运动,B同学以每秒5米向左运动,两位同学到达D点立即停止运动.(1)当0t=时,A、B同学相距米;当1t=时,A、B同学在数轴上所表示的数为、.(2)①若t秒后A同学恰好追上B同学,求t;②当A同学到达终点D后,B同学还要经过多少秒到达D点.③分别取线段AC、BD中点为E、F,若在点A、B运动期间,4mEF nDA−始终保持不变(其中m,n为常数),求mn的值.23年秋初一华益中学期中考试数学试卷参考答案与试题解析 一、选择题 (在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)−1.(3分)2的相反数是()A .2−B .2C .21D . −21 【分析】根据相反数的定义进行判断即可.−【解答】解:2的相反数是2,故选:A .【点评】本题考查相反数,掌握相反数的定义是正确判断的前提.2.(3分)2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国聘行动”.数据“1160万”用科学记数法表示为()1.1610⨯A .81.1610⨯B .711.610⨯C .60.11610⨯D .8a ⨯10【分析】将一个数表示成n a 的形式,其中1||10<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:1160万 ==⨯11600000 1.16107,故选:B .【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.3.(3分)下列各组数中,相等的一组是()−−A .(2)−−与|2|−1B .2(1)−与2(2)−C .3−2与3D .322与32()2【分析】根据有理数的乘方运算法则、绝对值的意义可进行求解.【解答】解:A −−=、(2)2−−=−,|2|2 −−,所以(2)−−与|2|不相等不符合题意;−=−11B 、2 −=,(1)12(1)−2,所以与−12不相等不符合题意;−=−C 、(2)83−=−28,3(2)−,所以3−23与相等符合题意;D 、3924()2=,所以322与23()2不相等不符合题意;C 故选:.【点评】本题主要考查有理数的乘方运算,熟练掌握有理数的乘方运算法则是解题的关键. 4.(3分)若0a b +<,0ab <,则下列说法正确的是( ) A .a ,b 同号B .a ,b 异号且负数的绝对值较大C .a ,b 异号且正数的绝对值较大D .以上均有可能【分析】根据题意得知a 、b 异号,并且负数的绝对值较大,挖掘出这一条件后,再对四个选项逐一分析.【解答】解:0ab <,a ∴、b 异号,又0a b +<,∴负数的绝对值较大, 根据这一条件判断:A 、C 、D 选项错误;B 选项正确; 故选:B .【点评】本题考查了有理数的除法,两个不等于零的数相乘,两数相乘,同号为正,异号为负,并把绝对值相乘.5.(3分)关于整式,下列说法正确的是( ) A .2x y 的次数是2 B .0不是单项式C .3mn π的系数是3D .3223x x −−是三次三项式【分析】根据单项式的系数与单项式的次数的定义对A 、C 进行判断;根据单独的一个数字或字母也是单项式对B 进行判断;根据多项式的次数和项数的定义对D 进行判断. 【解答】解:A 、2x y 的次数是3,所以A 选项错误; B 、数字0是单项式,所以B 选项错误; C 、3mn π的系数是3π,所以C 选项错误;D 、3223x x −−是三次三项式,所以D 选项正确.故选:D .【点评】本题考查了单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).单项式中的数字因数叫做这个单项式的系数.所有字母的指数之和叫做这个单项式的次数.也考查了多项式的定义. 6.(3分)若52n a b −与325m n a b +的差仍是单项式,则n m 的值是( ) A .2B .0C .1−D .1【分析】由52n a b −与325m n a b +的差仍是单项式知52n a b −与325m n a b +是同类项,据此可得3n =,25m n +=,解之求出m 的值,代入计算可得.【解答】解:52n a b −与325m n a b +的差仍是单项式,52n a b ∴−与325m n a b +是同类项,3n ∴=,25m n +=, 1m ∴=,则311n m ==,故选:D .【点评】本题主要考查同类项,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.7.(3分)下列各式运用等式的性质变形,错误的是( ) A .若a b =,则a c b c +=+ B .若a b =,则a bc c=C .若a b =,则ac bc =D .若a b =,则a c b c −=−【分析】根据等式的性质,可得答案.【解答】解:A 、若a b =,则a c b c +=+,故A 不符合题意; B 、c 等于零时,除以c 无意义,故B 符合题意; C 、若a b =,则ac bc =,故C 不符合题意;D 、若a b =,则a c b c −=−,故D 不符合题意;故选:B .【点评】本题考查了等式的性质,熟记等式的性质是解题关键.8.(3分)如果数轴上的点A 对应的数为1−,点B 与A 点相距3个单位长度,则点B 所对应的有理数为( ) A .2B .4−C .2−或4D .2或4−【分析】考虑在A 点左边和右边两种情形解答问题.【解答】解:在A 点左边与A 点相距3个单位长度的点所对应的有理数为4−; 在A 点右边与A 点相距3个单位长度的点所对应的有理数为2. 故选:D .【点评】本题考查了数轴上两点间的距离,解题的关键是注意分类讨论.9.(3分)某同学在解关于x 的方程313x mx −=+时,把m 看错了,结果解得4x =,则该同学把m 看成了( ) A .2−B .2C .43D .72【分析】将4x =代入313x mx −=+中解得m 的值即可.x =【解答】解:将4x mx 代入−=+313中可得−=+m 12143m =,解得:2,B 故选:. 【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.10.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出八,盈十一;人出五,不足十三.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出八钱,那么多了十一钱;如果每人出五钱,那么少了十三钱.问:共有几个人?”设共有x 个人共同出钱买鸡,则下面所列方程正确的是() x x A .−=+x x B 811513.+=−811513x x C .−=+x x D 511813.+=−8(11)5(13)x 【分析】设有个人共同出钱买鸡,根据买鸡需要的总钱数不变,即可得出关于x 的一元一次方程,此题得解.【解答】解:设有x x x 个人共同出钱买鸡,根据题意得:−=+811513.故选:A .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题 (本大题共6个小题,每小题3分,共18分)11.(3分)某地上午气温为︒16C ,下午上升︒3C ,到半夜又下降︒ 20C ,则该地半夜的气温为︒−1C . 【分析】利用题意列出算式解答即可.【解答】解:+− =−163211920︒=−1C .故答案为:︒ −1C .【点评】本题主要考查了有理数的加减混合运算的应用,正确列出算式是解题的关键.3.90. 12.(3分)用“四舍五入”法将3.896精确到0.01,所得到的近似数为【分析】把千分位上的数字6进行“四舍五入”即可.【解答】解:≈3.896 3.900.01)(精确到.故答案为:3.90.【点评】本题考查了近似数与精确度,熟练掌握精确度的定义是解答本题的关键.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.13.(3分)已知a ,a b ++−=b 满足|3|(2)02 +,则a b ()2023−的值是1.【分析】根据绝对值、偶次方的非负性求出a、b ,再根据有理数的乘方法则计算即可.a b 【解答】解:|3|(2)0++−=2∴+=a 30,,b −=20,∴=−a 3b =,2,∴+=−+=−a b ()(32)120232023,−故答案为:1.【点评】本题考查的是非负数的性质,熟记绝对值、偶次方具有非负性是解题的关键.14.(3分)已知轮船在逆水中前进的速度是a 时,水流的速度是5千米/千米/ 时,则这轮 a 船在顺水中前进的速度是+(10)/千米时.【分析】根据顺水速度=逆水速度+⨯2水流速度,把相关数值代入后化简即可.a +【解答】解:由题意得:船在静水中的速度为:5,∴a a ++=+这轮船在顺水中航行的速度是55(10)千米/时,a 故答案为:+(10).【点评】本题考查列代数式,解题的关键是顺水速度=逆水速度+⨯2水流速度.a a +−=15.(3分)已知102 a a 2,则代数式222021++的值是2023.a a +=【分析】根据题意得到12,再将代数式变形即可求值.a a 【解答】解:2+−=10∴+=a a 2,1,∴++=++=⨯+=a a a a 2220212()2021212021202322,故答案为:2023.【点评】本题考查了代数式求值,利用整体代入思想解决问题是解题关键.16.(3分)若k x −−=||4k (5)60−是关于x 的一元一次方程,则k−的值为5.【分析】直接利用一元一次方程的定义得出关于k 的方程求出答案.k x 【解答】解:(5)60−−=||4k −是关于x 的一元一次方程,∴−=k ||41k −≠50且,解得:k =−5.−5故答案为:.【点评】此题主要考查了一元一次方程的定义,正确把握未知数的系数与次数是解题关键.三、解答题 (本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每17.(6分)320232|23|2(1)−+−−⨯−.【分析】先求绝对值和乘方,再作乘法和加减即可.【解答】解:原式812(1)=−+−⨯−812=−++5=−.【点评】本题考查含乘方的有理数运算,掌握相关的运算法则和公式是解题的关键.18.(6分)解方程:2152163x x +−=−. 【分析】先去分母,再去括号,移项,合并同类项,系数化成1即可.【解答】解:2152163x x +−=−,去分母,得2162(52)x x +=−−, 去括号,得216104x x +=−+,移项,得210641x x +=+−,合并同类项,得129x =,系数化成1,得34x =. 【点评】本题考查了解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.19.(6分)先化简,再求值:,其中,.【分析】直接去括号,再合并同类项,把已知数据代入得出答案.【解答】解:原式2262466m m n m n =+−−+22m n =+,当3m =−,3n =时,原式2(3)23=⨯−+⨯66=−+0=.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.20.(8分)(1)已知有理数,,在数轴上对应的点如图所示,化简:; (2)已知,,求当时,求的值.【分析】(1)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的意义化简,去括号合并即可得到结果;(2)先化简A B −,然后把1x =代入求值.【解答】解:(1)由数轴可得:0a b c <<<,且||||||a c b >>,0b a ∴−>,0a c −<,0c b −>, ||||||b a a c c b −+−−−()()()b a a c c b =−−−−−b a a c c b =−−+−+22a b =−+;(2)A B −322(5)(116)x x x x =−−−+3225116x x x x =−−+−326116x x x =−+−, 当1x =时,原式3216111160=−⨯+⨯−=.【点评】本题考查整式的加减−化简求值、数轴、绝对值,解题的关键是掌握绝对值性质.21.(8分)如图,在长为,宽为的长方形纸板上裁去一个边长为的正方形.(1)求剩余纸板的周长(用含,的代数式表示); (2)当,时,求的值.【分析】(1)根据长方形的周长公式进行解答即可;(2)把3a =,1b =代入求值即可.【解答】解:(1)剩余纸板的周长:222(12)a ab a ab +++−2222224a ab a ab =+++−2422a ab =−+;(2)把3a =,1b =代入得:243231232C =⨯−⨯⨯+=.【点评】本题主要考查了列代数式,整式加减的应用;解题的关键是熟练掌握整式加减混合运算法则,准确计算.22.(9分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克?(2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元千克收购,按9.5元千克进行苹果销售,运费及包装费等平均为2.5元千克,则李军该周销售苹果一共收入多少元?【分析】(1)根据表中数据计算即可;(2)根据表中数据计算即可;(3)根据(2)的数据计算即可.【解答】解:(1)13070200+=(千克),答:李军该周销售苹果最多的一天比最少的一天多200千克;(2)20007305070130205011014180⨯+−−+−++=(千克),答:李军该周实际销售苹果的总量是14180千克;(3)14180(9.55 2.5)28360⨯−−=(元),答:李军该周销售苹果一共收入28360元.【点评】本题主要考查正负数的计算,熟练掌握正负数的计算是解题的关键.23.(9分)已知关于的整式,整式,若是常数,且不含的一次项. (1)求的值;(2)若为整数,关于的一元一次方程的解是整数,求的值.【分析】(1)将A ,B 代入3A B −中计算后根据已知条件即可求得a 的值;(2)解方程并进行分类讨论后确定b 的值,然后将a ,b 的值代入5a b +中计算即可.【解答】解:(1)2332A x ax x =+−+,22422B x ax x =+−+,3A B ∴−223(332)(2422)x ax x x ax x =+−+−+−+2239962422x ax x x ax x =+−+−−+− 2(57)4x a x =+−+,3A B −不含x 的一次项,570a ∴−=,解得:75a =; (2)230bx x +−=,整理得:(2)3b x +=,原方程的解为整数,且b 为整数,1b ∴=±或3−或5−,当1b =时,75517185a b +=⨯+=+=;当1b =−时,75517165a b +=⨯−=−=; 当3b =−时,75537345a b +=⨯−=−=;当5b =−时,75557525a b +=⨯−=−=; 综上,5a b +的值为2或4或6或8.【点评】本题考查整式的化简求值及解一元一次方程,结合已知条件确定a ,b 的值是解题的关键.24.(10分)1990年,著名社会学家费孝通先生总结出了“各美其美,美人之美,美美与共,天下大同”这一处理不同文化关系的十六字“箴言”.在数学上,我们不妨约定:若关于x 的方程110a x b +=与220a x b +=同时满足21221||()0a b a b −+−=,则称方程110a x b +=与220a x b +=互为“美美与共”方程.根据该约定,回答下列问题.(1)已知关于x 的方程20x m −=与0ax b +=互为“美美与共”方程,且方程20x m −=的解为12,则m = 1 ,a = ,b = ;(2)是否存在有理数k ,使关于x 的方程30x k +=与其“美美与共”方程的解都是整数,若存在,求出k 的值,若不存在,请说明理由;(3)若方程12(21)x x −=−的解也是方程0ax b +=的解,求方程0ax b +=的“美美与共”方程的解.【分析】(1)根据题干信息得出12a b =,21a b =,先方程20x m −=的解为12,求出1m =,即可得出答案;(2)先求出方程30x k +=的解为:3k x =−,在求出方程30x k +=的“美美与共”方程30kx +=的解为3x k=−,根据3k −和3k −都为整数,求出结果即可; (3)先求出方程12(21)x x −=−的解为:13x =,得出方程0ax b +=的解为13b x a =−=−,再求出方程0ax b +=的“美美与共”方程为0bx a +=,求出方程0bx a +=的解为:3a x b =−=−. 【解答】解:(1)21221||()0a b a b −+−=,120a b ∴−=,210a b −=,解得:12a b =,21a b =, 方程20x m −=的解为12,∴1202m ⨯−=,解得:1m =, ∴方程20x m −=与0ax b +=互为“美美与共”方程,2b ∴=,m a −=,1a ∴=−, 故答案为:1;1−;2;(2)存在;方程30x k +=的解为:3k x =−, 方程30x k +=的“美美与共”方程为:30kx +=,且其解为3x k=−, 关于x 的方程30x k +=与其“美美与共”方程的解都是整数, ∴3k −和3k−都为整数,3k ∴=±; (3)方程12(21)x x −=−的解为:13x =, 方程12(21)x x −=−的解也是方程0ax b +=的解,∴方程0ax b +=的解为13b x a =−=, 方程0ax b +=的“美美与共”方程为0bx a +=,∴方程0bx a +=的解为:3a x b=−=. 即方程0ax b +=的“美美与共”方程的解为3x =. 【点评】本题主要考查了方程的解,解一元一次方程,解题的关键是熟练掌握解方程的一般步骤准确计算.25.(10分)如图,在长沙市华益中学迎面50米接力比赛中,设运动时间为t 秒,甲班的A 同学在数轴上位置C 拿到最后一棒接力棒时,记为0t =,此时乙班的B 同学已经位于数轴上数10的位置,A 同学以每秒8米向左运动,B 同学以每秒5米向左运动,两位同学到达D 点立即停止运动.(1)当0t =时,A 、B 同学相距 15 米;当1t =时,A 、B 同学在数轴上所表示的数为 、 .(2)①若t 秒后A 同学恰好追上B 同学,求t ;②当A 同学到达终点D 后,B 同学还要经过多少秒到达D 点.③分别取线段AC 、BD 中点为E 、F ,若在点A 、B 运动期间,4mEF nDA −始终保持不变(其中m ,n 为常数),求m n的值. 【分析】(1)根据数轴上两点间距离公式进行解答即可;(2)①根据t 秒后A 恰好追上B 时,A 同学的路程比B 同学的路程多15列方程求解即可; ②先求出A 到达D 所需要的时间,再求出B 到达D 所需要的时间,然后两个时间相减即可; ③分别用t 表示出E 、F 在数轴表示的数,然后求出线段653||2t EF −=,508DA t =−,进而求出6532t EF −=,然后代入4mEF nDA −并化简得出4(86)13050mEF nDA n m t m n −=−+−,根据4mEF nDA −为定值(其中m ,n 为常数)得出860n m −=,即可求解.【解答】解:(1)当0t =时,A 同学所在位置表示的数为25,B 表示的数为10, ∴此时A 、B 同学相距251015−=;当1t =时,A 同学在数轴上所表示的数为251817−⨯=,B 同学在数轴上所表示的数为10155−⨯=;故答案为:15;17;5;(2)解:①根据题意,得852510t t −=−,解得5t =; ②10(25)25(25)0.7558−−−−−=(秒), 答:当A 同学到达终点D 后,B 同学还要经过0.75秒到达D 点;③A 在数轴上所表示的数为258t −,B 在数轴上所表示的数为105t −,故258(25)508DA t t =−−−=−,E 在数轴上所表示的数为(258)252542t t −+=−, F 在数轴上所表示的数为(105)(25)15522t t −+−−−=, 线段长155653|254()|||22t t EF t −−−=−−=, 当B 同学运动到D 点时停止运动,所以总运动时间为10(25)75−−=(秒), ∴65302t −>,则6532t EF −=, 4mEF nDA ∴−,2(653)(508)m t n t =−−−(86)13050n m t m n =−+−,由于4mEF nDA −为定值,故860n m −=,解得43m n =. 【点评】本题主要考查的是数轴上两点之间的距离,一元一次方程的应用,熟练的利用方程思想解决数轴上的动点问题是解题的关键.。

初一数学期中考试试卷

初一数学期中考试试卷

初一数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -5B. 0C. 3D. -22. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形3. 如果a和b是两个连续的自然数,且a < b,那么a和b的和是:A. 2aB. 2bC. a + bD. 2ab4. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 65. 以下哪个选项是不等式?A. 3x + 2 = 11B. 2x - 5 > 3C. 4x = 8D. 5x - 76. 一个等腰三角形的底边长为6厘米,腰长为5厘米,那么这个三角形的周长是:A. 16厘米B. 17厘米C. 18厘米D. 19厘米7. 以下哪个选项是二次根式?A. √4B. √(-4)C. √2xD. √x^28. 如果一个数的平方是36,那么这个数是:A. 6B. -6C. ±6D. 369. 以下哪个选项是单项式?A. 3x^2 + 2xB. 5x - 3C. 2xD. x^2 - 4x + 410. 以下哪个选项是多项式?A. 2xB. 3x^2 - 5x + 7C. x^2D. 5二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。

12. 如果一个角的补角是120°,那么这个角的度数是______。

13. 一个数的立方是-8,那么这个数是______。

14. 一个数的平方根是2,那么这个数是______。

15. 一个等腰三角形的底角是45°,那么这个三角形的顶角是______。

16. 如果一个数的相反数是它本身,那么这个数是______。

17. 一个数的倒数是1/4,那么这个数是______。

18. 一个数的平方是25,那么这个数是______。

19. 如果一个数的绝对值是它本身,那么这个数是非负数,即这个数是______。

湖南省长沙市湖南师大附中2023-2024学年上学期七年级期中考试数学试卷

湖南省长沙市湖南师大附中2023-2024学年上学期七年级期中考试数学试卷

23年秋初一湖南师大附中期中考试数学试卷一、选择题 (共10题,每小题3分,共30分)1.(3分)负数的概念最早出现在中国古代著名的数学专著《九章算术》中.其中有“把卖 +马和牛得到的钱算作正,把买猪付出的钱算作负”,如果收入6元记作6,那么支出2元记 作( ) A .2−B .2C .4−D .4 2.(3分)党的十八大以来,长沙用3600多个日日夜夜的不懈奋斗,努力把习总书记对湖南重要讲话重指示批示精神转化为生动实践,交上了一份奋进新征程、建功新时代的精彩答卷.十年来,长沙力推进义务教育优质均衡发展,教育惠民实现大跨越;全市新改扩建义务教育学校314所,新增位近468000个,请将数据468000用科学记数法表示为 () 0.46810⨯A .64.6810⨯B .546.810⨯C .446810⨯D .33.(3分) −−3||2的相反数是()A . 23B . −23C . 32D . −32 4.(3分)下列各式正确的是() −−=−A .853 B .+=C 437a b ab .−=x x x 54−−−=D .2(7)55.(3分)下列方程中是一元一次方程的是 () x y A .+=x x ++=B 341.560 2C .−=D 342x x .+=x5036.(3分)下列说法正确的是()A .ab a bc 22−−521是四次三项式B .单项式xy 的系数是0C .x x 231−−的常数项是1x y xy 23D .231−+ 2x y 最高次项是27.(3分)下列方程变形中,正确的是()A .由 y =30y =,得323x =B .由,得 x =32 C .由−=23a a a =,得3b b D .由−=+2131b =,得2−2xy m 8.(3分)若和 x y n 3是同类项,则m 和n 的值分别为( )m =1A ., n =1m =1B ., n =3m =3C .,n =1m =3D .,n =3A 向左移动29.(3分)如图,数轴上一动点个单位长度到达点B ,再向右移动5个单位长C 表示的数为1C 度到达点.若点,则与点A 表示的数互为相反数的是() −A .7B .3−C .3D .2x kxy y xy 2210.(3分)多项式338−−+−化简后不含xy 项,则k 为()A .0B . −31C .31D .3 二、填空题 (共6题,每小题3分,共18分)−11.(3分)16的绝对值是.12.(3分)单项式 − 3x yz 523的系数是.a b +=13.(3分)若23742,则b a ++=. 14.(3分)如图是一个计算程序,若输入−a 的值为1,则输出的结果应为.15.(3分)在如图所示的日历中任意圈出一竖列上相邻的三个数,设中间的一个数为 a ,则圈出的三个数之和为.(用含a 的式子表示)16.(3分)小师和小滨进行了十次剪刀石头布的对决,已知:①小师出了3次石头,6次剪刀,1次布;②小滨出了2次石头,4次剪刀,4次布;③10次中没有平局;④你不知道她们的出拳顺序.则这次对决中赢者是.三、解答题 (共9题,其中17、18、19题6分,20、21题8分,22、23题9分,24、25题10分,共72分)17.(6分)计算2[5(2)](|4|)1⨯+−−−−÷3.218.(6分)化简求值:222()3(2)a ab a ab−−−,其中2a=−,3b=.19.(6分)解方程:(1)54(31)13x x+−=.(2)27231 32x x−−−=.20.(8分)阅读材料:对于任意有理数a,b,规定一种新的运算:()1a b a a b=+−,例如,252(25)113=⨯+−=;(1)计算3(2)−;(2)若(2)5x−=,求x的值.21.(8分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b−0,a b−0,c a−0.(2)化简:||||||c b a b c a−+−−−.22.(9分)如图为小明家住房的结构(单位:米)(1)小明家住房面积为 平方米;(用含x ,y 的代数式表示,化为最简形式)(2)现小明家需要进行装修,装修成本为600元/平方米,若4x =, 2.5y =,则全部装修完的成本为 元.23.(9分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a b a b −=÷,那么a 与b 就叫做“差商等数对”,记为(,)a b .例如:4242−=÷;993322−=÷;则称数对(4,2),9(,3)2是“差商等数对”. 根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是 (填序号);①(8.1,9)−−;②11(,)22;③1(,1)2−−; (2)如果(,2)a 是“差商等数对”,请求出a 的值;(3)在(2)的条件下,先化简再求值:222(3)(52)a a a a −−+−.24.(10分)定义:若关于x的方程0(0)ax b a+=≠的解与关于y的方程0(0)cy d c+=≠的解满足||(x y m m−=为正数),则称方程0(0)ax b a+=≠与方程0(0)cy d c+=≠是“m差解方程”.(1)请通过计算判断关于x的方程2512x x=−与关于y的方程3(1)1y y−−=是不是“2差解方程”;(2)若关于x的方程213x mx n−−=−与关于y的方程2(2)3(1)y mn n m−−−=是“m差解方程”,求n的值;(3)关于x,y的两个方程2(1)31x m−=−与方程3y mn n=+,若对于任何数m,都使得它们不是“2差解方程”,求n的值.25.(10分)【知识准备】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 中点,则我们有中点公式:M 对应的数为2x y +. (1)在一条数轴上,O 为原点,点C 对应数c ,点D 对应数d ,2c >,且有2|3|(2)0c d d −+++=.则CD 的中点N 所对应的数为 .(2)【问题探究】在(1)的条件下,若P 点从C 点出发,以每秒1个单位的速度向左运动,运动了6s 后,Q 点从D 点出发,以每秒2个单位的速度向右运动,R 为PQ 的中点.设Q 点运动时间为t 秒,t 为何值时R 到点C 的距离为2.(3)【拓展延伸】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的三等分点,则我们有三等分点公式:M 对应的数为23x y +.若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的四等分点,则我们有四等分点公式:M 对应的数为34x y +. ①填空:若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的5等分点,则我们有5等分点公式:M 对应的数为 .②在(2)的条件下,若E 是PQ 最靠近Q 的五等分点,F 为PC 中点,求514OE OF +的最小值?并求出此时t 的取值范围.23年秋初一湖南师大附中期中考试数学试卷参考答案与试题解析一、选择题 (共10题,每小题3分,共30分)1.(3分)负数的概念最早出现在中国古代著名的数学专著《九章算术》中.其中有“把卖+马和牛得到的钱算作正,把买猪付出的钱算作负”,如果收入6元记作6 ,那么支出2元记 作() A .2−B .2C .4−D .4【分析】用正数和负数表示具有相反意义的量,其中一个量用正数表示,则与之相反的量用负数表示.+【解答】解:收入6元记作6−2元,则支出2元记作元,故选:B .【点评】本题考查正数、负数的意义,用正数和负数表示具有相反意义的量,其中一个量用正数表示,则与之相反的量用负数表示.2.(3分)党的十八大以来,长沙用3600多个日日夜夜的不懈奋斗,努力把习总书记对湖南重要讲话重指示批示精神转化为生动实践,交上了一份奋进新征程、建功新时代的精彩答卷.十年来,长沙力推进义务教育优质均衡发展,教育惠民实现大跨越;全市新改扩建义务教育学校314所,新增位近468000个,请将数据468000用科学记数法表示为 ( ) 0.46810⨯A .64.6810⨯B .546.810⨯C .446810⨯D .3a ⨯10【分析】科学记数法的表示形式为n a 的形式,其中1||10<,n 为整数.确定n 的值时,a 要看把原数变成时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n<是正整数;当原数的绝对值1时,n是负整数.=⨯【解答】解:468000 4.68105.B 故选:.a ⨯10n 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中a 1||10<,n为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分) −−3||2的相反数是()A . 23B . −23C . 32D . −32【分析】先算出 −−3||2,再求其相反数即可.【解答】解:22||33−−=−,23−的相反数为23, 故选:C .【点评】用到的知识点为:a 的相反数是a −;负数的绝对值是正数;负数的相反数是正数.4.(3分)下列各式正确的是( )A .853−−=−B .437a b ab +=C .54x x x −=D .2(7)5−−−=【分析】合并同类项,首先要能识别哪些是同类项,两个项(单项式)是同类项,它们所含的字母必须相同,并且各个字母的指数也相同,其次是掌握同类项合并的法则:系数相加.字母和字母的指数不变.【解答】解:A 、85−−应等于13−,故本选项错误;B 、4a 和3b 不是同类项,不能合并,故本选项错误;C 、5x 和4x 指数不同,不是同类项,不能合并,故本选项错误;D 、2(7)5−−−=,故本选项正确.故选:D .【点评】此题主要考查学生对合并同类项的理解和掌握,解答此类题目的关键是能识别哪些是同类项.此题难度不大,属于基础题.5.(3分)下列方程中是一元一次方程的是( )A .341x y +=B .2560x x ++=C .342x x −=D .350x+= 【分析】根据一元一次方程的定义,逐个判断.【解答】解:方程341x y +=含有两个未知数,不是一元一次方程;方程2560x x ++=含有未知数的二次项,不是一元一次方程;方程342x x −=符合一元一次方程的定义,是一元一次方程; 方程350x+=不是整式方程,不是一元一次方程. 故选:C .【点评】本题考查了一元一次方程的定义,一元一次方程需满足以下三条:①只含有一个未知数;②未知数的次数是1;③整式方程.6.(3分)下列说法正确的是( )A .22521ab a bc −−是四次三项式B .单项式xy 的系数是0C .231x x −−的常数项是1D .23231x y xy −+最高次项是22x y【分析】直接利用多项式的项数、次数确定方法分别分析得出答案.【解答】解:A 、22521ab a bc −−是四次三项式,正确;B 、单项式xy 的系数是1,故此选项错误;C 、231x x −−的常数项是1−,故此选项错误;D 、23231x y xy −+最高次项是33xy −,故此选项错误;故选:A .【点评】此题主要考查了多项式,正确把握相关定义是解题关键.7.(3分)下列方程变形中,正确的是( )A .由03y =,得3y =B .由23x =,得23x = C .由23a a −=,得3a = D .由2131b b −=+,得2b =【分析】按照解一元一次方程的步骤进行计算,逐一判断即可解答.【解答】解:A 、由03y =,得0y =,故A 不符合题意; B 、由23x =,得32x =,故B 不符合题意; C 、由23a a −=,得3a =,故C 符合题意;D 、由2131b b −=+,得2b =−,故D 不符合题意;故选:C .【点评】本题考查了解一元一次方程,等式的性质,熟练掌握解一元一次方程的步骤是解题的关键.8.(3分)若2m xy −和3n x y 是同类项,则m 和n 的值分别为( )A .1m =,1n =B .1m =,3n =C .3m =,1n =D .3m =,3n =【分析】相同字母的指数要相同可求出m 与n 的值.【解答】解:由题意可知:1n =,3m =,故选:C .【点评】本题考查同类项的概念,属于基础题型.9.(3分)如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C A 表示的数为1.若点C ,则与点表示的数互为相反数的是 () −A .7B .3−C .3D .2【分析】先求出A 点表示的数,根据相反数的定义即可求解.【解答】解:数轴上一动点A 向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C ,表示的数为1点C ,∴点B −表示的数为4,∴点A −表示的数为2,∴则与点A表示的数互为相反数的是2,故选:D.【点评】本题考查了相反数的定义,本题的解题关键是求出A 点表示的数.x kxy y xy 2210.(3分)多项式338−−+−化简后不含xy 项,则k 为()A .0B . −31C .31D .3【分析】先将原多项式合并同类项,再令xy 项的系数为0,然后解关于k 的方程即可求出k.【解答】解:原式=+−−−x k xy y 22(13)38,因为不含xy 项,故−=k 130,解得: k =31 . C 故选:. 【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.二、填空题 (共6题,每小题3分,共18分)−11.(3分)16的绝对值是16.【分析】直接利用绝对值的定义得出答案. −【解答】解:16的绝对值是:16.故答案为:16.【点评】此题主要考查了绝对值,正确掌握绝对值的定义是解题关键.12.(3分)单项式 −3x yz 523的系数是 −53.【分析】利用单项式系数定义可得答案.【解答】解:单项式2335x yz −的系数是35−, 故答案为:35−. 【点评】此题主要考查了单项式,关键是掌握单项式中的数字因数叫做单项式的系数.13.(3分)若23a b +=,则742b a ++= 13 .【分析】根据23a b +=,可知24a b +的值,进一步求解即可.【解答】解:23a b +=,242(2)236a b a b ∴+=+=⨯=,7427613b a ∴++=+=,故答案为:13.【点评】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.14.(3分)如图是一个计算程序,若输入a 的值为1−,则输出的结果应为 5− .【分析】将1a =−代入计算程序中进行计算.【解答】解:当1a =−时,2[(1)(2)](3)4−−−⨯−+(12)(3)4=+⨯−+3(3)4=⨯−+94=−+5=−, 故答案为:5−.【点评】本题考查代数式求值,准确理解程序图,掌握有理数混合运算的运算顺序和计算法则是解题关键.15.(3分)在如图所示的日历中任意圈出一竖列上相邻的三个数,设中间的一个数为a ,则圈出的三个数之和为 3a .(用含a 的式子表示)【分析】观察任意圈出一竖列上相邻的三个数,可以看出每一竖列相邻的两个数之间相差7.表示出最小的数和最大的数,让这三个数相加即可.【解答】解:设中间数为a ,∴其他两个数分别表示为7a −,7a +.∴三个数的和为+++−=a a a a 773.3故答案为:a . 【点评】本题考查列代数式,关键是注意每一竖列相邻两个数之间的关系,都是差7.16.(3分)小师和小滨进行了十次剪刀石头布的对决,已知:①小师出了3次石头,6次剪刀,1次布;②小滨出了2次石头,4次剪刀,4次布;③10次中没有平局;④你不知道她们的出拳顺序.则这次对决中赢者是小师.【分析】因为10次对决中没有平局,那么小师6次剪刀只能对应小滨的2次石头和4次布,这6局中小师赢4局;同理,小师3次石头和1次布只能对应小滨4次剪刀,这4局中小师赢3局,由此推断出结论.【解答】解:因为10次对决中没有平局,所以小师6次剪刀只能对应小滨的2次石头和4次布,所以这6局中小师赢4局,同理,小师3次石头和1次布只能对应小滨4次剪刀,所以这4局中小师赢3局,所以小师共赢了+=局,小滨赢了3437局.故答案为:小师.【点评】本题考查的是推理论证,根据已知条件做出正确分析,注意每一步都有根据和理由.三、解答题 (共9题,其中17、18、19题6分,20、21题8分,22、23题9分,24、25题10分,共72分)17.(6分)计算22[5(2)](|4|)1 ⨯+−−−−÷3.【分析】先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:22[5(2)](|4|)1⨯+−−−−÷3=⨯+−−−⨯ ==−+=⨯−−−2[5(8)](42)2(3)(8)682.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.18.(6分)化简求值:−−−a ab a ab 2()3(2)22a =−,其中2b =3,.【分析】直接去括号进而合并同类项,再把已知代入即可.【解答】解:−−−a ab a ab 2()3(2)22=−−+=−+4a ab a ab a ab 2263222,a =−2把,=−22b =3代入得:原式.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(6分)解方程:(1)54(31)13x x +−=.(2)2723132x x −−−=. 【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)去括号,得512413x x +−=,移项,得512134x x +=+,合并同类项,得1717x =,系数化为1,得1x =;(2)去分母,得2(27)3(23)6x x −−−=,去括号,得414696x x −−+=,移项,得496146x x +=++,合并同类项,得1326x =,系数化为1,得2x =.【点评】本题考查了解一元一次方程,能正确根据等式的基本性质进行变形是解此题的关键.20.(8分)阅读材料:对于任意有理数a ,b ,规定一种新的运算:()1ab a a b =+−,例如,252(25)113=⨯+−=; (1)计算3(2)−;(2)若(2)5x −=,求x 的值.【分析】(1)直接利用已知运算法则计算得出答案;(2)直接利用已知运算法则计算得出答案.【解答】解:(1)3(2)3(32)12−=⨯−−=;(2)由题意可得:(2)5x −=,2(2)15x −⨯−+−=,则4215x −−=,解得:1x =−. 【点评】此题主要考查了一元一次方程的解法以及有理数的混合运算,正确掌握相关运算法则是解题关键.21.(8分)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b − > 0,a b − 0,c a − 0.(2)化简:||||||c b a b c a −+−−−.【分析】(1)直接利用数轴进而分析得出各部分的符号;(2)利用绝对值的性质化简得出答案.【解答】解:(1)由数轴可得:0c b −>,0a b −<,0c a −>,故答案为:>,<,>;(2)||||||c b a b c a −+−−−c b b a c a =−+−−+0=.【点评】此题主要考查了有理数比较大小,正确利用数轴分析是解题关键.22.(9分)如图为小明家住房的结构(单位:米)(1)小明家住房面积为 15xy 平方米;(用含x ,y 的代数式表示,化为最简形式)(2)现小明家需要进行装修,装修成本为600元/平方米,若4x =, 2.5y =,则全部装修完的成本为 元.【分析】(1)住房的总面积=长4y 宽2x 的客厅的面积+长2y 宽x 的厨房的面积+长x 宽y 的浴室的面积+长2x 宽2y 的卧室的面积;(2)将4x =, 2.5y =代入算出小明家住房面积,再乘以每平方米装修成本,即可得出全部装修完的成本.【解答】解:(1)42222y x y x x y x y ⨯+⨯+⨯+⨯824xy xy xy xy =+++15xy =(平方米). 故小明家住房面积为15xy 平方米;(2)4x =, 2.5y =,15154 2.5150xy ∴=⨯⨯=,150********⨯=(元).答:全部装修完的成本为90000元.故答案为:15xy ;90000.【点评】本题考查了整式的混合运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.23.(9分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a b a b −=÷,那么a 与b 就叫做“差商等数对”,记为(,)a b .例如:4242−=÷;993322−=÷;则称数对(4,2),9(,3)2是“差商等数对”. 根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是 ①③ (填序号);①(8.1,9)−−;②11(,)22;③1(,1)2−−; (2)如果(,2)a 是“差商等数对”,请求出a 的值;(3)在(2)的条件下,先化简再求值:222(3)(52)a a a a −−+−.【分析】(1)根据定义列式计算后进行判断即可;(2)根据定义列得方程,解方程即可;(3)将原式去括号,合并同类项后代入数值计算即可.【解答】解:(1)8.190.9−+=−,8.1(9)0.9−÷−=,则①是“差商等数对”;11022−=,11122÷=,则②不是“差商等数对”; 11122−+=,11(1)22−÷−=,则③是“差商等数对”; 故答案为:①③;(2)由题意可得22a a −=,解得:4a =; (3)222(3)(52)a a a a −−+−222652a a a a =−++−234a a =+,当4a =时,原式23444481664=⨯+⨯=+=.【点评】本题考查整式的化简求值及实数的运算,结合已知条件列得正确的算式是解题的关键.24.(10分)定义:若关于x 的方程0(0)ax b a +=≠的解与关于y 的方程0(0)cy d c +=≠的解满足||(x y m m −=为正数),则称方程0(0)ax b a +=≠与方程0(0)cy d c +=≠是“m 差解方程”.(1)请通过计算判断关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是不是“2差解方程”;(2)若关于x 的方程213x m x n −−=−与关于y 的方程2(2)3(1)y mn n m −−−=是“m 差解方程”,求n 的值;(3)关于x ,y 的两个方程2(1)31x m −=−与方程3y mn n =+,若对于任何数m ,都使得它们不是“2差解方程”,求n 的值.【分析】(1)分别求解两个方程,根据定义判断即可;(2)分别求出方程的解,根据题意可得332334||22n m n m mn m −−−++−=,解出n 的值即可;(3)分别求出方程2(1)31x m −=−与方程3y mn n =+的解,再根据对于任何数m ,都使得它们不是“2差解方程”,即与m 无关,则可列出关于n 的一元一次方程,解出方程即可求解.【解答】解:(1)关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是“2差解方程”,理由如下:2512x x =−的解为4x =,3(1)1y y −−=的解为2y =,|||42|2x y −=−=,∴关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是“2差解方程”; (2)方程213x m x n −−=−的解为3322n m x −−=, 方程2(2)3(1)y mn n m −−−=的解为3342n m mn y −++=, 两个方程是“m 差解方程”,332334||22n m n m mn m −−−++∴−=, |34|2n ∴+=,14n ∴=−或54n =−; (3)2(1)31x m −=−化简得:231x m =+,解得:312m x +=, 3y mn n =+,解得:3mn n y +=, 3123m mn n x y ++∴−=−,9322(92)3266m mn n m n n +−−−+−==; 对于任何数m ,都使2(1)31x m −=−与3y mn n =+不是“2差解方程”,920n ∴−=,解得:92n =. 【点评】本题考查一元一次方程的解,绝对值方程,熟练掌握一元一次方程的解法,绝对值方程的解法,理解新定义是解题的关键.25.(10分)【知识准备】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 中点,则我们有中点公式:M 对应的数为2x y +. (1)在一条数轴上,O 为原点,点C 对应数c ,点D 对应数d ,2c >,且有2|3|(2)0c d d −+++=.则CD 的中点N 所对应的数为 1.5 .(2)【问题探究】在(1)的条件下,若P 点从C 点出发,以每秒1个单位的速度向左运动,运动了6s 后,Q 点从D 点出发,以每秒2个单位的速度向右运动,R 为PQ 的中点.设Q 点运动时间为t 秒,t 为何值时R 到点C 的距离为2.(3)【拓展延伸】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的三等分点,则我们有三等分点公式:M 对应的数为23x y +.若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的四等分点,则我们有四等分点公式:M 对应的数为34x y +. ①填空:若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的5等分点,则我们有5等分点公式:M 对应的数为 .②在(2)的条件下,若E 是PQ 最靠近Q 的五等分点,F 为PC 中点,求514OE OF +的最小值?并求出此时t 的取值范围.【分析】(1)先由非负数的性质求出5c =,2d =−,进而可得CD 的中点N 所对应的数;(2)首先依题意求出点P 所表示的数为:5t −,点Q 所表示的数为:22t −+,然后根据R 为PQ 的中点,R 到点C 的距离为2,得∴22522t t −++−=,由此解出t 即可; (3)①依题意可得出M 对应的数;②由(2)可知:点P 所表示的数为:5t −,点Q 所表示的数为:22t −+,再求出点E 所表示的数为735t −,点F 所表示的数为52t −,进而求出73||5t OE −=,|5|2t OF =−,从而得514|73||707|OE OF t t +=−+−,然后根据绝对值的意义进行分类讨论即可得出答案.【解答】解:(1)由非负数的性质得:30c d −+=,20d +=,解得:5c =,2d =−, CD ∴的中点N 所对应的数为:25 1.52−+=, 故答案为:1.5.(2)P 点从C 点出发,以每秒1个单位的速度向左运动,∴运动6秒后,点Q 开始运动,运动t 秒后,点P 所表示的数为:5(6)1t t −+=−−, Q 点从D 点出发,以每秒2个单位的速度向右运动,t ∴秒时,点Q 所表示的数为:22t −+, R 为PQ 的中点,则点R 所表示的数为:221322t t t −+−−−=, 又点R 到点C 的距离为2,∴3|5|22t −−=, 整理得:|13|4t −=,解得:9t =,或17t =即9或17秒时,R 到点C 的距离为2.(3)①M 为AB 靠近A 的三等分点时,M 对应的数为23x y +, M 为AB 靠近A 的四等分点时,M 对应的数为34x y +, 以此类推,⋯,M 为AB 靠近A 的5等分点时,M 对应的数为45x y +, 故答案为:45x y +. ②由(2)可知:点P 所表示的数为:1t −−,点Q 所表示的数为:22t −+, E 是PQ 最靠近Q 的五等分点,∴点E 所表示的数为:4(22)17925t t t −+−−−=,F 为PC 中点,∴点F 所表示的数为:15222t t −−+=−, 79||5t OE −∴=,|2|2t OF =−, 795145||14|2||79||287|52t t OE OF t t −∴+=⨯+⨯−=−+−, 当79t <时,514972873714OE OF t t t +=−+−=−,79t <,则1418t −>−,3714371819t ∴−>−=,即51419OE OF +>,当9728t 时,5147928719OE OF t t +=−+−=,当728t >时,514797281437OE OF t t t +=−+−=−,728t >,则1456t >,1437563719t ∴−>−=,即51419OE OF +>,综上所述:514OE OF +的最小值为19,此时9728t ,即947t , 故得当514OE OF +的最小值为19时,t 的取值范围是:947t . 【点评】此题主要考查了有理数与数轴,绝对值的意义,理解题意,读懂题目中新定义的分点公式,熟练掌握绝对值的意义,运用分类讨论思想进行分类讨论是解决问题的关键.。

湖南省长沙市湖南师大附中博才实验中学2023-2024学年上学期七年级期中考试数学试卷

湖南省长沙市湖南师大附中博才实验中学2023-2024学年上学期七年级期中考试数学试卷

23年秋初一湖南师大附中博才实验中学期中考试数学试卷 一、选择题 (在下列各题中的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)−1.(3分)中国古代数学著作《九章算术》就最早提到了负数.2023的相反数是()A .20231B .2023C .−20231−D .2023−2.(3分)下列各数:1,π,4.11213415,02,722,3.14,其中有理数有 () A .6个B .5个C .4个D .3个3.(3分)电影《长安三万里》是一部以我国盛唐历史为背景的高票房动漫电影,截止到2023年10月23日,其票房1824000000元,用科学记数法可表示为()1.82410⨯A .81.82410⨯B .918.2410⨯C .8 0.182410⨯D .104.(3分)下列不是同类项的是 ()5A .2 2和5−B .ab 与ba 0.2a b 2C .与−51a b 2−a b a b 23D .与32 5.(3分)下列不是具有相反意义的量是()A .前进5米和后退5米C .向东走10米和向北走10米B .收入30元和支出10元D .超过5克和不足2克6.(3分)πx5的系数是()A .πB 5.πC .51D .1 7.(3分) −−+a b c ()变形后的结果是()−++A .a b c−+−B .a b c −−+C .a b c −−−D .a b c 8.(3分)下列计算结果正确的是 ()A .−=− x y xy xy 2222B .+=a a a 358224C .−−=−+D 3(2)6a b a b .+−−=+m n n m m n 42()59.(3分)有理数a ,b ,c 在数轴上的位置如图所示,式子+−−a b b c ||||化简为()A .+−a b cB 2.−+a b c C 2.+a c D .−cb −2a 210.(3分)按一定规律排列的单项式:,−4a 63a 4,,−6a 105a 8,,⋯7a 12,,第n个单项式是()A . −n n −na (1)1B .−+n n −n a (1)(1)12−C .n nna (1)2−+D .n n n a (1)(1)2二、填空题 (共6小题,每小题3分,满分18分)−−11.(3分)比较大小:517. 12.(3分)某品牌电视机搞促销:在原价基础上先立减100元,再打九折销售.若该电视机原价每台为 a 元,则售价为元.(用含a 的代数式表示)13.(3分)3.8963精确到百分位约为.14.(3分)已知a 、b 互为相反数,m 、n 互为倒数,的绝对值为2x ,则 −++=+ a b2mn x 20232.15.(3分)若多项式−xy n x y +−+(2)1m n 22是关于 x ,y m n 的三次多项式,则+=2.16.(3分)如果有理数a ,b ab b −+−=满足|2|(1)02,则+++++++++⋅⋅⋅+ ab a b a b a b (1)(1)(2)(2)(2021)(2021)1111的值为.三、解答题 (共9小题,满分72分)17.(6分)画出数轴并在数轴上表示出下列各数,将这些数用“<”号连接.−4+、 1.25−−、|2|−+、(0.5)、−−2(3)1.18.(8分)计算:(1)−++−4545325(8)1312;(2)−−−++÷−⨯313(53)27(3)2.19.(6分)先化简,再求值:−−+x y xy xy x y 5(3)(3)2222x =,其中2y =3,.20.(8分)小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题: (1)用含m ,n 的代数式表示地面的总面积S ;(2)已知 1.5n =,且客厅面积是卫生间面积的8倍,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?21.(8分)已知||3x =,||2y =.(1)若x y <,求x y −的值;(2)若0xy >,求x y +的值.22.(8分)某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:)km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.3升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米加1.6元收费,在这过程中该驾驶员共收到车费多少元?23.(8分)已知:2468B a ab a=++.=−+,2A a ab b253−;(1)化简:2A B−的值;(2)若1b=,求2A Ba=−,2−的值与a无关,求此时b的值.(3)若代数式2A B24.(10分)阅读材料:整体思想是数学解题中一种重要思想方法,在多项式化简与求值应用广泛,如把()a b +看成一个整体,3()2()()(321)()2()a b a b a b a b a b +−+++=−++=+.根据以上方法解答下列问题:(1)用整体思想化简:2222()4()7()a b a b a b −−−+−; (2)若22230a b −−=,求22362032a b −++的值;(3)已知:2215a ab +=,226b ab +=,求代数式22244a b ab −−的值.25.(10分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离||AB a b =−,线段AB 的中点表示的数为2a b+. 【问题情境】数轴上点A 表示的数为4−,点B 表示的数为6,点P 从点A 出发,以每秒1个单位长度的速度沿数轴向终点B 匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,Q 到达A 点后,再立即以同样的速度返回B 点,当点P 到达终点后,P .Q 两点都停止运动,设运动时间为t 秒(0)t >. 【综合运用】(1)填空:A ,B 两点间的距离AB = ,线段AB 的中点表示的数为 . (2)当t 为何值时,P ,Q 两点间距离为3.(3)若点M 为AQ 的中点,点N 为BP 的中点,在运动过程中,MNAP的值是否会发生变化?若变化,请说明理由,若不变,请求出相应的数值.23年秋初一湖南师大附中博才实验中学期中考试数学试卷参考答案与试题解析 一、选择题 (在下列各题中的四个选项中,只有一项是符合题意的。

2024年下学期期中考试七年级数学试卷(问卷)

2024年下学期期中考试七年级数学试卷(问卷)

2024年下学期期中考试七年级数学试卷(问卷)(考试时间120分钟满分120分)一、选择题(每小题3分,共30分)1.-2相反数和绝对值分别是( )A . -2,-2B .2,-2C .-2,2D . 2,22.2024年10月30日凌晨,神州十九号载人飞船在酒泉卫星发射中心点火发射.若火箭发射点前5秒记为秒,那么火箭发射点火后10秒应记为( )A .秒B .秒C .秒D .秒3.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是人一年的口粮.将用科学记数法表示为( )A . B .C .D .4.式子,,,,中,单项式有( )A .1个B .2个C .3个D . 4个5.下列变形正确的是( )A .B .C .D .6.将 按从小到大的顺序排列,正确的是( )A .B .C .D .7.如图,若数轴上的两点,表示的数分别为a ,b ,则下列结论正确的是( )A .B .C .D .8.下列说法中正确的有( )①一个数前面加上“﹣”号就是负数;②非负数就是正数;③0既不是正数,也不是负数;④正数和负数统称为有理数;⑤正整数与负整数统称为整数;⑥正分数与负分数统称为分数;⑦0是最小的整数;⑧最大的负数是.A .5个B .4个C .3个D .2个5-10+5-5+10-21000000021000000092.110⨯90.2110⨯82.110⨯72.110⨯2a +25b 2x 13x +8m 5(3)35+-=+8(5)9(5)89+-+=-++[6(3)]5[6(5)]3+-+=+-+1212(2)(2)3333⎛⎫⎛⎫+-++=+++ ⎪ ⎪⎝⎭⎝⎭()22313333----,,,()22313333-<-<-<-()23213333-<-<-<-()22313333-<-<-<-()22313333-<-<-<-A B 0a b ->0ab-<21a b +>-0ab >1-9. 当a <0时,下列等式①a 2023<0;②a 2023=-(-a )2023;③a 2024=(-a )2024;④a 2023=-a 2023中成立的有( )A .4个B .3个C .2个D .1个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 023个图中共有正方形的个数为 ( )A .6067B .6061C .2024D .2023二、填空题(每小题3分,共24分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款元.12.的次数是.13.把多项式按字母的降幂排列: .14.若,则.15.若单项式与单项式是同类项,则它们的和为.16.已知a 、b 互为相反数,c 、d 互为倒数,的绝对值是2024,则的值为.17.若多项式8x 2-3x +5与多项式x 3+mx 2-5x +7相减后,结果中不含x 2项,则常数m 的值是 .18.下列说法中,正确的是 .(请写出正确的序号)①若,则;②2-|x -2024|的最大值为2;③若,则是负数;④三点在数轴上对应的数分别是-2、x 、6,若相邻两点的距离相等,则;⑤若代数式的值与无关,则该代数式值为2024;⑥若,则的值为1.三、解答题(共66分)2235bc π-235632x x y x --+x |4||1|0a b -++=a b =32m x y 15n xy +-m 2321a bm cd m ++-+11a a=-0a <a b >()()a b a b +-A B C 、、2x =29312016x x x +-+-+x 0,0a b c abc ++=>b c a c a ba b c+++++19.(4分)把下列各数填在相应的集合里:,正数集合:{ }负数集合:{ }整数集合:{ }分数集合:{}20.(每小题4分,共8分)计算:(1)(2) 21.(8分)已知多项式.(1) 求;(2) 如果A + 2B + C = 0,求多项式C .22.(8分)在某次抗洪抢险中,人民解放军驾驶加满油的冲锋舟,沿着东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(向东记作正数,向西记作负数,单位:):+14,-9,+8,-7,13,-6,+12,-5.(1) 请你帮忙确定B 地位于A 地的什么方向,距离A 地多少千米?(2) 若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23. (8分)按照“双减”政策,为丰富课后托管服务内容,学校准备订购一批篮球和跳绳. 经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的付款.已知要购买篮球50个,跳绳x 条().(1) 若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款元;(用含x 的代数式表示)(2) 当时,请通过计算说明此时用哪种方案购买较为合算?(3) 当时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?6133,2,5.6,, 3.14,9,0,,475-------()12342637⎛⎫-+⨯- ⎪⎝⎭()24110.5124⎡⎤--÷⨯+-⎣⎦22324,23=-+-=--+A x x y xy B x x y xy 23A B -km 90%50x >150x =150x =24.(10分)已知有理数满足互为相反数,,.(1) 若,请在数轴上表示出有理数.(2) 若,用“”或“”填空:______0;______0;______0.(3) 若,化简式子:.25.(10分)观察下列各式:,,.(1) 猜想:______;(2) 用你发现的规律计算:;(3) 拓展:计算: .26.(10分)阅读材料∶我们知道,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1) 把 看成一个整体,化简 .(2) 已知 求的值.(3) 若,求代数式 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一期中考试数学试卷集团文件版本号:(M928-T898-M248-WU2669-I2896-
2001—2002学年度第一学期
鮀济中学初一级数学科期中测试题
班级 姓名 座号 分数
一.填空题(每小题2分,共20分)
1.用代数式表示a 与b 的相反数的差_____________ .
2.-0.125的相反数是_________,倒数是____________.
3.数轴上到原点距离为10个单位长度的点表示的数是
_________________.
4.地球表面积约平方千米,用科学记数法表示为_____________平
方千米.
5.59800保留2个有效数字的近似值_____________,9874精确到百位
是_____________.
6.已知(x +2)2和| y -3 |互为相反数,则x y =____________.
7.有理数为a 、b 在数轴上的位置如图所示,
则a+b_____0,a 2b_______0.
8.如图,化简| b -a |+| a -c |+| b -c |=___________.
9.当n 为正整数时,(-1)2n ·(-1)2n+1的值是____________.
10.若-m=2,则m 3=________.如果a >0,b <0,那么b
a _______0.
二.选择题(每小题2分,共20分)
1.一个有理数与它相反数的积是( )
A .正数
B .负数
C .非正数
D .非负数
2.有理数a 、b ,若a+b <0,ab >0,则a 、b 应满足的条件是( )
A .a >0,b >0
B .a >0,b <0
C .a <0,b <0
D .a <0,b >0
3.若| a |=2,| b |=a ,则a +b 为( )
A .±6
B .6
C .±2、±6
D .以上都不对
4.当n 为正整数时,(-1)2n -(-1)2n+1的值是( )
A .2
B .-2
C .0
D .无法确定
5.一个长方形的周长为40cm ,一边长为acm ,则这个长方形的面积是( )
A .a(40-a)cm 2
B .2
1a(40-a)cm 2
C .a(40-2a)cm 2
D .a(20-a)cm 2
6.代数式y x 5 的意义是( ) A .x 减去5除以y 的商 B .y 除以x 与5的差
C .x 除以y 减去5
D .x 与5的差除以7的商
7.某厂去年生产x 台机床,今年增长了15%,今年产量为( )台.
A .x+15%
B .(1+15%)x
C .1+15%x
D .x+15
8.若a 为有理数,则说法正确是( )
A .-a 一定是负数
B .| a |一定是正数
C .| a |一定不是负数
D .-a 2一定是负数
9.(-9)8表示( )
A .-9×8
B .8个9连加
C .9个-8连乘
D .8个-9连乘
10.若m 为正数,则( )
A .-m <
m 1≤m B .-m <m
1<m C .m 1>m >-m D .-m ≤m ≤m 1 三.计算题(每题5分,共30分)
1.-0.1252÷(-41)2×(-1)2n -1 (n 为自然数)
2.-0.52+41-| -22-4 |-(-121)×34
3.-99
125
124×125 4.-8×(-214)+(-12)×(-2
14)-30×4.5 5.121×〔3×(-32)2-1〕-3
1×(-2)3 6.〔1241-(436183-+)×24〕÷5 四.解答题(每小题6分 共30分)
1.当a =-1,b =2,c =3时,求代数式c
b a 111++的值.
2.用代数式表示阴影部分的面积S
当a=2时,求阴影部分的面积S .(结果保留π)
3.老王种了十亩果园,今年收成与去年相(增产为正,减产为负)的情况如下:
(单位:千克)
54,78,-41,-24,11,-15,-28,-6,31,4
用简便方法计算后说明,今年总产量与去年相比较情况如何?
4.邮购一种书,每册定价m元,另加10%的邮费,购书x册,总计金额y 元.
1)用x的代数式表示y.
2)计算当m=2.5,x=100时,总额是多少?
5.甲、乙两站相距360千米,一列慢车以每小时48千米的速度从甲站开出、一列快车以每小时72千米的速度从乙站开出、两车同时出发、相向而行,问多少小时后两车相遇?。

相关文档
最新文档