轴对称1
关于轴对称的知识点
关于轴对称的知识点1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。
折叠后重合的点是对应点,也叫做对称点。
【轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合。
成轴对称的两个图形一定全等。
】2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴。
【轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定。
】3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的主要区别:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.。
4.轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等。
5.线段的轴对称性①线段是轴对称图形,线段的垂直平分线是它的对称轴。
②线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。
③线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线上。
【①线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。
②三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。
】6.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线。
7.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴。
(2)角平分线上的点到角两边的距离相等。
1、 轴对称
第十三章轴对称13.1 轴对称(第一课时)一、知识要点1、轴对称图形的概念:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够完全重合,这个图形就叫做轴对称图形,这条直线叫做对称轴.2、两个图形成轴对称:把一个图形沿着某条直线折叠,如果它能够与另一个图形完全重合,那么就说这两个图形关于这条直线成轴对称.3、轴对称图形和两个图形成轴对称的区别和联系:轴对称图形和两个图形成轴对称的本质是一致的,但同时两者也是有区别的,轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称是指两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.4、线段的垂直平分线(中垂线)概念:。
5、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线6、轴对称图形的对称轴是任何一对对应点所年线段的垂直平分.(1)在字母“ABCDEF”中,是轴对称图形的是_____.(2)正方形有______条对称轴.(3)成轴对称的两个图形_______(填“全等”或“不一定全等”);两个全等的图形成轴对称(填“一定”或“不一定”)(4)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的______.注意:(1)常见的轴对称图形:线段、角、矩形、等腰三角形、圆等.(2)轴对称图形的对称轴是直线.二、例题分析1.如图所示的每个图形都是轴对称图形吗?如果是,指出它的对称轴.(1)(2)(3)(4)(5)【思路点拨】判断一个平面图形是不是轴对称图形,关键看这个图形沿着某条直线折叠后能否完全重合.2.如图所示的每幅图形中的两个图形是轴对称的吗?如果是,指出它们的对称轴.【思路点拨】判断两个图形是不是成轴对称,关键看其中一个图形沿着某条直线折叠后能否与另一个图形完全重合.此外,对称轴的确定,要先找到一对对应点,然后画这条对应点连线段的垂直平分线.3.下列图形中,轴对称图形的个数是()A.1个B.2个C.3个D.4个4.下列交通标识中,不是轴对称图形的是()A.B.C.D.5.(2016•绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条6.下列图形是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是(填序号)7.图1中的三角形4与三角形 成轴对称(填编号),整个图形 轴对称图形(填“是”或“不是”),它有 条对称轴.8. 如下书写的四个汉字,其中为轴对称图形的是( ).A .B .C .D .9.如图,直线l 是五边形ABCDE 的对称轴,∠A =130°,∠B =90°,则∠BCD = .10白球撞击后沿箭头方向运动.经桌边反弹最后进入球洞的序号是( ).A .②B .①C .⑥D .⑤11.如图,在44 的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有( )A .1个 B .2个 C .3个 D .4个4图1EDCBAl12.如图,在Rt△ABC中,∠ACB=90°,∠A=28°,D是AB上一点,将RT△ABC沿CD∠的度数.折叠,使B点落在AC边上的B'处,求ADB'三、过关检测1.下列学习用具中,不是轴对称图形的是()A. B. C. D.2.下列图形中,是轴对称图形的是()A. B. C. D.3.已知以下四个汽车标志图案:其中不是轴对称图形的图案是(只需填入图案代号).4.在图形:正方形、等边三角形、等腰三角形、线段中,对称轴最多的是.5. 如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=26°,求∠CDB的度数。
13.1.1轴对称教案
13.1.1轴对称教案一、教学内容本节课我们将学习人教版初中数学七年级上册第十三章“轴对称”的第一节内容,即13.1.1轴对称。
具体内容包括:理解轴对称的概念,掌握轴对称的性质和判定方法,以及应用轴对称解决实际问题。
二、教学目标1. 让学生理解轴对称的概念,掌握轴对称的性质,能识别并绘制轴对称图形。
2. 培养学生运用轴对称的性质解决实际问题的能力。
3. 培养学生的空间想象力和创新意识。
三、教学难点与重点教学难点:轴对称的性质及其应用。
教学重点:轴对称的概念、性质和判定方法。
四、教具与学具准备教具:多媒体教学设备、黑板、粉笔、尺子、圆规。
学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 实践情景引入(1)展示一组轴对称的图片,如剪纸、建筑等,让学生观察并思考它们的特点。
(2)邀请学生分享观察到的特点,引导学生发现轴对称的概念。
2. 新课导入(1)讲解轴对称的定义,让学生明确轴对称的含义。
(2)通过实例讲解轴对称的性质,如对称轴、对称点等。
3. 例题讲解(1)找出给定图形的对称轴,并标出对称点。
(2)判断给定图形是否为轴对称图形,并说明理由。
4. 随堂练习(1)绘制给定图形的轴对称图形。
(2)运用轴对称的性质解决实际问题。
5. 小结六、板书设计1. 轴对称的概念2. 轴对称的性质3. 轴对称的判定方法4. 轴对称的应用七、作业设计1. 作业题目:2. 答案:(1)对称轴:_______;对称点:_______。
(2)是否为轴对称图形:_______;理由:_______。
八、课后反思及拓展延伸1. 反思:本节课学生掌握轴对称的概念、性质和判定方法的情况,对实际问题的解决能力。
2. 拓展延伸:(1)探索轴对称与中心对称的关系。
(2)运用轴对称设计美丽的图案。
(3)研究轴对称在生活中的应用,如建筑、艺术等。
重点和难点解析1. 轴对称的概念及其性质的理解。
2. 轴对称图形的判定方法。
3. 教学过程中的实践情景引入和例题讲解。
轴对称一教学反思8篇
轴对称一教学反思8篇(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、报告大全、演讲致辞、条据书信、心得体会、党团资料、读后感、作文大全、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as work summary, report encyclopedia, speeches, articles and letters, experience and experience, party and group information, after reading, composition encyclopedia, teaching materials, other sample essays, etc. I want to know the difference Please pay attention to the format and writing of the sample essay!轴对称一教学反思8篇经过教学反思可以增强老师的自我指导能力,教学反思是老师对教育内容思考的一种书面表达,本店铺今天就为您带来了轴对称一教学反思8篇,相信一定会对你有所帮助。
第十二章 轴对称1
第十二章轴对称12.1 轴对称(1)一、课前展示,精彩一练二、学习目标问题化:1理解:轴对称图形和两个图形关于某直线的对称概念。
2了解:对称轴、对称点的概念。
3了解:轴对称图形与两个图形关于某直线对称的区别与联系。
三、创境激趣,导入新课四、自主学习,合作探究1学生自学P29-31。
2交流讨论,达成共识。
3完全学习目标。
a轴对称图形:b轴对称:c对称轴:d对称点:4将准备好的等腰三角形纸片折叠,你会发现什么?5取一张质地较硬的纸,将纸对折,并用小刀在纸上中间随意刻出一个图案,将纸打开平铺,你会得到两个成对称的图案吗?与同伴进行交流。
五、展示汇报:1、P30练习2、P31练习六、开动脑筋、实践创新:1、成轴对称的两个图形全等吗?如果把一个轴对称图形沿着对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?2轴对称和轴对称图形的区别与联系。
七、经典演练:1. 下列图案是我国几家银行的标志,其中不是..轴对称图形的是()A.B.C.D.2. 如下书写的四个汉字,其中为轴对称图形的是( ) A.B. C. D.八、要点再现,写出收获:12.1.1轴对称图形和轴对称巩固练习题:一、选择题:1.下列命题,不正确的是()A.全等图形一定关于某条直线全等B.关于某直线对称的两个图形一定全等C.任何一个图形关于任意直线都有其对称图形D.两个成轴对称的图形任意一对对应点的连线被对称轴垂直平分2.下列四个图形中不是轴对称图形的是()A B C D 3.下列图形中,只有两条对称轴的是()B C D 4.下列图形中,可能不是轴对称图形的是()A.线段B.角C.圆D.三角形5.把一张矩形纸对折,然后用笔尖在上面扎出一个“C”,再把它铺平,你可以看到()A B C D.二、填空题6.如果一个图形沿着某条直线对折后,折痕两边的部分能完全重合,那么称这个图形为____,这条直线叫做这个图形的____。
7.在下面10个英文字母:A、B、C、D、E、F、G、H、I、J中,是轴对称图形的有____个。
《轴对称》教学设计 (1)
图形的运动(二)-轴对称教学设计一、教学分析(一)课标要求【内容要求】图形的运动:结合实例,感受平移、旋转、轴对称现象。
在感受图形的位置与运动的过程中,能在方格纸上补全轴对称图形以及进行简单图形的平移,形成空间观念和初步的几何直观。
【学业要求】图形的运动:能在实际情境中,辨认出生活中的平移、旋转和轴对称现象,直观感知平移、旋转和轴对称的特征,能利用平移或旋转解释现实生活中的现象,形成空间观念。
【教学提示】图形的运动教学尽量选择学生熟悉的情境,通过组织有趣的活动帮助学生认识平移、旋转和轴对称的现象,感知特征,增强空间观念。
可借助方格纸,引导学生补全轴对称图形以及进行图形的平移,感受图形变化的特征;引导学生会从轴对称、平移的角度欣赏自然界和生活中的美;引导学生了解图案中的基本图形及其变化规律,感知中华优秀传统文化,增强空间观念。
(二)教材分析人教版教材从第一学段开始安排“图形的运动”的学习任务,且小学阶段安排了三个单元。
在第一学段二年级下册中学习“图形的运动(一)”,侧重于整体感受现象,通过观察、操作等活动,帮助学生直观认识平移、旋转和轴对称图形,在活动中积累图形运动的活动经验,为学生后续的学习积累丰富的感性经验。
第二学段四年级下册中学习“图形的运动(二)”,主要是对平移和轴对称图形的再认识,学生能在方格纸上画出简单的轴对称图形的对称轴及补全简单的轴对称图形,能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形,会运用平移知识解决简单的实际问题。
在观察、操作活动中,帮助学生积累图形运动经验,描或画出图形的运动和变化,促使学生在探索和理解“运动”的过程中,认识图形之间的关系,发展学生的空间观念。
第三学段五年级下册中学习“图形的运动(三)”,进一步认识图形的旋转,学习在方格纸上画出一个简单图形旋转90°后的图形,能从对称、平移和旋转的角度欣赏生活中的图案,并运用它们在方格纸上设计简单的图案,进一步增强空间观念。
轴对称ppt课件
对于轴对称的函数图像,其面积在沿 对称轴翻转后保持不变。
轴对称的拓扑性质
连通性
轴对称的图形在拓扑上具有连通 性,即可以通过连续变换从一个
部分到达另一个部分。
闭包
轴对称的图形在拓扑上的闭包也 是轴对称的。
分离性
轴对称的图形在拓扑上具有分离 性,即可以将图形分成互不相交
的两个部分。
轴对称的代数几何性质
轴对称ppt课件
目录
• 轴对称概述 • 轴对称的几何性质 • 轴对称的代数性质 • 轴对称的物理性质 • 轴对称的数学性质 • 轴对称的应用实例
01
轴对称概述
定义与性质
定义
轴对称是指一个平面图形沿着一条直 线折叠后,直线两旁的部分能够互相 重合,那么这个图形叫做轴对称图形 ,这条直线叫做对称轴。
性质
轴对称图形具有对称轴,并且沿着对 称轴折叠后两旁的部分能够完全重合 。
轴对称的应用
01
02
03
美学
轴对称在建筑、雕塑、绘 画等领域有着广泛的应用 ,能够给人以美的感受。
工程
在工程设计中,轴对称图 形可以简化计算和设计过 程,提高效率。
数学
在数学中,轴对称是研究 几何图形的重要性质之一 ,对于图形的分类和性质 研究具有重要意义。
天坛
天坛的圜丘坛和祈年殿也采用了轴对称设计 ,体现了古代建筑的美学和哲学思想。
自然界中的轴对称现象
要点一
蝴蝶
蝴蝶的翅膀具有明显的轴对称特征,这种对称性不仅美观 ,还有助于飞行。
要点二
雪花
雪花的形状也具有轴对称性,这种对称性在自然界中广泛 存在。
工程中的轴对称应用
桥梁
桥梁的梁体设计往往采用轴对称结构,以提高桥梁的稳定性和承载能力。
图形的轴对称(1)课件全面版
有些事情注定会发生,有的结局早已就预见,那么就改变你可以改变的,适应你必须去适应的。面对幸与不幸,换一个角度,改变一种思维,也许心空就不再布满阴霾,头上就 是一片蔚蓝的天。一生能有多少属于我们的时光,很多事情,很多人已经渐渐模糊。而能随着岁月积淀下来,在心中无法忘却的,一定是触动心灵,甚至是刻骨铭心的,无论是 伤痛是欢愉。人生无论是得意还是失意,都不要错过了清早的晨曦,正午的骄阳,夕阳的绚烂,暮色中的朦胧。经历过很多世态炎凉之后,你终于能懂得:谁会在乎你?你又何 必要别人去在乎?生于斯世,赤条条的来,也将身无长物的离开,你在世上得到的,失去的,最终都会化作尘埃。原本就不曾带来什么,所以也谈不到失去什么,因此,对自己 经历的幸与不幸都应怀有一颗平常心有一颗平常心,面对人生小小的不如意或是飞来横祸就能坦然接受,知道人有旦夕祸福,这和命运没什么关系;有一颗平常心,面对台下的 鲜花掌声和头上的光环,身上的浮名都能清醒看待。花不常开,人不常在。再热闹华美的舞台也有谢幕的时候;再奢华的宴席,悠扬的乐曲,总有曲终人散的时刻。春去秋来, 我们无法让季节停留;同样如同季节一样无法挽留的还有我们匆匆的人生。谁会在乎你?生养我们的父母。纵使我们有千般不是,纵使我们变成了穷光蛋,唯有父母会依然在乎! 为你愁,为你笑,为你牵挂,为你满足。这风云变幻的世界,除了父母,不敢在断言还会有谁会永远的在乎你!看惯太多海誓山盟的感情最后星流云散;看过太多翻云覆雨的友 情灰飞烟灭。你春风得意时前呼后拥的都来锦上添花;你落寞孤寂时,曾见几人焦急赶来为你雪中送炭。其实,谁会在乎你?除了父母,只有你自己。父母待你再好,总要有离 开的时日;再恩爱夫妻,有时也会劳燕分飞,孩子之于你,就如同你和父母;管鲍贫交,俞伯牙和钟子期,这样的肝胆相照,从古至今有几人?不是把世界想的太悲观,世事白 云苍狗,要在纷纷扰扰的生活中,懂得爱惜自己。不羡慕如昙花一现的的流星,虽然灿烂,却是惊鸿一瞥;宁愿做一颗小小的暗淡的星子,即使不能同日月争辉,也有自己无可 取代的位置其实,也不该让每个人都来在乎自己,每个人的人生都是单行道,世上绝没有两片完全相同的树叶。大家生活得都不容易,都有自己方向。相识就是缘分吧,在一起 的时候,要多想着能为身边的人做点什么,而不是想着去得到和索取。与人为善,以直报怨,我们就会内心多一份宁静,生活多一份和谐没有谁会在乎你的时候,要学会每时每 刻的在乎自己。在不知不觉间,已经走到了人生的分水岭,回望过去生活的点滴,路也茫茫,心也茫茫。少�
八年级数学轴对称教案(1)新课标 人教版
轴对称(1)一、教学目的:通过生活中的轴对称现象,了解轴对称图形和轴对称的基本概念二、教学重点:轴对称图形和两个图形关于某条直线对称的概念三、教学难点:比较观察轴对称图形和两个图形关于某条直线对称的区别四、教学手段:会寻找轴对称图形的对称轴及其条数五、教学过程:Ⅰ.课题导入出示一张白纸,把纸对折,然后从折痕出开始撕,撕一个自己喜欢的图形,并在黑板上展示学生的作品.Ⅱ.讲授新课1、如果我们把这些纸看作一个图形的话,大家看一看这些图形,你们有没有发现有什么共同的地方?引出轴对称图形的相关概念.(如:对折左右两边都相同,左右两边形状是一样的,面积也一样,把它叠在一起会重合)强调它是一个图形,直线两旁的部分是同一个图形的两部分.1.看书P119图14.1-3中,每对图形有什么共同特征?引出两个图形关于一条直线对称的相关概念,并联系实际让学生举出生活中的两个图形成轴对称的例子.2.轴对称图形与轴对称的区别与联系(图1)(图2)(1) 区别①轴对称涉及两个图形(如图1),轴对称图形是对一个图形而言(如图2)②轴对称是指两个图形的位置关系(如图1中两个三角形能沿直线MN折叠后重合),而轴对称图形是指具有特殊形状的图形(如图2中沿对角线AC所在的直线折叠能重合的四边形)(2) 联系①都要沿某条直线折叠重合②若把轴对称图形(如图2四边形)沿对称轴MN分成两个图形,则这两部分图形关于MN轴对称;若把两个成轴对称图形看成一个整体,则它是一个轴对称图形。
4.成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗吗?例1 下列图形中那些是轴对称图形?是轴对称图形的,作出对称轴线段任意的三角形等腰三角形等边三角形直角三角形等腰直角三角形圆例2 指出下列图中的图形是否为轴对称图形,若是画出对称轴例3 从轴对称的角度来看,下面的图形中,哪一个与众不同?说明理由Ⅲ.课堂练习学生练习书P120 练习题Ⅳ.课时小结1、轴对称图形与轴对称的相关概念2、轴对称图形与轴对称的区别Ⅴ.课后作业:书P125-126 1 . 2. 6. 7。
新版北师大新版三年级数学下册《2.1轴对称(一)》同步练习卷(含解析)
北师大新版三年级数学下册《2.1 轴对称(一)》同步练习卷一、选择题1.下列不是轴对称图形的是()A.B.C.2.下面的图案中,()不是轴对称图形。
A.B.C.3.在下列的图形中,()不是轴对称图形.A.B.C.4.在“HONG”中,有()个轴对称字母.A.1 B.2 C.3 D.45.如图的字母是轴对称图形的有()A.3个B.4个C.5个二、判断题6.是轴对称图形。
(判断对错)7.一个图形距离对称轴3厘米,那么它的轴对称图形距离对称轴也是3厘米。
(判断对错)8.人体内部器官图象是轴对称图形..(判断对错)9.平行四边形是轴对称图形..(判断对错)10.所有的三角形都是轴对称图形..(判断对错)三、填空题11.五角星(填“是”或“不是”)轴对称图形。
12.将一幅图画对折后,压平,折痕两侧的图形能够完全重合,这个图形是图形,对折的折痕就是这个图形的。
13.像等图形,沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形是,折痕所在的这条直线叫作。
四、解答题14.下面哪些图形是中心对称?把中心对称的图形圈起来。
15.连一连。
参考答案与试题解析一、选择题1.【分析】依据轴对称图形的概念,及在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,据此解答即可.【解答】解:根据轴对称图形的特征可知,选项A、B都是轴对称图形,选项C不是.故选:C.【点评】解答此题的主要依据是:轴对称图形的概念及其特征.2.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可。
【解答】解:根据轴对称图形的定义,不是轴对称图形。
故选:C。
【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合。
3.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;进行判断即可。
1轴对称知识点总结
1轴对称知识点总结一、一轴对称的定义一轴对称又称为轴对称,是指图形能够围绕一条轴线进行旋转180度后能够重合的性质。
这条轴线就是对称轴,对称轴通常是图形的中心线、对称中心或中轴线。
在一轴对称的情况下,图形的各个部分都能够找到对称的部分,使得图形旋转180度后能够完全重合。
二、一轴对称的性质1. 对称性:一轴对称的图形具有对称性,即图形的各个部分围绕对称轴都是对称的。
这意味着图形的每个点和对称轴的垂直距离都相等,从而构成了对称性。
2. 对称中心:一轴对称的图形通常存在一个对称中心,是使得图形能够围绕对称轴旋转180度后完全重合的中心点。
3. 对称轴:对称轴是一条直线,图形围绕这条直线旋转180度后能够重合。
对称轴通常是图形的特定中心线或中轴线。
三、一轴对称的应用一轴对称在日常生活和数学中有着广泛的应用,如下所示:1. 几何图形:很多几何图形都具有一轴对称的性质,如矩形、正方形、圆等,这些图形在设计和绘制中能够通过对称性来保证图形的整体均衡和美观。
2. 自然界:很多自然界中的事物也具有一轴对称的性质,如植物的叶子、花瓣、昆虫的翅膀等,这些事物通过对称性来保证它们的结构和功能的均衡与稳定。
3. 生活中的设计:在建筑、工艺品、装饰品等设计中,一轴对称常常被应用,通过对称性能够使得设计更加美观和有序。
四、一轴对称的图形1. 矩形:矩形是一种具有一轴对称性的几何图形,其对称轴通常为矩形的中心线,使得矩形能够在围绕该中心线旋转180度后重合。
2. 正方形:正方形也是一种具有一轴对称性的几何图形,其对称轴为正方形的对角线,使得正方形在围绕该对角线旋转180度后重合。
3. 圆形:圆形是一种具有一轴对称性的几何图形,其对称轴为圆心的某条直径,使得圆形围绕该直径旋转180度后重合。
五、一轴对称的判定方法判定一图形是否具有一轴对称性,常用的方法有如下几种:1. 观察法:通过观察图形的各个部分,看是否能够找到对称的部分,若找到对称的部分并能使得图形围绕某条轴线旋转180度后重合,则该图形具有一轴对称性。
13.1轴对称(1) 教学设计
13.1 轴对称(1)教学设计教学目标:1.通过展示轴对称图形的图片,初步认识轴对称图形2.能够识别简单的轴对称图形及其对称轴;掌握线段垂直平分线的概念教学重点:能够识别简单的轴对称图形及其对称轴;掌握线段垂直平分线的概念教学难点:理解轴对称图形和成轴对称这两个概念的区别与联系,探索轴对称现象共同特征一、情景导入观察下列几幅图片,这些图形有什么共同的特征?二、新知讲解1--轴对称图形概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.折叠后重合的点叫做对称点.这时,我们也说这个图形关于这条直线(成轴)对称.《随堂练习1》1、下面的图形是轴对称图形吗?如果是,请画出它的对称轴(课本P60练习)2.你能说出以下轴对称图形有几条对称轴吗?三、新知讲解2--成轴对称观察下面每一组中的两个图形,你能发现它们有什么共同的特征吗?概念:如果一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它们的对称轴.折叠后重合的点叫做对称点。
《随堂练习2》1、下列四组图片中有哪几组图形成轴对称?2、下面给出的每幅图中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对称点。
(课本P60练习)四、新知讲解3--轴对称图形和成轴对称的区别与联系探究仔细观察,请问它们之间有什么联系和区别呢?总结:轴对称图形和两个图形成轴对称的区别与联系五、新知讲解4--线段的垂直平分线思考:如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN有什么关系?AA′⊥MN,BB′⊥MN,CC′⊥MN.1、线段垂直平分线的定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.几何语言:∵MN⊥AA′, AP=A′P.∴直线MN 是线段AA′的垂直平分线2、两个图形成轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3、轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.《随堂练习3》1. 如图,△ABC 与△DEF 关于直线 MN 轴对称,则以下结论中错误的是( A )A.AB∥DF B.∠B = ∠EC.AB = DE D.AD 的连线被 MN 垂直平分2、如图, △ABC 与△A′B′C′关于直线l对称,对应点所连线段 CC′与直线l 交于点 D ,则直线l 是线段CC′的垂直平分线. 若 CC′=6 ,则 CD= 3 , ∠CDE=90。
人教版八年级数学上册《轴对称(第1课时)》示范教学设计
轴对称(第1课时)教学目标1.了解轴对称图形与两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.教学重点轴对称图形与两个图形成轴对称的概念,轴对称图形和两个图形成轴对称的区别与联系.教学难点成轴对称的两个图形的性质和轴对称图形的性质.教学过程新课导入对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品中,人们都可以找到对称的例子(如图).【师生活动】教师出示图片,学生观看.【设计意图】通过观看生活中常见的对称现象,引出本节课的新知,让学生感受数学和生活的紧密联系.新知探究一、探究学习【问题】1.如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?【师生活动】学生按照要求动手操作,教师提示“折痕处不要完全剪断”.【答案】这些窗花沿一条直线折叠,直线两旁的部分能够互相重合.【问题】2.结合下面动图,总结你的发现.【新知】像窗花一样,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.【问题】你能举出一些轴对称图形的例子吗?【师生活动】学生独立思考,然后教师展示图片给出参考答案.【答案】【设计意图】让学生亲自动手制作日常生活中熟悉的窗花剪纸,教师提出问题,学生分小组合作交流,激发学生的学习兴趣,培养学生的动手能力和观察归纳能力.二、典例精讲【例1】如图的每个图形都是轴对称图形吗?如果是,请画出它的对称轴.【师生活动】学生独立思考,教师给出答案并讲解.【答案】解:第1个图形上的字母不同,对折之后,直线两旁的部分不能互相重合,所以不是轴对称图形;第2个图形是轴对称图形,对称轴如图.【设计意图】通过例题1的练习与讲解,巩固学生对已学知识的理解及应用.三、探究学习【思考】下面的每对图形有什么共同特点?【师生活动】教师提出问题,学生独立思考并尝试作答.【答案】每一对图形沿着虚线折叠,左边的图形能与右边的图形重合.【新知】像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.【设计意图】通过问题思考,引出轴对称知识.【问题】请你标出图中点A,B,C的对称点A',B',C'.【师生活动】教师提出问题,学生独立作答.【答案】解:【设计意图】检验学生对轴对称知识的理解及应用.四、典例精讲【例2】下列给出的每幅图形中的两个图案是成轴对称吗?如果是,试着画出它们的对称轴.【师生活动】教师提出问题,学生独立作答.【答案】解:第1幅图形中的两个图案不成轴对称,第2幅图形中的两个图案成轴对称,对称轴如图.【归纳】成轴对称的两个图形一定全等,全等的两个图形不一定成轴对称.【设计意图】通过例题2的练习与讲解,让学生初步理解成轴对称的两个图形与全等的两个图形之间的关系.五、探究学习【思考】1.观察动图,试着说一说轴对称图形与轴对称有什么区别与联系?【师生活动】教师展示动图,学生观察并尝试归纳总结.【归纳】轴对称图形与轴对称的区别与联系【设计意图】通过对比讲解,加深学生对知识的理解与掌握.【思考】2.如图,△ABC 和△A ′B ′C ′关于直线MN 对称,点A ′,B ′,C ′分别是点A ,B ,C 的对称点,线段AA ′,BB ′,CC ′与直线MN 有什么关系?【分析】图中,点A,A′是对称点,设AA′交对称轴MN于点P,将△ABC或△A′B′C′沿MN折叠后,点A与A′重合.于是有AP=P A′,∠MP A=∠MP A′=90°.对于其他的对应点,如点B与B′,点C与C′也有类似的情况.因此,对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.【新知】轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.例如下图中,l垂直平分线段AA′,l垂直平分线段BB′.课堂小结板书设计一、轴对称图形二、轴对称三、轴对称及轴对称图形的性质课后任务完成教材第60页练习1~2题.。
《轴对称(一)》教学设计
《轴对称(一)》教学设计教学目标:1. 联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象;认识轴对称图形的一些基本特征。
2. 使学生能根据自己对轴对称图形的初步认识,在一组实物图案或简单平面图形中识别出轴对称图形;能用一些方法“做“出一些简单的轴对称图形。
3. 使学生在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感。
教学重点:感知对称的现象,认识轴对称图形的特征,并能判断一个图形是否是轴对称图形。
教学难点:在理解轴对称图形的基础上,灵活解决相关问题。
教学过程:一、从生活实际出发感受物体的对称与不对称1.在飞纸飞机的游戏中,初步感知生活中的对称现象。
提供两架纸飞机,一架机身两边是对称的,一架是不对称的。
请两名学生比赛玩纸飞机,其他学生观察飞机飞行的情况。
2.提问:仔细观察两架飞机,想想如果再比下去,你认为哪架飞机飞的远呢?为什么?指出:像这样左右两边形状一样、大小一样的物体,我们说他们是“对称”的。
(板书:对称)黄飞机因为是对称的,所以飞得又稳又远。
而蓝飞机不是对称的,所以飞行的不够平稳。
2.寻找生活中的对称物体提问:你知道生活中也有哪些物体也是对称的?谈话:生活中有许多物体都是对称的,让我们走进美妙的对称世界欣赏一下。
(播放课件)谈话:老师从中选了三个对称的物体,仔细观察,你能具体说说是哪边和哪边对称吗?(播放课件)【设计意图:通过飞纸飞机的活动,引发学生关注生活中的对称和不对称,初步感知物体对称的特征。
】二、在操作活动中主动探究轴对称图形的特征1.确定研究内容出示:蝴蝶、天坛和飞机实物图(播放课件)谈话:把这三个物体画在纸上,就得到了平面图形。
今天这节数学课,我们主要研究平面图形的对称。
2.由物体对称迁移到图形对称提问:仔细看看,这些图形还是对称的吗?要想验证一下这三幅图究竟是不是对称的,你有什么好办法?(折一折)3.探究轴对称图形的特征——对折后能完全重合请一名上学生黑板前演示折一折。
2024年13.1.1轴对称教案
2024年13.1.1轴对称教案一、教学内容本节课选自教材第十三章第一节,主题为“轴对称”。
详细内容包括:理解轴对称的概念,掌握轴对称的性质,学会识别和绘制轴对称图形,以及解决与轴对称相关的实际问题。
二、教学目标1. 知识与技能:使学生理解轴对称的定义,掌握轴对称的性质,能够识别和绘制轴对称图形。
2. 过程与方法:通过观察、分析、实践等环节,培养学生空间想象能力和逻辑思维能力。
3. 情感态度与价值观:激发学生对轴对称美的感受,提高审美情趣,增强对数学学科的兴趣。
三、教学难点与重点教学难点:轴对称性质的灵活运用。
教学重点:轴对称的定义、性质和识别。
四、教具与学具准备教具:多媒体教学设备、三角板、圆规。
学具:直尺、圆规、剪刀、彩纸。
五、教学过程1. 实践情景引入利用多媒体展示一组轴对称图形,如剪纸、建筑等,引导学生观察并思考这些图形的共同特点。
2. 例题讲解(1)讲解轴对称的定义和性质。
(2)通过示例,展示如何识别轴对称图形。
(3)讲解如何绘制轴对称图形。
3. 随堂练习(1)让学生在纸上画出几个轴对称图形,并指出对称轴。
(2)给出几个非轴对称图形,让学生判断并说明理由。
4. 小组讨论(1)轴对称在实际生活中的应用。
(2)如何利用轴对称性质解决实际问题。
5. 课堂小结六、板书设计1. 13.1.1 轴对称2. 定义:轴对称的概念及性质3. 示例:轴对称图形的识别和绘制4. 练习:随堂练习题目及解答七、作业设计1. 作业题目(1)找出生活中的轴对称图形,并说明对称轴。
(2)在平面直角坐标系中,给出点A(2,3),求点A关于直线y=2x+1的对称点B的坐标。
2. 答案(1)答案不唯一,如:窗户、门等。
(2)B点坐标为(1,1)。
八、课后反思及拓展延伸1. 反思:本节课学生掌握了轴对称的定义、性质和识别方法,但在解决实际问题时,还需加强练习。
2. 拓展延伸:(1)研究轴对称在建筑、艺术等领域的应用。
(2)探索轴对称与其他几何变换(如平移、旋转)的关系。
七年级数学下册 第10章 轴对称、平移与旋转10.1 轴对称 1生活中的轴对称课件 华东师大版
三、轴对称图形和两个图形成轴对称的性质 1.轴对称图形(或成轴对称的两个图形)沿对称轴对折后的两 部分_完__全__重__合__. 2.轴对称图形(或成轴对称的两个图形)的_对__应__线__段__相等, _对__应__角__相等.
(打“√”或“×”) (1)大写英文字母T是一个轴对称图形. ( √ ) (2)轴对称图形只有一条对称轴. ( × ) (3)两个能完全重合的图形任意放置都能成轴对称. ( × ) (4)成轴对称的两个图形中相等的角叫对应角. ( × ) (5)等边三角形是有三条对称轴的轴对称图形. ( √ )
二、两个图形成轴对称的有关概念
【思考】1.以上四幅图片中的两个图形有什么关系? 提示:存在一条直线,如果沿这条直线对折,两个图形会重合. 2.它们是不是轴对称图形? 提示:不是.轴对称图形对折能重合是一个图形所具有的性质, 而它们对折能重合是两个图形之间的关系.
【总结】把一个图形沿着某一条直线翻折过去,如果它能够与 _另__一__个__图__形__重合,那么就说这两个图形成轴对称,这条直线 叫做_对__称__轴__,折叠后互相重合的点是对应点,叫做_对__称__点__.
1 2
×4
×4=8(cm2).
ห้องสมุดไป่ตู้
答案:8
5.判断下面每组图形是否关于某条直线成轴对称.
【解析】图(1)中左边的小狗没画后腿,两图不关于某条直线 成轴对称;图(2)关于某条直线成轴对称.
6.如图,P在∠AOB内,点M,N分别是点P关于 AO,BO的对称点,且MN与AO,BO相交于点E, F,若△EFP的周长为15,求MN的长. 【解析】∵点M,N分别是点P关于AO,BO的对 称点, ∴ME=PE,NF=PF, ∴PE+PF+EF=ME+NF+EF=MN. ∵PE+PF+EF=15,∴MN=15.
《轴对称》第一课时PPT课件人教版数学八年级上册
平面几何中常见的轴对称图形及它们的对称轴
课堂导入
对称现象无处不在,从自然景观到艺术作品,从建筑 物到交通标志,甚至日常生活用品,都可以找到对称 的例子,对称给我们带来美的感受!
你还能举出生活中见到的对称现象吗?
新知探究 知识点1 轴对称图形
仔细观察,你能从这些图片中发现什么共同特点吗?
以上图形沿着一条直线翻折后,直线两旁的部分能 够完全重合.
轴对称图形 定义: 如果一个平面图形沿一 条直线折叠,直线两旁的部分 能够互相重合,这个图形就叫 做轴对称图形,这条直线就是 它的对称轴.这时,我们也说这 个图形关于这条直线(成轴) 对称.
轴对称图形
(1)轴对称图形是对一个图形而言的,它是一个 图形自身的对称特征,它被对称轴分成的两部分 能够互相重合. (2)一个轴对称图形的对称轴可以有一条,也可 以有多条.
1.(2020·重庆中考)下列图形是轴对称图形的是( A ) 轴是_____________________
轴分成两个图形,这两个图形关于这条轴对称.
(2)一个轴对称图形的对称轴可以有一条,也可以有多条.
(1)轴对称图形是对一个图形而言的,它是一个图形自身的对称特征,它被对称轴分成的两部分能够互相重合.
2.完成下列填空: (1)成轴对称的两个图形的对应角_相__等_,对应边相__等__. (2)在“线段、钝角、长方形、等边三角形”这四个图 形中,是轴对称图形的有_4__个,其中对称轴最多的是 _等__边__三__角__形_,线段的对称轴是_经__过__线__段__中__点__且__垂__直__于__ _线_段__的__直__线___. (3)成轴对称的两个图形_是__全等形;把一个轴对称 图形沿着对称轴分成两个图形,这两个图形_是__全等形. (填“是”或“否”)
第七章 轴对称1
如图,AB是△ABC的一条边, ,AB是 ABC的一条边, 的一条边 DE是AB的垂直平分线 垂足为E 的垂直平分线, DE是AB的垂直平分线,垂足为E, BC于点 于点D 并交BC于点D, 已知AB=8cm,BD=6cm, 已知AB=8cm,BD=6cm, AB= A 那么EA 4㎝ DA=____ EA=_____, =____。 那么EA=_____, DA=____。 6㎝ 如图,OC是 AOB的平分线, 如图,OC是∠AOB的平分线, ,OC 的平分线 OC上,PD⊥OA,PE⊥OB, 点P在OC上,PD⊥OA,PE⊥OB, 垂足分别是 分别是D E,PD=4cm, 垂足分别是D,E,PD=4cm, PE=___cm =___cm. 则PE=___cm. 4
∴ EB=EA ,DB=DA B C AD平分 BAC, 平分∠ ∵ AD平分∠BAC, D DE⊥AB, DC⊥AC, DE⊥AB, DC⊥AC, ∴AC=AE=BE DB=DA DC=DE ∴ DC=DE ∠EAD=∠CAD=∠B Rt△ADE和Rt△ADC中 在Rt△ADE和Rt△ADC中,∠ADC=∠ADE=∠BDE=∠BAC ADC=∠ADE=∠BDE= ∵AD=AD, DE=DC AED=∠ACD=∠BED=90° ∠AED=∠ACD=∠BED=90° (HL) Rt△ADE≌Rt△ ∴Rt△ADE≌Rt△ADC ∠ADB=∠EDC ∴AC=AE
小结
1、角是轴对称图形。 是轴对称图形。 图形 角的平分线所在的直线是它的对称轴。 角的平分线所在的直线是它的对称轴。 角的平分线上的点到这个角的两边的距离相等 平分线上的点到这个角的两边的距离相等。 角的平分线上的点到这个角的两边的距离相等。 2、垂直于一条线段并且平分它的直线叫这条线段的 垂直于一条线段并且平分它的直线叫这条线段的 于一条线段并且平分它的直线叫这 垂直平分线(简称中垂线)。 垂直平分线(简称中垂线)。 3、线段是轴对称图形。 线段是轴对称图形。 是轴对称图形 线段的垂直平分线是它的一条对称轴。 线段的垂直平分线是它的一条对称轴。 线段垂直平分线上的点到这条线段两个端点的距离相等。 垂直平分线上的点到这条线段两个端点的距离相等 线段垂直平分线上的点到这条线段两个端点的距离相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 - 1 - 页 共 2 页
B
A
轴对称图形
1、下列图形中对称轴最多的是( ) .
A .等腰三角形
B .正方形
C .圆
D .线段
2、已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( ). A .2cm B .4cm C .6cm D .8cm
3、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ). A .11cm B .7.5cm C .11cm 或7.5cm D .以上都不对
4、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,
则△EBC 的周长为( )厘米.
A .16
B .18
C .26
D .28
5、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ). A .75°或15° B .75° C .15° D .75°和30°
6、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐
标,能确定的是 ( ) .
A .横坐标
B .纵坐标
C .横坐标及纵坐标
D .横坐标或纵坐标 7、设A 、B 两点关于直线MN 对称,则______垂直平分________. 8、已知点P 在线段AB 的垂直平分线上,PA=6,则PB________.
9、等腰三角形的一内角等于50°,则其它两个内角各为 . 10、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称 点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .
11.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称. 12、已知:如图,已知△ABC ,
(1)分别画出与△ABC 关于x 轴、y 轴对称的图形
△A 1B 1C 1 和△A 2B 2C 2 ;
(2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.
E D
C
A
P 2
P 1N M
O P
B A
第 - 2 - 页 共 2 页
13、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,且到∠AOB 的两边的距离相等.
14、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .
15.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,
求证:AH=2BD .
F C
B
A
E
H E D
C
B
A。