DC_DC电路转换原理(含计算方式)
DC-DC Converter解析

DC-DC转换器之电气规格(1)
1. Input Specifications(输入规格)
a. Input voltage (输入电压) : 指单一机种能接受的最大电压及最小电压之比率,大致分成 二大类:窄范围输入电压(±10%)、宽范围输入电压(2:1、4:1<W>、…)。
EX: 宽范围输入电压2:1 12V nominal input 9~18Vdc 24V nominal input 18~36Vdc 48V nominal input 36~75Vdc
h. Short circuit protection(短路保护) : 当发生短路时,转换器停止正常动作。 EX: Hiccup(打嗝 ), continuous (Auto Recovery) ◎ Hiccup Mode 断续模式: 输出故障(短路)时,这时转换器把每一周的占空比由开通到截止 以及由截止到开通维持在使内部的功耗在一个安全的范围内,直到故障排除 。 ◎ Auto Recovery: 当故障排除后,转换器自动恢复正常动作。
DC/DC Converter浅析
DC-DC Converter 简介 DC-DC Converter 之典型应用领域 DC-DC Converter 如何选型 DC-DC Converter 之电气规格
电子系统的常用电源
电压 (Voltage)
±12, ± 15
典型负载(Typical Loads) Linear Circuits (OP.AMP…etc)(线性电路,如运算放大器等)
a. Switching frequency (操作频率):产品内部开关组件的切换频率。 EX: 300kHz
b. Reliability, calculated MTBF (平均无故障时间) : Mean Time Between Failure 。
dc-dc变换器原理

dc-dc变换器原理
DC-DC变换器是一种电力电子设备,它可以将直流电压转换为不同电压等级的直流电压输出。
其工作原理基于电感和电容的储能特性。
当输入电压施加在变换器的输入端口上时,输入电流开始流过电感。
由于电感的特性,电流变化率有限,电感中的电能会增加。
然后,输入电压被关闭,使电感的磁场崩溃,导致电感中的电流减小。
由于电感的自感特性,电压会增加,从而产生一个与输入电压不同的输出电压。
在DC-DC变换器中,电容被用于平滑输出电压。
当电感储能结束时,电容开始释放其储存的能量,以供应输出负载。
通过控制开关频率和占空比,可以实现对输出电压的调节。
DC-DC变换器还运用了反馈控制系统,通过监测输出电压与期望电压之间的差异来调整开关频率和占空比,从而实现对输出电压的稳定控制。
多种DC-DC变换器拓扑结构和控制策略被用于不同应用场景中,以满足不同的功率转换需求和效率要求。
总之,DC-DC变换器利用电感和电容的储能特性,通过控制开关操作,实现对直流电压的转换和稳定调节。
这使得它在许多电子设备中得到广泛应用,如电源适配器、电动汽车、太阳能系统等。
DC DC是什么意思

DC/DC是指将一个固定的直流电压变换为可变的直流电压,也称为直流斩波器。
这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制。
1.DC/DC是什么意思同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。
用直流斩波器代替变阻器可节约电能(20~30)%。
直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。
2.DC/DC变换器工作原理一:DC-DC转换器一般由控制芯片,电感线圈,二极管,三极管,电容器构成。
在讨论DC-DC转换器的性能时,如果单针对控制芯片,是不能判断其优劣的。
其外围电路的元器件特性,和基板的布线方式等,能改变电源电路的性能,因此,应进行综合判断。
二:调制方式1:PFM(脉冲频率调制方式)开关脉冲宽度一定,通过改变脉冲输出的频率,使输出电压达到稳定。
2:PWM(脉冲宽度调制方式)开关脉冲的频率一定,通过改变脉冲输出宽度,使输出电压达到稳定。
三:通常情况下,采用PFM和PWM这两种不同调制方式的DC-DC转换器的性能不同点如下。
PWM的频率,PFM的占空比的选择方法。
3.DC/DC变换器的作用DC/DC转换器可以通过可控开关(MOSFET等)进行高频开关的动作,将输入的电能储存在电容(感)里,当开关断开时,电能再释放给负载,提供能量。
DC表示的是直流电源,诸如干电池或车载电池之类。
家庭用的220V电源是交流电源(AC)。
若通过一个转换器能将一个直流电压(3.0V)转换成其他的直流电压(1.5V或5.0V),我们称这个转换器为DC-DC转换器,或称之为开关电源或开关调整器。
DC/DC转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC 转换器。
电荷泵为容性储能DC/DC产品,可以进行升压,也可以作为降压使用,还可以进行反压输出。
电荷泵消除了电感器和变压器所带有的磁场和电磁干扰。
直流-直流变换器(DC/DC)变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。
DC/DC变换器的典型电路结构

DC/DC变换器的典型电路结构最基本的斩波电路如图1所示,斩波器负载为R。
当开关S合上时,UOUT=UR=UIN,并持t1时间。
当开关切断时UOUT=UR=0,并持续莎2时间,T=t1+t2为斩波器的工作周期,斩波器的输出波形如图1(b)所示。
定义斩波器的占空比D=t1/T,t1,为斩波器导通时间,T为通断周期。
通常斩波器的工作方式有两种:一是脉宽调制工作方式,即维持t1不变,改变T;二是脉频调制工作方式,即维持T不变,改变t1。
当占空比D从0变到1时,输出电压的平均值从零变到UIN,其等效电阻也随着D而变化。
图1 降压斩波电路原理在高频稳压开关电源的设计中,普遍采用的是脉宽调制方式。
因为频率调制方式容易产生谐波干扰,而且其滤波器设计也比较困难。
(1)降压式(Buck)DC/DC变换器如图1所示的直流变换器在使用时的输出纹波较大,为降低输出纹波,可在输出端接入电感L、电容C,如图2所示。
图中的VD1为续流二极管。
降压(Buck)式变换器的输出电压平均值UOUT总是小于输入电压UIN。
电路中通过电感的电流(iL)是否连续,取决于开关频率、滤波电感L和电容C的数值。
图2 降压式(Buck)变换器当电路工作频率较高时,若电感和电容量足够大并为理想元件,则电路进入稳态后,可以认为输出电压为常数。
当晶体管VT1导通时,电感中的电流呈线性上升,因而有式中,ton为晶体管导通时间;iOUT(max)为输出电流的最大值;iOUT(min)为输出电流的最小值;Δion为晶体管导通时间内的输出电流变量。
当晶体管截止时,电感中的电流不能突变,电感上的感应电动势使二极管导通,这时式中,toff为晶体管截止时间;Δioff为晶体管截止时间内的输出电流变量。
在稳态时式中,Δi为输出电流变量。
因为电感滤波保持了直流分量,消除了谐波分量,故输出电流平均值为式中,R为负载电阻。
(2)升压式(Boost)DC/DC变换器图3为升压式DC/DC变换器,它由功率晶体管VT1、储能电感L、二极管VD1及滤波电容C组成。
dc-dc变换原理

dc-dc变换原理
DC-DC变换器是一种电子设备,用于将直流(DC)电压转换为另一种直流电压。
这种转换器在许多电子设备中都有广泛的应用,例如在电源适配器、电动汽车、太阳能系统和通信设备中都可以看到它们的身影。
DC-DC变换器的工作原理基于电感和电容的原理,通过精确控制开关管的导通和截止来实现输入电压到输出电压的变换。
DC-DC变换器的基本工作原理是利用电感和电容储存和释放能量,从而实现电压的升降。
当输入电压施加到变换器上时,开关管周期性地开关,这导致电感和电容中的能量储存和释放。
通过调整开关管的占空比和频率,可以实现对输出电压的精确控制。
在一个典型的升压型DC-DC变换器中,当开关管导通时,电流会通过电感和负载,从而储存能量。
当开关管截止时,电感中的储能会释放,从而提供给负载。
通过控制开关管的导通和截止时间,可以实现输出电压的精确控制。
相比于线性稳压器,DC-DC变换器具有更高的效率和更小的体积。
这使得它们在需要高效能转换和对电源体积要求严格的场合中
得到广泛应用。
总之,DC-DC变换器是一种非常重要的电子设备,它通过精确控制电感和电容的能量储存和释放,实现了输入电压到输出电压的精确变换。
在现代电子设备中,它们的应用已经变得非常普遍,为我们的生活带来了诸多便利。
DC-DC升压(BOOST)电路原理

DC-DC升压(BOOST)电路原理BOOST升压电路中:电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成;肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!!在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。
输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。
将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。
电感值如何影响电感型升压转换器的性能?因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。
等效串联电阻值低的电感,其功率转换效率最佳。
要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。
电感型升压转换器IC电路输出二极管选择的原则是什么?升压转换器要选快速肖特基整流二极管。
与普通二极管相比,肖特基二极管正向压降小,使其功耗低并且效率高。
肖特基二极管平均电流额定值应大于电路最大输出电压.怎样选择电感型升压转换器IC电路的输入电容?升压调节器的输入为三角形电压波形,因此要求输入电容必须减小输入纹波和噪声。
纹波的幅度与输入电容值的大小成反比,也就是说,电容容量越大,纹波越小。
如果转换器负载变化很小,并且输出电流小,使用小容量输入电容也很安全。
DC-DC内部功耗计算

影响开关模式、DC-DC转换器效率的主要原因(转)2010-04-07 16:55影响开关模式、DC-DC转换器效率的主要因,本文详细介绍了开关电源(SMPS)中各个元器件损耗的计算和预测技术,并讨论了提高开关调节器效率的相关技术和特点。
概述效率是任何开关电源(SMPS)的重要指标,特别是便携式产品,延长电池使用寿命是一项关键的设计目标。
对于空间受限的设计或者是无法投入成本解决功率耗散问题的产品,高效率也是改善系统热管理的必要因素。
SMPS设计中,为获得最高转换效率,工程师必须了解转换电路中产生损耗的机制,以寻求降低损耗的途径。
另外,工程师还要熟悉SMPS IC的各种特点,以选择最合适的芯片来达到高效指标。
本文介绍了影响开关电源效率的基本因素,可以以此作为新设计的准则。
我们将从一般性介绍开始,然后针对特定的开关元件的损耗进行讨论。
效率估计能量转换系统必定存在能耗,虽然实际应用中无法获得100%的转换效率,但是,一个高质量的电源效率可以达到非常高的水平,效率接近95%。
绝大多数电源IC的工作效率可以在特定的工作条件下测得,数据资料中给出了这些参数。
Maxim的数据资料给出了实际测试得到的数据,其他厂商也会给出实际测量的结果,但我们只能对我们自己的数据担保。
图1给出了一个SMPS降压转换器的电路实例,转换效率可以达到97%,即使在轻载时也能保持较高效率。
采用什么秘诀才能达到如此高的效率?我们最好从了解SMPS损耗的公共问题开始,开关电源的损耗大部分来自开关器件(MOSFET和二极管),另外小部分损耗来自电感和电容。
但是,如果使用非常廉价的电感和电容(具有较高电阻),将会导致损耗明显增大。
选择IC时,需要考虑控制器的架构和内部元件,以期获得高效指标。
例如,图1采用了多种方法来降低损耗,其中包括:同步整流,芯片内部集成低导通电阻的MOSFET,低静态电流和跳脉冲控制模式。
我们将在本文展开讨论这些措施带来的好处。
dc dc电源原理图

dc dc电源原理图
根据您的要求,为避免文中有标题相同的文字,以下是一份简化的DC DC电源原理图解释:
电源原理图如下:
[图1]
该电源原理图展示了一个基本的DC DC电源电路。
在这个电路中,输入电源通过开关电源转换器(Switching Converter)被转换为所需的输出电压。
该电路由以下主要部分组成:
1. 输入电源(Vin):输入电源是电路的供电来源。
它可以是直流电源或其他类型的电源。
输入电源的电压通常会经过滤波电路进行滤波以去除电源中的噪声和杂波。
2. 整流电路(Rectifier Circuit):整流电路将输入电源转换为脉冲电流。
它通常由一组二极管组成,可以将输入电源的交流部分转换为直流电压。
3. 滤波电路(Filter Circuit):滤波电路通过使用电容器和电感器来进行滤波,以去除电源中的纹波和噪声。
滤波电路的作用是确保输出电压平稳且不受干扰。
4. 开关电源转换器(Switching Converter):开关电源转换器是DC DC电源的核心部分。
它通过周期性调整开关管的通断
状态来将输入电压转换为所需的输出电压。
开关电源转换器通常由开关管、电感器和电容器组成。
5. 输出电压(Vout):输出电压是经过开关电源转换器变换后得到的电压。
输出电压的大小和稳定性是根据设计要求和控制开关电源转换器的参数来确定的。
请注意,由于没有具体的标题,上述描述涵盖了整个DC DC 电源原理图的主要内容,以便更好地理解电路的工作原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.2 升压斩波电路
以上分析中,认为V通态期间因电容C的作用使得输出电压Uo不变,但 实际C值不可能无穷大,在此阶段其向负载放电,Uo必然会有所下降, 故实际输出电压会略低;
如果忽略电路中的损耗,则由电源提供的能量仅由负载R消耗,即
EI1 U o Io
(3-24)
(3-1)
ton——V通的时间 toff——V断的时间 α--导通占空比
Uo最大为E ,减小占空比α ,Uo随之减小。因此 称为降压斩波电路。
负载电流平均值:
Io
Uo
- EM R
(3-2)
电流断续时,Uo被抬高,电机机械特性变软,一般 不希望出现 。
图3-1 降压斩波电路的原理图及波形
第三章 第 16 页
L上积蓄的能量为 EI1ton
V断时,E和L共同向C充电 并向负载R供电。设V断的 时间为toff,则此期间电感L
释放能量为 Uo - E I1toff
稳态时,一个周期T中L积蓄 能量与释放能量相等。
E
V
C
iG
iG
a)
O io
I1 O
b)
图3-2 升压斩波电路及其工作 波形
uo R
t t
I10
I20
I10
a) 电路图 b) 电流连续时 O ton
toff
t
c) 电流断续时
T b)
O
t
io
i1
i2
I20
O
ton
t1 tx t2
t
toff
T
c)
第三章 第 26 页
3.1.2 升压斩波电路
用于直流电动机传动时 通常是用于直流电动机再生制动时把电能回馈给直流电源; 实际电路中电感L值不可能为无穷大,因此该电路和降压斩波电 路一样,也有电动机电枢电流连续和断续两种工作状态; 此时电机的反电动势相当于图3-2电路中的电源,而此时的直流 电源相当于图3-2中电路中的负载。由于直流电源的电压基本是 恒定的,因此不必并联电容器。
m E R
Uo - Em R
(3-19)第三章 第 21 页
3.1.2 升压斩波电路
升压斩波电路工作原理(boost变换器)
L
VD
假设L值很大,C值也很大;
i1
io
E
V
C
uo R
V通时,E向L充电,充电电流恒为I1,同
iG
时C的电压向负载供电,因C值很大,输出
iG
a)
电压uo为恒值,记为Uo。设V通的时间为
(3-20)
化简得:
Uo
ton toff toff
E
T
toff
E
(3-21)
T/toff>1,输出电压高于电源电压,故称该电路为升压斩波电路
第三章 第 22 页
3.1.2 升压斩波电路
工作原理 假设L值很大,C值也很大 ;
L
VD
i1
io
V通时,E向L充电,充电电 流恒为I1,同时C的电压向 负载供电,因C值很大,输 出电压uo为恒值,记为Uo。 设V通的时间为ton,此阶段
该式表明,与降压斩波电路一样,升压斩波电路也可看成是直流变压器。
根 据 电 路 结 构 并 结 合 式 ( 3 - 2 3 ) 得 出 输 出 电 流 的 平 均 值 Io 为
Io
Uo R
1
E R
(3-25)
由式(3-24)即可得出电源电流I1为:
I1
Uo E
Io
1
2
E R
(3-26)
第三章 第 25 页
3.1.2 升压斩波电路
2. 升压斩波电路的典型应用
一 是 用 于 直 流 电 动 机 传 动 ;
二 是 用 作 单 相 功 率 因 数 校 正(PFC)电路;
三是用于其他交直流电源
中。
uo
L
VD
M EM
V uo
E
a)
E
uo
E
O
t
i
i1
i2
图3-3 用于直流电动机回馈能量 的升压斩波电路及其波形
电力变换
常见的电力变换种类
第三章 第 1 页
CLASSIFY COMPARE
第三章 第 2 页
COMPARE
第三章 第 3 页
BUCK
第三章 第 4 页
BOOST
第三章 第 5 页
BUCK/BOOST
第三章 第 6 页
HALF-FORWARD
第三章 第 7 页
FLYBACK
第三章 第 8 页
Io
Io
(3-14)
其值小于等于负载电流Io,由上式得: EI1=U0I0
(3-15)
即输出功率等于输入功率,可将降压斩波器看作直流降压变压器。
第三章 第 20 页
3.1.1 降压斩波电路
m EM / E
t1
/
t1 T
T
负载电流断续的情况: I10=0,且t=tx时,i2=0,利用式(3-7)和式(3-6)
ton,此阶段L上积蓄的能量为EI 1ton
O io
t
V断时,E和L共同向C充电并向负载R供电。
I1 O
t
设V断的时间为toff,则此期间电感L释放能
b)
图3-2 升压斩波电路及其工作波形
量为 Uo - EI1toff
a)电路图 b)波形
稳态时,一个周期T中L积蓄能量与释放能量
相等:
EI1ton Uo - E I1toff
toff
T
。 β 和导通占空比α 有如下关系:
1
(3-22)
因此,式(3-21)可表示为
Uo
1
E
1 1-
E
(实际上,同学们只需记忆α即可) 升压斩波电路能使输出电压高于电源电压的原因:
一是L储能之后具有使电压泵升的作用; 二是电容C可将输出电压保持。
(3-23)
a)电路图 b)电流连续时的波形 c)电流断续时的波形
3.1.1 降压斩波电路
斩波电路三种控制方式(根据对输出电压平均值 进行调制的方式不同而划分)
1. T不变,变ton —脉冲宽度调制(PWM) 2. ton不变,变T —频率调制 3. ton和T都可调,改变占空比—混合型
基于“分段线性”的思想,对降压斩波电路 进行解析:
注 意 : 直 流 电 源 侧 电流不连续。
图3-1 降压斩波电 路的原理图及波形
a)电路图 b)输 出电流连续时的波 形 c)输出电流断
续时的波形
第三章 第 15 页
3.1.1 降压斩波电路
基本数量关系
电流连续时,负载电压平均值
Uo
ton ton toff
E
ton T
E
E
(3-11)
上式表示了平波电抗器L为无穷大,负载电流完全平直时的负载电流平均值Io,此
时负载电流最大值、最小值均等于平均值。
第三章 第 19 页
3.1.1 降压斩波电路
从能量传递关系出发进行的推导(可以得到和前面一样的结果):
由于L为无穷大,故负载电流维持为Io不变;
电源只在V处于通态时提供能量,为 EIoton ; 在整个周期T中,负载一直在消耗能量,消耗的能量为
图3-1 降压斩波电路的原理图及波形 a)电路图 b)电流连续时的波形 c)电流断续时的波形 第三章 第 14 页
工作原理
t=0 时 刻 驱 动 V 导 通 ,
电源E向负载供电,负 载流i电o按压指u数o=曲E,线负上升载;电
t=t1时刻控制V关断, 负载电流经二极管VD 续 流 , 负 载 电 压 uo 近 似为零,负载电流呈 指数曲线下降。为了 使负载电流连续且脉 动小通常使串接的电 感L值较大。
PUSH-PULL
第三章 第 9 页
HALF-BRIDGE
第三章 第 10 页
FULL-BRIDGE
第三章 第 11 页
METHODS OF CONTROL
第三章 第 12 页
直流斩波电路
直流斩波电路(DC Chopper)
将直流电变为另一固定电压或可调电压的直流电; 也称为直接直流--直流变换器(DC/DC Converter); 一般直流斩波是指直接将直流电变为另一直流电,不包括直
当V处于断态时,设电动机电枢电流为i2,得下式:
V通态期间,设负载电流为i1,可列出如下 方程:
L
d i1 dt
Ri1
EM
E
(3-3)
图3-1 降压斩波电路的原理章续时第的17波页形
3.1.1 降压斩波电路
设此阶段电流初值为I10,=L/R,解上式得:
i1
-t
I10e
E - EM R
1
-
-t
e
(3 - 4)
V断态期间,设负载电流为i2,可列出如下方程:
L
d i2 dt
Ri2
EM
0
(3-5)
设此阶段电流初值为I20,解上式得:
i2
-t
I20e
-
EM R
-t 1- e
(3 - 6)
当电流连续时,有:
I10 i2(t2)
I20 i1(t1)
(3- 7) (3 - 8)