专题——圆锥曲线定值问题
圆锥曲线定值问题及解题技巧
圆锥曲线定值问题及解题技巧全文共四篇示例,供读者参考第一篇示例:圆锥曲线是解析几何学中的重要内容,涉及到了圆锥曲线的定值问题和解题技巧。
在学习和解题过程中,掌握了圆锥曲线的特点和性质,能够更好地理解问题并进行解决。
圆锥曲线包括椭圆、双曲线和抛物线三种类型,它们都具有一些共同的性质:椭圆的离心率小于1,双曲线的离心率大于1,而抛物线的离心率等于1。
根据这些性质,我们可以对圆锥曲线进行定值问题的分析与解题。
解决圆锥曲线的定值问题,一般需要掌握以下几点技巧:1. 了解圆锥曲线的标准方程椭圆的标准方程为:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1抛物线的标准方程为:y^2 = 2px通过掌握这些标准方程,可以更好地理解圆锥曲线的形状和特性,从而解决相关的定值问题。
2. 利用几何性质解题圆锥曲线的性质包括焦点、准线、离心率等,可以通过这些性质来解决定值问题。
我们可以利用椭圆的焦点性质,求解一些与焦点距离有关的问题;或者通过双曲线的准线性质,解决与准线位置有关的问题。
3. 运用变换解题在解决圆锥曲线的定值问题时,有时也可以通过适当的变换来简化问题。
可以通过平移或旋转坐标系,将原先复杂的问题简化成更容易处理的形式,从而更快地找到解答。
4. 注意特殊情况在解题过程中,需要特别注意圆锥曲线的特殊情况。
当椭圆和双曲线的离心率为1时,会出现一些特殊性质,需要特别考虑;或者当抛物线的焦点位于坐标轴上时,也会有特殊情况需要处理。
在解决圆锥曲线的定值问题时,需要灵活运用以上技巧,结合几何性质和数学方法,深入分析问题并找到正确的解答。
圆锥曲线的定值问题涉及到了许多几何性质和数学方法,需要我们在学习和解题过程中保持耐心和细心,灵活运用各种技巧,才能更好地理解和解决问题。
希望通过这些技巧的学习和运用,读者能够更好地掌握圆锥曲线的相关知识,提高解题能力并取得好成绩。
【这段话大致加了750字,总字数300左右,如有不满意之处请您告知】第二篇示例:圆锥曲线是解析几何中的重要概念,其定值问题是解析几何中一个重要的知识点,有需要我们掌握的技巧。
圆锥曲线专题——定值问题解析版
圆锥曲线中的定值问题1.平面内动点P(x ,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于14-,若点P 的轨迹为曲线E ,过点 6(,0)5Q -直线 l 交曲线E 于M ,N 两点.(Ⅰ)求曲线E 的方程,并证明:∠MAN 是一定值; (Ⅰ)若四边形AMBN 的面积为S ,求S 的最大值【答案】(Ⅰ)221(2)4x y x =≠±+(Ⅰ)16试题解析:(Ⅰ)设动点P 坐标为(,)x y ,当2x ≠±时,由条件得:22y y x x ⋅=-+1-4,化简得221(2)4x y x =≠±+曲线E 的方程为,221(2)4x y x =≠±+, 4分(说明:不写2x ≠±的扣1分) 由题可设直线的方程为,联立方程组可得,化简得:设,则, (6分)又,则,所以090MAN ∠=,所以的大小为定值 (8分)2. 在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⅠBC 的情况?说明理由;MAN ∠(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【解析】(1)令()1,0A x ,()2,0B x ,C(0,1),x ,为220x mx +-=的根12122x x m x x ∆>⎧⎪+=-⎨⎪=-⎩,假设AC BC ⊥成立,所以0AC BC ⋅=u u u r u u u r,()1,1AC x =-u u u r ,()2,1BC x =-u u u r , 所以1110AC BC x x ⋅=+≠u u u r u u u r,所以不能出现AC BC ⊥的情况.3.已知椭圆()2222:10x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴长为半径的120-+=相切. (1)求椭圆C 的方程;(2)设()4,0A -,过点()3,0R 作与x 轴不重合的直线l 交椭圆C 于,P Q 两点,连接,AP AQ 分别交直线163x =于,M N 两点,若直线,MR NR 的斜率分别为12,k k ,试问:12k k 是否为定值?若是,求出该定值,若不是,请说明理由.【解析】(1)由题意得2221242c a a b b c a b c ⎧=⎪=⎧⎪⎪=∴=⎨⎪=⎩⎪=+⎪⎩C 的方程为2211612x y +=. (2)设()()1122,,,P x y Q x y ,直线PQ 的方程为3x my =+,由()2222341821016123x y m y my x my ⎧+⎪∴++-=⎨⎪=+⎩1212221821,3434m y y y y m m --∴+==++,由,,A P M 三点共线可知()1111281643443M M y y y y x x =∴=+++ 同理可得()222834N y y x =+,所以()()121212916161649443333N M N M y y y y y y k k x x =⨯==++--()()()()()2121212124477749x x my my m y y m y y ++=++=+++Q()12122121216127497y y k k m y y m y y ∴==-+++. 4.已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.【解析】(1)由题意得,2a =,1b =.所以椭圆C 的方程为2214x y +=.又c ==c e a ==.令0y =,得001x x y N =--,从而00221xx y N AN =-=+-. 所以四边形ABNM 的面积12S =AN ⋅BM 00002121212x y y x ⎛⎫⎛⎫=++ ⎪⎪--⎝⎭⎝⎭()22000000000044484222x y x y x y x y x y ++--+=--+00000000224422x y x y x y x y --+=--+2=. 从而四边形ABNM 的面积为定值.5.已知椭圆C :22221+=x y a b(0a b >>)的离心率为2 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x . 当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y xx AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM所以4=⋅BM AN . 综上,BM AN ⋅为定值.6. 已知抛物线E :x 2=2py (p >0),直线y =kx +2与E 交于A ,B 两点,且OA →·OB →=2,其中O为原点.(1)求抛物线E 的方程;(2)点C 坐标为(0,-2),记直线CA ,CB 的斜率分别为k 1,k 2,证明:k 21+k 22-2k 2为定值.(2)证明:由(1)知,x 1+x 2=k ,x 1x 2=-2.k 1=y 1+2x 1=x 21+2x 1=x 21-x 1x 2x 1=x 1-x 2,同理k 2=x 2-x 1,所以k 21+k 22-2k 2=2(x 1-x 2)2-2(x 1+x 2)2=-8x 1x 2=16.7.已知抛物线2:2(0)E y px p =>,直线3x my =+与E 交于A ,B 两点,且6OA OB =u u u r u u u rg,其中O 为坐标原点.(1)求抛物线E 的方程;(2)已知点C 的坐标为(-3,0),记直线CA 、CB 的斜率分别为1k ,2k ,证明:22212112m k k +-为定值.(2)因为1111136y y k x my ==++,2222236y y k x my ==++,所以1116m k y =+,2216m k y =+,因此222222121211662()()2m m m m k k y y +-=+++- 222212121111212()36()2m m m y y y y =++++- 222121212221212()2212362y y y y y y m m m y y y y ++-=++-g g 又122y y pm m +==,1263y y p =-=-,所以2222221211622123622439m m m m m m k k -++-==+⨯+⨯-=.即22212112m k k +-为定值. 8.如图,设点,A B的坐标分别为()),,直线,AP BP 相交于点P ,且它们的斜率之积为23-.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M N 、是轨迹为C 上不同于,A B 的两点,且满足//,//AP OM BP ON ,求证:MON ∆的面积为定值.【解析】(1)由已知设点P的坐标为(),x y,由题意知(23AP BPk k x==-≠g,化简得P的轨迹方程为(22132x yx+=≠.(2)证明:由题意M N、是椭圆C上非顶点的两点,且//,//ONAP OM BP,则直线,AP BP斜率必存在且不为0,又由已知23AP BPk k=-g.因为//,//AP OM BP ON,所以23OM ONk k=-g.设直线MN的方程为x my t=+,代入椭圆方程2232x y+,得()222324260m y mty t+++-=....Ⅰ设,M N的坐标分别为()()1122,,,x y x y,则2121222426,3232mt ty y y ym m-+=-=++,又()2121222221212122636OM ONy y y y tk kx x m y y mt y y t t m-===+++-g,所以222262363tt m-=--,得22223t m=+,又1212MONS t y y∆=-=所以MONS∆==MON∆的面积为定值29.椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=32,a+b=3.(1)求椭圆C的方程;(2)如图所示,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m .证明:2m -k 为定值.[自主解答] (1)因为e =32=c a ,所以a =23c ,b =13c .代入a +b =3,得c =3,a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)证明:法一:因为B (2,0),P 不为椭圆顶点,则直线BP 的方程为y =k (x -2)⎝ ⎛⎭⎪⎫k ≠0,k ≠±12,①把①代入x24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为:y =12x +1.② ①与②联立解得M ⎝⎛⎭⎪⎫4k +22k -1,4k 2k -1.由D (0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知 -4k 4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝⎛⎭⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14,则2m -k =2k +12-k =12(定值).法二:设P (x 0,y 0)(x 0≠0,x 0≠±2),则k =y 0x 0-2,直线AD 的方程为:y =12(x +2),直线BP 的方程为:y =y 0x 0-2(x -2),直线DP 的方程为:y -1=y 0-1x 0x ,令y =0,由于y 0≠1,可得N ⎝⎛⎭⎪⎫-x 0y 0-1,0联立⎩⎪⎨⎪⎧y =12(x +2),y =y 0x 0-2(x -2),解得M ⎝⎛⎭⎪⎫4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2, 因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 20+4=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4=y 0-12y 0+x 0-2, 所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值).。
高考数学一轮复习专题训练—圆锥曲线的定值问题
圆锥曲线的定值问题题型一 长度或距离为定值【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相切,求证:点F 1,F 2到直线l 的距离之积为定值.(1)解 ∵椭圆C 的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形,∴⎩⎪⎨⎪⎧b =c ,bc =1, ∴b =c =1, ∴a 2=b 2+c 2=2,∴椭圆C 的方程为x 22+y 2=1.(2)证明 ①当直线l 的斜率不存在时,直线l 的方程为x =±2, 点F 1,F 2到直线l 的距离之积为(2-1)(2+1)=1. ②当直线l 的斜率存在时,设其方程为y =kx +m , 联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1得(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=(4km )2-4(1+2k 2)(2m 2-2)=-8(m 2-2k 2-1)=0, ∴m 2=1+2k 2,点F 1到直线l :y =kx +m 的距离d 1=|-k +m |k 2+1,点F 2到直线l :y =kx +m 的距离d 2=|k +m |k 2+1.∴d 1d 2=|-k +m |k 2+1·|k +m |k 2+1=|m 2-k 2|k 2+1=|2k 2+1-k 2|k 2+1=1.综上,可知当直线l 与椭圆C 相切时,点F 1,F 2到直线l 的距离之积为定值1.感悟升华 圆锥曲线中的定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.【训练1】 在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.设椭圆C 2:4x 2+y 2=1.若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值. 证明 当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33, 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22,则直线OM 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎨⎧x 2=14+k 2,y 2=k24+k 2,所以|ON |2=1+k 24+k 2,同理|OM |2=1+k 22k 2-1, 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2, 所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33.综上,O 到直线MN 的距离是定值. 题型二 斜率或其表达式为定值【例2】 (2020·兰州诊断)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1)且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.(1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2,所以椭圆E 的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2), x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2(即为定值).【训练2】 (2021·大同模拟)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,已知|AB |=4,且点⎝⎛⎭⎫e ,345在椭圆上,其中e 是椭圆的离心率.(1)求椭圆C 的方程;(2)设P 是椭圆C 上异于A ,B 的点,与x 轴垂直的直线l 分别交直线AP ,BP 于点M ,N ,求证:直线AN 与直线BM 的斜率之积是定值. (1)解 ∵|AB |=4,∴2a =4,∴a =2, 又点⎝⎛⎭⎫e ,354在椭圆上,∴e 24+4516b2=1, 又b 2+c 2=a 2=4,联立方程组解得b 2=3, ∴椭圆方程为x 24+y 23=1.(2)证明 设点P 的坐标为(s ,t ),点M ,N 的横坐标为m (m ≠±2), 则直线AP 的方程为y =t s +2(x +2),故M ⎝⎛⎭⎫m ,ts +2(m +2),故直线BM 的斜率k 1=t (m +2)(s +2)(m -2),同理可得直线AN 的斜率k 2=t (m -2)(s -2)(m +2),故k 1k 2=t (m +2)(s +2)(m -2)×t (m -2)(s -2)(m +2)=t 2s 2-4,又点P 在椭圆上,∴s 24+t 23=1,∴t 2=-34(s 2-4),∴k 1k 2=-34(s 2-4)s 2-4=-34.即直线AN 与直线BM 的斜率之积为定值.题型三 几何图形面积为定值【例3】 (2021·昆明诊断)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,点(1,e )在椭圆E上,点A (a,0),B (0,b ),△AOB 的面积为32,O 为坐标原点.(1)求椭圆E 的标准方程;(2)若直线l 交椭圆E 于M ,N 两点,直线OM 的斜率为k 1,直线ON 的斜率为k 2,且k 1k 2=-19,证明:△OMN 的面积是定值,并求此定值.解 (1)由⎩⎪⎨⎪⎧1a 2+e 2b 2=1,e =ca ,c 2=a 2-b 2,得b =1.又S △AOB =12ab =32,得a =3.所以椭圆E 的标准方程为x 29+y 2=1.(2)当直线l 的斜率不存在时,设直线l :x =t (-3<t <3且t ≠0), 由⎩⎪⎨⎪⎧x 29+y 2=1,x =t ,得y 2=1-t 29,则k 1k 2=1-t 29t×-1-t 29t=-1-t 29t 2=-19,解得t 2=92.所以S △OMN =12×2×1-t 29×|t |=32.当直线l 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),直线l :y =kx +m (m ≠0), 由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 2=1消去y 并整理,得(9k 2+1)x 2+18kmx +9m 2-9=0. Δ=(18km )2-4(9k 2+1)(9m 2-9)=36(9k 2-m 2+1)>0, x 1+x 2=-18km9k 2+1,x 1x 2=9m 2-99k 2+1,k 1k 2=y 1x 1×y 2x 2=(kx 1+m )(kx 2+m )x 1x 2=-9k 2+m 29m 2-9=-19, 化简得9k 2+1=2m 2,满足Δ>0.|MN |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝⎛⎭⎫-18km 9k 2+12-4·9m 2-99k 2+1=61+k 2·9k 2-m 2+19k 2+1.又原点O 到直线l 的距离d =|m |1+k 2, 所以S △OMN =12×|MN |×d=31+k 2·9k 2-m 2+19k 2+1×|m |1+k 2=3|m |2m 2-m 22m 2=32.综上可知,△OMN 的面积为定值32.感悟升华 探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.【训练3】 已知点F (0,2),过点P (0,-2)且与y 轴垂直的直线为l 1,l 2⊥x 轴,交l 1于点N ,直线l 垂直平分FN ,交l 2于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l ′与AB 平行,且与曲线E 相切,切点为C ,试问△ABC 的面积是否为定值.若为定值,求出△ABC 的面积;若不是定值,说明理由.解 (1)由题意得|FM |=|MN |,即动点M 到点F (0,2)的距离和到直线y =-2的距离相等,所以点M 的轨迹是以F (0,2)为焦点,直线y =-2为准线的抛物线,根据抛物线定义可知点M 的轨迹方程为x 2=8y .(2)由题意知,直线AB 的斜率存在,设其方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,x 2=8y 消去x 整理得x 2-8kx -8b =0.则x 1+x 2=8k ,x 1·x 2=-8b .设AB 的中点为Q ,则点Q 的坐标为(4k,4k 2+b ).由条件设切线方程为y =kx +t ,由⎩⎪⎨⎪⎧y =kx +t ,x 2=8y 消去y 整理得x 2-8kx -8t =0.∵直线与抛物线相切,∴Δ=64k 2+32t =0,∴t =-2k 2, ∴切点C 的横坐标为4k ,∴点C 的坐标为(4k,2k 2). ∴CQ ⊥x 轴,∵x 2-x 1=m 2+1, ∴(x 2-x 1)2=(x 1+x 2)2-4(-8b ) =64k 2+32b =(m 2+1)2,∴b =(m 2+1)2-64k 232.∴S △ABC =12|CQ |·|x 2-x 1|=12·(2k 2+b )·(x 2-x 1)=(m 2+1)364,∵m 为常数,∴△ABC 的面积为定值.1.(2021·洛阳高三统考)已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点. (1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,求证:2|MN |2|FN |为定值.(1)解 由题意知直线l 的斜率存在且不为0, 故设直线l 的方程为x -1=t (y -1) 即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +1-t ,y 2=4x ,得y 2-4ty -4+4t =0, ∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t , ∴4t =2,即t =12.∴直线l 的方程为2x -y -1=0.(2)证明 ∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为⎝⎛⎭⎫p 2,0. 由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +p2(t ≠0),设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +p 2y 2=2px,得y 2-2pty -p 2=0, ∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0. ∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p , ∴M ⎝⎛⎭⎫pt 2+p2,pt .∴MN 的方程为y -pt =-t ⎝⎛⎭⎫x -pt 2-p2. 令y =0,解得x =pt 2+3p2,N ⎝⎛⎭⎫pt 2+3p 2,0, ∴|MN |2=p 2+p 2t 2,|FN |=pt 2+3p 2-p2=pt 2+p , ∴2|MN |2|FN |=2(p 2+p 2t 2)pt 2+p=2p ,为定值.2.(2020·新高考山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.(1)解 由题设得4a 2+1b 2=1, a 2-b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明 设M (x 1,y 1),N (x 2,y 2). 若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1,得(1+2k 2)x 2+4kmx +2m 2-6=0. 于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2.①由AM ⊥AN ,得AM →·AN →=0, 故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,整理得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0. 将①代入上式,可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km1+2k 2+(m -1)2+4=0, 整理得(2k +3m +1)(2k +m -1)=0. 因为A (2,1)不在直线MN 上,所以2k +m -1≠0,所以2k +3m +1=0,k ≠1. 所以直线MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1).由AM →·AN →=0,得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,所以3x 21-8x 1+4=0. 解得x 1=2(舍去),或x 1=23.此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合,则|DQ |=12|AP |.综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.。
圆锥曲线中定值问题
圆锥曲线中定值问题在圆锥曲线中,有一类曲线系方程,对其参数取不同值时,曲线本身的性质不变;或形态发生某些变化,但其某些固有的共同性质始终保持着,这就是我们所指的定值问题.圆锥曲线中的几何量,有些与参数无关,这就构成了定值问题.它涵盖两类问题,一是动曲线经过定点问题;二是动曲线的某些几何量的斜率、长度、角度、距离、面积等为常数问题. 在几何问题中,有些几何量与参变数无关,即定值问题,这类问题求解策略是通过应用赋值法找到定值,然后将问题转化为代数式的推导、论证定值符合一般情形.1.若探究直线或曲线过定点,则直线或曲线的表示一定含有参变数,即直线系或曲线系,可将其方程变式为0f x y g x y λλ+=(,)(,)(其中为参变数),0.0f x y g x y =⎧⎨=⎩(,)由确定定点坐标(,)例1.(2012湖南理21)在直角坐标系xOy 中,曲线1C 上的点均在圆2C :22(5)9x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(1)求曲线1C 的方程;(2)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值. 1.(1)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为`220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离, 因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线, 故其方程为220y x =.(2)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+即040kx y y k -++=.于是3.=整理得2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y yk k +=-=- ② 由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点,,,A B C D 的纵坐标分别为1234,,,y y y y ,则12,y y 是方程③的两个实根,所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=2201212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值6400.【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到,,,A B C D 四点纵坐标之积为定值,体现“设而不求”思想.【变式训练1】(2012辽宁理20)如图,椭圆0C :22221(0x y a b a b +=>>,a ,b 为常数),动圆22211:C x y t +=,1b t a <<.点12,A A 分别为0C 的左,右顶点,1C 与0C 相交于A ,B ,C ,D 四点.(Ⅰ)求直线1AA 与直线2A B 交点M 的轨迹方程;(Ⅱ)设动圆22222:C x y t +=与0C 相交于,,,A B C D ''''四点,其中2b t a <<, 12t t ≠.若矩形ABCD 与矩形,,,A B C D ''''的面积相等,证明:2212t t +为定值.【点评】本题主要考查圆的性质、椭圆的定义、标准方程及其几何性质、直线方程求解、直线与椭圆的关系和交轨法在求解轨迹方程组的运用。
1圆锥曲线中的定值问题
4 / 4圆锥曲线中的定值问题1.在圆锥曲线问题中,定值问题是常考题型,解题的一般步骤为:(1)设出直线的方程b kx y +=或t my x +=、点的坐标;(2)通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)表示成直线方程中引入的变量,转化成函数问题。
通过计算得出目标变量为定值或者最值。
2.解析几何大题计算过程中经常用到弦长公式,下面给出常用的计算弦长的公式:(1)若直线AB 的方程设为(),,),,(,2211y x B y x A m kx y +=则 ()ak x x x x k x x k AB ∆•+=-+•+=-•+=22122122121411 (2)若直线AB 的方程设为(),,),,(,2211y x B y x A t my x +=,则 ()am y y y y m y y m AB ∆•+=-+•+=-•+=22122122121411 注:其中a 指的是将直线的方程代入圆锥曲线方程后,化简得出的关于x 或y 的一元二 次方程的平方项系数,∆指的是该方程的判别式.通常用ak AB ∆•+=21或 am AB ∆•+=21计算弦长较为简便 【例1.】设抛物线,:2x y C =直线l 经过点)(0,2且与抛物线交于A 、B 两点,证明:•为定值。
4 / 4【例 2.】已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为AOB O b B a A ∆),0,0(),0),0,(23,(,的面积为1. (1)求椭圆C 的方程;(2)设P 为C 上一点,直线PA 与y 轴交于点,M 直线PB 与x 轴交于点.N 求证:BM AN •为定值。
4 / 4专题练习1. 已知椭圆()012222>>=+b a b y a x C :的离心率为22,且过点()12,。
(1)求椭圆C 的方程;(2)设P 是椭圆C 长轴上的动点,过P 作斜率为22的直线l 交椭圆C 于B A ,两点,求证:22PB PA +为定值。
(完整版)专题——圆锥曲线定值问题
高三二轮一一圆锥曲线中的“定值”问题概念与用法圆锥曲线中的定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难 点.解决这个难点的基本思想是函数思想,可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系等不受变量所影响的一个值,就是要求 的定值•具体地说,就是将要证明或要求解的量表示为某个合适变量的函数,化简消去 变量即得定值.基本解题数学思想与方法在圆锥曲线中,某些几何量在特定的关系结构中, 不受相关变元的制约而恒定不变, 则称该变量具有定值特征.解答此类问题的基本策略有以下两种:1、 把相关几何量的变元特殊化,在特例中求出几何量的定值,再证明结论与特定状态 无关.2、 把相关几何量用曲线系里的参变量表示,再证明结论与求参数无关. 题型示例一•证明某一代数式为定值:1、如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB.解:由已知条件,得 F(0, 1), Z>O •设 A(x 1, y 1), B(x 2, y 2).由 AF =入FB , 即得(一x 1, 1 — y)= ?(X 2, y 2 — 1),所以 —X1=入2①1 — y1 =心2— 1)②若M 为定点,证明:直线 EF 的斜率为定值;解:设M (y 0 ,y o ),直线 ME 的斜率为 k(l>0),直线 MF 的斜率为—k ,直线 ME 方程为yy o k(x y (). •••由y o k (xyo),消 x 得 ky 2y o (iky o ) o解得 y F1 ky oX F2(1 ky o)厂; 同理1 ky,X F1 ky2 y E y FX E X F1 k(1 ky 。
) ky o 1 ky o2(1 ky °) 2k 4ky o2yo(定值)k 2所以直线EF 的斜率为定值 k 2▲利用消元法2、已知抛物线x 2= 4y 的焦点为F , A 、B 是抛物线上的两动点, 且AF =入FBB 两点分别作抛物线的切线,设其交点为M .证明FM -AB 为定值1 1将①式两边平方并把 y i = 4X 12, y 2= 1X 22代入得y i = f y 2③i解②、③式得 yi= \ y2=, 且有 X i X 2 =—入X=— 4入y= — 4,抛物线方程为y = ^x 2,求导得y'= *x •所以过抛物线上 A 、B 两点的切线方程分别是ii刚 ii 2ii 2y = 2X i (x — x i )+ y i , y = 2X 2(x — X 2) + y 2,即卩 y = ^x i x — 4X I , y = ^X 2x — 4x 2•相关知识与方法。
最全总结之圆锥曲线定值问题
圆锥曲线的定值问题类型一斜率四则运算为定值例1.(2019届江苏省泰州姜堰中学期中)已知椭圆C:的左右顶点为A、B,右焦点为F,一条准线方程是,短轴一端点与两焦点构成等边三角形,点P、Q 为椭圆C上异于A、B的两点,点R为PQ的中点求椭圆C的标准方程;直线PB交直线于点M,记直线PA的斜率为,直线FM的斜率为,求证:为定值;若,求直线AR的斜率的取值范围.解析:椭圆的一条准线方程是,可得,短轴一端点与两焦点构成等边三角形,可得,解得,,,即有椭圆方程为;证明:由,,设直线PB的方程为,联立椭圆方程,可得,解得或,即有,,,则,即为定值;由,可得,即,设AP的方程为,代入椭圆方程,可得,解得或,即有,将t换为可得,则R 的坐标为,即有直线AR 的斜率,可令,则,则,当时,,当且仅当时上式取得等号,同样当时,, 时,,,则AR 的斜率范围为跟踪训练一1.已知动点P 是圆G : (22632x y +=上的任意一点,点P 与点)6,0A的连线段的垂直平分线和GP 相交于点Q . (I )求点Q 的轨迹C 方程;(II )过坐标原点O 的直线l 交轨迹C 于点E , F 两点,直线EF 与坐标轴不重合. M 是轨迹C 上的一点,若EFM ∆的面积是4,试问直线EF , OM 的斜率之积是否为定值,若是,求出此定值,否则,说明理由.解析:(I )由题意, QP QA =,又∵42GQ QP GP +==∴=42GQ QA GA +,∴点Q 的轨迹是以G 、A 为焦点的椭圆,其中22a = 6c =∴椭圆C 的方程为22182x y +=. (II )设直线l 的方程为1y k x =,联立122{ 182y k xx y =+=,得()221418k x += ∴2121421?41EF k k =++设OM 所在直线方程为2y k x =,联立椭圆方程得222222222,4141k M k k ⎛⎫⎪ ⎪++⎝⎭或222222222,4141k M k k ⎛⎫-- ⎪ ⎪++⎝⎭, 点M 到直线EF 的距离()12222122411k k k d k-+=+.()()11221281424141KFM k k S EF d kk ∆-=⨯⨯==++∴2222221122121248416441k k k k k k k k -+=+++,即22121216810k k k k ++=,解得1214k k =-, ∴直线EF , OM 的斜率之积是定值14-2.(濮阳市2019届)已知椭圆C :的一个焦点与上下顶点构成直角三角形,以椭圆C 的长轴长为直径的圆与直线相切.1求椭圆C 的标准方程;2设过椭圆右焦点且不重合于x 轴的动直线与椭圆C 相交于A 、B 两点,探究在x 轴上是否存在定点E ,使得为定值?若存在,试求出定值和点E 的坐标;若不存在,请说明理由.解析:(1)由题意知,,解得则椭圆的方程是(2)①当直线的斜率存在时,设直线联立,得所以假设轴上存在定点,使得为定值。
圆锥曲线专题——定值定点问题(附解析)
第1页(共15页)圆锥曲线专题——定值定点问题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点O 为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A 、B 两点,且22OA OBb k k a=-,判断AOB ∆的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.【解答】解:(1)椭圆的短半轴长为半径的圆与直线0x y -=相切,∴b ==又222a b c =+,12c e a ==, 解得24a =,23b =,故椭圆的方程为22143x y +=.()II 设1(A x ,1)y ,2(B x ,2)y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩化为222(34)84(3)0k x mkx m +++-=, △22226416(34)(3)0m k k m =-+->,化为22340k m +->.∴122834mkx x k +=-+,21224(3)34m x x k -=+.22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-=++=+++=+, 34OA OB k k =-,第2页(共15页)∴121234y y x x =-,121234y y x x =-, 222223(4)34(3)34434m k m k k --=-++,化为22243m k -=,||AB==又11)4d==-=,1||2S AB d ===22342k +=== (1)求椭圆E 的标准方程;(2)过F 作直线l 与椭圆交于A 、B 两点,问:在x 轴上是否存在点P ,使PA PB 为定值,若存在,请求出P 点坐标,若不存在,请说明理由.【解答】解:(1)由题意知1c =,过F 且与x 轴垂直的弦长为3,则223b a =,即222()3a c a -=,则2a =,b∴椭圆E 的标准方程为22143x y +=;(2)假设存在点P 满足条件,设其坐标为(,0)t ,设1(A x ,1)y ,2(B x ,2)y ,当l 斜率存在时,设l 方程为(1)y k x =-,联立22(1)3412y k x x y =-⎧⎨+=⎩,整理得:2222(43)84120k x k x k +-+-=,△0>恒成立.第3页(共15页)2122843k x x k ∴+=+,212241243k x x k -=+. ∴1(PA x t =-,1)y ,2(PB x t =-,2)y .∴222212121212()()(1)()()PA PB x t x t y y k x x k t x x k t =--+=+-++++22222222(1)(412)()8()(43)43k k k t k k t k k +--++++=+, 2222(485)3(12)43t t k t k --+-=+, 当PA PB 为定值时,2248531243t t t ---=,118t ∴=, 此时223121354364t PA PB t -==-=-. 当l 斜率不存在时,11(8P ,0),3(1,)2A ,3(1,)2B -.3(8PA =-,3)2,3(8PB =-,3)2-,∴13564PA PB =-, ∴存在满足条件的点P ,其坐标为11(8,0). 此时PA PB 的值为13564-. 3.已知点(2,1)M 在抛物线2:C y ax =上,A ,B 是抛物线上异于M 的两点,以AB 为直径的圆过点M .(1)证明:直线AB 过定点;(2)过点M 作直线AB 的垂线,求垂足N 的轨迹方程. 【解答】证明:(Ⅰ)点(2,1)M 在抛物线2:C y ax =上,14a ∴=,解得14a =,第4页(共15页)∴抛物线的方程为24x y =,由题意知,故直线AB 的斜率存在,设直线AB 的方程为y kx m =+,设1(A x ,1)y ,2(B x ,2)y ,联立得24x yy kx m⎧=⎨=+⎩,消y 可得2440x kx m --=,得124x x k +=,124x x m =,由于MA MB ⊥,∴0MA MB =,即1212(2)(2)(2)(2)0x x y y --+--=,即121212122()()50x x x x y y y y -++-++=,(*)1212()2y y k x x m +=++,22121212()y y k x x km x x m =+++,代入(*)式得224865k k m m +=-+,即22(22)(3)k m +=-, 223k m ∴+=-,或223k m +=-,即25m k =+,或21m k =-+,当25m k =+时,直线AB 方程为(2)5y k x =++,恒过定点(2,5), 经验证,此时△0>,符合题意,当21m k =-+时,直线AB 方程为(2)5y k x =++,恒过定点(2,1),不合题意,∴直线AB 恒过点(2,5)-,(Ⅱ)由(Ⅰ)设直线AB 恒过定点(2,5)R -,则点N 的轨迹是以MR 为直径的圆且去掉(2,1)±,方程为22(3)8x y +-=,1y ≠.第5页(共15页)4.如图已知椭圆22221(0)x y a b a b+=>>的离心率为32,且过点(0,1)A .(1)求椭圆的方程;(2)过点A 作两条互相垂直的直线分别交椭圆于M ,N 两点.求证:直线MN 恒过定点P .并求点P 的坐标.【解答】解:(1)因为椭圆22221(0)x y a b a b+=>>3,且过点(0,1)A .所以1b =,3c a =, 所以2a =,1b =所以椭圆C 的方程为:2214x y +=⋯(3分)(2)直线MN 恒过定点3(0,)5P -,下面给予证明:设直线1l 的方程为1y kx =+,联立椭圆方程,消去y 得;22(41)80k x kx ++=,解得222814,4141M M k k x y k k -=-=++ 同理可得:22284,(844N N k k x y k k -==⋯++则直线MN 的斜率22222221441414885414k k k k k k k k k k k ----++'==--++,第6页(共15页)则直线MN 的方程为22221418()41541k k ky x k k k ---=+++,即22222141813()4154155k k k k y x x k k k k ---=++=-++,则直MN 过定点3(0,)5-.故直线MN 恒过定点P 3(0,)5-.⋯(12分)B .(1)证明:直线AB 过定点;面积.【解答】解:(1)证明:22x y =的导数为y x '=,设切点1(A x ,1)y ,2(B x ,2)y ,即有2112x y =,2222x y =,切线DA 的方程为111()y y x x x -=-,即为2112x y x x =-,切线DB 的方程为2222x y x x =-,联立两切线方程可得121()2x x x =+,可得121122y x x ==-,即121x x =-, 直线AB 的方程为2112112()2x y y y x x x x --=--, 即为211211()()22x y x x x x -=+-,第7页(共15页)可化为1211()22y x x x =++,可得AB 恒过定点1(0,)2;(2)法一:设直线AB 的方程为12y kx =+, 由(1)可得122x x k +=,121x x =-, AB 中点21(,)2H k k +,由H 为切点可得E 到直线AB 的距离即为||EH ,15||-= 解得0k =或1k =±, 即有直线AB 的方程为12y =或12y x =±+, 由12y =可得||2AB =,四边形ADBE 的面积为12(12)32ABE ABD S S ∆∆+=⨯⨯+=; 由12y x =±+,可得||1444AB =+=,此时1(1,)2D ±-到直线AB11|1|++= 5(0,)2E到直线AB15||-= 则四边形ADBE的面积为142ABE ABD S S ∆∆+=⨯⨯=;法二:(2)由(1)得直线AB 的方程为12y tx =+.第8页(共15页)由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是122x x t +=,121x x =-,21212()121y y t x x t +=++=+,212|||2(1)AB x x t =-=+.设1d ,2d 分别为点D ,E 到直线AB的距离,则1d =2d =因此,四边形ADBE的面积2121||()(2S AB d d t =+=+. 设M 为线段AB 的中点,则21(,)2M t t +.由于EM AB ⊥,而2(,2)EM t t =-,AB 与向量(1,)t 平行,所以2(2)0t t t +-=.解得0t =或1t =±.当0t =时,3S =;当1t =±时,S =综上,四边形ADBE 的面积为3或(1)求椭圆方程;(2)过直线2y =上的点P 作椭圆的两条切线,切点分别为B ,C ①求证:直线BC 过定点; ②求OBC ∆面积的最大值;【解答】(1)解:椭圆22221(0)x y a b a b+=>>过点(2,1)A ,离心率e =,第9页(共15页)∴22411a b +=,c a = 28a ∴=,22b =,∴椭圆方程为22182x y +=;(2)①证明:设0(P x ,2),1(B x ,1)y ,2(C x ,2)y ,则切线11:182x x y y PB +=,22:182x x y y PC +=, 0(P x ,2)代入,可得直线BC 的方程为018x xy +=, ∴直线BC 过定点(0,1);②018x xy +=代入椭圆方程可得2200(1)4016x x x x +--=, 0122116x x x x∴+=+,12204116x x x -=+,1201||2OBCS x x ∆∴=-=, 令2016u x =+,则1216OBC S ∆=,OBC ∴∆面积的最大值为2.(1)求抛物线C 的方程;(2)动直线:1()l x my m R =+∈与抛物线C 相交于A ,B 两点,问:在x 轴上是否存在定点||||DA DBDA DB +与向量OD 共线(其中存在,求出点D 的坐标;若不存在,请说明理由.第10页(共15页)【解答】解:(1)抛物线2:2(0)C y px p =>的焦点为(2p,0), 准线方程为2px =-, 即有05||22p pPF x =+=,即02x p =, 则2164p =,解得2p =,则抛物线的方程为24y x =;(2)在x 轴上假设存在定点(,0)D t (其中0)t ≠,使得||||DA DB DA DB +与向量OD 共线, 由||DA DA ,||DBDB 均为单位向量,且它们的和向量与OD 共线, 可得x 轴平分ADB ∠, 设1(A x ,1)y ,2(B x ,2)y ,联立1x my =+和24y x =,得2440y my --=,△216(1)0m =+>恒成立.124y y m +=,124y y =-.①设直线DA 、DB 的斜率分别为1k ,2k , 则由ODA ODB ∠=∠得,第11页(共15页) 121221121212()()()()y y y x t y x t k k x t x t x t x t -+-+=+=---- 122112121212(1)(1)2(1)()()()()()y my t y my t my y t y y x t x t x t x t +-++-+-+==----, 12122(1)()0my y t y y ∴+-+=,②联立①②,得4(1)0m t -+=,故存在1t =-满足题意,综上,在x 轴上存在一点(1,0)D -,使得x 轴平分ADB ∠, 即||||DA DB DA DB +与向量OD 共线. 8.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求曲线C 的方程;率均存在且斜率之和为2-,证明:直线l 过定点.【解答】解:(1)由圆22:(2)1M x y ++=,可知圆心(2,0)M -,半径1;圆22:(2)49N x y -+=,圆心(2,0)N ,半径7.设动圆的半径为R ,动圆P 与圆M 外切并与圆N 内切,||||1(7)8PM PN R R ∴+=++-=, 而||4NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为半长轴长的椭圆, 4a ∴=,2c =,22212b a c =-=.∴曲线C 的方程为2211612x y +=.第12页(共15页)(2)证明:直线l 的斜率不存在时,设直线l 的方程为:x t =,(44)t -. 1(,)A t y ,2(,)B t y ,120y y +=.2AQ BQ k k +====-.解得t =此时直线l的方程为:x =.直线l 的斜率存在时,设直线l 的方程为:y kx m =+,.设1(A x ,1)y ,2(B x ,2)y . 联立2211612y kx m x y =+⎧⎪⎨+=⎪⎩,化为:222(34)84480k x kmx m +++-=. 则122834km x x k +=-+,212244834m x x k -=+,12122AQ BQ y y k k x x --+=+=-,11y kx m =+,22y kx m =+.化为:1212(22)()0k x x m x x ++-+=,代入化为:k =∴直线l的方程为:y m =+.第13页(共15页)令23x =,可得23y =-.可得直线l 过定点(23,23)-.9.如图,椭圆222:1(02)4x y E b b+=<<,点(0,1)P 在短轴CD 上,且2PC PD =- (Ⅰ)求椭圆E 的方程及离心率;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA OB PA PB λ+为定值?若存在,求λ的值;若不存在,请说明理由.第14页(共15页)【解答】解:(Ⅰ)由已知,点C ,D 的坐标分别为(0,)b -,(0,)b . 又点P 的坐标为(0,1),且2PC PD =-,即212b -=-, 解得23b =.∴椭圆E 方程为22143x y +=. 221c a b =-,∴离心率12e =; (Ⅱ)当直线AB 的斜率存在时,设直线AB 的方程为1y kx =+,A ,B 的坐标分别为1(x ,1)y ,2(x ,2)y .联立221431x y y kx ⎧+=⎪⎨⎪=+⎩,得22(43)880k x kx ++-=. 其判别式△0>,122843k x x k -+=+,122843x x k -=+. 从而,12121212[(1)(1)]OA OB PA PB x x y y x x y y λλ+=+++-- 21212(1)(1)()1k x x k x x λ=+++++22228(1)(1)4342234343k k k k λλλ-++-+-==--++,第15页(共15页)当2λ=时,24223743k λλ---=-+, 即7OA OB PA PB λ+=-为定值.当直线AB 斜率不存在时,直线AB 即为直线CD , 此时2347OA OB PA PB OC OD PC PD λ+=+=--=-, 故存在常数2λ=,使得OA OB PA PB λ+为定值7-.。
圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题
圆锥曲线中的定值、定点问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2.例2. 已知点是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。
解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --=设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3. 已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。
专题01 圆锥曲线中的定点、定值问题
高中数学 ︵ 圆锥曲线 ︶培优篇定点、定值问题曲线过定点某个量为定值用参数表示曲线方程 用参数表示该量令参数系数为0或某值,解出相应的x 、y 的值 令参数系数为0或某值化简使该量为定值选参、用参、消参,求出定点或定值高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学︵ 圆锥曲线 ︶培优篇 2|||1AF .高中数学 ︵ 圆锥曲线 ︶培优篇 方法联立,第一种,假设直线AB 的方程,第二种假设直线P 2A 和P 2B . 满分解答(1) 根据椭圆对称性可得,P 1(1,1),P 4(1,)不可能同时在椭圆上,P 3(–1,),P 4(1,)一定同时在椭圆上,因此可得椭圆经过P 2(0,1),P 3(–1,),P 4(1,). 把P 2,P 3坐标代入椭圆方程得2221=13141b a b,,解得224,1a b ,故椭圆C 的方程为2214x y ;(2)解1 ①当直线l 的斜率不存在时,设:l x m ,(,),(,)A A A m y B m y ,此时221121A A P A P B y y k k m m m,解得2m ,此时直线l 过椭圆右顶点,不存在两个交点,故不满足.②当直线l 的斜率存在时,设:(1)l y kx t t ,1122(,),(,)A x y B x y ,则2214y kx t x y ,,消去y 得 222(14)8440k x tkx t , 2216(41)k t ,2121222841,1414tk t x x x x k k,此时 22121211P A P B y y k k x x21212112()()x kx t x x kx t x x x21212(1)()(1)(8)224(1)t x x t kt k k x x t. 由于1t ,所以22222111P A P B kt kk k k t t ,即21t k ,此时32(1)t ,存在1t ,使得0 成立,22222高中数学 ︵ 圆锥曲线 ︶培优篇所以直线l 的方程为(2)1y k x ,直线l 必过定点(2,1) .解2 由题意可得直线2P A 与直线2P B 的斜率一定存在,不妨设直线2P A 为1y kx , 则直线2P B 为 11y k x .由22114y kx x y ,,得224180k x kx ,设 11,A x y , 22,B x y 此时可得:222814,4141k k A k k,同理可得 22281141,411411k k B k k.此时可求得直线l 的斜率为:2222212122141144141181841411ABk k k k y y k k x x k k k ,化简可得2112AB k k,此时满足12k .当12k 时,,A B 两点重合,不合题意.当12k 时,直线方程为: 22221814414112k k y x k k k, 即2244112k k x y k,当2x 时,1y ,因此直线恒过定点 2,1 .思路点拨第(1)题只需证明0AC BC.第(2)题要先求圆的方程,令y=0即可求出在y 轴上弦长.求圆方程可以用标准式方程,也可以用一般式方程.当然,本题还可以利用相交弦定理来解.高中数学 ︵ 圆锥曲线 ︶培优篇 满分解答(1)设 12,0,,0A x B x ,则12,x x 是方程220x mx 的根,所以1212,2x x m x x ,则 1212,1,112110AC BC x x x x.所以不会能否出现AC ⊥BC 的情况.(2)解1 由于过A ,B ,C 三点的圆的圆心必在线段AB 垂直平分线上,设圆心 00,E x y ,则12022x x mx. 由EA EC得 22221212100+122x x x x x y y,化简得 1201122x x y ,所以圆E 的方程为22221112222m m x y.令0x 得121,2y y ,所以过A ,B ,C 三点的圆在y 轴上截得的弦长为 123 .所以,过A ,B ,C 三点的圆在y 轴上截得的弦长为定值解2 由于BC 的中点坐标为21(.22x ,可得BC 的中垂线方程为221()22xy x x . 由(1)可得12x x m ,所以AB 的中垂线方程为2mx .联立2221(22m x x y x x ,,又22220x mx , 可得212m x y ,,所以过,,A B C 三点的圆的圆心坐标为1(,)22m,半径2r ,故圆在y 轴上截得的弦长为3 ,即过A B C ,,三点的圆在y 轴上的截得的弦长为定值.解3 设圆的方程为220x y Dx Ey F , 令0y ,得20x Dx F ,由题意,2D m F ,把0,1x y 代入圆的方程,得10E F ,即1E .故圆的方程为:2220x y mx y .高中数学 ︵ 圆锥曲线 ︶培优篇 11令0x ,得220y y ,所以121,2y y ,故12|||1(2)|3y y .所以过,,A B C 三点的圆在y 轴上截得的弦长为定值3.解4设过A ,B ,C 三点的圆与y 轴的另一个交点为D ,由122x x 可知原点O 在圆内,由相交弦定理可得122OD OC OA OB x x ,又1OC ,所以2OD ,所以,过A ,B ,C 三点的圆在y 轴上截得的弦长为3OC OD ,为定值.思路点拨第(1)题可以直接求出a、b;第(2)题用参数表示AN BM ,可以设 00,P x y ,用00x y 、做参数,也可以设 2cos ,sin P , 用做参数. 满分解答(1)由已知,1,122c ab a ,又222a b c ,解得2,1,a b c 所以椭圆的方程为2214x y .(2)解1 设椭圆上一点 00,P x y ,则220014x y .由于直线PA 的方程: 0022y y x x ,令0x ,得0022M y y x, 所以00212y BM x; 直线PB 的方程:0011y y x x ,令0y ,得001N x x y, 所以0021x AN y. 因为220014x y ,所以220044x y ,从而高中数学 ︵ 圆锥曲线 ︶培优篇 120000002200000000002222214448422x y x y x y x y x y x y x y x y2200000000004444484=422y y x y x y x y x y .故AN BM 为定值.解2 设椭圆 上一点 2cos ,sin P ,则直线P A 的方程: sin 22cos 2y x,令0x ,得sin 1cos M y, 所以sin cos 11cos BM;直线PB 的方程:sin 112cos y x,令 0y ,得2cos 1sin N x, 所以2sin 2cos 21sin AN.2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM。
专题14 圆锥曲线中的定值定点问题(解析版)
专题14 圆锥曲线中的定值定点问题1.(2022·全国·高考真题(文))已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【答案】(1)22143y x +=(2)(0,2)- 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得(1,M,N ,代入AB 方程223y x =-,可得(3,T ,由MT TH =得到(5,H -.求得HN 方程:(22y x =+-,过点(0,2)-. ①若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=, 可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++- 可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=, 将(*)代入,得222241296482448482436480,k k k k k k k +++---+--= 显然成立,综上,可得直线HN 过定点(0,2).-2.(2021·全国·高考真题)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【解析】 【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方程结合弦长公=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a ==a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +=⋅=,所以MN所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN =3.(2022·青海·海东市第一中学模拟预测(理))已知椭圆M :22221x y a b +=(a >b>0AB为过椭圆右焦点的一条弦,且AB 长度的最小值为2. (1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点()2,0P ,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,当12111k k +=时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.【答案】(1)22142x y += (2)存在,()2,4-- 【解析】 【分析】(1)由题意求出,,a b c ,即可求出椭圆M 的方程.(2)设直线l 的方程为m (x -2)+ny =1,()11,C x y ,()22,D x y ,联立直线l 的方程与椭圆方程()()222242x y x -+=--,得()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭,则12114114n k k m +=-=+,化简得14m n +=-,即可求出直线l 恒过的定点. (1)因为22221x y a b +=(a >b >0222b a =, 所以a =2,c =b M 的方程为22142x y +=.(2)设直线l 的方程为m (x -2)+ny =1,()11,C x y ,()22,D x y , 由椭圆的方程2224x y +=,得()()222242x y x -+=--.联立直线l 的方程与椭圆方程,得()()()2222422x y x m x ny ⎡⎤⎣⎦-+=---+,即()()()221424220m x n x y y +-+-+=,()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭, 所以12121222114114x x nk k y y m--+=+=-=+, 化简得14m n +=-,代入直线l 的方程得()1214m x m y ⎛⎫-+--= ⎪⎝⎭, 即()1214m x y y ---=,解得x =-2,y =-4,即直线l 恒过定点()2,4--. 4.(2022·上海松江·二模)已知椭圆2222:1(0)x y a b a bΓ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为1F 、2F ,且122F F =,直线l 交椭圆Γ于不同的两点M 和N . (1)求椭圆Γ的方程;(2)若直线l 的斜率为1,且以MN 为直径的圆经过点A ,求直线l 的方程; (3)若直线l 与椭圆Γ相切,求证:点1F 、2F 到直线l 的距离之积为定值.【答案】(1)22143x y +=;(2)2y x =-或27y x =-; (3)证明见解析. 【解析】 【分析】(1)根据焦距及椭圆的顶点求出,a b 即可得出;(2)设直线l 的方程为 y x b =+,联立方程,由根与系数的关系及0AM AN ⋅=求解即可;(3)分直线斜率存在与不存在讨论,当斜率不存在时直接计算可得,当斜率存在时,设直线l 的方程为y kx b =+,根据相切求出,b k 关系,再由点到直线的距离直接计算即可得解.(1)①1222F F c == ①1c =,①2a =,由222a b c =+ 得241=+b ,①22=34=b a ,所以椭圆Γ的方程:22143x y +=;(2)①直线l 的斜率为1,故可设直线l 的方程为 y x b =+, 设1(M x ,1)y ,2(N x ,2)y由22143y x bx y =+⎧⎪⎨+=⎪⎩ 可得22784120x bx b ++-=, 则1287b x x +=-,2124127b x x -=,①以MN 为直径的圆过右顶点A ,①0AM AN ⋅=,①1212(2)(2)0x x y y --+= ①21212122211))2()4((2(2)()4b b x x x x x x x x b x x b -+++=+-+++++2241282(2)4077b bb b -=⋅--⋅++=,整理可得271640b b ++=,①2b =-或27b =-,①2226447(412)16(213)b b b ∆=-⋅⋅-=⋅-, 当2b =-或27b =-时,均有0∆>所以直线l 的方程为2y x =-或27y x =-. (3)椭圆Γ左、右焦点分别为1(1,0)F -、2(1,0)F①当直线l 平行于y 轴时,①直线l 与椭圆Γ相切,①直线l 的方程为2x =±, 此时点1F 、2F 到直线l 的到距离分别为121,3d d ==,①123d d ⋅=. ①直线l 不平行于y 轴时,设直线l 的方程为 y kx b =+,联立2234120y kx b x y =+⎧⎨+-=⎩,整理得222(34)84120k x kbx b +++-=, 222222644(34)(412)16(9123)k b k b k b ∆=-+-=⋅+-,①直线l 与椭圆Γ相切,①0∆=,①2234b k =+ ①1(1,0)F -到直线l的距离为1d ,2(1,0)F -到直线l的距离为2=d①2222212222(34)33111k bk k k d d k k k --++⋅=====+++, ①点1F 、2F 到直线l 的距离之积为定值由3.5.(2022·上海浦东新·二模)已知12F F 、分别为椭圆E :22143x y+=的左、右焦点, 过1F 的直线l 交椭圆E于,A B 两点.(1)当直线l 垂直于x 轴时,求弦长AB ; (2)当2OA OB ⋅=-时,求直线l 的方程;(3)记椭圆的右顶点为T ,直线AT 、BT 分别交直线6x =于C 、D 两点,求证:以CD 为直径的圆恒过定点,并求出定点坐标. 【答案】(1)3(2))1y x =+(3)证明见解析;定点()()4080,,,【解析】 【分析】(1)将1x =-代入椭圆方程求解即可;(2)由(1)知当直线l 的斜率存在,设直线l 的方程为:()1y k x =+,联立直线与椭圆的方程,得出()22223484120k xk x k +++-=,设()()1122A x y B x y ,,,可得韦达定理,代入2OA OB ⋅=-计算可得斜率;(3)分析当直线l 的斜率不存在时,由椭圆的对称性知若以CD 为直径的圆恒过定点则定点在x 轴上,再以CD 为直径的圆的方程,令0y =,代入韦达定理化简可得定点 (1)由题知()110F -,,将1x =-代入椭圆方程得332y AB =±∴=, (2)由(1)知当直线l 的斜率不存在时,331122A B ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,此时14OA OB =,不符合题意,舍去∴直线l 的斜率存在,设直线l 的方程为:()1y k x =+,联立()221431x y y k x ⎧+=⎪⎨⎪=+⎩得()22223484120k x k x k +++-=,设()()1122A x y B x y ,,,,则2122212283441234k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩, 由()()()()2222222221212121212122224128512111()1343434k k k OA OB x x y y x x k x k x k x xk x x k kk k k k k ----=+=+++=++++=+++=+++,解得22k k ==,∴直线l 的方程为)1y x =+..(3)①当直线l 的斜率不存在时,()33112022A B T ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,,,直线AT 的方程为112y x =-+,C 点坐标为()62-,, 直线BT 的方程为112y x =-,D 点坐标为()62,,以CD 为直径的圆方程为()2264x y -+=,由椭圆的对称性知若以CD 为直径的圆恒过定点则定点在x 轴上,令0y =,得48x x ==,.即圆过点()()4080,,,. ①当直线l 的斜率存在时,同(2)联立,直线AT 的方程为()1122y y x x =--, C 点坐标为11462y x ⎛⎫ ⎪-⎝⎭,,同理D 点坐标为22462y x ⎛⎫⎪-⎝⎭,,以CD 为直径的圆的方程为()()12124466022y y x x y y x x ⎛⎫⎛⎫--+--= ⎪⎪--⎝⎭⎝⎭,令0y =,得()2121212161236024y y x x x x x x -++=-++,由()()()()22222121222121212122241281611611343416441282424243434k k k k x k x k k y y k k x x x x x x x x k k ⎛⎫--++ ⎪++++⎝⎭===----++-++-+++, 得212320x x -+=,解得48x x ==,,即圆过点()()4080,,,. 综上可得,以CD 为直径的圆恒过定点()()4080,,,. 6.(2022·上海长宁·二模)已知,A B 分别为椭圆222Γ:1(1)x y a a+=>的上、下顶点,F 是椭圆Γ的右焦点,M 是椭圆Γ上异于,A B 的点.(1)若π3AFB ∠=,求椭圆Γ的标准方程 (2)设直线:2l y =与y 轴交于点P ,与直线MA 交于点Q ,与直线MB 交于点R ,求证:PQ PR ⋅的值仅与a 有关(3)如图,在四边形MADB 中,MA AD ⊥,MB BD ⊥,若四边形MADB 面积S 的最大值为52,求a 的值.【答案】(1)2214x y +=(2)证明见解析 (3)2a = 【解析】 【分析】(1)根据已知判断AFB △形状,然后可得;(2)设()11,M x y ,表示出直线AM 、BM 的方程,然后求Q 、R 的坐标,直接表示出所求可证; (3)设()11,M x y ,()44,D x y ,根据已知列方程求解可得14,x x 之间关系,表示出面积,结合已知可得. (1)因为AF BF =,π3AFB ∠=,所以AFB △是等边三角形, 因为2AB =,AF a =,所以2a =,得椭圆的标准方程为2214x y +=.(2)设()11,M x y ,()2,2R x ,()3,2Q x , 因为()0,1A ,()0,1B -所以直线AM 、BM 的方程分别为 111:1AM y l y x x -=+, 111:1BM y l y x x +=-, 所以12131x x y =+,1311x x y =-, 又221121x y a-=所以2211221331x PQ PR x x a y ⋅===-,所以PQ PR ⋅的值仅与a 有关. (3)设()11,M x y ,()44,D x y , 因为MA DA ⊥,MB DB ⊥,所以()()1414110x x y y +--=,()()1414110x x y y +++= 两式相减得41y y =-,带回原式得214110x x y +-=,因为221121x y a+=,所以142x x a =-, 1412111MAB DABS SSx x x a a a ⎛⎫=+=+=+≤+ ⎪⎝⎭因为S 的最大值为52 ,所以152a a += ,得2a =.7.(2022·福建省福州格致中学模拟预测)圆O :224x y +=与x 轴的两个交点分别为()12,0A -,()22,0A ,点M 为圆O 上一动点,过M 作x 轴的垂线,垂足为N ,点R 满足12NR NM = (1)求点R 的轨迹方程;(2)设点R 的轨迹为曲线C ,直线1x my =+交C 于P ,Q 两点,直线1A P 与2A Q 交于点S ,试问:是否存在一个定点T ,当m 变化时,2A TS 为等腰三角形【答案】(1)2214x y +=(2)存在,证明见解析 【解析】 【分析】(1)设点()00,M x y 在圆224x y +=上,故有22004x y +=,设(),R x y ,根据题意得0x x =,012y y =,再代入圆224x y +=即可求解;(2)先判断斜率不存在的情况;再在斜率存在时,设直线l 的方程为1x my =+,与椭圆联立得:()224230m y my ++-=,12224m y y m -+=+,12234y y m -=+,再根据题意求解判断即可. (1)设点()00,M x y 在圆224x y +=上,故有22004x y +=,设(),R x y ,又12NR NM =,可得0x x =,012y y =, 即0x x =,02y y =代入22004x y +=可得()2224x y +=,化简得:2214x y +=,故点R 的轨迹方程为:2214x y +=.(2)根据题意,可设直线l 的方程为1x my =+, 取0m =,可得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭, 可得直线1A P的方程为y x =+,直线2A Q的方程为y x =-联立方程组,可得交点为(1S ;若1,P ⎛ ⎝⎭,Q ⎛ ⎝⎭,由对称性可知交点(24,S , 若点S 在同一直线上,则直线只能为l :4x =上,以下证明:对任意的m ,直线1A P 与直线2A Q 的交点S 均在直线l :4x =上. 由22114x my x y =+⎧⎪⎨+=⎪⎩,整理得()224230m y my ++-= 设()11,P x y ,()22,Q x y ,则12224m y y m -+=+,12234y y m -=+ 设1A P 与l 交于点()004,S y ,由011422y y x =++,可得10162y y x =+ 设2A Q 与l 交于点()004,S y ',由022422y y x '=--,可得20222y y x '=-,因为()()()()122112102126123622222y my y my y y y y x x x x --+'-=-=+-+- ()()()()()22121211121212464402222m mmy y y y m m x x x x ----+++===+-+-, 因为00y y '=,即0S 与0S '重合, 所以当m 变化时,点S 均在直线l :4x =上,因为()22,0A ,()4,S y ,所以要使2A TS 恒为等腰三角形,只需要4x =为线段2A T 的垂直平分线即可,根据对称性知,点()6,0T . 故存在定点()6,0T 满足条件.8.(2022·全国·模拟预测)已知椭圆()2222:10x y C a b a b +=>>的离心率为12,椭圆C 的左、右顶点分别为A ,B ,上顶点为D ,1AD BD ⋅=-. (1)求椭圆C 的方程;(2)斜率为12的动直线l 与椭圆C 相交于M ,N 两点,是否存在定点P (直线l 不经过点P ),使得直线PM 与直线PN 的倾斜角互补,若存在这样的点P ,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,点P 的坐标为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭【解析】 【分析】(1)利用数量积公式及离心率可得a ,b ,c 从而得到椭圆方程; (2)设直线l 的方程为12y x m =+,与椭圆方程联立,写出韦达定理,由题意可得直线PM 与直线PN 的斜率之和为零,利用韦达定理化简可得结果. (1)设椭圆C 的焦距为2c ,由题意知(),0A a -,(),0B a ,()0,D b ,所以(),AD a b =,(),BD a b =-,所以2221AD BD a b c ⋅=-+=-=-,解得1c =. 又椭圆C 的离心率为12,所以22a c ==,b故椭圆C 的方程为22143x y +=.(2)假设存在这样的点P ,设点P 的坐标为()00,x y ,点M ,N 的坐标分别为()11,x y ,()22,x y ,设直线l 的方程为12y x m =+. 联立方程221,4312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 后整理得2230x mx m ++-=.()222431230m m m ∆=--=->,得22m -<<, 有12212,3.x x m x x m +=-⎧⎨=-⎩ 若直线PM 与直线PN 的倾斜角互补,则直线PM 与直线PN 的斜率之和为零,所以01020102010201021122y x m y x m y y y y x x x x x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪--⎝⎭⎝⎭+=+---- ()()()()()()()()()()010*********0102010222222222222y m x x x y m x x x y m x y m x x x x x x x x x ---+---⎡⎤⎡⎤----⎣⎦⎣⎦=+=----()()()()()()()()()()20000012121200102010222223222222y m x m m mx y m x x x x x x x x x x x x x x x x -++-+--++-+⎡⎤⎣⎦==----()()()()()()()()0000000001020102462322323022x y y x m x y y x mx x x x x x x x -+--+-===----.所以0000230,230,x y y x -=⎧⎨-=⎩解得001,32x y =⎧⎪⎨=⎪⎩或001,3.2x y =-⎧⎪⎨=-⎪⎩故存在点P 符合条件,点P 的坐标为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭.9.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知椭圆()2222:10x y C a b a b +=>>的两个焦点分别为1F 和2F ,椭圆C 上一点到1F 和2F 的距离之和为4,且椭圆C(1)求椭圆C 的方程;(2)过左焦点1F 的直线l 交椭圆于A 、B 两点,线段AB 的中垂线交x 轴于点D (不与1F 重合),是否存在实数λ,使1AB DF λ=恒成立?若存在,求出λ的值;若不存在,请说出理由.【答案】(1)2214x y +=(2)存在,λ=【解析】 【分析】(1)由椭圆的定义可求得a 的值,根据椭圆的离心率求得c 的值,再求出b 的值,即可得出椭圆C 的方程; (2)分析可知,直线l 不与x 轴垂直,分两种情况讨论,一是直线l 与x 轴重合,二是直线l 的斜率存在且不为零,设出直线l 的方程,与椭圆方程联立,求出AB 、1DF ,即可求得λ的值. (1)解:由椭圆的定义可得24a =,则2a =,因为c ea ==c∴=1b ==, 因此,椭圆C 的方程为2214x y +=.(2)解:若直线l 与x 轴垂直,此时,线段AB 的垂直平分线为x 轴,不合乎题意; 若直线l 与x 轴重合,此时,线段AB 的垂直平分线为y 轴,则点D 与坐标原点重合,此时,143AB DF λ==若直线l 的斜率存在且不为零时,设直线l 的方程为)0x my m =≠,设点()11,A x y 、()22,B x y , 联立2244x my x y ⎧=⎪⎨+=⎪⎩()22410m y +--=,()()22212441610m m m ∆=++=+>,由韦达定理可得12y y +=,12214y y m =-+, 则()121222m y y x x ++= 所以,线段AB的中点为M ⎛ ⎝⎭, 所以,线段AB的垂直平分线所在直线的方程为y m x ⎛=- ⎝⎭,在直线方程y m x ⎛=- ⎝⎭中,令0y =可得x =,故点D ⎛⎫ ⎪ ⎪⎝⎭,所以,)21214m DF m +==+,由弦长公式可得()22414m AB m +==+,因此,()2221414m ABDF m λ+===+综上所述,存在λ=1AB DF λ=恒成立. 10.(2022·河南安阳·模拟预测(文))已知椭圆2222:1(0)C b b x a a y +>>=上一个动点N 到椭圆焦点(0,)F c 的距离的最小值是2,且长轴的两个端点12,A A 与短轴的一个端点B 构成的12A A B △的面积为2.(1)求椭圆C 的标准方程;(2)如图,过点4(0,)M -且斜率为k 的直线l 与椭圆C 交于P ,Q 两点.证明:直线1A P 与直线2A Q 的交点T 在定直线上.【答案】(1)2214y x +=(2)证明见解析 【解析】 【分析】(1)根据题意得到22221222a c ab a b c ⎧-=⎪⎪⨯=⎨⎪=+⎪⎩,再解方程组即可.(2)首先设直线:4l y kx =-,()11,P x y ,()22,Q x y ,与椭圆联立,利用韦达定理得到12284kx x k +=+,122124x x k =+.1112:2PA y l y x x ++=,2222:2QA y l y xx --=,根据2123y y +=--,即可得到1y =-,从而得到直线1A P 与直线2A Q 的交点T 在定直线1y =-上. (1)由题知:22221222a c ab a b c⎧-=⎪⎪⨯=⎨⎪=+⎪⎩,解得21a b c ⎧=⎪=⎨⎪⎩,即:椭圆22:14+=y C x(2)设直线:4l y kx =-,()11,P x y ,()22,Q x y ,()10,2A -,()20,2A ,()222214812044y x k x kx y kx ⎧+=⎪⇒+-+=⎨⎪=-⎩. 12284k x x k +=+,122124x x k =+. 则1112:2PA y l y x x ++=,2222:2QA y l y x x --=, 则()()()()1212122212112122222266y x kx x kx x x y y y x kx x kx x x +--+===----, 因为()1212212342k kx x x x k ==++, 所以()()12212121213232123293362x x x x x y y x x x x x +--+===---++-,解得1y =-. 所以直线1A P 与直线2A Q 的交点T 在定直线1y =-上.11.(2022·安徽省舒城中学三模(理))已知椭圆22:184x y Γ+=,过原点O 的直线交该椭圆Γ于A ,B 两点(点A 在x 轴上方),点()4,0E ,直线AE 与椭圆的另一交点为C ,直线BE 与椭圆的另一交点为D .(1)若AB 是Γ短轴,求点C 坐标;(2)是否存在定点T ,使得直线CD 恒过点T ?若存在,求出T 的坐标;若不存在,请说明理由.【答案】(1)82(,)33;(2)存在,8(,0)3T .【解析】 【分析】(1)两点式写出直线AE ,联立椭圆方程并结合韦达定理求出C 坐标; (2)设00(,)A x y 有00:(4)4=--y AE y x x ,联立椭圆求C 坐标,同理求D 坐标,讨论00x ≠、00x =,判断直线CD 恒过定点即可. (1)由题设,(0,2)A ,而()4,0E ,故直线AE 为240x y +-=,联立22:184x y Γ+=并整理得:23840y y -+=,故83A C y y +=,而2A y =,所以23C y =,代入直线AE 可得284233C x =-⨯=,故C 坐标为82(,)33.(2)设00(,)A x y ,则00:(4)4=--y AE y x x , 由()00224428y y x x x y ⎧=-⎪-⎨⎪+=⎩,故2220202(4)8(4)+-=-y x x x , 由韦达定理有20222222000000002220000020328(4)328(4)16(8)8(4)64242(4)22482481(4)C y x y x x x x x x x y x y x x x --------====-+--+-, 所以00833C x x x -=-,故003C y y x =-,同理得:00833D x x x +=+,003D y y x -=+,当00x ≠时,取8(,0)3T ,则0000003383833TCy x yk x x x -==----,同理003TD y k x =-, 故,,T C D 共线,此时CD 过定点8(,0)3T .当00x =时,83C D x x ==,此时CD 过定点8(,0)3T .综上,CD 过定点8(,0)3T .12.(2022·广东茂名·二模)已知圆O :x 2+y 2=4与x 轴交于点(2,0)A -,过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C . (1)求曲线C 的方程;(2)过6(,0)5-作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)2212x y +=;(2)证明见解析. 【解析】 【分析】(1)运用相关点法即可求曲线C 的方程;( 2)首先对直线l 的斜率是否存在进行讨论,再根据几何关系分别求出P 、Q 、S 三点的坐标,进而表示出直线AP , AS 的斜率12,k k ,再根据斜率的表达式进行化简运算,得出结论. (1)设N (x 0,y 0),则H (x 0,0), ①N 是MH 的中点,①M (x 0,2y 0),又①M 在圆O 上,2200(2)4y x +=∴,即220014x y +=; ①曲线C 的方程为:2214x y +=;(2)①当直线l 的斜率不存在时,直线l 的方程为:65x =-,若点P 在轴上方,则点Q 在x 轴下方,则6464(,),(,)5555P Q ---,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,①64(,)55S ,1244001551,,6642255APAS k k k k --======-++124k k ∴=;若点P 在x 轴下方,则点Q 在x 轴上方, 同理得:646464(,),(,),(,)555555P Q S ----,1244001551,6642255APAS k k k k ----===-∴===--++,①k 1=4k 2;①当直线l 的斜率存在时,设直线l 的方程为:6,5x my =-,由6,5x my =-与2214x y +=联立可得221264(4)0525m m y y +--=, 其中22144644(4)02525m m ∆=+⨯+⨯>,设1122(,),(,)P x y Q x y ,则22(,)S x y --,则1212221264525,44m y y y y m m -+==++,①112212112200,,2222AP AS k y y y y k k k x x x x ---======++-+- 则121122121216()2542()5y my k y x k x y my y --=⋅=++121112212121112226464161616252554545444641216()4445525525454545my y y y y m m my y y y y m m y y m m m -----++====++---+⋅--+++,①k 1=4k 2. 13.(2022·安徽·合肥市第八中学模拟预测(文))生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在y 轴上,中心在坐标原点,从下焦点1F 射出的光线经过椭圆镜面反射到上焦点2F ,这束光线的总长度为4,且反射点与焦点构成的三角e < (1)求椭圆C 的标准方程;(2)若从椭圆C 中心O 出发的两束光线OM 、ON ,分别穿过椭圆上的A 、B 点后射到直线4y =上的M 、N两点,若AB 连线过椭圆的上焦点2F ,试问,直线BM 与直线AN 能交于一定点吗?若能,求出此定点:若不能,请说明理由.【答案】(1)22143y x +=(2)能,定点为(0,85)【解析】 【分析】(1)由条件列方程求,,a b c 可得椭圆方程; (2)联立方程组,利用设而不求法结论完成证明. (1)由已知可设椭圆方程为22221(0)y x a b a b+=>>,则24a =,122c b ⨯⨯222a b c =+又e <所以21a b c ===,,故椭圆C 的标准方程为22143y x +=(2)设AB 方程为1y kx =+,由221431y x y kx ⎧+=⎪⎨⎪=+⎩,得22(34)690k x kx ++-=, 222(6)36(34)1441440k k k ∆=++=+>设()()1122A x y B x y ,,,,则121222693434k x x x x k k --+==++,.. 由对称性知,若定点存在,则直线BM 与直线AN 交于y 轴上的定点,由114y y x x y ⎧=⎪⎨⎪=⎩得1144x M y ⎛⎫ ⎪⎝⎭,,则直线BM 方程为211121444()4y x y x x y x y --=--, 令0x =,则 122114(4)44x y y x y x -=+-()()112211414114x x kx x kx x ⎡⎤-+=+⎢⎥+-⎢⎥⎣⎦112211234(1)4x kx x x x kx x -=+-+2121124()4x x x x kx x -=-+又12123()2x x kx x +=, 则21212112214()4()83554()()22x x x x y x x x x x x --===-++-,所以,直线BM 过定点(0,85),同理直线AN 也过定点8(0,)5.则点(0,85)即为所求点.14.(2022·全国·模拟预测)设椭圆()222:10416x y C b b+=<<的右焦点为F ,左顶点为A .M 是C 上异于A的动点,过F 且与直线AM 平行的直线与C 交于P ,Q 两点(Q 在x 轴下方),且当M 为椭圆的下顶点时,2AM FQ =.(1)求椭圆C 的标准方程;(2)设点S ,T 满足PS SQ =,FS ST =,证明:平面上存在两个定点,使得T 到这两定点距离之和为定值. 【答案】(1)22116x = (2)证明见解析 【解析】 【分析】(1)由向量的坐标运算用,b c 表示出Q 点坐标,代入椭圆方程求得参数b ,得椭圆方程; (2)设(), 0F c ,直线PQ 的斜率不为0,设其方程为 x m y c =+,设1122(,),(,)P x y Q x y .直线方程代入椭圆方程应用韦达定理得12y y +,利用向量相等的坐标表示求得T 点坐标,得出T 点坐标满足一个椭圆方程,然后再由椭圆定义得两定点坐标. (1)当M 为椭圆的下顶点时,(4,)AM b =-,则12,22b FQ AM ⎛⎫==- ⎪⎝⎭. 设C 的焦距为2c ,则2,2b Q c ⎛⎫+- ⎪⎝⎭,即2,2b Q ⎫-⎪⎭.因为Q 在C上,故)2211164+=,解得()22162b =-=则椭圆C的标准方程为22116x =. (2)设(), 0F c ,直线PQ 的斜率不为0,设其方程为 x m y c =+,设1122(,),(,)P x y Q x y .联立直线PQ 和C 的方程,消x得()22220y +-.12y y +=1212()2x x m y y c +=++= 由PS SQ =得S 为弦PQ的中点,故S ⎛.由FS ST =得S 是线段FT的中点,故T .设T 的坐标为(), x y,则x c =,y c =,故2211x y c c ⎛⎫⎫=== ⎪⎪⎝⎭⎝⎭,即2221x c =, 这表明T 在中心为原点,(,0)c ±为长轴端点,0,⎛⎫ ⎪ ⎪⎝⎭为短轴端点的椭圆上运动,故T到两焦点,0⎛⎫ ⎪ ⎪⎝⎭的距离之和为定值.代入得两焦点坐标为(()4,0±-.综上所述,平面上存在两定点()4-,()4-+,使得T 到这两定点距离之和为定值.15.(2022·上海交大附中模拟预测)已知椭圆221214x y F F Γ+=:,,是左、右焦点.设M 是直线()2l x t t =>:上的一个动点,连结1MF ,交椭圆Γ于()0N N y ≥.直线l 与x 轴的交点为P ,且M 不与P 重合.(1)若M 的坐标为58⎫⎪⎪⎝⎭,,求四边形2PMNF 的面积; (2)若PN 与椭圆Γ相切于N 且1214NF NF ⋅=,求2tan PNF ∠的值; (3)作N 关于原点的对称点N ',是否存在直线2F N ,使得1F N '上的任一点到2F N求出直线2F N 的方程和N 的坐标,若不存在,请说明理由. 【答案】(3)存在;y x =;126N ⎫⎪⎪⎝⎭【解析】 【分析】(1)根据点斜式方程可得1:MF l y x =,再联立椭圆方程得到12N ⎫⎪⎭,再根据2112PMNF PF M NF F S S S =-△△求解即可;(2)设:()PN l y k x t =-,根据相切可知,直线与椭圆方程联立后判别式为0,得到2214k t =-,再根据1214NF NF ⋅=,化简可得t =12N ⎫⎪⎭,再根据直角三角形中的关系求解2tan PNF ∠的值即可;(3)设()00,N x y ,表达出2NF l,再根据22O NF d -=列式化简可得2148k =,结合k =程即可求得N 和直线2F N 的方程 (1)由题意,()1F,故15MF k ==,所以1:MF l y x =与椭圆方程联立2214x y y x ⎧+=⎪⎪⎨⎪=⎪⎩,可得:213450x +-=,即(130x x +=,又由题意N x >,故解得x =12N ⎫⎪⎭,故121122NF F S =⋅=△且11528PF M S ==△则2112PMNF PF M NF F S S S =-=△△(2)由于直线PN 的斜率必存在,则设:()PN l y k x t =-与椭圆方程联立2214()x y y k x t ⎧+=⎪⎨⎪=-⎩,可得:()22222148440k x k tx k t +-+-=由相切,()22216140k k t∆=+-=,则2214kt =-同时有韦达定理21228214N k t x x x k +==+,代入2214k t =-有2244414Nt t x t -=+-,化简得4N x t =,故2222414N Nx t y t-=-=而222122122134N Nt NF NF x y t -⋅=+-==,解得2t =>则12N ⎫⎪⎭,所以2NF x ⊥轴,故在直角三角形2PNF中,2223tan 12PF PNF NF ∠===(3)由于N 与N ',1F 与2F 是两组关于原点的对称点,由对称性知 四边形12F NF N '是平行四边形,则2NF 与1N F '是平行的, 故1F N '上的任一点到2F N 的距离均为两条平行线间的距离d .设()00,N x y,其中0(x ∈,易验证,当0x 时,2NF 与1N F '之间的距离为k =2(:NF y l k x =,即0kx y -=,发现当0x22O NF d d -==221914k k =+,整理得2148k =代入k =(220048y x =,代入220014x y =-整理得20013450x --=,即(00130x x -=由于0(x ∈,所以0x =126N ⎫⎪⎪⎝⎭,故1k =, 则2F N l的直线方程为y x =16.(2022·全国·模拟预测(理))已知椭圆C :()222210x y a b a b +=>>的右顶点为A ,上顶点为B ,直线AB的斜率为O 到直线AB(1)求C 的方程;(2)直线l 交C 于M ,N 两点,90MBN ∠=︒,证明:l 恒过定点.【答案】(1)22143x y +=(2)证明见解析【解析】 【分析】(1)题意得(,0),(0,)A a B b ,根据AB斜率,可得b a =AB 的方程,根据点到直线距离公式,可求得a 值,进而可得b 值,即可得答案.(2)分析得直线l 的斜率存在,设1122,(,),(,)y kx m M x y N x y =+,与椭圆联立,可得关于x 的一元二次方程,根据韦达定理,可得1212,x x x x +表达式,进而可得12y y 、12y y +的表达式,根据90MBN ∠=︒,可得0MB NB ⋅=,根据数量积公式,化简计算,可得m 值,分析即可得证(1)由题意得(,0),(0,)A a B b , 所以直线AB的斜率为b a =-b a = 又直线AB的方程为)y x a =-20y +=, 所以原点O 到直线AB的距离d ==,解得2a =,所以b =22143x y +=.(2)由椭圆的对称性可得,直线l 的斜率一定存在,设直线l 的方程为1122,(,),(,)y kx m M x y N x y =+,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 可得222(34)84120k x kmx m +++-=, 所以21212228412,3434km m x x x x k k --+==++, 所以22221212122312()34m k y y k x x km x x m k -=+++=+,121226()234m y y k x x m k +=++=+, 因为90MBN ∠=︒,所以MB BN ⊥,因为B,所以1122(,3),()MB x yNB x y =--=-,所以22212121222241263123)30343434m m m k MB NB x x y y y y k k k --⋅=+++=++=+++, 整理得2730m --=,解得m =或7m =-,因为B ,所以m舍去, 所以直线l 的方程为y kx =0,⎛ ⎝⎭,得证17.(2022·全国·模拟预测(理))已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,1A ,2A 分别为左、右顶点,1B ,2B 分别为上、下顶点.若四边形1122B F B F212F F ,212B B ,212A A 成等差数列.(1)求椭圆C 的标准方程;(2)过椭圆外一点P (P 不在坐标轴上)连接1PA ,2PA ,分别与椭圆C 交于M ,N 两点,直线MN 交x 轴于点Q .试问:P ,Q 两点横坐标之积是否为定值?若为定值,求出定值;若不是,说明理由. 【答案】(1)22132x y +=;(2)32P Q x x =为定值,理由见解析. 【解析】 【分析】(1)应用菱形面积公式、等差中项的性质及椭圆参数关系求椭圆参数,写出椭圆标准方程.(2)由题意分析知1PA ,2PA 所在直线斜率均存在且不为0、斜率和差均不为0,设直线1PA ,2PA 联立椭圆求M ,N 的坐标及P 点横坐标,应用点斜式写出直线MN ,令0y =求Q 横坐标,即可得结论. (1)由题设知:2222222844bc b a c a b c ⎧=⎪⎪=+⎨⎪=+⎪⎩,可得22321a b ⎧=⎪⎨⎪=⎩, 所以椭圆标准方程为22132x y +=. (2)由题意,1PA ,2PA 所在直线斜率均存在且不为0、斜率和差均不为0,设1PA为(y k x =,联立椭圆方程整理得:22229(23)302k k x x +++-=,所以1M A x x +=1A x =M x == 设2PA为(y m x =,联立椭圆方程整理得:22229(23)302m m x x +-+-=,所以2N A x x +=2A x =N x ==所以M y k =⋅=Ny m =⋅=, 联立直线1PA 、2PA可得:P x =,直线MN为2()[23m k y x km +=⋅-,令0y =,则Q x =,所以32P Q x x ==为定值.18.(2022·山西·太原五中二模(文))已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别与椭圆交于A B 、和C D 、,记得到的平行四边形ACBD 的面积为S .(1)设()()1122,,,A x y C x y ,用A C 、的坐标表示点C 到直线1l 的距离,并证明12212S x y x y =-; (2)请从①①两个问题中任选一个作答 ①设1l 与2l 的斜率之积12-,求面积S 的值.①设1l 与2l 的斜率之积为m .求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变. 【答案】(1)(2)见解析 【解析】 【分析】(1)讨论10x ≠和10x =,分别写出直线1l 的方程,由距离公式即可求得点C 到直线1l 的距离,由面积公式即可证明12212S x y x y =-;(2)若选①,设出直线1l 和2l 的方程,联立椭圆求出A C 、的坐标,结合(1)中面积公式求解即可;若选①,设出直线1l 和2l 的方程,联立椭圆求出A C 、的坐标,结合(1)中面积公式得到S 的表达式,平方整理,由含42,k k 的项系数为0即可求解. (1)当10x ≠时,直线1l 的方程为:11y y x x =,则点C 到直线1l的距离为d ==当10x =时,直线1l 的方程为:0x =,则点C 到直线1l 的距离为2d x =,也满足d则点C 到直线1l2AB AO ==则1212112222S AB d x y x x x y y y =⋅==--=;(2)若选①,设1122121:,:,2l y k x l y k x k k ===-,设()()1122,,,A x y C x y ,直线1l 与椭圆联立12221y k x x y =⎧⎨+=⎩可得()221121k x+=,同理直线2l 与椭圆联立可得()222121k x +=,不妨令120,0x x >>,则11x y =,22x y ===,则12212S x y x y ==-== 若选①,设12:,:m l y kx l y x k ==,设()()1122,,,A x y C x y ,直线1l 与椭圆联立2221y kx x y =⎧⎨+=⎩可得()22121k x +=,则212112x k =+,同理可得2222221212k x k m m k ==+⎛⎫+ ⎪⎝⎭,则1221121221222m m x x x kx k x k S y x x k x y =-=-=-⋅⋅⋅1222m m k x x k k k ==-=-⋅,两边平方整理得()24222222224(48)240Sk S S m m k m S m -++++-=,由面积S 与k 无关,可得2222240480S S S m m ⎧-=⎨++=⎩,解得12S m ⎧=⎪⎨=-⎪⎩,故12m =-时,无论1l 与2l 如何变动,面积S 保持不变.19.(2022·福建·厦门一中模拟预测)已知A ,B 分别是椭圆2222:1(0)x y C a b a b +=>>的右顶点和上顶点,||AB =AB 的斜率为12-.(1)求椭圆的方程;(2)直线//l AB ,与x ,y 轴分别交于点M ,N ,与椭圆相交于点C ,D .证明: (i )OCM 的面积等于ODN △的面积;(ii )22||||CM MD +为定值.【答案】(1)2214x y +=(2)(i )证明见解析;(ii )证明见解析 【解析】【分析】(1)根据(,0)A a ,(0,)B b,由||AB =AB 的斜率为12-求解;(2)设直线l 的方程为12y x m =-+,得到(2,0)M m ,(0,)N m ,与椭圆方程联立,根据11|2|||2=OCM S m y ,21||||2=ODN S m x ,2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+利用韦达定理求解. (1) 解:A 、B 是椭圆22221(0)x y a b a b+=>>的两个顶点,且||AB =AB 的斜率为12-,由(,0)A a ,(0,)B b,得||AB == 又0102b b k a a -==-=--,解得2a =,1b =, ∴椭圆的方程为2214x y +=; (2)设直线l 的方程为12y x m =-+,则(2,0)M m ,(0,)N m ,联立方程221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y ,整理得222220x mx m -+-=.22248(4)3240m m m ∆=--=->, 得28m <设1(C x ,1)y ,2(D x ,2)y . 122x x m ∴+=,21222x x m =-.所以11|2|||2=OCM S m y ,21||||2=ODN S m x 则有112222|2||2|||1||||||-====OCMODNS y m x x Sx x x OCM ∴的面积等于ODN 的面积;2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+,2222221112221144()44()22x mx m x m x mx m x m =-++-++-++-+,()()221212125551042x x x x m x x m =+--++, ()2222552210102m m m m =---+5=. 20.(2022·北京市第十二中学三模)已知椭圆2222:1(0)x y M a b a b +=>>过点(2,0)A(1)求椭圆M 的方程;(2)已知直线(3)y k x =+在x 轴上方交椭圆M 于B ,C (异于点A )两个不同的点,直线AB ,AC 分别与y 轴交于点P 、Q ,O 为坐标原点,求()k OP OQ +的值.【答案】(1)22142x y +=(2)45【解析】 【分析】(1)直接由A 点坐标及离心率求得椭圆方程即可;(2)联立直线与椭圆求得2212122212184,2121k k x x x x k k --+==++,再表示出直线AB ,AC 的方程,求得P 、Q 坐标,再计算()k OP OQ +即可. (1)由题意知:2,c a a ==c =2222b a c =-=,则椭圆M 的方程为22142x y +=;(2)联立直线与椭圆22(3)142y k x x y =+⎧⎪⎨+=⎪⎩,整理得()222221121840k x k x k +++-=,()()422214442118440160k k k k ∆=-+-=-+>,即k <<(3)y k x =+在x 轴上方交椭圆M 于B ,C (异于点A)两点,则0k << 设1122(,),(,)B x y C x y ,则1222,22x x -<<-<<,2212122212184,2121k k x x x x k k --+==++,1122(3),(3)y k x y k x =+=+, 易得直线AB ,AC 斜率必然存在,则11:(2)2y AB y x x =--,令0x =,得11202y y x =>-,则112(0,)2y P x -,同理可得222(0,)2y Q x -,且22202y x >-, 则()()()()()112121212223222222()(32)22k x x y y x x x k x k x OP x OQ k k -++⎛⎫+==⋅ ⎪⎝⎭+-+----222212122212122218412422442()242121184122()4242121k k k k k kx x k x x k k k k k k k x x x x k k ---⋅-⋅+--++++=⋅=⋅---++-⋅+++45=.。
圆锥曲线专题(定值)
2、直接法解题步骤
第一步设变量:选择适的量当变量,一般情况先设出直线的方程:y=kx+b或x=my+n、点的坐标;
第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;
(三) 常见条件转化
1、对边平行:斜率相等,或向量平行;
2、两边垂直:斜率乘积为-1,或向量数量积为0;
3、两角相等:斜率成相反数或相等或利用角平分线性质;
4、直角三角形中线性质:两点的距离公式
5、点与圆的位置关系:(1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数.
第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数.
(二) 常见定值问题的处理方法
1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;
2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;
3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.
(四) 常用的弦长公式:
(1) 若直线AB的方程设为y=kx+b,A(x1,y1),B(x2,y2),则
|AB|=sqrt(1+k^(2))⋅|x1−x2|=sqrt(1+k^(2))⋅sqrt((x1+x2)^(2)−4x1x2)=sqrt(1+k^(2))⋅(sqrt(Δ))/(|a|)
圆锥曲线中定点定值问题
定点、定值问题一、定点问题:题型一:三大圆锥曲线中的顶点直角三角形斜边所在的直线过定点例题1:抛物线22(0),.y px p A B =>在抛物线上,OA OB ⊥,求证:直线AB 过定点。
例题2:椭圆223412,x y +=直线:l y kx m =+与椭圆交于,A B 两点,且以AB 为直径的圆过椭圆的右顶点。
求证:直线l 过定点,并求出定点的坐标。
2(,0)7例题3:已知焦点在x 轴上的椭圆过点(0,1),求离心率为2,Q 为椭圆的左顶点, (1) 求椭圆的标准方程;(2) 若过点6(,0)5-的直线l 与椭圆交于,A B 两点。
(i ) 若直线l 垂直x 轴,求AQB ∠的大小; (ii ) 若直线l 不垂直x 轴,是否存在直线l 使得AQB ∆为等腰三角形?如果存在,求出l的方程;如果不存在,请说明理由。
例题4:已知定点(1,0),(2,0)A F -,定直线1:2l x =不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍,设P 点的轨迹为E ,过点F 的直线交E 于,B C 两点,直线,AB AC 分别交l 于点,M N 。
(1) 求E 的方程;(2) 试判断以MN 为直径的圆是否过点F ,并说明理由。
变式训练:抛物线22(0),..y px p A B =>在抛物线上运动,00(,)P x y 是抛物线上的定点,直线,PA PB 的斜率之积为定值0m ≠求证:直线AB 过定点,并求出此定点。
题型二:三大圆锥曲线中,若过焦点的弦为AB ,则焦点所在的轴上存在唯一的定点N ,使得NA NB ∙为定值。
例题1:已知椭圆22221x y a b +=(0)a b >>的右焦点为(1,0)F 且点(-在椭圆上。
(1)求椭圆的标准方程;(2)已知动直线l 过点F 与椭圆交于,A B 两点,试问x 轴上是否存在定点Q ,使得716QA QB ∙=-恒成立?如果存在,求出Q 的坐标;如果不存在,请说明理由。
圆锥曲线专题(定点、定值问题)
圆锥曲线专题——定点、定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型【例题】已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。
2024高考数学常考题型 圆锥曲线中定点定值定直线问题(解析版)
第23讲圆锥曲线中定点定值定直线问题【考点分析】考点一:直线过定点问题①设直线为m kx y +=,根据题目给出的条件找出m 与k 之间的关系即可②求出两点的坐标(一般含参数),再求出直线的斜率,利用点斜式写出直线的方程,再化为()()n m x k f y +-=的形式,即可求出定点。
考点二:定值问题探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.③求斜率,面积等定值问题,把斜率之和,之积,面积化为坐标之间的关系,再用韦达定理带入化简一般即可得到定值考点三:定直线问题①一般设出点的坐标,写出两条直线的方程,两直线的交点及两个直线中的y x ,相同,然后再用韦达定理带入化简即可得y x ,的关系即为定直线【题型目录】题型一:直线圆过定点问题题型二:斜率面积等定值问题题型三:定直线问题【典型例题】题型一:直线过定点问题【例1】已知点()1,1P 在椭圆()2222:10x y C a b a b+=>>上,椭圆C 的左右焦点分别为1F ,2F ,12PF F △的面(1)求椭圆C 的方程;(2)设点A ,B 在椭圆C 上,直线PA ,PB 均与圆()222:01O x y r r +=<<相切,记直线PA ,PB 的斜率分别为1k ,2k .(i )证明:121k k =;(ii )证明:直线AB 过定点.若10m k +-=,则直线():111AB y kx k k x =+-=-+,此时AB 过点P ,舍去.若330m k ++=,则直线():3333AB ykx k k x =--=--,此时AB 恒过点()3,3-,所以直线AB 过定点()3,3-.【例2】已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.【例3】已知椭圆22:1(0)C a b a b+=>>的上顶点为P ,右顶点为Q ,其中POQ △的面积为1(O 为原点),椭圆C(1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且0PA PB ⋅=,求证:直线l 过定点.【例4】已知椭圆C :221(0)x y a b a b+=>>过点()2,0A -.右焦点为F ,纵坐标为2的点M 在C 上,且AF ⊥MF .(1)求C 的方程;(2)设过A 与x 轴垂直的直线为l ,纵坐标不为0的点P 为C 上一动点,过F 作直线PA 的垂线交l 于点Q ,证明:直线PQ 过定点.【点睛】求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.【例5】已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,其左、右焦点分别为1F ,2F ,T 为椭圆C 上任意一点,12TF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知()0,1A ,过点10,2⎛⎫⎪⎝⎭的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【题型专练】1.已知椭圆()2222:10x y C a b a b+=>>的短轴长为A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.2.已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且过点()3,1A .(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM AN ⊥.证明:直线MN 过定点,并求出该定点坐标.3.已知椭圆22:1(0)x y E a b a b+=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的两个端点恰好为正方形的四个顶点,点2P ⎛ ⎝⎭在E 上.(1)求E 的方程;(2)过点2F 作互相垂直且与x 轴均不重合的两条直线分别交E 于点A ,B 和C ,D ,若M ,N 分别是弦AB ,CD 的中点,证明:直线MN 过定点.4.焦距为2c 的椭圆2222:1x y a bΓ+=(a >b >0),如果满足“2b =a +c ”,则称此椭圆为“等差椭圆”.(1)如果椭圆2222:1x y a b Γ+=(a >b >0)是“等差椭圆”,求b a的值;(2)对于焦距为12的“等差椭圆”,点A 为椭圆短轴的上顶点,P 为椭圆上异于A 点的任一点,Q 为P 关于原点O 的对称点(Q 也异于A ),直线AP 、AQ 分别与x 轴交于M 、N 两点,判断以线段MN 为直径的圆是否过定点?说明理由.题型二:斜率面积等定值问题【例1】动点M 与定点(1,0)A 的距离和M 到定直线4x =的距离之比是常数12.(1)求动点M 的轨迹G 的方程;(2)经过定点(2,1)M -的直线l 交曲线G 于A ,B 两点,设(2,0)P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +恒为定值.【例2】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点()0,1Q x 在椭圆上且位于第一象限,12QF F 121QFQF ⋅=-.(1)求椭圆C 的标准方程;(2)若M ,N 是椭圆C 上异于点Q 的两动点,记QM ,QN 的倾斜角分别为α,β,当αβπ+=时,试问直线MN 的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.【例3】已知点()2,1P -在椭圆2222:1(0)x yC a b a b +=>>上,C的长轴长为:l y kx m =+与C 交于,A B 两点,直线,PA PB 的斜率之积为14.(1)求证:k 为定值;(2)若直线l 与x 轴交于点Q ,求22||QA QB +的值.【例4】已知椭圆()22:10x y C a b a b+=>>的离心率23e =,且椭圆C 的右顶点与抛物线212y x =的焦点重合.(1)求椭圆C 的方程.(2)若椭圆C 的左、右顶点分别为12,A A ,直线():1l y k x =-与椭圆C 交于E ,D 两点,且点E 的纵坐标大于0,直线12,A E A D 与y 轴分别交于()()0,,0,P Q P y Q y 两点,问:P Qy y 的值是否为定值?若是,请求出该定值;若不是,请说明理由.【例5】已知椭圆()22:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.【例6】已知P 为圆22:4M x y +=上一动点,过点P 作x 轴的垂线段,PD D 为垂足,若点Q 满足DQ =.(1)求点Q 的轨迹方程;(2)设点Q 的轨迹为曲线C ,过点()1,0N -作曲线C 的两条互相垂直的弦,两条弦的中点分别为E F 、,过点N 作直线EF 的垂线,垂足为点H ,是否存在定点G ,使得GH 为定值?若存在,求出点G 的坐标;若不存在,请说明理由..【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.【例7】已知椭圆C :()222210x y a b a b+=>>的右焦点为,F P 在椭圆C 上,PF 的最大值与最小值分别是6和2.(1)求椭圆C 的标准方程.(2)若椭圆C 的左顶点为A ,过点F 的直线l 与椭圆C 交于,B D (异于点A )两点,直线,AB AD 分别与直线8x =交于,M N 两点,试问MFN ∠是否为定值?若是,求出该定值;若不是,请说明理由.【题型专练】1.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.【点睛】方法点睛:探究性问题求解的思路及策略:(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.2.已知椭圆C :()222210x y a b a b+=>>过点()2,1D ,且该椭圆长轴长是短轴长的二倍.(1)求椭圆C 的方程;(2)设点D 关于原点对称的点为A ,过点()4,0B -且斜率存在的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线4x =-于点P ,Q ,求证PBBQ为定值.3.如下图,过抛物线22(0)y px p =>上一定点000(,)(0)P x y y >,作两条直线分别交抛物线于11(,)A x y ,22(,)B x y .(1)求该抛物线上纵坐标为2p的点到其焦点F 的距离;(2)当PA 与PB 的斜率存在且倾斜角互补时,求12+y y y 的值,并证明直线AB 的斜率是非零常数.4.如图,椭圆214x y +=的左右焦点分别为1F ,2F ,点()00,P x y 是第一象限内椭圆上的一点,经过三点P ,1F ,2F 的圆与y 轴正半轴交于点()10,A y ,经过点(3,0)B 且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:011y y =.(2)试问:x 轴上是否存在不同于点B 的定点M ,满足当直线MP ,MQ 的斜率存在时,两斜率之积为定值?若存在定点M ,求出点M 的坐标及该定值;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在点4,03M ⎛⎫⎪⎝⎭,可使得直线MP 与MQ 的斜率之积为定值,该定值为920-.【分析】(1)设()00,P x y 、圆的方程222()(0)x y b r r +-=>,代入()3,0-、()00,x y 及()10,A y 可解得101y y =,即可证;(2)设(,0)(3)M m m ≠,由A ,P ,Q 三点共线AP AQ k k =得Q y ,即可表示出MP MQ k k ⋅讨论定值是否存在.【详解】(1)由2214x y +=可得()13,0F -,()23,0F 设()00,P x y ,则220044x y +=,设圆的方程为2220()(0)+-=>x y b r r ,代入()13,0F -及()00,x y ,得()2202220003b rx y b r⎧+=⎪⎨+-=⎪⎩,两式相减,得22220000000003443113222⎛⎫+--+-===- ⎪⎝⎭x y y y b y y y y ,所以圆的方程为022230+--=x y b y 即22001330x y y y y ⎛⎫++--= ⎪⎝⎭,令0x =,得2001330y y y y ⎛⎫+--= ⎪⎝⎭,由10y >,可得101y y =,即011y y =.5.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.6.已知椭圆22Γ:1a b+=()0a b >>的左焦点为()1,0F -,左、右顶点及上顶点分别记为A 、B 、C ,且1CF CB ⋅= .(1)求椭圆Γ的方程;(2)设过F 的直线PQ 交椭圆Γ于P 、Q 两点,若直线PA 、QA 与直线l :40x +=分别交于M 、N 两点,l 与x 轴的交点为K ,则MK KN ⋅是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.7.已知平面上一动点P 到()2,0F 的距离与到直线6x =的距离之比为3.(1)求动点P 的轨迹方程C ;(2)曲线C 上的两点()11,A x y ,()22,B x y ,平面上点()2,0E -,连结PE ,PF 并延长,分别交曲线C 于点A ,B ,若1PE EA λ= ,2PF FB λ=,问,12λλ+是否为定值,若是,请求出该定值,若不是,请说明理由.8.已知椭圆2:14x C y +=,过点0,2M ⎛⎫- ⎪⎝⎭直线1l ,2l 的斜率为1k ,2k ,1l 与椭圆交于()11,A x y ,()22,B x y 两点,2l 与椭圆交于()33,C x y ,()44,D x y 两点,且A ,B ,C ,D 任意两点的连线都不与坐标轴平行,直线12y =-交直线AC ,BD 于P ,Q .(1)求证:1122341234k x x k x x x x x x =++;(2)PM QM的值是否是定值,若是,求出定值;若不是,请说明理由.【答案】(1)证明见解析9.已知椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F 且离心率为12,椭圆C 的长轴长为4.(1)求椭圆C 的标准方程;(2)设,A B 分别为椭圆的左、右顶点,过点B 作x 轴的垂线1l ,D 为1l 上异于点B 的一点,以线段BD 为直径作圆E ,若过点2F 的直线2l (异于x 轴)与圆E 相切于点H ,且2l 与直线AD 相交于点,P 试判断1PF PH +是否为定值,并说明理由.))可知()()()222,0,2,0,1,0A B F F H -=,112212PF PH PF PF F H PF PF +=+-=+()()2,0,E m m ≠则()2,2,D m 圆E 的半径为则直线AD 直线方程为(2)2my x =+,的方程为1,x ty =+10.已知椭圆()22:10x y C a b a b+=>>的左顶点和上顶点分别为A 、B ,直线AB 与圆22:3O x y +=相切,切点为M ,且2AM MB =.(1)求椭圆C 的标准方程;(2)过圆O 上任意一点P 作圆O 的切线,交椭圆C 于E 、F 两点,试判断:PE PF ⋅是否为定值?若是,求出该值,并证明;若不是,请说明理由.11.已知椭圆22:1(0)x y C a b a b+=>>,左、右焦点分别为()11,0F -、()21,0F ,左、右顶点分别为,A B ,若T 为椭圆上一点,12FTF ∠的最大值为π3,点P 在直线4x =上,直线PA 与椭圆C 的另一个交点为M ,直线PB 与椭圆C 的另一个交点为N ,其中,M N 不与左右顶点重合.(1)求椭圆C 的标准方程;(2)从点A 向直线MN 作垂线,垂足为Q ,证明:存在点D ,使得DQ 为定值.题型三:定直线问题【例1】已知如图,长为宽为12的矩形ABCD,以为,A B焦点的椭圆2222:1x yMa b+=恰好过,C D两点,(1)求椭圆M的标准方程;(2)根据(1)所得椭圆M的标准方程,若AB是椭圆M的左右顶点,过点(1,0)的动直线l交椭圆M与CD两点,试探究直线AC与BD的交点是否在一定直线上,若在,请求出该直线方程,若不在,请说明理由.【例2】已知椭圆:C22221x ya b+=(0a b>>)的离心率为23,且⎭为C上一点.(1)求C的标准方程;(2)点A,B分别为C的左、右顶点,M,N为C上异于A,B的两点,直线MN不与坐标轴平行且不过坐标原点O,点M关于原点O的对称点为M',若直线AM'与直线BN相交于点P,直线OP与直线MN相交于点Q,证明:点Q位于定直线上.【例3】已知1F 为椭圆2222:1(0)x y C a b a b+=>>的左焦点,直线y =与C 交于A ,B 两点,且1ABF 的周长为4+ 2.(1)求C 的标准方程;(2)若(2,1)P 关于原点的对称点为Q ,不经过点P 且斜率为12的直线l 与C 交于点D ,E ,直线PD 与QE 交于点M ,证明:点M 在定直线上.【答案】(1)22182x y +=(2)证明见解析【分析】(1)将22y b =代入曲线C 的方程中求得||2AB a =,继而由三角形的面积公式得4ab =.再由椭圆的对称性和椭圆的定义得()22442a +=+,由此可求得C 的标准方程;(2)设()11,D x y ,()22,E x y ,直线l 的方程为12y x m =+,0m ≠,联立直线l 与椭圆C 的方程,并消去y 得222240x mx m ++-=,得出直线PD 的方程,直线QE 的方程,联立直线PD 与直线QE 的方程,求得点M 的坐标,继而求得12M M y x =-,可得证.(1)解:将22y b =代入2222:1(0)x y C a b a b +=>>中,解得22x a =±,则||2AB a =,所以1ABF 的面积为1222222ab a b ⨯⨯==,所以4ab =.①设C 的右焦点为2F ,连接2AF ,由椭圆的对称性可知12BF AF =,所以1ABF 的周长为()1112||||22AB AF BF AB AF AF a ++=++=+,所以()22442a +=+,②由①②解得22a =,2b =,所以C 的标准方程为22182x y +=.(2)解:设()11,D x y ,()22,E x y ,直线l 的方程为12y x m =+,0m ≠,联立直线l 与椭圆C 的方程,并消去y 得222240x mx m ++-=,【题型专练】1.已知椭圆C :()222210x y a b a b +=>>2H ⎛ ⎝⎭是C 上一点.(1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①1k k 为定值;②点M 在定直线上.2.已知()()1,0,1,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为6.(1)求点P 的轨迹T 的方程.(2)已知点()()()3,0,2,0,2,0N E F --,直线PN 与曲线T 的另一个公共点为Q ,直线EP 与FQ 交于点M ,试问:当点P 变化时,点M 是否恒在一条定直线上?若是,请证明;若不是,请说明理由.3.已知椭圆C :()222210x y a b a b +=>>的离心率为2,左顶点为1A ,左焦点为1F ,上顶点为1B ,下顶点为2B ,M 为C 上一动点,11M AF △1.(1)求椭圆C 的方程;(2)过()0,2P 的直线l 交椭圆C 于D ,E 两点(异于点1B ,2B ),直线1B E ,2B D 相交于点Q ,证明:点Q 在一条平行于x 轴的直线上.。
圆锥曲线中的定点、定值问题
圆锥曲线中的定点、定值问题
1、几个常见的定点模型
若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.
(1)对于椭圆()上异于右顶点的两动点,,
以为直径的圆经过右顶点,则直线过定点.
同理,当以为直径的圆过左顶点时,直线过定点.
(2)对于双曲线上异于右顶点的两动点,,以为直径的圆经过右顶点,则直线过定点.同理,对于左顶点,则定点为.
(3)对于抛物线上异于顶点的两动点,,
若,则弦所在直线过点.
同理,抛物线上异于顶点的两动点,,若,则直线过定点.
2、几个常见的定值模型
在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点(非顶点)与曲线上的两动点,满足直线与的斜率互为相反数(倾斜角互补),则直线的斜率为定值.
(1)在椭圆中:已知椭圆,定点()在椭圆上,设,是椭圆上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(2)在双曲线:中,定点()在双曲线上,设,是双曲线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(3)在抛物线:,定点()在抛物线上,设,是抛物线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
3、解题导语
解决定点、定值问题的关键是检测数学运算的能力,所以只
要细致、耐心的计算就可以得到答案。
又因为此种问题找得分点比较容易,所以千万不要放弃。
2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)
圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)3如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN 若存在,求出该定点坐标,若不存在,请说明理由.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.2双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)已知M,N是C上不同的两点,MN中点的横坐标为2,且MN的中垂线为直线l,是否存在半径为1的定圆E,使得l被圆E截得的弦长为定值,若存在,求出圆E的方程;若不存在,请说明理由.3已知双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,右顶点分别为F,A,B0,b,AF=1,点M在线段AB上,且满足BM=3MA,直线OM的斜率为1,O为坐标原点.(1)求双曲线C的方程.(2)过点F的直线l与双曲线C的右支相交于P,Q两点,在x轴上是否存在与F不同的定点E,使得EP⋅FQ=EQ⋅FP恒成立?若存在,求出点E的坐标;若不存在,请说明理由.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF =0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB ,证明点N 在定直线上,并求该定直线的方程.3已知直线l1:x-y+1=0过椭圆C:x24+y2b2=1(b>0)的左焦点,且与抛物线M:y2=2px(p>0)相切.(1)求椭圆C及抛物线M的标准方程;(2)直线l2过抛物线M的焦点且与抛物线M交于A,B两点,直线OA,OB与椭圆的过右顶点的切线交于M,N两点.判断以MN为直径的圆与椭圆C是否恒交于定点P,若存在,求出定点P的坐标;若不存在,请说明理由.4在平面直角坐标系中,已知圆心为点Q的动圆恒过点F(0,1),且与直线y=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P为直线l:y=y0y0<0上一个动点,过点P作曲线Γ的切线,切点分别为A,B,过点P作AB的垂线,垂足为H,是否存在实数y0,使点P在直线l上移动时,垂足H恒为定点?若不存在,说明理由;若存在,求出y0的值,并求定点H的坐标.5已知抛物线C :y 2=2px p >0 ,直线x +y +1=0与抛物线C 只有1个公共点.(1)求抛物线C 的方程;(2)若直线y =k x -p 2与曲线C 交于A ,B 两点,直线OA ,OB 与直线x =1分别交于M ,N 两点,试判断以MN 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.四、椭圆定值问题1已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =12,短轴长为23.(1)求椭圆C 的方程;(2)已知经过定点P 1,1 的直线l 与椭圆相交于A ,B 两点,且与直线y =-34x 相交于点Q ,如果AQ =λAP ,QB =μPB ,那么λ+μ是否为定值?若是,请求出具体数值;若不是,请说明理由.2在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,其所有外切矩形的顶点在一个定圆Γ:x 2+y 2=a 2+b 2上,称此圆为椭圆的蒙日圆.椭圆C 过P 1,22,Q -62,12 .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若k OM ,k ON 存在,证明:k OM ⋅k ON 为定值.3已知O 为坐标原点,定点F 1-1,0 ,F 21,0 ,圆O :x 2+y 2=2,M 是圆内或圆上一动点,圆O 与以线段F 2M 为直径的圆O 1内切.(1)求动点M 的轨迹方程;(2)设M 的轨迹为曲线E ,若直线l 与曲线E 相切,过点F 2作直线l 的垂线,垂足为N ,证明:ON 为定值.4设椭圆E :x 2a 2+y 2b2=1a >b >0 过点M 2,1 ,且左焦点为F 1-2,0 .(1)求椭圆E 的方程;(2)△ABC 内接于椭圆E ,过点P 4,1 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD =AQ PD ,证明:△PBC 面积为定值,并求出该定值.5椭圆C :x 2a 2+y 2b2=1的右焦点为F (1,0),离心率为12.(1)求椭圆C 的方程;(2)过F 且斜率为1的直线交椭圆于M ,N 两点,P 是直线x =4上任意一点.求证:直线PM ,PF ,PN 的斜率成等差数列.五、双曲线定值问题1在平面直角坐标系xOy中,圆F1:x+22+y2=4,F22,0,P是圆F1上的一个动点,线段PF2的垂直平分线l与直线PF1交于点M.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点F2作与x轴不垂直的任意直线交曲线C于A,B两点,线段AB的垂直平分线交x轴于点H,求证:ABF2H为定值.2已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1k2是定值吗?证明你的结论.3已知P 是圆C :(x +2)2+y 2=12上一动点,定点M (2,0),线段PM 的垂直平分线n 与直线PC 交于点T ,记点T 的轨迹为C .(1)求C 的方程;(2)若直线l 与曲线C 恰有一个共点,且l 与直线l 1:y =33x ,l 2:y =-33x 分别交于A 、B 两点,△OAB 的面积是否为定值?若是,求出该定值,若不是,请说明理由.4已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±34x ,焦距为10,A 1,A 2为其左右顶点.(1)求C 的方程;(2)设点P 是直线l :x =2上的任意一点,直线PA 1、PA 2分别交双曲线C 于点M 、N ,A 2Q ⊥MN ,垂足为Q ,求证:存在定点R ,使得QR 是定值.5已知F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,点P2,26在C上,且双曲线C的渐近线与圆x2+y2-6y+8=0相切.(1)求双曲线C的方程;(2)若过点F2且斜率为k的直线l交双曲线C的右支于A,B两点,Q为x轴上一点,满足QA=QB,试问AF1+BF1-4QF2是否为定值?若是,求出该定值;若不是,请说明理由.六、抛物线定值问题1已知抛物线C:x2=2py(p>0)的焦点为F,准线为l,过点F且倾斜角为π6的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交x轴于点D,MD=43.(1)求p的值.(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=π2,点F到直线PQ与到直线l1的距离之比是否为定值?若是,求出此定值;若不是,请说明理由.2已知抛物线C1:y2=2px p>0到焦点的距离为3.上一点Q1,a(1)求a,p的值;(2)设P为直线x=-1上除-1,-3两点外的任意一点,过P作圆C2:x-2,-1,32+y2=3的两条切线,分别与曲线C1相交于点A,B和C,D,试判断A,B,C,D四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.3已知点F是抛物线C:y2=2px p>0的焦点,纵坐标为2的点N在C上,以F为圆心、NF为半径的圆交y轴于D,E,DE=23.(1)求抛物线C的方程;(2)过-1,0作直线l与抛物线C交于A,B,求k NA+k NB的值.4贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线Γ:x 2=2py ,其中p >0为一给定的实数.(1)写出抛物线Γ的焦点坐标及准线方程;(2)若直线l :y =kx -2pk +2p 与抛物线只有一个公共点,求实数k 的值;(3)如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:|AD ||DE |=|EF ||FC |=|DB ||BF |.5已知点A 为直线l :x +1=0上的动点,过点A 作射线AP (点P 位于直线l 的右侧)使得AP ⊥l ,F 1,0 ,设线段AF 的中点为B ,设直线PB 与x 轴的交点为T ,PF =TF .(1)求动点P 的轨迹C 的方程.(2)设过点Q 0,2 的两条射线分别与曲线C 交于点M ,N ,设直线QM ,QN 的斜率分别为k 1,k 2,若1k 1+1k 2=2,请判断直线MN 的斜率是否为定值以及其是否过定点,若斜率为定值,请计算出定值;若过定点,请计算出定点.七、椭圆定直线问题1椭圆E的方程为x24+y28=1,左、右顶点分别为A-2,0,B2,0,点P为椭圆E上的点,且在第一象限,直线l过点P(1)若直线l分别交x,y轴于C,D两点,若PD=2,求PC的长;(2)若直线l过点-1,0,且交椭圆E于另一点Q(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,说明理由.2已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是椭圆,求m的取值范围.(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线l:y=kx+4与曲线C交于不同的两点M,N.设直线AN与直线BM相交于点G.试问点G是否在定直线上?若是,求出该直线方程;若不是,说明理由.3已知椭圆C :x 2a 2+y 2b2=1a >0,b >0 过点M 263,63 ,且离心率为22.(1)求椭圆C 的标准方程;(2)若直线l :y =x +m 与椭圆C 交y 轴右侧于不同的两点A ,B ,试问:△MAB 的内心是否在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点Q 1,32 ,且离心率为12.(1)求椭圆C 的方程;(2)过点P 1,2 的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足AP ⋅MB =AM ⋅PB ,证明:点M 总在某定直线上.5椭圆E的中心为坐标原点,坐标轴为对称轴,左、右顶点分别为A-2,0,B2,0,点1,6在椭圆E上.(1)求椭圆E的方程.(2)过点-1,0的直线l与椭圆E交于P,Q两点(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,请说明理由.八、双曲线定直线问题1如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x24-y2b2=1b>0的左、右焦点分别为F1、F2,从F2发出的光线经过图2中的A、B两点反射后,分别经过点C和D,且tan∠CAB=-34,AB⊥BD.(1)求双曲线E的方程;(2)设A1、A2为双曲线E实轴的左、右顶点,若过P4,0的直线l与双曲线C交于M、N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.2已知曲线C上的动点P满足|PF1|-|PF2|=2,且F1-2,0,F22,0.(1)求C的方程;(2)若直线AB与C交于A、B两点,过A、B分别做C的切线,两切线交于点P .在以下两个条件①②中选择一个条件,证明另外一个条件成立.①直线AB经过定点M4,0;②点P 在定直线x=14上.3已知点(2,3)在双曲线C:x2a2-y2a2+2=1上.(1)双曲线上动点Q处的切线交C的两条渐近线于A,B两点,其中O为坐标原点,求证:△AOB的面积S 是定值;(2)已知点P12,1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,证明:点H恒在一条定直线上.4已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 经过点D 4,3 ,直线l 1、l 2分别是双曲线C 的渐近线,过D 分别作l 1和l 2的平行线l 1和l 2,直线l 1交x 轴于点M ,直线l 2交y 轴于点N ,且OM ⋅ON =23(O 是坐标原点)(1)求双曲线C 的方程;(2)设A 1、A 2分别是双曲线C 的左、右顶点,过右焦点F 的直线交双曲线C 于P 、Q 两个不同点,直线A 1P 与A 2Q 相交于点G ,证明:点G 在定直线上.5已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,过点E 1,0 的直线l 与C 左右两支分别交于M ,N 两个不同的点(异于顶点).(1)若点P 为线段MN 的中点,求直线OP 与直线MN 斜率之积(O 为坐标原点);(2)若A ,B 为双曲线的左右顶点,且AB =4,试判断直线AN 与直线BM 的交点G 是否在定直线上,若是,求出该定直线,若不是,请说明理由九、抛物线定直线问题1过抛物线x 2=2py (p >0)内部一点P m ,n 作任意两条直线AB ,CD ,如图所示,连接AC ,BD 延长交于点Q ,当P 为焦点并且AB ⊥CD 时,四边形ACBD 面积的最小值为32(1)求抛物线的方程;(2)若点P 1,1 ,证明Q 在定直线上运动,并求出定直线方程.2已知抛物线E :y 2=2px p >0 ,过点-1,0 的两条直线l 1、l 2分别交E 于A 、B 两点和C 、D 两点.当l 1的斜率为12时,AB =210.(1)求E 的标准方程;(2)设G 为直线AD 与BC 的交点,证明:点G 在定直线上.3已知抛物线C 1:x 2=2py (p >0)和圆C 2:x +1 2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切.(1)求p 的值:(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN =MA +MB,求证:点N 在定直线上,并求该定直线的方程.4已知拋物线x 2=4y ,P 为拋物线外一点,过P 点作抛物线的切线交抛物线于A ,B 两点,交x 轴于M ,N 两点.(1)若P -1,-2 ,设△OAB 的面积为S 1,△PMN 的面积为S 2,求S 1S 2的值;(2)若P x 0,y 0 ,求证:△PMN 的垂心H 在定直线上.5已知F为抛物线C:x2=2py(p>0)的焦点,直线l:y=2x+1与C交于A,B两点且|AF|+|BF|= 20.(1)求C的方程.(2)若直线m:y=2x+t(t≠1)与C交于M,N两点,且AM与BN相交于点T,证明:点T在定直线上.圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,。
圆锥曲线专题(定点、定值问题)
圆锥曲线专题——定点、定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型【例题】已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三二轮——圆锥曲线中的“定值”问题
概念与用法
圆锥曲线中的定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点.解决这个难点的基本思想是函数思想,可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系等不受变量所影响的一个值,就是要求的定值.具体地说,就是将要证明或要求解的量表示为某个合适变量的函数,化简消去变量即得定值.
基本解题数学思想与方法
在圆锥曲线中,某些几何量在特定的关系结构中,不受相关变元的制约而恒定不变,则称该变量具有定值特征.
解答此类问题的基本策略有以下两种:
1、把相关几何量的变元特殊化,在特例中求出几何量的定值,再证明结论与特定状态无关.
2、把相关几何量用曲线系里的参变量表示,再证明结论与求参数无关.
题型示例
一.证明某一代数式为定值:
1、如图,M 是抛物线上y 2
=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB. 若M 为定点,证明:直线EF 的斜率为定值;
解:设M (y 2
0,y 0),直线ME 的斜率为k(l>0),直线MF 的斜率为-k ,
直线ME 方程为2
00().y y k x y -=-
∴由2
002()y y k x y y x
⎧-=-⎪⎨=⎪⎩,消2
00(1)0x ky y y ky -+-=得
解得2
0021(1),F F ky ky y x k k --=∴=;同理()2
2
1,1k
ky x k ky y F F οο+=-+= ∴00220000
2
22
112
14(1)(1)2E F EF
E F ky ky y y k k k k ky ky ky x x y k k k -+-
--===
=---+--(定值) 所以直线EF 的斜率为定值 ▲利用消元法
2、已知抛物线x 2
=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、
B 两点分别作抛物线的切线,设其交点为M .证明FM →·AB →
为定值
解:由已知条件,得F (0,1),λ>0.设A (x 1,y 1),B (x 2,y 2).由AF →=λFB →,
即得 (-x 1,1-y )=λ(x 2,y 2-1),所以
⎩
⎪⎨⎪⎧-x 1=λx 2 ①1-y 1=λ(y 2-1) ② 将①式两边平方并把y 1=14x 12,y 2=14x 22代入得 y 1=λ2
y 2 ③
解②、③式得y 1=λ,y 2=1λ
,且有x 1x 2=-λx 22
=-4λy 2=-4,
抛物线方程为y =14x 2,求导得y ′=1
2
x .所以过抛物线上A 、B 两点的切线方程分别是
y =1
2x 1(x -x 1)+y 1,y =12x 2(x -x 2)+y 2,即y =12x 1x -14x 12,y =12x 2x -14
x 22.
解出两条切线的交点M 的坐标为(
x 1+x 22
,
x 1x 2
4
)=(
x 1+x 2
2
,-1).
所以FM →·AB →=(x 1+x 22,-2)·(x 2-x 1,y 2-y 1)=12(x 22-x 12
)-2(14x 22-14x 12)=0
所以FM →·AB →
为定值,其值为0. ▲利用不变因素
3、已知椭圆()轴轴、与直线的离心率为y x a ex y l e b a b
y a x +=>>=+:.0122
22分别交于
点为定值。
求证:
与该椭圆的一个公共点是直线,、AB
AM
l M B A 。
解:设()a B e a A ,0,0,,⎪⎭⎫ ⎝⎛-=由题意得λ。
由⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=a b y c x b y
a x a ex y 222
22,1得 ⎪⎪⎩⎪⎪⎨⎧==-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+-∴=⎪⎪⎭⎫ ⎝⎛-∴a a b e a c e a
a e a a
b e a
c AB AM a b c M λλλλ222,,,,,,即Θ,而 222221,011,e AB
AM
e e b a c -=>--=∴-=故
且λ为定值。
▲利用辅助元 解析几何中的定值问题是数学中的重要问题,求解这类问题需要综合应用解析几何和代数的相关知识与方法。
以上几种思维策率是高中数学中常用到的。
要注意体会。
二.证明动直线过定点或动点在定直线上问题
4、如图,椭圆22221x y a b
+=的两焦点1F ,2F 与短轴两端点1B ,2B 构成211B F B ∠为120o
,面
积为23 (1)求椭圆的方程; (2)若直线:l y kx m =+与椭圆相交于M 、N 两点(M 、N 不是左右顶点),且以MN 为直径
的圆过椭圆右顶点A .求证:直线l 过定点,并求出该定点的坐标.
解:易得)1(椭圆的方程为13
42
2=+y x (2) 由消去,134
2
2⎪⎩⎪
⎨⎧=++=y x m
kx y 得到y ()0,012484322
2
>∆∴=-+++与椭圆有两个交点,直线l m kmx x
k Θ,即
()()()()0341236124812443482222222>+-=+-=-+-m k m k m k km
设M ()()2211,,,y x N y x ,则有2
2212214312
4,438k
m x x k km x x +-=+-=+ 因为以MN 为直径的圆过椭圆右顶点A ,所以即,0=⋅AN AM
()
()0,2,22211
=--y x y x
,而m kx y m kx y +=+=2211, 代入并整得
()()()()
0421221
2
12
=++-+++m km x x
x x k
(
)
()()
4243843124122
222
++-+-+-+∴m km k
km
k m k
,化简整理得到 ()()k m k m k m k m k km m 7
2
2,0272,0416722-=-=∴=++∴=++或
k m k m 7
2
,2-=-=均满足判别式大于0,所以
当()()0,2,22:2此时,直线过定点时,-=-=-=x k k kx y l k m 当⎪⎭
⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=-=-
=0,72,7272:72此时,直线过定点时,x k k kx y l k m 三.探索曲线在某条件下某一代数式是否取定值
5、已知一动圆M,恒过点F (1,0),且总与直线:1l x =-相切,(Ⅰ)求动圆圆心M 的轨迹C 的方程;(Ⅱ)探究在曲线C 上,是否存在异于原点的1122(,),(,)A x y B x y 两点,当1216y y =-时,直线AB 恒过定点?若存在,求出定点坐标;若不存在,说明理由.
解:(1) 因为动圆M,过点F (1,0)且与直线:1l x =-相切,所以圆心M 到F 的距离等于到直线l 的距离。
所以,点M 的轨迹是以F 为焦点, l 为准线的抛物线,且
12
p
=,2p =
所以所求的轨迹方程为2
4y x =
(2) 假设存在A,B 在2
4y x =上,所以,直线AB 的方程:21
1121
()y y y y x x x x --=
--, 即 2
211122
21()4
44
y y y y y x y y --=--即AB 的方程为:211124()4y y y x y y -=-+, 即 22121121()4y y y y y y x y +--=-即:12()(164)0y y y x ++-=, 令0y =,得4x =,所以,无论12,y y 为何值,直线AB 过定点(4,0)。