正方体截面总结(最全-适用于公务员图形推理)

合集下载

正方体常见的结论-概述说明以及解释

正方体常见的结论-概述说明以及解释

正方体常见的结论-概述说明以及解释1.引言1.1 概述正方体是一种具有特定几何形状的立体图形,其六个面均为正方形,且六个面之间互相垂直,边长相等。

正方体在几何学中具有重要的地位,不仅在学术领域中被广泛研究和讨论,而且在工程、建筑、艺术等领域也有着广泛的应用。

在本文中,我们将深入探讨正方体的定义、特点以及应用,通过对正方体的多方面分析,展示正方体在几何学中的重要性和实用性。

同时,我们将讨论正方体在日常生活中的应用,以帮助读者更好地理解和认识这一立体图形。

通过本文的阅读,读者将能够更全面地了解正方体及其在不同领域的重要作用。

1.2 文章结构文章结构:本文将分为三个主要部分:引言、正文和结论。

在引言部分,将简要概述正方体的基本信息,介绍本文的结构和目的。

在正文部分,将详细讨论正方体的定义、特点和应用。

通过对正方体的各个方面进行分析,读者将更加全面地了解正方体的重要性和几何性质。

在结论部分,将总结正方体在几何学中的重要性,强调其在日常生活中的应用,并探讨正方体可能带来的未来发展和应用前景。

通过对正方体的全面讨论,我们希望读者能够对正方体有一个更加深入的理解。

1.3 目的:本文的目的是探讨正方体在几何学中的重要性和应用。

通过对正方体的定义、特点和应用进行分析,我们将展示正方体在几何学中的重要作用,并强调其在日常生活中的实际运用。

通过本文的阐述,读者将更深入地了解正方体的意义和应用,从而加深对几何学知识的理解和掌握。

希望读者在阅读完本文后能够对正方体有一个更全面的认识,为他们在学习和实践中提供更多的启示和帮助。

2.正文2.1 正方体的定义:正方体是一种具有六个相等的正方形面的立体几何体。

每个面都是相等的正方形,且相邻面之间的夹角均为直角。

正方体的所有边长和所有内角都是相等的,因此具有非常明显的对称性。

在三维空间中,正方体可以用六个正方形的面围成,其中每个面都与相邻面垂直。

正方体的每对相对面平行且相等,每对相邻面也平行且相等。

正方体截面总结(最全-适用于公务员图形推理)

正方体截面总结(最全-适用于公务员图形推理)

正方体截面的形状tf O结论如下:1、可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:1•正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:由图示可知,水平方向截取正方体,得到的截面为正方形由图示可知,竖直方向截取正方体,得到的截面为正方形。

2. 矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

》》》其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形。

3. 平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4. 三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:》得到: 正三棱锥5. 猜想之外的截面形状:(1)菱形:女口下图所示,f A,B为所在棱的中点时,该截面为菱形:当(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:(4 )六边形:如图所示,可以截得六边形截面:==》》》(3 )五边形:如图所示,可以截得五边形截面:通过实践及资料查询可知,无法得到正五边形。

公务员考试行测图形推理之立体图解

公务员考试行测图形推理之立体图解

巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。

同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。

十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。

对面相隔不相连,识图巧排“7”、“凹”、“田”。

现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3)(4)(5)(6),另外两个小方块在四个方块的上下两侧,共六种情况。

(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。

三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。

四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。

如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。

五、识图巧排“7”、“凹”、“田”(1) (2) (3)这里介绍的是一种排除法。

如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。

如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。

如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。

现举例说明:例1.(2004海口市实验区)下面的平面图形中,是正方体的平面展开图的是( )解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。

则过点p且与a1m垂直垂直的正方体截面

则过点p且与a1m垂直垂直的正方体截面

我们来深入探讨“正方体截面”的概念。

正方体是一种立体几何图形,具有六个面,每个面都是一个正方形,且所有边长相等。

而当我们谈论正方体的截面时,我们指的是通过正方体的一个或多个平面所得到的截面。

在本文中,我们将重点讨论通过正方体某一点p且与某一边a1m垂直的截面。

1. 正方体的性质正方体是一种特殊的立方体,具有许多独特的性质。

它具有六个面,十二条边和八个顶点。

另外,正方体的对角线长度相等,对角线相交的平面也是相等的正方形。

这些性质使得正方体成为几何学中重要的研究对象。

2. 点p与边a1m垂直的情况我们来考虑一种特殊的情况,即点p位于正方体上的某一顶点,而边a1m是与该顶点相邻的一条棱。

在这种情况下,通过点p且与边a1m 垂直的截面将会是一个正方形,其边长等于正方体的边长。

这是因为通过顶点的平面截断正方体时,会得到一个与原始正方形相对应的新的正方形截面。

3. 深入探讨正方体截面进一步地,我们可以通过数学方法来推导出通过点p且与边a1m垂直的截面的具体形状和特性。

通过使用向量和坐标几何等工具,我们可以得到正方体截面的具体方程和几何特征。

这种深入讨论可以帮助我们更好地理解正方体截面的性质和规律。

4. 个人观点与理解对于正方体截面这一主题,我个人认为通过深入研究和分析正方体的截面特性,可以帮助我们更好地理解立体几何图形的性质和规律。

正方体截面的研究也对于相关数学和工程领域具有重要意义,例如在计算机图形学、建筑设计和工程制图等领域都有着广泛的应用。

总结回顾通过本文的讨论,我们对正方体截面这一概念有了更深入的理解。

从最基本的情况出发,我们探讨了通过点p且与边a1m垂直的截面的特性,进而深入分析了其具体形状和数学表达方式。

我相信通过对正方体截面的深入研究,我们可以更好地理解立体几何图形的特性,为后续的学习和研究打下坚实的基础。

本文共计字数超过3000字,希望能够为您提供深度和广度兼具的文章撰写服务。

如果还有其他需要,欢迎随时通联我。

细说正方体的截面图形

细说正方体的截面图形

细说正方体的截面图形在实际生活中时常出现实物几何体的切面所形成的截面图形形状,在中学数学中也学习了几何体的截面图形,截面是一个平面去截一个几何体得到的平面图形或一个平面与几何体表面交线围成的封闭图形,。

截面图形更好的将平面几何与立体几何联系起来,探究具体几何体的截面图形有助于更深入的认识几何体,发展正确的空间观念。

对于一个几何体不同的切截方式所得到的截面图形可能出现不同的情况。

现具体以正方体为例来探究正方体的截面图形形状。

一个平面截正方体与各面的交线都是线段,因此正方体的截面图形都是平面图形。

正方体有六个面,用一个平面去截正方体至少要经过正方体的三个面而最多要经过六个面,所有出现的截面图形边数至少是三条而最多是六条,则只可能出现三角形、四边形、五边形、六边形。

一、截面图形是三角形用一平面去截正方体经过正方体三个面时得到的截面图形是三角形1.截面图形是锐角三角形如下图,一个平面截正方体任意三个面得到截面△EFG ,BE=a,BF=b,BG=c.可得EF=22b a +,EG=22c a +,FG=22c b +.(1)如图①,当a ≠b ≠c 时,则EG ≠FG ≠EF,即截面△EFG 是一般三角形。

(2)如图②,当a=b ≠c 时,则EG=FG ≠EF 即截面△EFG 是等腰三角形。

同理可得a=c ≠b 或b=c ≠a 时截面△EFG 是等腰三角形。

(3)如图③,当a=b=c 时EF=FG=EG 即截面△EFG 是等边三角形2.截面图形不能是直角三角形如图①,2EF =22b a +,2FG =22c b +,2EG =22c a +,则222EG FG EF +<,222EG EF FG +<,222EG FG EF +<,所以截面三角形不可能是直角三角形。

3.截面图形不可能是钝角三角形如图①,cos ∠FEG=EG EF FG EG EF ⋅-+2222=22222222222ca b a c b c a b a +⋅+--+++ =22222c a b a a +⋅+>0,则0<∠FEG< 90.同理可得0<∠EFG< 90.0<∠EGF< 90. 所有截面图形不可能是钝角三角形。

正方体的几种截面

正方体的几种截面

正方体的几种截面正方体是一种具有六个相等的正方形面的立体图形。

它的截面有多种形式,每一种截面都展现了正方体在不同方向上的特性和特点。

本文将以几种常见的正方体截面为标题,详细介绍它们的特点和应用。

一、正方形截面正方形截面是正方体最基本的截面形式。

它的特点是四条边相等且内角均为90度。

正方形截面在建筑、工程和设计领域中广泛应用。

例如,在建筑结构设计中,正方形截面的柱子能够提供较好的稳定性和承重能力,因此常用于大型建筑物的支撑结构。

二、长方形截面长方形截面是正方体的另一种常见截面形式。

它的特点是两对相等的边,且每一对边长度可以不相等。

长方形截面在工程和建筑领域中有着广泛的应用。

例如,在桥梁设计中,长方形截面的梁能够提供较好的强度和刚度,从而能够承受大量的荷载。

三、三角形截面正方体的三角形截面是指由正方体的三个顶点和与它们相连的三条边所围成的图形。

三角形截面具有较高的稳定性和刚度,因此常用于建筑中的支撑结构或桥梁中的支撑柱。

此外,三角形截面还常用于设计飞机或汽车的支撑杆,以提高结构的强度和稳定性。

四、菱形截面菱形截面是指由正方体的四个角点和与它们相连的四条边所围成的图形。

菱形截面具有较好的强度和稳定性,因此常用于建筑物的支撑结构或桥梁中的支撑柱。

此外,在船舶设计中,菱形截面的船体能够提供较好的抗风浪能力,因此被广泛应用于各类船舶的设计和制造。

五、圆形截面正方体的圆形截面是指由正方体的四个角点围成的圆形。

圆形截面具有较好的强度和稳定性,因此常用于建筑物的支撑结构或桥梁中的支撑柱。

此外,在机械工程领域中,圆形截面的轴能够提供较好的扭转刚度,因此被广泛应用于各类机械设备的设计和制造。

六、椭圆形截面椭圆形截面是指由正方体的四个角点围成的椭圆形。

椭圆形截面具有较好的强度和刚度,因此常用于建筑物的支撑结构或桥梁中的支撑柱。

此外,在电子工程中,椭圆形截面的导线能够提供较好的电流传输能力,因此被广泛应用于各类电子设备的设计和制造。

正方体截面总结

正方体截面总结

结论如下:1、可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。

====》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。

2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形。

3.平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4.三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:==》》》由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》得到:正三棱锥5.猜想之外的截面形状:(1)菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》(3)五边形:如图所示,可以截得五边形截面:=》通过实践及资料查询可知,无法得到正五边形。

(4)六边形:如图所示,可以截得六边形截面:=》特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:拓展探究:1.正方体最大面积的截面三角形 2.正方体最大面积的截面四边形3.最大面积的截面形状4.截面五边形、六边形性质1.正方体最大面积的截面三角形:如该图所示可证明,由三角面对角线构成的三角形。

正方体的截面展开图

正方体的截面展开图

正方体的截面与展开图一、正方体的截面:
二、正方体的展开图:
第一类:中间四连方,两侧各有一个,共六种, 如下图:
第二类:中间三连方,两侧各有一、两个,共三种。

如图7、8、9

图1

图2

图3

图4 前
图5

图6
第三类:中间二连方,两侧各有两个,只有一种。

如图10
第四类:两排各有三个,只有一种如图11.

图9

图8

图7

图10

图11
如何快速识别正方体的展开图:
一:“田”字、“一”字、“7”字,“凹”字不能法。

因为正方体的每个顶点处只有3条棱,故不可能有四个面相连,所以含有“田”的图形一定不是正方体的表面展开图,同样含有“一”、“7”“凹”字的图形也不是的表面展开图。

如下图:
二、标面法:
所谓标面法就是在所给的图形上结合空间想像,标出正方体的上、下、左、右、前、后。

如果标出后的图形的这6个面既完整、又不重复,那么就是正方体的表面展开图。

否则就不是。

标面时最好选定中间的正方形为定面。

“田”字
“凹”字
“一”字
“7”字。

正方体截面总结(最全-适用于公务员图形推理)

正方体截面总结(最全-适用于公务员图形推理)

正方体截面的形状.可能出现锐角三角型、等边、等腰三角形,但不可能出现直角和钝角三角形结论如下:1、可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。

====》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。

2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形。

3.平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4.三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:==》》》由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》得到:正三棱锥5.猜想之外的截面形状:(1)菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》(3)五边形:如图所示,可以截得五边形截面:=》通过实践及资料查询可知,无法得到正五边形。

正方体截面问题题型汇总

正方体截面问题题型汇总

正方体截面问题题型汇总开高 张文伟2019.11.28答案:B分析:12题除了直观解题法之外,还有另一种解法:(1)正方体的十二条棱长度相等,与平面的夹角相等,必有在平面上投影的长度相等。

(2)一个封闭的平面图形中有十二条相等的线段,必然想到正六边形的顶点与其中心的连线。

(3)所以说,投影是一个正六边形。

分析:面D1B1C与各个棱所处角相等,面A1DB与各个棱所处角相等,所以两个面与已知的平面α平行。

根据正方体的特性,体对角线AC1与两个面垂直,交点分别是M、N,且M、N是体对角线的三等分点,所以,棱与面所成角的正弦值为:三分之根号三。

向平面做投影,本质是几何体的顶点向射影面做垂线。

所以,点C1D1B1C向平面α做垂线,得到的是△D1B1C,点AA1DB向平面α做垂线,得到的是△A1DB,两个三角形重叠到一个平面,得到的就是右图,再连接端点直线,就得到一个正六边形。

由题意可得B1D1的长为根号二,所以高B1E就是二分之根号六,所以半径就是三分之根号六,即正六变形的边长是三分之根号六。

总结:1. 三条面对角线构成等边三角形所在的平面与正方体的每一个棱所成角都相等,2.正方体在体对角线垂直于投影面上的投影是一个正六面形;3.体对角线垂直于投影面,三条面对角线构成等边三角形,投影面积是这个等边三角形面积的两倍。

12.【2018全国一卷12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A B C D【答案】A【分析】最大是正六边形首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.【详解】根据相互平行的直线与平面所成的角是相等的,所以在正方体1111ABCD A B C D −中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的,同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,,所以其面积为26S ,故选A. 点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.8.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P ,Q ,R 分别为棱AA 1,BC ,C 1D 1的中点,经过P ,Q ,R 三点的平面为α,平面α被此正方体所截得截面图形的周长为A B . C D .分析:【解析】 是正六边形 11.棱长为2的正方体1111ABCD A B C D −中,E 为棱AD 中点,过点1B ,且与平面1A BE 平行的正方体的截面面积为( )A. 5B.。

福州事业单位考试:巧用“降维”方法判断立体图形截面图

福州事业单位考试:巧用“降维”方法判断立体图形截面图

巧用“降维”方法判断立体图形截面图【导读】中公事业单位为帮助各位考生顺利通过事业单位招聘考试!今天为大家带来事业单位判断推理:巧用“降维”方法判断立体图形截面图。

给出一个立体图形,和四个截面图,让考生判断哪个截面图是立体图形中不能截出的。

这类型的题目是行测考试中最常考的题目。

如何快速做出这类题型最先要掌握的就是“降维”思想。

降维思想指的就是将立体图形中展现出来的点线面,降维到二维图形的点线面中。

举个简单的例子,如果将一个正方体用一个平面去截出一个截面,这个截面肯定是一个二维图形,而构成这个截面的线,应该是位于立体图形的面上,这个截面的点,应该是位于立体图形的线(棱)上。

因此如果要给一个六面体截出一个平面,则这个平面最多有6条边。

因此,我们可以得出一个结论“不含曲面的立体图形,其截面图的边数≤立体图形的面数”。

那接着我们就来看看一个简单的立体图形:立方体和圆柱体可以截出什么样的图形呢?一、立方体可以切出的截面图1、三角形(正三角形、等边锐角三角形,不能切除直角和钝角三角形)。

2、正方形3、长方形4、平行四边形5、菱形6、梯形(可以切出等腰梯形)7、五边形(不能切出正五边形)8、六边形(可以切出正六边形)二、圆柱体可以切出的截面图1、正圆形2、椭圆形3、鼓形4、拱形5、矩形那有考生可能会说我们在考试的时候图形并没有那么简单,其实所有复杂的图形都是由简单的图形拼凑而成的,我们首先要牢记基础图形可以切出的截面图,然后根据,判断复杂的图形是由哪些基本图形拼接而成的,再在脑中将截面图做加减法就行。

接下来我们就以几道真题为例,进行讲解:例1 一正方体如下图所示切掉了上半部分的3/4。

现在从任意面剖开,下面哪一项不可能是该多面体的截面?(2015-地市)解析:这个立体图形可以看成是由两个立方体拼成的,立方体可以切出的图形有矩形、梯形、三角形。

因此我们可以发现A选项由两个梯形构成,只要截面斜着切过上面立方体的顶面一直切到地面,就可以切出A的形状,B和D选项也可以切出来。

细说正方体的截面图形

细说正方体的截面图形

细说正方体的截面图形在实际生活中时常出现实物几何体的切面所形成的截面图形形状,在中学数学中也学习了几何体的截面图形,截面是一个平面去截一个几何体得到的平面图形或一个平面与几何体表面交线围成的封闭图形,。

截面图形更好的将平面几何与立体几何联系起来,探究具体几何体的截面图形有助于更深入的认识几何体,发展正确的空间观念。

对于一个几何体不同的切截方式所得到的截面图形可能出现不同的情况。

现具体以正方体为例来探究正方体的截面图形形状。

一个平面截正方体与各面的交线都是线段,因此正方体的截面图形都是平面图形。

正方体有六个面,用一个平面去截正方体至少要经过正方体的三个面而最多要经过六个面,所有出现的截面图形边数至少是三条而最多是六条,则只可能出现三角形、四边形、五边形、六边形。

一、截面图形是三角形用一平面去截正方体经过正方体三个面时得到的截面图形是三角形1.截面图形是锐角三角形如下图,一个平面截正方体任意三个面得到截面△EFG ,BE=a,BF=b,BG=c.可得EF=22b a +,EG=22c a +,FG=22c b +.(1)如图①,当a ≠b ≠c 时,则EG ≠FG ≠EF,即截面△EFG 是一般三角形。

(2)如图②,当a=b ≠c 时,则EG=FG ≠EF 即截面△EFG 是等腰三角形。

同理可得a=c ≠b 或b=c ≠a 时截面△EFG 是等腰三角形。

(3)如图③,当a=b=c 时EF=FG=EG 即截面△EFG 是等边三角形2.截面图形不能是直角三角形如图①,2EF =22b a +,2FG =22c b +,2EG =22c a +,则222EG FG EF +<,222EG EF FG +<,222EG FG EF +<,所以截面三角形不可能是直角三角形。

3.截面图形不可能是钝角三角形如图①,cos ∠FEG=EG EF FG EG EF ⋅-+2222=22222222222ca b a c b c a b a +⋅+--+++ =22222c a b a a +⋅+>0,则0<∠FEG< 90.同理可得0<∠EFG< 90.0<∠EGF< 90. 所有截面图形不可能是钝角三角形。

正方体的截面图

正方体的截面图
5 n ,而四角不相等, 所2以此四边形为菱形。
大于四边其它的截面:
正六边形面积就比较麻烦了
五边形: 不能直接比较,所以取近似值
、菱形、梯形、等腰梯形… 大于四边之其它形状截面: 我们先设一正方体边长为n,如下图: 只要把它当成一长方体对角线 现在要讨论正方体的截面 ←这就是ABO的高啦! 所以角B就是120度啦! ,而这样就不是截面了。 条边,而正方体只有六个面,所 面积最大的四边形截面: 其他直角三角形、钝角三角形…都无法截出 只要把它当成一长方体对角线 要确定B的度数是120就 行的,此两边就会平行。 的组合,所以角B的一半为60度。 截面就跟他名字一样,就是像用刀子 直角三角形、等腰三角形、钝角三角形… 所以角B就是120度啦!
2 n: 8n: 6 n 284 4 2 :2 2 :2 6
2 2: 2: 6
2 :1 : 3
而 的组合,所以角B的一半为60度。 所以角B就是120度啦! 因此这六边形是正六边形 。
大于四边之其它形状截面:
条边,而正方体只有六六个边面,所形以上的多边形无法切出來,
虽然我们知道它每一边都是 2n
但有人想如果我这样切(下面二图) 不就可切出直角跟钝角吗 ?
O O
答案是:沒有这种切法。 因为你看看,此两图虽然两条边都在正方体 之一面上,但是有一条边是存在于正方体內 ,而这样就不是截面了。所以这是不可能出 現直角或钝角三角形。
面积最大的三角形截面:
四边形截面:
正方形:
长方形:
四边形截面:
为什么? 为什么AB会平行CD?
截面就跟他名字一样,就是像用刀子
因为正方体每个面只能有一个图 ,而这样就不是截面了。
所以角B就是120度啦! 截面就跟他名字一样,就是像用刀子

正方体的截面形状

正方体的截面形状

正方体的截面问题根据日常经验及想象,我们小组做出下列猜想:(1 )正方形(2)矩形(3)平行四边形(4)三角形2.猜想及其他可能的证明:1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到, 或者和侧面平行进行截取,由下列图示证明:》》》由图示可知,水平方向截取正方体,得到的截面为正方形。

》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。

2矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形3. 平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4. 三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形 特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》==》》》得到: 正三棱锥5. 猜想之外的截面形状:(1)菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》(3 )五边形:如图所示,可以截得五边形截面:通过实践及资料查询可知,无法得到正五边形。

(4 )六边形:如图所示,可以截得六边形截面:特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:拓展探究:1•正方体最大面积的截面三角形 2.正方体最大面积的截面四边形3.最大面积的截面形状4.截面五边形、六边形性质1. 正方体最大面积的截面三角形:如该图所示可证明由三角面对角线构成的三角形2. 正方体最大面积的截面四边形:通过猜想及查询资料可知,正方体截面可能得到的四边形有:正方形、矩形、梯形、平行四边形根据四边形的面积公式:面积=长*宽联系正方体图形:得到:当由两条平行的面对角线和两对平行棱构成的四边形的长最大,又因为在各个情况下的宽不变。

正方体截面总结(最全,适用于公务员图形推理)

正方体截面总结(最全,适用于公务员图形推理)

正方体截面的形状IIII II II 1 1 II II II II四边形:可能出现正方形、矩形、非矩形的平行四边形、菱形、梯形、等腰梯形不可能出现直角梯形y' J7 /\ /J-X z/F -\/<、H I ■亠*T〕结论如下:1可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边正方体的截面形状:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:==》》》由图示可知,水平方向截取正方体,得到的截面为正方形。

由图示可知,竖直方向截取正方体,得到的截面为正方形。

2矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下:==》》》由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形。

3. 平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4. 三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下==》》》由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:ClCl 111A,IK==》得到:正三棱锥5. 猜想之外的截面形状:(1)菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:(3)五边形:如图所示,可以截得五边形截面:通过实践及资料查询可知,无法得到正五边形。

正方体截面总结(最全,适用于公务员图形推理)

正方体截面总结(最全,适用于公务员图形推理)

M / * B结论如下:1可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、非矩形的平行四七边形或更多边正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:1•正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:由图示可知,水平方向截取正方体,得到的截面为正方形。

由图示可知,竖直方向截取正方体,得到的截面为正方形。

2矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下: 由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形。

3. 平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》》》 ==》》》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4. 三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下==》由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》得到: 正三棱锥5. 猜想之外的截面形状:(1)菱形:如下图所示,当A,B 为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:(3 )五边形:(4 )六边形:如图所示,可以截得六边形截面:==》》》如图所示,可以截得五边形截面:通过实践及资料查询可知,无法得到正五边形。

正方体截面总结(最全,适用于公务员图形推理)

正方体截面总结(最全,适用于公务员图形推理)

正方体截面的形状可能出现锐角三角型、等边、等腰三角形,但不可能出现直角和钝角三角形Λ/ Y 月/L/F■■1IZ/:⅛/ 电曲四边形:可能出现正方形、矩形、非矩形的平行四边形、菱形、梯形、等腰梯形不可能出现直角梯形结论如下:1可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:由图示可知,竖直方向截取正方体,得到的截面为正方形。

2矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。

》》》由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形3. 平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4.三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》得到: 正三棱锥5. 猜想之外的截面形状:(1 )菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》(3)五边形:如图所示,可以截得五边形截面:通过实践及资料查询可知,无法得到正五边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正方体截面的形状
可能出现锐角三角型、等
边、等腰三角形,但不可能
出现直角和钝角三角形
结论如下:1、可能出现的:
锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形
2、不可能出现:
钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形
正方体的截面形状
一:问题背景
在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?
二:研究方法
先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:
1.正方形:
因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:
====》》》
由图示可知,水平方向截取正方体,得到的截面为正方形。

====》》》
由图示可知,竖直方向截取正方体,得到的截面为正方形。

2.矩形:
因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下:
由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形。

3.平行四边形:
当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:
==》
由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4.三角形:
根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:
==》》》
由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形
特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:
==》得到:正三棱锥
5.猜想之外的截面形状:
(1)菱形:
如下图所示,当A,B为所在棱的中点时,该截面为菱形:
(2)梯形:
如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:
==》》》
(3)五边形:
如图所示,可以截得五边形截面:
=》
通过实践及资料查询可知,无法得到正五边形。

(4)六边形:
如图所示,可以截得六边形截面:
=》
特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:
拓展探究:1.正方体最大面积的截面三角形2.正方体最大面积的截面四边形3.最大面积的截面形状4.截面五边形、六边形性质
1.正方体最大面积的截面三角形:
如该图所示可证明,由三角面对角线构成的三角形。

2.正方体最大面积的截面四边形:
通过猜想及查询资料可知,正方体截面可能得到的四边形有:正方形、矩形、梯形、平行四边形。

根据四边形的面积公式:面积=长*宽
联系正方体图形:
得到:当由两条平行的面对角线和两对平行棱构成的四边形的长最大,又因为在各个情况下的宽不变。

则由猜想得到:“最大面积的截面四边形:由两条平行的面对角线和两对平行棱构成的四边形。


3.最大面积的截面形状:
正方体的截面可以分为:三角形、正方形、梯形、矩形、平行四边形、五边形、六边形、正六边形。

其中三角形还分为锐角三角型、等边、等腰三角形。

梯形分位非等腰梯形和等腰梯形。

首先比较三角形与五边形和六边形,所得这三种截面的情况有一共同特点:不能完整在该截面所在平面在正方体内所截的范围的最大值,有部分空间空出。

因此可以得到:最大面积一定是四边形。

所以最大面积的截面形状:即最大截面四边形(猜想)。

初步推断为如图所示的矩形:
4.截面五边形、六边形性质
通过课本及资料查询知:截面五边形:有两组边互相平行.截面六边形:三组对边平行的六边形.
正方体的截面图
四:结论如下:
1、可能出现的:
锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形
2、不可能出现:
钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形。

相关文档
最新文档