正交试验设计方法-Read

合集下载

正交试验设计方法(详细步骤)

正交试验设计方法(详细步骤)

正交试验设计方法(详细步骤)正交试验设计方法(详细步骤)正交试验设计(Orthogonal Experimental Design),又称为正交阵列试验设计,是一种常用的优化设计方法。

它通过选择合适的试验因素水平组合,在有限的试验次数下,高效地确定最优的工艺参数和条件,从而得到最佳的工艺方案。

本文将详细介绍正交试验设计的步骤。

第一步:确定试验目标和试验因素在进行正交试验设计之前,首先需要明确试验的目标和需要考察的因素。

试验目标可以是产品质量的提高、生产效率的提升或成本的降低等。

试验因素是指影响试验目标的各项参数或条件,例如温度、时间、压力、pH值等。

第二步:确定试验水平和设计矩阵根据实际情况和试验因素的范围,确定每个试验因素的几个水平。

一般而言,水平数不宜过多,以免增加试验次数和成本。

然后,利用正交表或正交试验设计软件生成设计矩阵。

正交表是一种特殊的齐次分数阵,能够保证各个试验因素的水平组合均匀分布,并使得试验方案具有正交性,即各个试验因素相互独立,不会产生相互影响。

第三步:进行试验并记录结果按照设计矩阵,进行实际的试验操作。

对于每个试验组合,根据试验方案进行操作,并记录相关的观测结果。

需要注意的是,试验过程应具备可重复性和可比较性,以保证结果的准确性和可靠性。

第四步:数据处理和分析试验完成后,要对试验结果进行数据处理和分析。

常见的分析方法包括方差分析、回归分析和优化分析等。

方差分析可以帮助确定各个试验因素的主效应、交互作用和误差项的大小,进而判断试验因素对试验目标的影响程度。

回归分析可以建立试验因素与试验目标之间的数学模型,进一步优化工艺参数。

优化分析可以确定各个试验因素的最优水平组合,得到最佳的工艺方案。

第五步:验证和优化在进行正交试验设计时,往往需要进行多次试验和优化,以进一步验证和确认试验结果的可靠性。

通过不断调整和优化试验方案,最终得到满足要求的工艺方案。

综上所述,正交试验设计是一种高效的优化设计方法,可以在有限的试验次数下,确定最佳的工艺参数和条件。

正交试验设计方法(详细步骤)

正交试验设计方法(详细步骤)
C2 (y2+ y4)/2 =(0.448+0.516)/2=0.482
A2
(y5+ y7)/2 =(0.472+0.554)/2=0.513 (y6+ y8)/2 =(0.480+0.552)/2=0.516
阐明:
表头设计中旳“混杂”现象(一列安排多种原因或交互作 用)
高级交互作用 ,如A×B× C,一般不考虑 r水平两原因间旳交互作用要占r-1列 ,当r>2时,不宜
(1)选正交表
要求: 原因数≤正交表列数 原因水平数与正交表相应旳水平数一致 选较小旳表
选L9(34)
(2)表头设计
将试验原因安排到所选正交表相应旳列中 因不考虑原因间旳交互作用,一种原因占有一列(能够随
机排列) 空白列(空列):最佳留有至少一种空白列
(3)明确试验方案
(4)按要求旳方案做试验,得出试验成果
(1)等水平正交表: 各原因水平数相等旳正交表 ①记号 :Ln( r m ) L——正交表代号 n——正交表横行数(试验次数) r——原因水平数 m——正交表纵列数(最多能安排旳因数个数)
②等水平正交表特点
表中任一列,不同旳数字出现旳次数相同 表中任意两列,多种同行数字对(或称水平搭配)出现旳
1 n
(
n i 1
yi )2
QP
n
设: Q yi2 i 1
n
T yi i 1
P
1 n
n
(
i 1
yi )2
T2 n
②各原因引起旳离差平方和
第j列所引起旳离差平方和 :
SS j
rr (
n i1
Ki2
)
T2 n
rr (

正交试验设计方法详细步骤

正交试验设计方法详细步骤

正交试验设计方法详细步骤正交试验设计是一种高效、科学的试验设计方法,广泛应用于各个领域,如工程、农业、医学、化学等。

它能够在有限的试验次数内,全面地考察多个因素对试验结果的影响,并找到最优的试验条件组合。

下面,我将为您详细介绍正交试验设计的具体步骤。

第一步:明确试验目的和确定考察的因素首先,要明确您进行试验的目的是什么,例如是为了提高产品的质量、降低成本、优化工艺参数等。

然后,确定可能影响试验结果的因素。

这些因素可以是定量的(如温度、压力、时间等),也可以是定性的(如材料的种类、操作方法等)。

第二步:选择合适的正交表正交表是正交试验设计的核心工具。

根据考察因素的个数和水平数,选择合适的正交表。

正交表的选择原则是既要能容纳所有的因素和水平,又要尽量使试验次数最少。

常见的正交表有 L4(2³)、L8(2⁷)、L9(3⁴) 等。

例如,如果您要考察 3 个因素,每个因素有 2 个水平,那么可以选择 L4(2³) 正交表。

第三步:确定因素的水平明确每个因素的取值范围,并将其划分为若干个水平。

水平的设置要具有代表性和实际意义。

假设我们要研究某化学反应中温度(A)、催化剂用量(B)和反应时间(C)对产物收率的影响。

温度设置为 50℃和 80℃两个水平;催化剂用量设置为 1g 和 2g 两个水平;反应时间设置为 1 小时和 2 小时两个水平。

第四步:安排试验方案将因素和水平对应地填入正交表中,得到具体的试验方案。

对于上述例子,使用 L4(2³) 正交表,试验方案如下:|试验号|温度(A)|催化剂用量(B)|反应时间(C)||||||| 1 | 50℃| 1g | 1 小时|| 2 | 50℃| 2g | 2 小时|| 3 | 80℃| 1g | 2 小时|| 4 | 80℃| 2g | 1 小时|第五步:进行试验并记录结果按照设计好的试验方案逐一进行试验,并如实记录试验结果。

第六步:数据分析对试验结果进行分析,常用的方法有直观分析法和方差分析法。

正交试验设计

正交试验设计

正交试验设计1. 什么是正交试验设计?正交试验设计(Orthogonal Experimental Design)是一种实验设计方法,旨在通过少量试验点,充分收集实验数据,从而减少实验变量的数量,提高实验效率。

正交试验设计适用于产品工艺改进、优化设计、参数选择以及产品性能分析等场景。

正交试验设计的核心思想是通过合理的设计选择,通过改变实验因素的组合,以及试验点数的把握,实现大量试验数据的获取。

在正交试验设计中,通过选择一组适当的实验因素、水平和试验点数,保证实验结果具有可靠性和有效性。

2. 正交试验设计的原理正交试验设计的原理是通过合理选取试验因素的水平,使得因素之间的影响相互独立,避免因素之间的干扰,以确保实验结果的可靠性和有效性。

正交试验设计使用正交表作为设计工具,正交表是由一组正交矩阵构成的,每个矩阵的行数代表试验因素的水平数,列数代表试验点数。

正交表的特点是每一列中任意两个数字之间都正交,即两个数字的乘积等于零。

这种正交性保证了试验因素之间的独立性,减小了因素之间的相互影响,提高了试验效率。

正交试验设计的步骤如下:1.确定试验目标和要素:明确需要优化的目标和相关的要素。

2.选择正交表和水平数:根据要素和水平数选择合适的正交表。

3.确定试验因素和水平:根据试验目标和要素,确定需要进行试验的因素和每个因素的水平。

4.填写正交表:根据选择的正交表和确定的试验因素水平,将试验因素填写到正交表中。

5.进行试验和收集数据:按照正交表中的设计进行试验,记录实验数据。

6.数据分析和优化:通过对实验数据的分析,得出结论并优化设计。

3. 正交试验设计的优势正交试验设计具有以下几个优势:•提高实验效率:通过合理选择试验因素和水平数,正交试验设计可以通过少量的试验点获取大量的实验数据,提高了实验效率。

•确保实验结果可靠性:正交试验设计通过合理的设计选择,避免了因素之间的干扰,保证了实验结果的可靠性。

•降低实验成本:正交试验设计可以在保证实验效果的前提下,减少试验点的数量,降低实验成本。

正交试验设计方法讲义及举例

正交试验设计方法讲义及举例

正交试验设计方法讲义及举例正交试验设计方法是一种多因素试验设计方法,它能够有效地减少试验所需的样本数量,提高试验结果的精确性和可靠性。

正交试验设计方法是在已知因素水平的情况下选择对试验结果影响最大的因素进行研究的一种方法。

以下是正交试验设计方法的讲义及举例:一、正交试验设计方法的原理及步骤:1.原理:正交试验设计方法通过选择适当的正交表,将多个因素的不同水平组合进行排列,使各因素的变化对试验结果影响均匀化,从而获得准确可靠的试验结果。

2.步骤:a.确定试验因素及其水平:根据试验目的确定需要研究的因素及其水平。

b.选择正交表:根据试验因素的个数和水平确定适用的正交表,正交表能够保证试验结果的均匀性和可靠性。

c.设计试验方案:根据选择的正交表,将试验因素的水平进行组合,获得试验方案。

d.进行试验:按照试验方案进行实际试验。

e.分析试验结果:对试验结果进行统计分析,获得对试验因素的影响程度及其交互作用等信息。

f.微调试验方案:根据试验结果微调试验方案,迭代优化试验过程。

二、正交试验设计方法的优点:1.降低样本数量:正交试验设计方法能够通过对试验水平的排列组合,使试验因素的水平均匀分布,从而减少试验所需的样本数量。

2.提高试验效率:正交试验设计方法能够在有限样本量下获得更多的试验信息,提高试验效率。

3.确保结果可靠:正交试验设计方法通过保证试验因素的均匀分布,减少人为因素的干扰,从而保证试验结果的可靠性和准确性。

4.揭示因素交互作用:正交试验设计方法能够揭示因素之间的交互作用,进一步优化设计过程。

三、正交试验设计方法的举例:例如,公司要研究一种新的洗发水对头发柔顺度的影响,试验主要包括3个因素:洗发水品牌(A、B、C)、洗发水用量(X、Y、Z)和洗发水停留时间(T1、T2、T3)。

根据正交试验设计方法,按照以下步骤进行设计:1.选择正交表:根据3个因素和各因素的水平,选择适用的正交表,如L9正交表。

2.设计试验方案:根据L9正交表,将3个因素的水平进行组合,得到9个试验方案,每个方案分别测试一种组合情况。

正交试验设计

正交试验设计

正交试验设计
正交试验设计(Orthogonal experimental design)是一种常用于科学实验设计的方法。

它是统计学中一种重要的试验设计方法,通过选择合适的正交表将试验因素进行组合,以达到最大程度地减少误差和提高效率的目的。

正交实验设计最常见的类型是正交数组设计(Orthogonal array design),通过正交表将试验因素的各个水平进行组合,以实
现均匀分布和互不干扰的目的。

这种设计方法可以帮助确定影响结果的主要因素,找出最优的处理条件,并提高试验的可信度和重复性。

正交试验设计的特点之一是可以通过相对较少的实验次数得出准确的结果。

它通过最小化不相关的因素,使试验结果更易于解释和分析,并避免重复实验浪费资源和时间。

正交试验设计还可以通过分析试验结果和误差分布,确定主要影响因素的重要性和交互作用的效应。

通过建立数学模型和进行回归分析,可以进一步优化试验结果,并提高产品的质量和效率。

正交试验设计广泛应用于工程、制造、化学、医药等领域。

它可以帮助确定最佳工艺参数、产品配方、药物剂量等,并优化生产过程、提高产品质量和效率。

它还可以用于新产品开发、工艺改进、质量控制等方面。

正交试验设计的成功关键一是正确选择试验因素和水平,确保
能够覆盖全部可能的条件。

另外,正确解读试验结果、分析影响因素的相对重要性和相互作用也是至关重要的。

总之,正交试验设计是一种有效的实验设计方法,可以在较短的时间内得出准确的结果,并提供优化产品和工艺的参考依据。

它具有广泛的应用前景,并在工程和科学研究中发挥着重要的作用。

正交试验设计方案

正交试验设计方案

表10-20
L9(34)正交表
处理号 1 2 3 4
第1列(A) 1 1 1 2
第2列 1 2 3 1
第3 列 1 2 3 2
第4 列 1 2 3 3
因素A第1 试验结果yi 水平3次重 y1 复测定值 y2 y3 y4
5 2 2 3 1 y5 单因素试验 因素A第2 数据资料格 2 水平 3次重 61 2 3 1 2 (y1 y2 y6 ... y9 ) 2 2 2 式 SS A= (y1 y2 y3 ) (y4 y5 y6 ) (y7 y8 y9 ) (修正项) 复测定值 73 3 1 3 2 y7 9 1 T2 2 2 23 2 8 1 3 y8 = (K1 K 2 K 3 ) 9 3 93 3 2 1 y9
的代表性 , 能 够比较全面地反映选优区内的基本情 况。
常用名词介绍
因素 指标
在试验中需要考察 的效果的特性值, 简称指标。指标与 试验目的是相对应 的。例如:试验目 的是提高产量,则 产量就是试验要考 察的指标;试验目 的是降低成本,则 成本就是试验要考 察的指标。 也称因子。是试验 中考察多试验指标 可能有影响的原因 或要素,它是试验 当中重点要考察的 内容。通常用大写
但这种方法不能将试验中由于试验条件改变引起的数据波动同试验误差引起的数据波动区分开来不能将试验中由于试验条件改变引起的数据波动同试验误差引起的数据波动区分开来也就是说不能区分因素各水平间对应的试验结果的差异究竟是由于因素水平不同引起的还是由于试验误差引起的也就是说不能区分因素各水平间对应的试验结果的差异究竟是由于因素水平不同引起的还是由于试验误差引起的无法估计试验误差的大小
一、正交试验设计的概念
正交试验设计(Orthogonal experimental design)是研究多因素多水平的一种设计方 法,它是根据正交性从全面试验中挑选出 部分有代表性的点进行试验,这些有代表 性的点具备了“均匀分散,齐整可比”的 特点。

正交试验设计方法详细步骤

正交试验设计方法详细步骤

正交试验设计方法详细步骤正交试验设计是一种高效、经济的多因素试验设计方法,它能够通过合理安排试验,有效地分析各因素对试验结果的影响,从而找到最优的试验条件。

下面我们来详细了解一下正交试验设计的步骤。

一、明确试验目的和确定试验指标首先,要明确为什么要进行这个试验,是为了提高产品质量、降低成本,还是优化工艺参数等。

然后,根据试验目的确定一个或多个能够衡量试验效果的指标,这些指标可以是定量的,如产量、纯度、强度等;也可以是定性的,如颜色、外观、口感等。

例如,在研究某种新材料的制备工艺时,试验目的可能是提高材料的强度,那么强度就是试验指标。

二、挑选因素和确定水平因素是指对试验指标可能产生影响的变量,水平则是因素的不同取值。

在挑选因素时,要结合专业知识和实际经验,选择那些可能对试验指标有重要影响的因素。

假设我们在研究某个化学反应,可能的因素有反应温度、反应时间、反应物浓度等。

每个因素通常选取 2 5 个水平。

比如,反应温度可以选择 50℃、60℃、70℃三个水平。

三、选择合适的正交表正交表是一种已经标准化的表格,它能够保证试验点在因素空间上均匀分布,从而使试验具有代表性和可比性。

选择正交表时,要根据因素的个数和水平数来确定。

常见的正交表有 L4(2³)、L8(2⁷)、L9(3⁴) 等。

其中,L 表示正交表,数字 4、8、9 表示试验次数,括号中的指数表示因素的个数和每个因素的水平数。

如果有 3 个因素,每个因素有 3 个水平,那么可以选择 L9(3⁴) 正交表。

四、进行表头设计表头设计就是将选定的因素安排到正交表的列中。

原则上,任意一列都可以安排任意一个因素,但为了减少试验误差,通常要遵循一些规则,比如尽量避免将交互作用明显的因素安排在相邻的列。

五、编写试验方案根据表头设计,确定每个试验的具体条件,即每个因素在每个试验中的水平组合。

这样就得到了完整的试验方案。

例如,第一个试验中,因素 A 取水平 1,因素 B 取水平 2,因素 C取水平 3,以此类推。

正交试验设计方法(详细步骤

正交试验设计方法(详细步骤

正交试验设计方法(详细步骤正交试验设计方法是一种经典的实验设计方法,可以高效地确定对多个因素影响的最佳组合。

它通过将因素分为若干水平,并使用正交设计表确定各个因素水平之间的配对,从而减少试验次数,提高试验效率。

下面将详细介绍正交试验设计方法的步骤。

1.确定试验目的和因素:首先需要明确试验的目的,即我们要研究的问题是什么。

然后确定影响结果的各个因素。

通常情况下,正交试验设计方法适用于多因素多水平的情况。

2.确定因素水平和个数:确定每个因素的水平,并确定每个因素的水平数。

水平数的选择应该充分考虑试验的复杂性和实际可行性。

一般来说,水平数应该是2的幂次方。

3.构建正交表:根据因素的水平数,选择对应的正交表。

正交表是一种数学表格,用于确定不同因素水平之间的配对。

目前,有很多不同类型的正交表可供选择,如拉丁方正交表、天堂树正交表等。

4.设计试验方案:根据正交表的设计原则,将每个因素的各个水平按照正交表进行配对,形成完整的试验方案。

每个配对称为一个处理组合,每组处理组合对应一个试验。

5.进行实验:按照设计的试验方案进行实验。

在进行实验时,需要尽量避免实验误差的干扰,采取适当的控制措施。

6.收集数据:进行实验后,需要及时收集数据。

数据采集要准确、全面,保证实验结果的可靠性。

7.数据分析:对收集到的数据进行统计分析。

可以使用方差分析方法进行分析,通过比较不同因素水平对结果的影响程度,确定最佳组合。

8.结果解释和应用:根据数据分析结果,解释各个因素对结果的影响程度,确定最佳组合。

根据结果进行决策,并将最佳组合应用于实际生产或研究中。

需要注意的是,正交试验设计方法虽然可以高效地确定最佳组合,但仍然具有一定的局限性。

试验结果的可靠性和适用性取决于试验设计的合理性和实施的严格性。

因此,在进行正交试验设计时,需要充分考虑实际情况,合理选择因素和水平,并严格控制试验过程,以确保结果的准确性和可靠性。

正交试验设计法简介

正交试验设计法简介

正交试验设计法简介一、概述正交试验设计法,又称为正交实验设计、正交表设计或正交测试设计,是一种高效、系统的试验设计方法。

该方法源于数学中的正交性概念,通过正交表来安排多因素试验,使得每个因素的每个水平都能在其他因素的所有水平中均衡出现,从而能够有效地分析多个因素对试验结果的影响。

正交试验设计法最初由日本统计学家田口玄一博士于20世纪50年代提出,并在工程领域得到了广泛应用。

正交试验设计法的主要优点包括试验次数少、数据分析简便、试验效果高等。

通过正交表的设计,可以大大减少试验次数,提高试验效率同时,正交表的规范化和系统性使得试验数据的分析变得简单明了,便于找出影响试验结果的主要因素和最优组合。

正交试验设计法广泛应用于工业、农业、医学、军事等领域。

在工业生产中,正交试验设计法可用于优化产品设计、改进生产工艺、提高产品质量等在农业研究中,可用于优化作物种植方案、提高作物产量等在医学研究中,可用于药物筛选、临床治疗方案优化等。

正交试验设计法还可用于系统可靠性分析、多目标决策等领域。

正交试验设计法是一种高效、实用的试验设计方法,对于多因素、多水平的试验问题具有重要的应用价值。

通过正交表的设计和分析,可以系统地研究多个因素对试验结果的影响,找出最优方案,提高试验效率和效果。

1. 正交试验设计法的定义正交试验设计法是一种研究多因素多水平的科学实验设计方法。

它基于Galois理论,从大量的实验点中挑选出适量的、有代表性的点进行试验,这些点具有“均匀分散,齐整可比”的特点。

这种方法的主要工具是正交表,通过合理安排实验,可以在最少的试验次数下达到与大量全面试验等效的结果。

正交试验设计法具有高效率、快速和经济的特点,被广泛应用于各个领域,如生物学、软件测试等。

2. 正交试验设计法的起源与发展正交试验设计法的起源可以追溯到古希腊时期。

当时,为了满足国王检阅臣民时的要求,即每个方队中每行有一个民族代表,每列也要有一个民族的代表,数学家们设计了一种方阵,被称为拉丁方。

正交试验设计方法

正交试验设计方法

正交试验设计方法一、概述1、正交试验设计法(正交试验法)-是利用正交表来合理安排试验的一种方法。

2、安排任何一项试验,首先要明确试验的目的是什么?用什么指标来衡量考核的结果?对试验指标可能有影响的因素是什么?为了搞清楚影响因素,应当把因素选择在哪些水平上?3、指标就是试验要考核的效果。

在正交试验中,主要设计可测量的定量指标,常用X、Y、Z来表示。

4、因素是指对试验指标可能产生影响的原因。

因素是在试验中应当加以考察的重点内容,一般用A、B、C、•••来表示。

在正交试验中,只选取可控因素参加试验。

5、水平是指因素在试验中所处的状态或条件。

对于定量因素,每一个选定值即为一个水平。

水平又叫位级,一般用1、2、3、•••来表示。

在试验中需要考察某因素的几种状态时,则称该因素为几水平(位级)的因素。

二、正交表正交表:在设计安排正交试验时制作好的标准化的表格。

1、正交表的性质:1)、均衡分散性。

由于每一列中各种字码出现相同的次数,这就保证了试验条件均衡地分散在配合完全的水平组合中,因而代表性强,容易出现好条件。

(效率高)2)、整齐可比性。

由于任意两列中全部有序的数字对出现相同的次数,这就保证了在各个水平的效果之中,最大限度地排除了其他因素的干扰,因而能最有效地进行比较,作出展望。

(效果好)三、常用正交试验设计与分析常用正交试验设计与分析的步骤如下1、明确试验目的;2、确定考察的指标;3、挑因素,选水平(位级);4、设计试验方案;5、实施试验方案;6、试验结果分析(一般用目测法、极差分析法、画趋势图等);7、反复调优试验以逼近最优方案;8、验证试验并通过生产验证确认较优方案。

三、常用正交试验设计与分析-示例1、明确试验目的2,4-二硝基苯肼是××化工厂生产的一种试剂产品。

过去的工艺过程长、工作量大,且产品经常不合格。

今采用2,4-二硝基氯代苯(以下简称氯代苯)与水合肼在乙醇作溶剂下合成的新工艺,小试已初步成功,但产率只有45%,希望通过正交试验,找出好的生产条件,达到优质增产的目的。

正交试验设计(内容详尽)

正交试验设计(内容详尽)
医学研究
用于探索最佳的药物剂量、治疗方案等。
农业科学研究
用于研究不同肥料、农药、种植方式等对农 作物产量的影响。
化学工业
用于研究不同反应条件对化学反应的影响, 提高产物的收率和质量。
正交试验设计的原则
1 2
均衡分布原则
确保每个因素每个水平的试验条件都有机会出现, 避免结果的片面性。
整齐可比原则
保证试验结果的可比性,以便进行数理统计分析。
案例二:化学反应中的正交试验设计
在化学反应中,正交试验设计用于研究不同反应条件 对产物收率和纯度的影响。
例如,在合成某种药物中间体的过程中,通过正交试 验设计来探究温度、压力、催化剂种类和浓度对产物
收率和纯度的影响。
通过优化反应条件,可以提高产物的收率和纯度,降 低生产成本并提高生产效率。
案例三:生物医学研究中的正交试验设计
安排试验计划
总结词:计划性
详细描述:根据正交表,安排详细的 试验计划。这一步骤包括确定试验的 各个水平、组合方式以及试验的顺序 等。合理的试验计划有助于提高试验 的效率和准确性。
实验结果分析
总结词:分析性
VS
详细描述:在完成试验后,对试验结 果进行统计分析。这一步骤包括数据 的整理、处理、分析和解释等。通过 结果分析,可以得出关于试验因素对 试验结果影响的结论,并据此优化试 验方案或进行进一步的研究。
正交试验设计案例分
05

案例一:材料科学中的正交试验设计
材料科学中,正交试验设计常用于研究不同材 料成分和工艺参数对材料性能的影响。
例如,在钢铁冶炼过程中,通过正交试验设计 来探究不同温度、压力、时间和合金元素对钢 材强度、韧性和耐腐蚀性的影响。
通过对试验结果的分析,可以确定最佳的工艺 参数组合,从而提高产品质量和降低生产成本。

正交试验设计方法详细步骤

正交试验设计方法详细步骤

正交试验设计方法详细步骤正交试验设计方法(Orthogonal Experimental Design)是一种通过系统地变化每个试验因素的水平,来确定各个试验因素对结果的影响的实验设计方法。

它可以帮助研究者有效地评估各个试验因素对结果的影响程度,并找到最佳的组合方案。

本文将详细介绍正交试验设计方法的步骤。

一、确定试验因素和水平首先,我们需要确定参与实验的各个试验因素及其可能的水平。

试验因素是指影响结果的各个因素,而水平则是试验因素可能的取值。

在确定试验因素和水平时,要考虑到实验目的和实际情况,确保涵盖了可能的影响因素。

二、建立正交表正交表是正交试验设计的核心工具,它是由行和列组成的表格,用于指导实验的进行。

根据试验因素的个数和水平数量,选择适当的正交表。

常用的正交表包括L8、L16、L32等。

三、确定试验方案根据正交表,确定实验方案。

将正交表的行用于标识试验次数,将列用于表示各个试验因素及其水平的组合。

在确定试验方案时,要保证各个水平和因素的组合均匀且全面。

四、进行实验按照试验方案,进行实验。

根据正交表的设计原理,每个试验因素的水平都会被均匀地应用到各个试验中,从而使得各个试验的结果具有可比性。

五、收集数据在实验进行过程中,要准确地记录各个试验的结果数据。

根据实验目的和需要,可以选择合适的数据收集方法和工具,如测量仪器、问卷调查等。

六、数据分析与解释对收集到的数据进行分析和解释,评估各个试验因素对结果的影响程度。

常用的数据分析方法包括方差分析、回归分析等。

通过数据分析,可以得出各个试验因素的影响大小和统计显著性,为进一步优化和改进提供依据。

七、优化和改进根据数据分析的结果,可以进一步优化和改进设计方案。

针对影响较大的试验因素,可以考虑调整其水平,或者进行二次试验以进一步验证结果。

八、总结报告最后,根据实验结果和分析,撰写总结报告。

总结报告应包括实验目的、方法、结果和结论等内容,以便他人理解和参考。

正交试验设计法简介

正交试验设计法简介

正交试验设计法简介
正交试验设计法是一种优化实验设计的方法,通过设计数个试验因素的几个水平,可以快速、准确地确定这些因素对实验结果的影响关系。

其核心思想是通过一组不同的试验因素设置,找出影响因素和交互作用,从而得出最优解。

正交试验设计法主要包括以下几个步骤:
1.确定试验因素:根据实验目的,确定需要研究的试验因素及其水平数。

2.制定试验方案:根据试验因素及其水平数,设计出一组试验方案,即每个因素的不同水平组合。

3.执行实验:根据试验方案进行实验操作,并记录实验结果。

4.数据分析:将实验结果整理并进行统计分析,得出各因素之间的影响及交互作用。

5.确定最优方案:根据数据分析结果,确定最优的试验水平组合,以达到最佳实验效果。

总之,正交试验设计法可以大幅减少实验次数,提高数据准确性和可靠性,是一种广泛应用于工程、科研与优化方面的实验设计方法。

正交实验的设计方案

正交实验的设计方案

正交实验的设计方案正交实验是一种用于确定影响因素对实验结果影响的统计方法。

它可以帮助研究人员以少量实验设计来获取全面可靠的数据,从而进行合理的判断和决策。

正交实验的设计方案是一项关键工作,本文将讨论如何进行正交实验的设计方案,并提供一个实际案例。

一、正交实验的基本原理正交实验基于统计学的原理,通过一系列的实验来确定各个因素对结果的影响程度,并找出最优的组合方式。

正交实验中,要考虑的因素被称为水平或处理水平,这些水平可以是定性的(如颜色、形状等),也可以是定量的(如温度、压力等)。

关键是选择合适的水平组合,以获得准确、全面的数据。

二、正交实验的设计方法1. 确定因素和水平:首先确定需要考虑的因素及其对应的水平。

根据实际情况和研究目的,选择合适的因素和水平,保证实验结果的可靠性和可解释性。

2. 构建正交表:利用正交表是进行正交实验设计的核心步骤。

正交表将各个水平组合按照一定的规律排列,确保每个水平在实验中均匀分布,并减少误差的影响。

常用的正交表包括拉丁方、矩形方和正交平方等。

3. 进行实验:根据正交表的设计,进行实验。

确保实验过程的准确性和可重复性,记录实验数据。

4. 分析实验数据:通过统计学方法对实验数据进行分析,评估各个因素对结果的影响程度。

常用的分析方法包括方差分析、回归分析和卡方检验等。

5. 优化方案选择:根据实验结果,确定最优的因素组合和水平选择。

同时,可以进一步优化实验方案,提高研究效果和实验效率。

三、实际案例以某电子产品的设计为例,我们需要确定屏幕亮度、音量大小和屏幕分辨率对用户体验的影响程度。

我们选择了三个水平来表示这三个因素,分别是:低、中、高。

通过正交实验的设计方案,我们利用正交表构建了以下实验方案:因素1:屏幕亮度(低、中、高)因素2:音量大小(低、中、高)因素3:屏幕分辨率(低、中、高)在表中,每一行代表一个实验条件,我们总共需要进行9次实验。

实验数据如下:实验结果屏幕亮度音量大小屏幕分辨率实验1 低低低实验2 低中中实验3 低高高实验4 中低中实验5 中中高实验6 中高低实验7 高低高实验8 高中低实验9 高高中通过对实验数据的统计分析,我们可以得出每个因素对用户体验的影响程度。

正交实验设计法

正交实验设计法

正交实验设计法1.正交试验设计法的基本思想正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。

它简单易行,计算表格化,使用者能够迅速掌握。

下边通过一个例子来说明正交试验设计法的基本想法。

[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A:80-90℃B:90-150分钟C:5-7%试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。

试制定试验方案。

这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A:Al=80℃,A2=85℃,A3=90℃B:Bl=90分,B2=120分,B3=150分C:Cl=5%,C2=6%,C3=7%当然,在正交试验设计中,因子可以是定量的,也可以是定性的。

而定量因子各水平间的距离可以相等,也可以不相等。

这个三因子三水平的条件试验,通常有两种试验进行方法:(Ⅰ)取三因子所有水平之间的组合,即AlBlC1,A1BlC2,A1B2C1,……,A3B3C3,共有33=27次试验。

用图表示就是图1 立方体的27个节点。

这种试验法叫做全面试验法。

全面试验对各因子与指标间的关系剖析得比较清楚。

但试验次数太多。

特别是当因子数目多,每个因子的水平数目也多时。

试验量大得惊人。

如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56=15625次试验,这实际上是不可能实现的。

如果应用正交实验法,只做25次试验就行了。

而且在某种意义上讲,这25次试验代表了15625次试验。

(Ⅱ)简单对比法,即变化一个因素而固定其他因素,如首先固定B、C于Bl、Cl,使A 变化之:↗A1B1C1 →A2↘A3 (好结果)如得出结果A3最好,则固定A于A3,C还是Cl,使B变化之:↗B1A3C1 →B2 (好结果)↘B3得出结果以B2为最好,则固定B于B2,A于A3,使C变化之:↗C1A3B2→C2 (好结果)↘C3试验结果以C2最好。

正交试验法

正交试验法

正交表
概念
性质
正交表是一整套规则的设计表格,用L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能 安排最多的因素个数。
性质 (1)每一列中,不同的数字出现的次数相等。
(2)任意两列中数字的排列方式齐全而且均衡。
以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。通俗的说,每个因素的每个水 平与另一个因素各水平各碰一次,这就是正交性。
较优条件选择
理论上,如果各因素都不受其它因素的水平变动影响的,那么,把各因素的优水平简单地组合起来就是较好 试验条件。但是,实际上选取较好生产条件时,还要考虑因素的主次,以便在同样满足指标要求的情况下,对于 一些比较次要的因素按照优质、高产、低消耗的原则选取水平,得到更为结合试验实际要求的较好生产条件。
步骤
1、在调查研究的基础上,根据科研和生产实践中需要解决的关键问题,确定试验课题。 2、根据实际经验和理论分析及有关情报资料,分析可能影响试验结果的各种因素,并从中找出主要因素,确 定主要因素的变化范围。 3、根据试验课题的具体特点,选出合适的优选方法。 4、根据所选用的优选方法,安排试验方案,并严格按试验条件操作,准确测定试验结果。 5、对试验结果进行对比分析,确定最优方案。
因素安排
正交试验设计的关键在于试验因素的安排。通常,在不考虑交互作用的情况下,可以自由的将各个因素安排 在正交表的各列,只要不在同一列安排两个因素即可(否则会出现混杂)。但是当要考虑交互作用时,就会受到 一定的限制,如果任意安排,将会导致交互效应与其它效应混杂的情况。
极差分析
在完成试验收集完数据后,将要进行的是极差分析(也称方差分析)。极差分析就是在考虑A因素时,认为其 它因素对结果的影响是均衡的,从而认为,A因素各水平的差异是由于A因素本身引起的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 正交试验设计方法5.1 试验设计方法概述试验设计是数理统计学的一个重要的分支。

多数数理统计方法主要用于分析已经得到的数据,而试验设计却是用于决定数据收集的方法。

试验设计方法主要讨论如何合理地安排试验以及试验所得的数据如何分析等。

例5-1 某化工厂想提高某化工产品的质量和产量,对工艺中三个主要因素各按三个水平进行试验(见表5-1)。

试验的目的是为提高合格产品的产量,寻求最适宜的操作条件。

对此实例该如何进行试验方案的设计呢?很容易想到的是全面搭配法方案(如图5-1所示):此方案数据点分布的均匀性极好,因素和水平的搭配十分全面,唯一的缺点是实验次数多达33=27次(指数3代表3个因素,底数3代表每因素有3个水平)。

因素、水平数愈多,则实验次数就愈多,例如,做一个6因素3水平的试验,就需36=729次实验,显然难以做到。

因此需要寻找一种合适的试验设计方法。

试验设计方法常用的术语定义如下。

试验指标:指作为试验研究过程的因变量,常为试验结果特征的量(如得率、纯度等)。

例1的试验指标为合格产品的产量。

因素:指作试验研究过程的自变量,常常是造成试验指标按某种规律发生变化的那些原因。

如例1的温度、压力、碱的用量。

水平:指试验中因素所处的具体状态或情况,又称为等级。

如例1的温度有3个水平。

温度用T 表示,下标1、2、3表示因素的不同水平,分别记为T 1、T 2、T 3。

常用的试验设计方法有:正交试验设计法、均匀试验设计法、单纯形优化法、双水平单纯形优化法、回归正交设计法、序贯试验设计法等。

可供选择的试验方法很多,各种试验设计方法都有其一定的特点。

所面对的任务与要解决的问题不同,选择的试验设计方法也应有所不同。

由于篇幅的限制,我们只讨论正交试验设计方法。

5.2 正交试验设计方法的优点和特点用正交表安排多因素试验的方法,称为正交试验设计法。

其特点为:①完成试验要求所需的实验次数少。

②数据点的分布很均匀。

③可用相应的极差分析方法、方差分析方法、回归分析方法等对试验结果进行分析,引出许多有价值的结论。

从例1可看出,采用全面搭配法方案,需做27次实验。

那么采用简单比较法方案又如何呢?先固定T1和p1,只改变m,观察因素m不同水平的影响,做了如图2-2(1)所示的三次实验,发现m=m2时的实验效果最好(好的用□表示),合格产品的产量最高,因此认为在后面的实验中因素m应取m2水平。

固定T1和m2,改变p的三次实验如图5-2(2)所示,发现p=p3时的实验效果最好,因此认为因素p应取p3水平。

固定p3和m2,改变T 的三次实验如图5-2(3)所示,发现因素T 宜取T2水平。

因此可以引出结论:为提高合格产品的产量,最适宜的操作条件为T2p3m2。

与全面搭配法方案相比,简单比较法方案的优点是实验的次数少,只需做9次实验。

但必须指出,简单比较法方案的试验结果是不可靠的。

因为,①在改变m值(或p值,或T值)的三次实验中,说m2(或p3或T2)水平最好是有条件的。

在T≠T1,p≠p1时,m2水平不是最好的可能性是有的。

②在改变m的三次实验中,固定T=T2,p=p3应该说也是可以的,是随意的,故在此方案中数据点的分布的均匀性是毫无保障的。

③用这种方法比较条件好坏时,只是对单个的试验数据进行数值上的简单比较,不能排除必然存在的试验数据误差的干扰。

运用正交试验设计方法,不仅兼有上述两个方案的优点,而且实验次数少,数据点分布均匀,结论的可靠性较好。

正交试验设计方法是用正交表来安排试验的。

对于例1适用的正交表是L9(34),其试验安排见表5-2。

所有的正交表与L9(34)正交表一样,都具有以下两个特点:(1)在每一列中,各个不同的数字出现的次数相同。

在表L9(34)中,每一列有三个水平,水平1、2、3都是各出现3次。

(2)表中任意两列并列在一起形成若干个数字对,不同数字对出现的次数也都相同。

在表L9(34)中,任意两列并列在一起形成的数字对共有9个:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),每一个数字对各出现一次。

表5-2 试验安排表这两个特点称为正交性。

正是由于正交表具有上述特点,就保证了用正交表安排的试验方案中因素水平是均衡搭配的,数据点的分布是均匀的。

因素、水平数愈多,运用正交试验设计方法,愈发能显示出它的优越性,如上述提到的6因素3水平试验,用全面搭配方案需729次,若用正交表L27(313)来安排,则只需做27次试验。

在化工生产中,因素之间常有交互作用。

如果上述的因素T的数值和水平发生变化时,试验指标随因素p变化的规律也发生变化,或反过来,因素p的数值和水平发生变化时,试验指标随因素T变化的规律也发生变化。

这种情况称为因素T、p间有交互作用,记为T×p 。

5.3 正交表使用正交设计方法进行试验方案的设计,就必须用到正交表。

正交表请查阅有关参考书。

5.3.1 各列水平数均相同的正交表各列水平数均相同的正交表,也称单一水平正交表。

这类正交表名称的写法举例如下:各列水平均为2的常用正交表有:L4(23),L8(27),L12(211),L16(215),L20(219),L32(231)。

各列水平数均为3的常用正交表有:L9(34),L27(313)。

各列水平数均为4的常用正交表有:L16(45)各列水平数均为3的常用正交表有:L25(56)5.3.2 混合水平正交表各列水平数不相同的正交表,叫混合水平正交表,下面就是一个混合水平正交表名称的写法:L 8(41×24)常简写为L 8(4×24)。

此混合水平正交表含有1 个4水平列,4个2水平列,共有1+4=5列。

5.3.3 选择正交表的基本原则一般都是先确定试验的因素、水平和交互作用,后选择适用的L表。

在确定因素的水平数时,主要因素宜多安排几个水平,次要因素可少安排几个水平。

(1)先看水平数。

若各因素全是2水平,就选用L(2*)表;若各因素全是3水平,就选L(3*)表。

若各因素的水平数不相同,就选择适用的混合水平表。

(2)每一个交互作用在正交表中应占一列或二列。

要看所选的正交表是否足够大,能否容纳得下所考虑的因素和交互作用。

为了对试验结果进行方差分析或回归分析,还必须至少留一个空白列,作为“误差”列,在极差分析中要作为“其他因素”列处理。

(3)要看试验精度的要求。

若要求高,则宜取实验次数多的L表。

(4)若试验费用很昂贵,或试验的经费很有限,或人力和时间都比较紧张,则不宜选实验次数太多的L表。

(5)按原来考虑的因素、水平和交互作用去选择正交表,若无正好适用的正交表可选,简便且可行的办法是适当修改原定的水平数。

(6)对某因素或某交互作用的影响是否确实存在没有把握的情况下,选择L表时常为该选大表还是选小表而犹豫。

若条件许可,应尽量选用大表,让影响存在的可能性较大的因素和交互作用各占适当的列。

某因素或某交互作用的影响是否真的存在,留到方差分析进行显著性检验时再做结论。

这样既可以减少试验的工作量,又不致于漏掉重要的信息。

5.3.4 正交表的表头设计所谓表头设计,就是确定试验所考虑的因素和交互作用,在正交表中该放在哪一列的问题。

(1)有交互作用时,表头设计则必须严格地按规定办事。

因篇幅限制,此处不讨论,请查阅有关书籍。

(2)若试验不考虑交互作用,则表头设计可以是任意的。

如在例5-1中,对L 9(3 4)表头设计,表5-3所列的各种方案都是可用的。

但是正交表的构造是组合数学问题,必须满足5.2中所述的特点。

对试验之初不考虑交互作用而选用较大的正交表,空列较多时,最好仍与有交互作用时一样,按规定进行表头设计。

只不过将有交互作用的列先视为空列,待试验结束后再加以判定。

5.4 正交试验的操作方法(1)分区组。

对于一批试验,如果要使用几台不同的机器,或要使用几种原料来进行,为了防止机器或原料的不同而带来误差,从而干扰试验的分析,可在开始做实验之前,用L 表中未排因素和交互作用的一个空白列来安排机器或原料。

与此类似,若试验指标的检验需要几个人(或几台机器)来做,为了消除不同人(或仪器)检验的水平不同给试验分析带来干扰,也可采用在L表中用一空白列来安排的办法。

这样一种作法叫做分区组法。

(2)因素水平表排列顺序的随机化。

如在例5-1中,每个因素的水平序号从小到大时,因素的数值总是按由小到大或由大到小的顺序排列。

按正交表做试验时,所有的1水平要碰在一起,而这种极端的情况有时是不希望出现的,有时也没有实际意义。

因此在排列因素水平表时,最好不要简单地按因素数值由小到大或由大到小的顺序排列。

从理论上讲,最好能使用一种叫做随机化的方法。

所谓随机化就是采用抽签或查随机数值表的办法,来决定排列的别有顺序。

(3)试验进行的次序没必要完全按照正交表上试验号码的顺序。

为减少试验中由于先后实验操作熟练的程度不匀带来的误差干扰,理论上推荐用抽签的办法来决定试验的次序。

(4)在确定每一个实验的实验条件时,只需考虑所确定的几个因素和分区组该如何取值,而不要(其实也无法)考虑交互作用列和误差列怎么办的问题。

交互作用列和误差列的取值问题由实验本身的客观规律来确定,它们对指标影响的大小在方差分析时给出。

(5)做实验时,要力求严格控制实验条件。

这个问题在因素各水平下的数值差别不大时更为重要。

例如,例5-1中的因素(加碱量)m的三个水平:m1=2.0,m2=2.5,m3=3.0,在以m=m2=2.5为条件的某一个实验中,就必须严格认真地让m2=2.5。

若因为粗心和不负责任,造成m2=2.2或造成m2=3.0,那就将使整个试验失去正交试验设计方法的特点,使极差和方差分析方法的应用丧失了必要的前提条件,因而得不到正确的试验结果。

5.5 正交试验结果分析方法正交试验方法之所以能得到科技工作者的重视并在实践中得到广泛的应用,其原因不仅在于能使试验的次数减少,而且能够用相应的方法对试验结果进行分析并引出许多有价值的结论。

因此,有正交试验法进行实验,如果不对试验结果进行认真的分析,并引出应该引出的结论,那就失去用正交试验法的意义和价值。

5.5.1 极差分析方法下面以表5-4为例讨论L 4(23)正交试验结果的极差分析方法。

极差指的是各列中各水平对应的试验指标平均值的最大值与最小值之差。

从表5-4的计算结果可知,用极差法分析正交试验结果可引出以下几个结论:(1)在试验范围内,各列对试验指标的影响从大到小的排队。

某列的极差最大,表示该列的数值在试验范围内变化时,使试验指标数值的变化最大。

所以各列对试验指标的影响从大到小的排队,就是各列极差D 的数值从大到小的排队。

(2)试验指标随各因素的变化趋势。

为了能更直观地看到变化趋势,常将计算结果绘制成图。

相关文档
最新文档