How to solve Yang-Baxter equation using the Taylor expansion of R-matrix
杨振宁方程的一些严密解
杨振宁方程的一些严密解的报告,600字杨振宁方程(Young–Laplace equation)是一个重要的物理流体力学混合型椭圆偏微分方程,用来描述复杂流体系统中,流体外表面的形状、张力和压力配置。
杨振宁方程也被称为湿法线方程,因为它描述了湿法线的位置。
更具体来说,它可以用来确定流体表面的形状、张力和压力配置,从而使得流体保持稳定。
在数学上,杨振宁方程可以表示如下:$$\Delta P + \frac{2\sigma}{r} = 0$$其中P为流体受到力的改变量,r为在湿法线方向上的原子距离,σ为势能/距离的比值。
关于杨振宁方程的严密解,我们必须先了解椭圆偏微分方程的求解方法。
常见的有超越函数法、积分法、Laplace变换法等,而杨振宁方程的优势在于它的解可以用积分法来计算,通过利用若干关于曲线的积分,可以求出湿法线的位置和流体表面的形状、张力和压力配置。
例如,当我们考虑一个简单的流体系统时,我们可以把杨振宁方程写作:$$\int_0^L P(s)ds = \frac{2\sigma}{r}\int_0^L r(s) ds $$其中P(s)为流体受到力的变化量,r(s)为位置s处湿法线方向上的原子距离。
采用积分法,可以把该问题转换成一系列简单的积分,从而得到湿法线的位置和流体表面的形状、张力和压力配置的相应解。
此外,杨振宁方程还被用于流体微分计算。
这需要将上述网格对流体量的求和,然后利用杨振宁方程求解,即:$$\frac{\partial}{\partial n}\left ( \frac{\partial P}{\partial n}\right ) + \frac{2\sigma}{r}= 0$$其中n代表湿法线方向,P代表压力,r是湿法线方向上的原子距离,σ是势能/距离的比值。
综上所述,杨振宁方程可以用积分法、微分计算,以及一系列其他解法来求解,它可以帮助我们推导出湿法线的位置和流体表面的形状、张力和压力关系。
偏微分方程数值解法英文
偏微分方程数值解法英文英文回答:Numerical Solutions of Partial Differential Equations.Partial differential equations (PDEs) are a type of mathematical equation that describes how a quantity changes in relation to several independent variables. They are used to model a wide variety of physical phenomena, such asfluid flow, heat transfer, and electromagnetism.Analytical solutions to PDEs can be difficult or impossible to obtain, so numerical methods are often used to approximate solutions. Numerical methods discretize the PDE into a system of algebraic equations that can be solved by a computer.There are a variety of different numerical methods that can be used to solve PDEs, each with its own advantages and disadvantages. Some of the most common methods include:Finite difference methods discretize the PDE by replacing the derivatives with finite differences. This is a relatively simple method that can be used to solve a wide variety of PDEs.Finite element methods discretize the PDE by dividing the domain into a set of elements. This method is more flexible than finite difference methods and can be used to solve PDEs with complex geometries.Boundary element methods discretize the PDE by representing the solution in terms of the values on the boundary. This method is particularly well-suited for solving PDEs with infinite domains.The choice of which numerical method to use depends on the specific PDE being solved, as well as the available computational resources.中文回答:偏微分方程的数值解法。
simultaneous equation method
Simultaneous Equation MethodIntroductionIn mathematics, simultaneous equations play a crucial role in solving real-world problems and modeling various phenomena. The simultaneous equation method is a powerful technique used to find solutions for a system of equations. This method involves solving multiple equations together to determine the values of unknown variables. In this article, we will explore the simultaneous equation method in detail and discuss its applications.Understanding Simultaneous EquationsDefinitionSimultaneous equations, also known as a system of equations, are a set of equations that share the same variables. The solutions of these equations simultaneously satisfy each equation in the system. The general form of simultaneous equations can be written as:a1x + b1y = c1a2x + b2y = c2Here, x and y are the variables, while a1, a2, b1, b2, c1, and c2 are constants.Types of Simultaneous EquationsSimultaneous equations can be classified into three types based on the number of solutions they have:1.Consistent Equations: These equations have a unique solution,meaning there is a specific set of values for the variables thatsatisfy all the equations in the system.2.Inconsistent Equations: This type of system has no solution. Theequations are contradictory and cannot be satisfied simultaneously.3.Dependent Equations: In this case, the system has infinitely manysolutions. The equations are dependent on each other and represent the same line or plane in geometric terms.To solve simultaneous equations, we employ various methods, with the simultaneous equation method being one of the most commonly used techniques.The Simultaneous Equation MethodThe simultaneous equation method involves manipulating and combining the given equations to eliminate one variable at a time. By eliminating one variable, we can reduce the system to a single equation with one variable, making it easier to find the solution.ProcedureThe general procedure for solving simultaneous equations using the simultaneous equation method is as follows:1.Identify the unknow n variables. Let’s assume we have n variables.2.Write down the given equations.3.Choose two equations and eliminate one variable by employingsuitable techniques such as substitution or elimination.4.Repeat step 3 until you have a single equation with one variable.5.Solve the single equation to determine the value of the variable.6.Substitute the found value back into the other equations to obtainthe values of the remaining variables.7.Verify the solution by substituting the found values into all theoriginal equations. The values should satisfy each equation.If the system is inconsistent or dependent, the simultaneous equation method will also lead to appropriate conclusions.Applications of Simultaneous Equation MethodThe simultaneous equation method finds applications in numerous fields, including:EngineeringSimultaneous equations are widely used in engineering to model and solve various problems. Engineers employ this method to determine unknown quantities in electrical circuits, structural analysis, fluid mechanics, and many other fields.EconomicsIn economics, simultaneous equations help analyze the relationship between different economic variables. These equations assist in studying market equilibrium, economic growth, and other economic phenomena.PhysicsSimultaneous equations are a fundamental tool in physics for solving complex problems involving multiple variables. They are used in areas such as classical mechanics, electromagnetism, and quantum mechanics.OptimizationThe simultaneous equation method is utilized in optimization techniques to find the optimal solution of a system subject to certain constraints. This is applicable in operations research, logistics, and resource allocation problems.ConclusionThe simultaneous equation method is an essential mathematical technique for solving systems of equations. By employing this method, we can find the values of unknown variables and understand the relationships between different equations. The applications of this method span across various fields, making it a valuable tool in problem-solving and modeling real-world situations. So, the simultaneous equation method continues to be akey topic in mathematics and its practical applications in diverse disciplines.。
四边固支正交各向异性矩形薄板弯曲问题的辛叠加方法
四边固支正交各向异性矩形薄板弯曲问题的辛叠加方法
额布日力吐;冯璐;阿拉坦仓
【期刊名称】《应用数学和力学》
【年(卷),期】2018(39)3
【摘要】将正交各向异性矩形薄板方程化为Hamilton系统,利用分离变量法给出相应的无穷维Hamilton算子,进而计算出该无穷维Hamilton算子的本征值及对应的本征函数系,并分别证明了本征函数系的辛正交性及完备性.之后利用辛叠加方法,求出正交各向异性矩形薄板弯曲问题的解析解.最后通过算例验证了所得解析解的正确性.
【总页数】13页(P311-323)
【关键词】正交各向异性薄板;无穷维Hamilton算子;本征函数系;解析解
【作者】额布日力吐;冯璐;阿拉坦仓
【作者单位】内蒙古大学数学科学学院;呼和浩特民族学院
【正文语种】中文
【中图分类】O357.41
【相关文献】
1.对边固支另两边简支矩形薄板弯曲问题的哈密顿方法 [J], 朱晓双;何文明
2.一角点支撑另一对边固支正交各向异性矩形薄板弯曲的辛叠加解 [J], 寇天娇;额布日力吐;阿拉坦仓
3.双参数弹性地基上对边滑支正交各向异性矩形薄板弯曲问题的辛本征函数展开定
理 [J], 高立梅;额布日力吐;阿拉坦仓
4.四边固定变厚度正交各向异性矩形板的非线性非对称弯曲问题的一致有效渐近解[J], 黄家寅
5.一角点支撑对面两边固支正交各向异性矩形薄板弯曲问题的辛叠加解 [J], 寇天娇;额布日力吐
因版权原因,仅展示原文概要,查看原文内容请购买。
yang baxter方程
yang baxter方程
Yang-Baxter方程是一个数学方程,涉及到代数和数学物理学领域。
它是由中文数学家杨振宁和美国数学家Baxter于20世纪70年代提出的。
该方程定义了三个线性空间V,W和Z之间的线性映射R。
如果R 满足以下方程:
R12R13R23 = R23R12R13
其中R12 = R I I,R13 = I R I,R23 = I I R,I是恒等映射,表示张量积,则称R为Yang-Baxter映射。
这个方程在代数和数学物理学中都有非常广泛的应用。
在代数学中,它与李群的可积表示理论相关;在数学物理学中,它与量子群、统计物理等领域有紧密联系。
Yang-Baxter方程的研究在数学和物理学中都有重要意义,它不仅是研究李群、量子群和统计物理等领域的重要工具,还对解决其它代数问题有一定的启示作用。
- 1 -。
直接和间接方法求解类杨-巴克斯特矩阵方程
直接和间接方法求解类杨-巴克斯特矩阵方程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!直接和间接方法求解类杨巴克斯特矩阵方程杨巴克斯特矩阵方程是一类特殊的矩阵方程,在科学计算和工程领域有着广泛的应用。
直接拟解法求Boussinesq方程组的精确解
SCIENCE &TECHNOLOGY INFORMATION科技资讯直接拟解法求Boussinesq 方程组的精确解李伟李丽(渤海大学数学科学学院辽宁锦州121013)摘要:微分方程包含常微分方程和偏微分方程。
由于非线性偏微分方程是偏微分方程的重要内容,求微分方程的解是微分方程研究的重要内容,从而求非线性偏微分方程的解是微分方程研究内容中的重中之重。
很多重大的物理科学问题和信息技术问题都与非线性偏微分方程的研究紧密相关。
一般来说,求非线性偏微分方程的解是不容易的。
经过科研工作者不断努力已经找到了大量的求解方法。
该文借助于行波变换法,直接拟解法和齐次法解得了Boussinesq 的新解。
这种方法也具有一定的普遍性,可以求一些非线性偏微分方程的解。
关键词:行波变换精确解拟解齐次平衡法中图分类号:O175.2文献标识码:A文章编号:1672-3791(2021)10(c)-0166-03Exact Solution for Solving Boussinesq Equations by Using DirectQuasi SolutionLI WeiLI Li(College of Mathematics and Physics,Bohai University,Jinzhou,Liaoning Province,121013China)Abstract:Differential equations include ordinary differential equations and partial differential equations.Because nonlinear partial differential equation is an important content of partial differential equation,the solution of differ‐ential equation is the important content of differential equation research,so the solution of nonlinear partial differ‐ential equation is the most important content of differential equation research.Many important physical science and information technology problems are closely related to the study of nonlinear partial differential equations.Generally speaking,it is not easy to find the solution of nonlinear partial differential equations.Through the continuous efforts of scientific researchers,a large number of solutions have been found.In this paper,a new solution of Boussinesq is obtained by means of Traveling Wave Transformation method,Direct Quasi solution and Homogeneous solution.This method also has certain universality,and can find the solutions of some nonlinear partial differential equations.Key Words:Travelling wave transform;Exact solution;Quasi solution;Homogeneous Balance method通过科研工作者对非线性偏微分方程求解的深入研究,获得了许多求解的方法,如齐次平衡法[1-3]、有理函数变换法[4]、行波变换法[5-6]、辅助函数法、Riccati 方程法[7-8]、同伦分析法[9]。
求解杨-Baxter方程的方法
求解杨-Baxter方程的方法
马中骐
【期刊名称】《兰州大学学报:自然科学版》
【年(卷),期】1991(0)S1
【摘要】本文系统研究了3种求解杨-Baxter方程的方法,指出这些方法各自适用的条件,举例说明普遍求解带谱参数的杨-Baxter方程三角解,目前还是一个尚未解决的问题。
【总页数】12页(P44-55)
【关键词】杨-Baxter方程;量子包络代数;谱分解
【作者】马中骐
【作者单位】中国科学院高能物理研究所
【正文语种】中文
【中图分类】N55
【相关文献】
1.余量子杨-BaXter方程及其代数刻划 [J], 郝志峰;冯良贵;杨德贵
2.杨—Baxter方程的一个推论 [J], 梁安民
3.杨-Baxter方程的对称性 [J],
4.吴方法和带参数杨—Baxter方程的求解技术 [J], 王世坤;吴可
5.杨— Baxter方程的一个推论 [J], 梁安民
因版权原因,仅展示原文概要,查看原文内容请购买。
不变代数曲线法求解积分因子
解这个方程组,它遵循 f 和 h,解得
c00 = 1 c10 = a11
cc0210
= =
0 a21
(6)
c02 = 0
c11 = 0
DOI: 10.12677/pm.2020.106072
596
理论数学
从而可以求得它的一条不变的代数曲线 f11 = 1 + a11x + a21x2 ,
同理可求得当 m = 4 时它的另一条不变代数曲线
∑ ( ) 2
+
jckj xk y j−1 4µ xy + 2a11 y2 −2 1+ µ 2 x3 +2a21xy2
(5)
k + j =0
2
2
∑ ∑ =
dkj xk y j
ckj xk y j
= k + j 0 = k + j 0
将(5)展开化简并将得到的等式两边对应项的系数进行比较,可以得到一个关于 ckj , dkj 的线性代数方程组
Abstract
In the course of ordinary differential equations, finding integrating factor is a very difficult problem. In this paper, we will give a method to solve integrating factor or inverse integrating factor by invariant algebraic curves; the integrability of two differential systems is solved.
结合超代数上的超结合Yang-Baxter方程
结合超代数上的超结合Yang-Baxter方程安慧辉【摘要】主要研究结合超代数上的超结合Yang-Baxter方程.首先给出结合超代数上Rota-Baxter算子和O-算子的定义,得到结合超代数上奇的Rota-Baxter算子与李超代数上奇的Rota-Baxter算子之间的关系,找到结合超代数上的超结合Yang-Baxter方程的解与结合超代数上的O-算子之间的关系.最后给出了结合超代数上超结合Yang-Baxter方程的解与超2-上循环之间的关系.【期刊名称】《辽宁师范大学学报(自然科学版)》【年(卷),期】2019(042)002【总页数】6页(P152-157)【关键词】超结合Yang-Baxter方程;O-算子;2-上循环【作者】安慧辉【作者单位】辽宁师范大学数学学院,辽宁大连 116029【正文语种】中文【中图分类】O152.5自从20世纪80年代以来, 经典Yang-Baxter方程成为数学和数学物理中的一个重要研究课题[1-3], 许多学者对经典Yang-Baxter方程的解做了系统的研究. Rota-Baxter算子是G.Baxter首先提出的[4],Rota在对它的研究中做了重要的贡献[5]. O-算子是Rota-Baxter算子的推广[6]. 经典Yang-Baxter方程与Rota-Baxter算子有非常密切的联系, 当李代数上存在非退化的不变双线性函数时,李代数上经典Yang-Baxter方程的反对称解与Rota-Baxter算子是一一对应的. 在文献[7]中,作者研究了李超代数上超经典Yang-Baxter方程的偶的超反对称解. 本文主要考虑在结合超代数上的超结合Yang-Baxter方程的奇的解.1 结合超代数上的Rota-Baxter算子和O-算子定义1.1[8] (1)设A=A0+A1是Z2阶化的线性空间,∘是A上的代数运算, 如果满足(x∘y)∘z=x∘(y∘z) (∀x,y,z∈A),则称A为结合超代数.(2)设A=A0+A1是结合超代数, V是Z2阶化的线性空间, l,r:A→End(V)为线性映射,如果对于任意x,y∈A满足l(xy)=l(x)l(y),r(xy)=(-1)|x‖y|r(y)r(x),l(x)r(y)=(-1)|x‖y|r(y)l(x),则称(V,l,r)为结合超代数A的双模.若(V,l,r)为结合超代数A的双模, 则(V*,r*,l*)也为A的双模.定义1.2 设A=A0+A1是结合超代数, (V,l,r)为A的双模,T:V→A为线性映射,如果T满足T(u)T(v)=T((-1)|T‖u|+|T|l(T(u))v+(-1)|T‖u|+|u‖v|r(T(v))u), ∀u,v∈V,则称T为关于(V,l,r)的O-算子.特别地, 设L,R:A→End(A)为左乘、右乘运算, A上关于双模(A,L,R)的O-算子R称为Rota-Baxter算子, 即线性变换R:A→A满足R(x)R(y)=R((-1)|R‖x|+|R|R(x)y+xR(y)), ∀x,y∈A.命题1.1 设A=A0+A1是结合超代数, R为A上的Rota-Baxter算子, 定义[x,y]=xy-(-1)|x‖y|yx, ∀x,y∈A,则R为A上的李超代数(A,[,])的Rota-Baxter算子.证在文献[7]中,作者考虑了|R|=0的情形, 我们考虑|R|=1的情况, 此时[R(x),R(y)]=R(x)R(y)-(-1)(|x|+1)(|y|+1)R(y)R(x), ∀x,y∈A.直接计算可得因此, R为A上的李超代数(A,[,])的Rota-Baxter算子.2 结合超代数上的O-算子与超结合Yang-Baxter方程的解设A=A0+A1是结合超代数, 如果r∈A⊗A满足r12r13-(-1)|R|r23r12+r13r23=0,(1)则称r为A上的超结合Yang-Baxter方程的解,式(1)称为超结合Yang-Baxter方程.定理2.1 设A=A0+A1是结合超代数, 如果r∈A⊗A超反对称且|r|=0或者r∈A⊗A超对称且|r|=1, 则r为A上的超结合Yang-Baxter方程的解当且仅当r(a*)r(b*)=r((-1)|r‖a*|+|r|R*(r(a*))b*+(-1)|r‖a*|+|a*‖b*|L*(r(b*))a*),∀a*,b*∈A*.(2)证设e1,e2,…,em为A0的基, f1,f2,…,fn为A1的基,为e1,e2,…,em,f1,f2,…,fn的对偶基. 设A上的代数运算的结构常数为其中,i,j=1,2,…,m;k,l=1,2,…,n.(1)如果r∈A⊗A超反对称且|r|=0, 则r可以表示为⊗⊗fl,此时aij=-aji,bkl=blk. 通过直接计算可得由〈a*⊗b*,r〉=〈a*,r(b*)〉(∀a*,b*∈A*)知如果a* 由式(2)可知与ea⊗ej⊗eq的系数等价.如果a*由式(2)可知与fc⊗fl⊗eq的系数等价.如果a*由式(2)可知与fb⊗ej⊗ft的系数等价.如果a*由式(2)可知与ed⊗fl⊗ft的系数等价.(2)如果r∈A⊗A超对称且|r|=1, 则r可以表示为⊗fk+fk⊗ei), 通过直接计算可得由〈a*⊗b*,r〉=(-1)|r‖b*|〈a*,r(b*)〉(∀a*,b*∈A*)知如果a*由式(2)可知与ej⊗ed⊗ei的系数等价.如果a*由式(2)可知与ej⊗fb⊗fk的系数等价.如果a*由式(2)可知与fl⊗fc⊗ei的系数等价.如果a*由式(2)可知与fl⊗ea⊗fk的系数等价.定理2.2 设A=A0+A1是结合超代数, (V,l,r)为A的双模. 设R:V→A为线性映射.(1)若|R|=0, 则r=R-σ(R)为A(r*,l*)V*上的超结合Yang-Baxter方程的解当且仅当R是A上关于(V,l,r)的O-算子.(2)若|R|=1, 则r=R+σ(R)为A(r*,l*)V*上的超结合Yang-Baxter方程的解当且仅当R是A上关于(V,l,r)的O-算子.证设e1,e2,…,em,f1,f2,…,fn为A的基, v1,v2,…,vs,w1,w2,…,wt为V的基,为v1,v2,…,vs,w1,w2,…,wt的对偶基.(1)若|R|=0, 因为Hom(V,A)≅A⊗V*,R可以表示为⊗⊗此时⊗⊗⊗⊗R(wk),因此, |R|=0时结论成立.(2)若|R|=1, 则⊗⊗⊗⊗R(wk),直接计算可得r12r13+r23r12+r13r23=⊗⊗⊗⊗⊗⊗(R(vp)R(vi)-R(r(R(vi))vp)+R(l(R(vp))vi))+⊗⊗(R(wq)R(vi)+R(r(R(vi))wq)-R(l(R(wq))vi))+⊗⊗⊗⊗⊗⊗(R(wq)R(wk)-R(r(R(wk))wq)-R(l(R(wq))wk))+因此, |R|=1时结论成立.3 结合超代数上的超2-上循环设A=A0+A1是结合超代数, 如果A上存在非退化不变超对称的双线性函数B(,)满足B(x,y)=(-1)|x‖y|B(y,x), B(xy,z)=B(x,yz), ∀x,y,z∈A,此时A与A*等价, r∈A⊗A可看作A上的线性变换.若|r|=0且r超反对称, 则r是超结合Yang-Baxter方程的解当且仅当r满足r(x)r(y)=r(r(x)y+xr(y)), ∀x,y∈A.若|r|=1且r超对称, 则r是超结合Yang-Baxter方程的解当且仅当r满足r(x)r(y)=r((-1)|x|+1r(x)y+xr(y)), ∀x,y∈A.因此, 当A上存在非退化不变超对称的双线性函数时, 超结合Yang-Baxter方程的解与Rota-Baxter算子是一一对应的.定义3.1 设A=A0+A1是结合超代数, B:A⊗A→F为A上的双线性函数, 如果B满足(-1)|x‖z|B(x,yz)+(-1)|x‖y|B(y,zx)+(-1)|y‖z|B(z,xy)=0, ∀x,y,z∈A,(3)则称B为结合超代数A上的超2-上循环.定理3.1 设A=A0+A1是结合超代数,r∈A⊗A非退化,B是A上由B(x,y)=〈r-1(x),y〉(∀x,y∈A)确定的双线性函数.若|r|=0且r超反对称, 则r是超结合Yang-Baxter方程的解当且仅当B为A上的超2-上循环.若|r|=1且r超对称, 则r是超结合Yang-Baxter方程的解当且仅当B为A上的超2-上循环.证∀x,y,z∈A, 由r非退化知存在a*,b*,c*∈A*使得x=r(a*),y=r(b*),z=r(c*),因此,式(3)等价于(-1)(|a*|+|r|)(|c*|+|r|)〈a*,r(b*)r(c*)〉+(-1)(|a*|+|r|)(|b*|+|r|)〈b*,r(c*)r(a*)〉+(-1)(|b*|+|r|)(|c*|+|r|)〈c*,r(a*)r(b*)〉=0.此外, 〈L*(x′)d*,y′〉=(-1)|x′‖d*|〈d*,x′y′〉,〈R*(x′)d*,y′〉=(-1)|x′‖d*|+|x′‖y′|〈d*,y′x′〉.(1)若|r|=0且r超反对称, 由〈a*,r(b*)〉+(-1)|a*‖b*|〈b*,r(a*)〉=0可得(-1)|a*‖c*|〈a*,r(b*)r(c*)〉+(-1)|a*‖b*|〈b*,r(c*)r(a*)〉+(-1)|b*‖c*|〈c*,r(a*)r(b*)〉=-(-1)|b*|(|a*|+|c*|)〈c*,r(L*(r(b*))a*)〉-(-1)|b*‖c*|〈c*,r(R*(r(a*))b*)〉+(-1)|b*‖c*|〈c*,r(a*)r(b*)〉=(-1)|b*‖c*|〈c*,r(a*)r(b*)-r(R*(r(a*))b*)-(-1)|a*‖b*|r(L*(r(b*))a*)〉.因此, |r|=0且r超反对称时结论成立.(2) 若|r|=1且r超对称, 由〈a*,r(b*)〉-(-1)|a*‖b*|+|a*|+|b*|〈b*,r(a*)〉=0可得(-1)(|a*|+1)(|c*|+1)〈a*,r(b*)r(c*)〉+(-1)(|a*|+1)(|b*|+1)〈b*,r(c*)r(a*)〉+ (-1)(|b*|+1)(|c*|+1)〈c*,r(a*)r(b*)〉=(-1)|b*|(|a*|+|c*|)+|b*|+|a*|+|c*|〈c*,r(L*(r(b*))a*)〉+(-1)|b*‖c*|+|b*|+|a*|+|c*|+1〈c*,r(R*(r(a*))b*)〉+(-1)|b*‖c*|+|b*|+|c*|+1〈c*,r(a*)r(b*)〉=(-1)|b*‖c*|+|b*|+|c*|+1〈c*,r(a*)r(b*)-(-1)|a*|+1r(R*(r(a*))b*)-(-1)|b*‖a*|+|a*|r(L*(r(b*))a*)〉.因此, |r|=1且r超对称时结论成立.参考文献:【相关文献】[1] BELAVIN A A. Dynamical symmetry of integrable quantum systems[J].Nucl PhysB,1981,180(2):189-200.[2] FADDEEV L D,TAKHTAJAN L.The quantum inverse scattering method of the inverse problem and the Heisenberg XYZ model[J].Russ Math Surv,1979,34:11-68.[3] CHARI V,PRESSLEY A.A guide to quantum groups[M].Cambridge:Cambridge University Press,1994.[4] BAXTER G.An analytic problem whose solution follows from a simple algebraic identity[J].Pacific J Math,1960,10(3):731-742.[5] ROTA G C. Baxter operators, an introduction[C]∥KUNG J P S.Gian-Carlo Rota on combinatorics: Introductory papers and commentaries. Boston:Birkhauser,1995.[6] BORDEMANN M.Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups[J].Comm Math Phys,1990,135(1):201-216.[7] WANG Y,HOU D,BAI C. Operator forms of the classical Yang-Baxter equation in Lie superalgebras[J].Int J Geom Meth Modern Phys,2010,7(4):583-597.[8] ABDAOUI K,MABROUK S,MAKHLOUF A.Rota-Baxter operators on pre-Lie superalgebras and beyond[J].arXiv:1512.08043.。
薄板弯曲问题的非奇异核边界元法
薄板弯曲问题的非奇异核边界元法
王左辉
【期刊名称】《应用数学和力学》
【年(卷),期】1993(14)8
【摘要】本文从满足一定条件的Fourier级数出发,得到非奇异的基本解.用它作积分方程的核函数,从而给出了又一种薄板弯曲问题的边界元解法.本文方法可适应各种载荷和边界条件的要求,并且计算简单,精度高.
【总页数】10页(P729-738)
【关键词】边界积分方程;薄板;弯曲;边界元法
【作者】王左辉
【作者单位】合肥工业大学
【正文语种】中文
【中图分类】O343
【相关文献】
1.基于边界元法的非均质薄板弯曲问题的解 [J], 董春迎
2.基于边界元法的非均质薄板弯曲问题的解 [J], 董春迎
3.非奇异核边界元法及其在地基板弯曲问题中的应用 [J], 姚志远;彭如海
4.薄板弯曲问题边界元法分析中预条件GM RES算法 [J], 陈娟;肖洪天;高广运
5.一种对称非奇异核边界元法 [J], 姚志远
因版权原因,仅展示原文概要,查看原文内容请购买。
静电场第四类边值问题的改进算法
静电场第四类边值问题的改进算法
汤晓钟
【期刊名称】《西南交通大学学报》
【年(卷),期】1992(000)002
【总页数】7页(P45-51)
【作者】汤晓钟
【作者单位】无
【正文语种】中文
【中图分类】O441.1
【相关文献】
1.改进的椭圆边值问题边界条件算法 [J], 任国彪;杨永琴
2.用边界元法计算静电场第四类非混合边值问题 [J], 彭兵
3.相似结构算法在求两区复合Thomson方程边值问题中的改进 [J], 范聪银;李顺初;董晓旭;白丽霞;;;;
4.第四类典型域上的一个复Clifford边值问题 [J], 黄沙;李生训
5.静电场第四类非混合边值问题的弱问题 [J], 汤晓钟
因版权原因,仅展示原文概要,查看原文内容请购买。
求解蛋白质结构问题的改进模拟退火算法
求解蛋白质结构问题的改进模拟退火算法
黄文奇;陈昊
【期刊名称】《计算机应用研究》
【年(卷),期】2005(022)008
【摘要】将模拟退火(SA)思想用于求解蛋白质结构预测问题,并在此基础上提出了两个提高解的质量和加快收敛速度的改进策略,计算结果表明改进后的SA算法的计算效率优于目前常用的遗传算法和Monte Carlo方法.
【总页数】2页(P66-67)
【作者】黄文奇;陈昊
【作者单位】华中科技大学,计算机学院,湖北,武汉,430074;华中科技大学,计算机学院,湖北,武汉,430074
【正文语种】中文
【中图分类】TP301.6
【相关文献】
1.一种求解不等圆Packing问题的改进遗传模拟退火算法 [J], 张维;杨康宁;张民
2.改进的粒子群算法求解蛋白质结构预测问题 [J], 焉为家;郭雨珍
3.求解TSP问题的改进模拟退火算法 [J], 何锦福;符强;王豪东
4.求解带序列相关准备时间双边装配线平衡问题的改进模拟退火算法 [J], 赵瀚明;唐秋华;蒙凯;李梓响;张子凯
5.求解带能力约束车辆路径优化问题的改进模拟退火算法 [J], 尚正阳;顾寄南;王建平
因版权原因,仅展示原文概要,查看原文内容请购买。
yang-baxter方程
yang-baxter方程
杨-巴克斯特方程式(Yang-Baxter equation,YBE)是一种对于
多体物理系统的控制变换的代数方程。
它定义了一个基本的变换方程,可以被应用在多种领域中,如统计力学、量子场论、矩阵模型等等。
杨-巴克斯特方程式最早被引入到统计力学和计算物理中,用于
描述玻色-爱因斯坦凝聚的相变,以及像旋转矩阵的代数变换等等。
后来,随着量子群、代数几何、垂直対角化技术、统计物理和数学物理
的发展,它也开始在这些领域中扮演着越来越重要的角色。
杨-巴克斯特方程式的数学形式如下:
(R_{12}R_{13}R_{23})(R_{12}R_{13}R_{23})=(R_{23}R_{13}R_ {12})(R_{23}R_{13}R_{12})
其中,R_{12},R_{13},R_{23}是三个预定的矩阵,代表着不同的
物理变换。
这个方程式描述了它们之间的代数关系,可以被用于推导
出许多有用的结论和定理,如分数统计、共振系统等等。
On set-theoretical solutions of the quantum Yang-Baxter equation
a rXiv:q -alg/97727v223J u l1997ON SET-THEORETICAL SOLUTIONS OF THE QUANTUM YANG-BAXTER EQUATION Pavel Etingof,Travis Schedler,and Alexandre Soloviev In the paper [Dr]V.Drinfeld formulated a number of problems in quantum group theory.In particular,he suggested to consider “set-theoretical”solutions of the quantum Yang-Baxter equation,i.e.solutions given by a permutation R of the set X ×X ,where X is a fixed finite set.In this note we study such solutions,which satisfy the unitarity and the crossing symmetry conditions –natural conditions arising in physical applications.More specifically,we consider “linear”solutions:the set X is an abelian group,and the map R is an automorphism of X ×X .We show that in this case,solutions are in 1-1correspondence with pairs a,b ∈End X ,such that b is invertible and bab −1=aNow consider the crossing symmetry condition.If R satisfies(1)and(2),the crossing symmetry condition is(6)(((R−1)t)−1)t=R,where()t denotes transposing in the second component of the product(here R is regarded as a matrix of0-s and1-s).Using(2),we can rewrite condition(6)as(7)(R21)t R t=1.Since R= x,y E cx+dy,x⊗E ax+by,y,where E pq is the elementary matrix,condition(7)can be written in the form(8)y′=cx+dy,y=cx′+dy′E ax′+by′,x⊗E x′,ax+by=1.But1= p,q E pp⊗E qq.This implies that equation(6),given(1),(2),is equivalent to the following:1.For any x,x′∈X there exist unique y,y′∈X such that y′=cx+dy,y= cx′+dy′,and2.These y,y′satisfy the equations x′=ax+by,x=ax′+by′.Thefirst condition is equivalent to the condition that the matrix 1−d−d1 is invertible,i.e.that1−d2is invertible.But by(5)1−d2=cb,so c,b are invertible. Proposition1.If b,c are invertible,equations(4),(5)are equivalent to the equa-tions(9)bab−1=aa−1.Proof.The second equation of(9)follows directly from(5).Also,(5)implies (10)a=−bdb−1.Therefore,multiplying the equation bd=(1−a)db(which is in(4))by b−1on the right,we get(11)−a=(1−a)d.Since b,c are invertible,so is bc=1−a2,so1−a is invertible.Thus,(11)implies the third equation of(9).Now thefirst equation of(9)follows from(10).Conversely,substituting(9)into(4),(5),it is easy to show by a direct calculation that they are identically satisfied.Corollary2.A map R of the form(3)is a solution to(1),(2),(6)if and only if b,c are invertible,and(9)are satisfied.Thus,such solutions are in1-1correspondence with pairs(a,b)such that bab−1=aProposition3.A map R of the form(12)is a solution to(1),(2),(6)if and only if b,c are invertible,(9)are satisfied,and t=−b−1(1+a)z.Thus,such solutions are in1-1correspondence with triples(a,b,z)such that bab−1=a.a+1Example1.[Hi]Let X=Z/n Z.Then End X=Z/n Z,which is commutative, so equation(13)reads a=ain Mat N(Z),such that b∈GL N(Z).a+1Let a ij=δi+1,j,and b ij= j i .Then a,b satisfy(13).Indeed,this equation can be rewritten as ab=ba+aba,which at the level of matrix elements reduces to the well-known identity for binomial coefficients:(14) j i+1 = j−1i + j−1i+1We will use the following notation for this solution:a=J N,b=B N.In fact,all solutions of(13)in Mat N(Z)can be obtained from this one.Indeed, we haveLemma4.Let a,b be a solution of(13)in Mat N(C).Then a is nilpotent. Proof.It follows from(13)that ifλis an eigenvalue of a then so isλZ/p Z.ThenλReferences[Dr]Drinfeld V.G.,On some unsolved problems in quantum group theory,Lect.Notes Math.1510 (1992),1-8.[Hi]Hietarinta J.,Permutation-type solutions to the Yang-Baxter and other simplex equations, q-alg9702006(1997).P.E.:Department of Mathematics,Harvard University,Cambridge,MA02138T.S.:1500W.Sullivan Rd.,Aurora,IL60506A.S.:Department of Mathematics,MIT,Cambridge,MA02139E-mail address:P.E.:etingof@T.S.:trasched@V.R.:sashas@4。
非欧椭圆几何的若干度量问题
非欧椭圆几何的若干度量问题
左铨如;华冬英
【期刊名称】《数学研究及应用》
【年(卷),期】2003(023)004
【摘要】本文用新方法讨论解决了n维椭圆空间Sn中若干几何问题.给出了关于n维球面单形的余弦定理、高的公式、内切及外接球半径r,R以及内心I与外心Q 间的距离公式.同时将著名的欧拉不等式推广到Sn中.
【总页数】7页(P658-664)
【作者】左铨如;华冬英
【作者单位】扬州大学数学系,江苏,扬州,225002;扬州大学数学系,江苏,扬
州,225002
【正文语种】中文
【中图分类】O184
【相关文献】
1.罗巴切夫斯基与非欧几何:纪念非欧几何诞生170周年及罗巴切夫斯基逝世140周 [J], 刘孝贤
2.关于高维非欧几何的若干基本问题 [J], 杨世国
3.从欧几里得到罗巴切夫斯基——非欧几何诞生史的若干哲学问题 [J], 董驹翔
4.从欧几里得到罗巴切夫斯基——非欧几何诞生史的若干哲学问题 [J], 董驹翔
5.非欧几何发展中的若干认识论问题 [J], 冯进
因版权原因,仅展示原文概要,查看原文内容请购买。
李代数sl(2,C)上的经典Yang-Baxter方程的解及其应用
李代数sl(2,C)上的经典Yang-Baxter方程的解及其应用华秀英;刘文德;崔云安;张海燕;赵寒妹【摘要】针对复数域C上特殊线性李代数sl(2,C)的经典Yang-Baxter方程解的问题,利用sl(2,C)的基元素,通过计算Yang-Baxter算子在其基元素上的作用的方法,得到了sl(2,C)的经典Yang-Baxter方程的一些解,进而给出了sl(2,C)上的某些左对称代数结构.【期刊名称】《哈尔滨理工大学学报》【年(卷),期】2015(020)005【总页数】4页(P119-122)【关键词】李代数;经典Yang-Baxter方程;左对称代数【作者】华秀英;刘文德;崔云安;张海燕;赵寒妹【作者单位】哈尔滨理工大学应用科学学院,黑龙江哈尔滨150080;哈尔滨师范大学数学科学学院,黑龙江哈尔滨150025;哈尔滨理工大学应用科学学院,黑龙江哈尔滨150080;哈尔滨理工大学应用科学学院,黑龙江哈尔滨150080;哈尔滨理工大学应用科学学院,黑龙江哈尔滨150080【正文语种】中文【中图分类】O151.21定义1 设G是一个李代数,如果G上的线性算子R满足:则称线性算子R是G上的一个Rota-Baxter算子(特别地,在李代数中权0的Rota-Baxter算子R称为G上的一个Yang-Baxter算子),G是一个权为λ的Rota-Baxter代数,权为0时,上述方程变为称为G的经典Yang-Baxter方程,权为0的Yang-Baxter算子称为G的经典Yang-Baxter方程的解.作为Yang-Baxter算子的应用,我们可以利用Yang-Baxter算子来构造左对称代数[7].引理1[7]设G是一个李代数,R是G上经典Yang-Baxter方程的解,那么在G上定义一个新的运算:则(G,*)构成一个左对称代数.满足(1)式的R即为李代数sl(2,C C)上的经典Yang-Baxter方程的解.下面分情况进行讨论:情况(A)若a13=0,则方程组(2)化简为本文讨论了复数域C上三维特殊线性李代数sl(2,C C)的权为零的Rota-Baxter算子问题,即sl(2,C C)上的经典Yang-Baxter方程的解的问题,将Rota-Baxter算子作用在sl(2,C C)的基底元素上,把算子问题转化为方程组问题,分情况讨论,得到了sl(2,C C)的权为零的一些Rota-Baxter算子,进而确定了sl(2,C C)上的一些左对称代数结构.【相关文献】[1]BAXTER G.An Analytic Problem Whose Solution Follows From a Simple Algebraic Identity[J].Pacific J.Math.,1960,10(3):731-742.[2]ROTA G C.Baxter Algebras and Combinatorial Identities I[J]. Bull.Amer.Math.Soc.,1969,75(2):325-329.[3]ROTA G C.Baxter Algebras and Combinatorial Identities II[J]. Bull.Amer.Math.Soc.,1969,75(2):330-334.[4]ROTA G C.Ten Mathematics Problems IWill Never Solve[J]. Mitt.Dtsch.Math,1998,2:45-52.[5]ATKINSON F V.Some Aspects of Baxter's Functional Equation[J].J.Math.Anal.Appl.,1963,7(1):1-30.[6]CARTIER P.On the Structure of Free Baxter Algebras[J].Advances in Math.,1972,9(2):253-265.[7]LIXiuxian,HOU Dongping,BAIChengming.Rota-Baxter Operators on Pre-lie Algebras[J].Nonlinear Math.Phys.,2007,14(2):269-289.[8]AN Huihui,BAIChengming.From Rota-Baxter Algebras to Pre-Lie Algebras[J].J.Phys.A:Math.Theor.,2008,41(1):015201-015219.[9]孙琼.一类Baxter代数及其应用[D].哈尔滨:黑龙江大学,2012:1-32.[10]陈美微,刘文德.有限维实可除代数的Rota-Baxter算子[J].数学的实践与认识,2013,43(16):243-247.[11]华秀英,刘文德.外代数上的Rota-Baxter算子[J].哈尔滨理工大学学报,2013,18(4):125-128.[12]范素军,刘东艳,吴艳茹,等.李代数的Rota-Baxter算子[J].河北师范大学学报:自然科学版,2014,38(6):541-544.[13]焦阳,刘文德.Filiform李超代数L1,2上的Yang-Baxter方程[J].数学的实践与认识,2014,44(17):283-287.[14]顾金剑,刘文德.三维幂零李超代数的Yang-Baxter算子[J].纯粹数学与应用数学,2014,30(3):307-312.[15]冯田,刘文德.一般线性李超代数gl(1|1)上的Rota-Baxter算子[J].哈尔滨师范大学自然科学学报,2013,29(4):12 -15.[16]FADDEEV L D,TAKHTAJAN L.The Quantum Inverse Scattering Method of the Inverse Problem and the Heisenberg XYZModel[J].Russ.Math.Surv.,1979(34):11-68.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(here by ∗ we have marked all nonzero elements). Up to the power λ6 the matrix elements of Rij = R17−i,17−j , (15)
R66 + R77 , R25 = R39 = −R35 = −R29 , 2 = R11 − R66 , R7,10 = R23 − R29 = R11 − R77 . (16) 3
3 3 L23 − L12 = [H12 + H23 + 3(K12 + K23 ), [H12 , H23 ]] +
(10)
is called the Reshetikhin condition [3]. As a first integrability test for the matrix H it was
n=2
∗
1 (n) n R λ . n!
(4)
bibikov@
1
(From now we shall write I instead of IN 2 ). The matrix H according to the QISM plays a role of the local Hamiltonian density of the integrable model corresponding to R(λ) [2]. Substituting the expansion (4) into the Eq. (1) we obtain the following formulas for R(n) , n = 2, ..., 6: R(2) = H 2 , R(3) = H 3 + K, R(4) = H 4 + 2(HK + KH ), R(5) = H 5 + L + 2(KH 2 + H 2 K ) + 6HKH, R(6) = H 6 + KH 3 + H 3 K + 9(H 2 KH + HKH 2 ) + +10K 2 + 3(HL + LH ). (9) (5) (6) (7) (8)
The N 2 ×N 2 matrices K , L appearing in (6)-(9) and the matrix H satisfy a system of equations that follows from the system (1)-(2). The first equation: [(H12 + H23 ), [H12 , H23 ]] = K23 − K12 , studied in [4],[5]. The second equation:
∞
(2)
The system (1),(2) is invariant under multiplication of R(λ) on the arbitrary regular func-
(3)
Our method of solving the system (1)-(2) is based on the Taylor expansion of R-matrix: R(λ) = I + λH +
on the N 2 × N 2 matrix R(λ) called R-matrix. Here for an arbitrary N 2 × N 2 matrix X the N 3 × N 3 matrices X12 and X23 are defined as X12 = X ⊗ IN , X23 = IN ⊗ X , where IN is a unit N × N matrix.
2 2 R23 − R12 + 4(H12 R23 − R12 H23 ) + 5(H12 R23 − R12 H23 ) = (6) (6) (5) (5) (4) (4)
(11)
H23 (R12 R23 )(5) − (R12 R23 )(5) H12 .
(12)
For almost all known R-matrices the quotients of their matrix elements have a rather simple (rational, trigonometric or elliptic) forms. It was mentioned in the Ref. [4] that using the first terms of power expansions for quotients of R-matrix elements it may be possible to identify the full exact expressions for them. In the next section we show that this approach really may be very effective and calculate a 4 × 4 R-matrix for a spin-ladder model. 2
So all of them may be expressed (up to λ6 ) from R11 , R66 , and R77 . According to the following relations: R11 = 1 + (β − α)c(λ) + O (λ7), R66 where R11 = 1 + (β + α)c(λ) + O (λ7 ), R77 (17)
+ O (λ 7 ),
(14)
(14) satisfy the following general system of relations: Rij = Rji , as well as the following one: R11 = R44 , R23 = R59 , R22 = R33 = R55 = R88 = R6,11 = + R29
How to solve Yang-Baxter equation using the Taylor expansion of R-matrix
arXiv:nlin/0112001v1 [nlin.SI] 1 Dec 2001
P. N. Bibikov∗ February 8, 2008
Abstract A new method for solving the Yang-Baxter equation is presented. It is based on the Taylor expansion of R-matrix which is developed up to the power λ6 . Using this method the R-matrix for integrable spin-ladder is calculated.
(13)
operators. A summation over the repeating indices is where i, j = 1...3 and σi are spin- 1 2 the formulas (4)-(9) we see that the corresponding R-matrix has the 0 ∗ ∗ 0 ∗ 0 0 0 ∗ 0 0 0 0 0 0 0 0 ∗ ∗ 0 ∗ 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 ∗ 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 ∗ 0 ∗ ∗ 0 0 ∗ ∗ 0 ∗ 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 ∗ 0 ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 ∗ 0 ∗ ∗ 0 0 0 0 0 0 0 0 ∗ 0 0 0 ∗ 0 ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗
1
The power expansion formulas
By the Yang-Baxter equation (in the braid group form) is called the following equation [1]: R12 (λ − µ)R23 (λ)R12 (µ) = R23 (µ)R12 (λ)R23 (λ − µ), (1)
2
The spin-ladder R-matrix
The spin ladder models have attracted considerable attention in resent years due to the developing experimental results on ladder materials and the hope to get insight into the physics of metal-oxide superconductors [6] In the Ref. [7] the integrable spin-ladder system was presented. Its integrability was not proved rigorously but the model was solved via coordinate Bethe ansatz. The Hamiltonian studied in the Ref. [7] has the following density: α (σi ⊗ I2 ⊗ σi ⊗ I2 + I2 ⊗ σi ⊗ I2 ⊗ σi − σi ⊗ I4 ⊗ σi − H = 4 I2 ⊗ σi ⊗ σi ⊗ I2 + σi ⊗ σj ⊗ σi ⊗ σj − σi ⊗ σj ⊗ σj ⊗ σi ) + β (σi ⊗ σi ⊗ I4 + I4 ⊗ σi ⊗ σi + σi ⊗ σi ⊗ σj ⊗ σj ), 4 implied in (13). Using following form: ∗ 0 0 0 0 0 0 0 R= 0 0 0 0 0 0 0 0