沪科版七年级数学下册导学案 7.2一元一次不等式(3)
沪科版七年级数学下册导学案 7.3 一元一次不等式组(4)
课题:一元一次不等式与不等式组一元一次不等式组(4)主备人:杨明 时间:2011年3月 日年级 班 姓名:复习目标:1.梳理本章知识,深化对不等式(组)的理解. 2.回顾不等式的性质,并能解决相关的实际问题.复习过程: 一、知识回顾1.在数轴上画出不等式(组)的解集① x ≥-3 ② x <2③ -1<x ≤4 ④ 2<x <62.解不等式(组): ① x 54>251+-x②1252312+--x x ≤1476--x③⎪⎩⎪⎨⎧-<-+≤-33143265x x x x④⎪⎩⎪⎨⎧+->-+<-1413158550304x x x x ..).(3. 解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解。
4.九年三班学生到阅览室读书,班长问老师要分成几个小组,老师风趣地说:请你帮助班长分组,你知道该分几个组吗?(注意写出解题过程,不能仅有分组的结果哟!)二、典型例题1.“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案? (2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?2.已知方程组⎪⎩⎪⎨⎧=--=+a y x a y x 2523 的解y x 、的和是负数,且a 取符合条件的最小正整数,求的解集132+x ax 。
新课标第一网3..,4,01623,0132的取值范围求且已知x b a x b x a ≤=--=+-三、达标检测1. 若11|1|-=--x x ,则x 的取值范围是______________。
2. 不等式0145≥+x 的负整数解是____________ ___。
沪科版 数学七年级下册课时练 第7章 7.2 第3课时 一元一次不等式的实际应用
沪科版数学七年级下册第7章一元一次不等式与不等式组7.2一元一次不等式第3课时一元一次不等式的实际应用1.小丽同学准备用自己的零花钱购买一台学生平板电脑,她原有750元,计划从本月起每月存入30元,直到她至少存有1 080元.设x个月后小丽至少有1 080元,则可列不等式为(D)A.3x+750>1 080B.30x-750≥1 080C.30x-750<1 080D.3x+750≥1 0802.光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支.设每支钢笔涨价后的售价为x元,若使该种钢笔的月销量不低于105支,则x应满足的不等式为(D)A.180-15x≥105 B.180-(x-14)≤105C.180+15(x+14)≥105 D.180-15(x-14)≥1053.小红读一本400页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第6天起平均每天至少要读(B)A.50页B.60页C.80页D.100页4.(2019·山西太原期末)某社区超市以4元/瓶从厂家购进一批饮料,以6元/瓶销售.近期计划进行打折销售,若这批饮料的销售利润不低于20%,则最多可打(D)A.六折B.七折C.七五折D.八折5.小丽种了一棵高75 cm的小树,假设小树平均每周长高3 cm,x周后这棵小树的高度不超过100 cm,所列不等式为__75+3x≤100__.6.小明用30元钱购买矿泉水和冰激凌,每瓶矿泉水2元,每支冰激凌3.5元,他买了6瓶矿泉水和若干支冰激凌,他最多能买__5__支冰激凌.7.(教材P33,习题7.2,T9改编)某次知识竞赛试卷有20道题,评分办法是答对1道题记5分,不答记0分,答错1道题扣2分.小明有3道题没答,但成绩超过60分,则小明至少答对了__14__道题.8.(2018·山西中考)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115 cm.某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为__55__cm.9.学校准备用2 000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元.现已购买名著20套,问最多还能买词典多少本?解:设还能买词典x本,根据题意,得20×65+40x≤2 000,解得x≤171 2.因为x为整数,所以x的最大值是17.答:最多还能买词典17本.10.某国有企业在“一带一路”倡议中,向东南亚销售A,B两种外贸产品共6万吨.已知A种外贸产品每吨800元,B种外贸产品每吨400元,若A,B两种外贸产品的销售额不低于3 200万元,则至少销售A种外贸产品多少万吨?解:设销售A种外贸产品x万吨,则销售B种外贸产品(6-x)万吨.依题意,得800x+400(6-x)≥3 200,解得x≥2.答:至少销售A种外贸产品2万吨.11.小兰准备用30元买钢笔和笔记本,已知一支钢笔4.5元,一本笔记本3元.如果她钢笔和笔记本共买了8件,每种至少买1件,则她有多少种购买方案?解:设她买了x支钢笔,则买了(8-x)本笔记本.由题意得4.5x+3(8-x)≤30,解得x≤4.又因为x≥1,所以x可取1,2,3,4,所以共有4种购买方案.12.(2019·安徽淮北五校联考)某品牌智能手机的标价比成本价高a %,根据市场需求,该手机需降价x %,若不亏本,则x 应满足( C ) A .x ≤a100+aB .x ≤a100-a C .x ≤100a100+aD .x ≤100a100-a13.(2019·浙江衢州一模)小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如图所示的操作.请根据图中给出的信息,量筒中至少放入__10__个球时有水溢出.14.(2019·安徽淮北五校联考)为保护生态环境,甲、乙两村各自清理所属区域的养鱼网箱和养虾网箱,每村参加清理的人数及总开支如下表所示:村庄 清理养鱼网箱人数/人清理养虾网箱人数/人总支出/元 甲 12 8 18 400 乙9513 000(1)出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调32人共同清理养鱼网箱和养虾网箱.要使总支出不超过28 800元,则至多安排多少人清理养鱼网箱? 解:(1)设清理养鱼网箱和养虾网箱的人均支出费用分别为x 元和y 元. 根据题意,得⎩⎨⎧12x +8y =18 400,9x +5y =13 000,解得⎩⎨⎧x =1 000,y =800.答:清理养鱼网箱的人均支出费用为1 000元,清理养虾网箱的人均支出费用为800元. (2)设安排a 人清理养鱼网箱,则安排(32-a )人清理养虾网箱. 根据题意,得1 000a +800(32-a )≤28 800,解得a ≤16. 答:至多安排16人清理养鱼网箱.15.(2019·内蒙古赤峰中考)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个;(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予八折优惠,那么小明最多可购买钢笔多少支?解:(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个.依题意得10(x+1)×0.85=10x-17,解得x=17,答:小明原计划购买文具袋17个.(2)设小明可购买钢笔y支,则购买签字笔(50-y)支.依题意得[8y+6(50-y)]×80%≤400,解得y≤100.答:小明最多可购买钢笔100支.16.某体育用品商场采购员到厂家批发购进篮球和排球共100只,付款总额不得超过11 800元,已知厂家的批发价和商场的零售价如下表,设商场采购员到厂家购进x只篮球,试解答下列问题.品名厂家的批发价/(元/只)商场的零售价/(元/只)篮球130160排球100120(1)(2)若商场把100只球全部售出,为使商场的利润不低于2 580元,采购员有哪几种采购方案?哪种方案商场获利最多?解:(1)设采购员购进篮球x只,根据题意得130x+100(100-x)≤11 800,解得x≤60,所以x的最大值是60.答:采购员最多购进篮球60只.(2)设采购员购进篮球y只,根据题意得(160-130)y+(120-100)(100-y)≥2 580,解得y≥58.综合(1),得58≤y≤60.所以采购员有三种采购方案:方案一:购进篮球58只,排球42只,获利30×58+20×42=2 580(元);方案二:购进篮球59只,排球41只,获利30×59+20×41=2 590(元);方案三:购进篮球60只,排球40只,获利30×60+20×40=2 600(元).因为2 600>2 590>2 580,所以方案三使商场获利最多.答:采购员有三种采购方案,分别是方案一:购进篮球58只,排球42只;方案二:购进篮球59只,排球41只;方案三:购进篮球60只,排球40只.方案三使商场获利最多.。
沪科版七年级数学下册7.2一元一次不等式同步练习(含答案解析)
沪科版七年级数学下册7.2一元一次不等式同步练习(含答案解析)一.选择题(共14小题)1.下列各式中,是一元一次不等式的是()A.5﹣3<8B.2x﹣1<C.≥8D.+2x≤182.下列不等式中,是一元一次不等式的是()A.4x﹣5y<1B.4y+2≤0C.﹣1<2D.X2﹣3>53.不等式3≥2x﹣1的解集在数轴上表示正确的为()A.B.C.D.4.不等式﹣x﹣1≤0的解集在数轴上表示为()A.B.C.D.5.不等式4(x﹣1)<3x﹣2的解集在数轴上表示正确的是()A.B.C.D.6.不等式4(x﹣2)≥2(3x﹣5)的正整数解有()A.3个B.2个C.1个D.0个7.不等式>x的最大整数解为()A.x=﹣1B.x=0C.x=1D.x=28.关于x的不等式12﹣3x≥0的非负整数解共有()个.A.3B.4C.5D.69.张老师每天从甲地到乙地锻炼身体,甲、乙两地相距1.4千米.已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.200x+80(10﹣x)≥1400B.80x+200(10﹣x)≤1400C.200x+80(10﹣x)≥1.4D.80x+200(10﹣x)≤1.410.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打几折?如果将该商品打x折销售,则下列不等式中能正确表示该商店的促销方式的是()A.120x≥80×5%B.120x﹣80≥80×5%C.120×≥80×5%D.120×﹣80≥80×5%11.一次环保知识竞赛共有25道题,每一题答对得4分,答错或不答都扣1分,在这次竟赛中,小明被评为优秀(85分或85分以上),小明至少要答对多少道题?如果设小明答对了x道题,根据题意列式得()A.4x﹣1×(25﹣x)>85B.4x+1×(25﹣x)≤85C.4x﹣1×(25﹣x)≥85D.4x+1×(25﹣x)>8512.三个连续自然数的和小于13,这样的自然数组共有()A.5组B.4组C.3组D.2组13.某种出租车的收费标准是:起步价8元(即距离不超过3km,都付8元车费),超过3km 以后,每增加1km,加收1.2元(不足1km按1km计).若某人乘这种出租车从甲地到乙地经过的路程是xkm,共付车费14元,那么x的最大值是()A.6B.7C.8D.914.某社区超市以4元瓶从厂家购进一批饮料,以6元瓶销售近期计划进行打折销售,若这批饮料的销售利润不低于20%,则最多可打()A.六折B.七折C.七五折D.八折二.填空题(共6小题)15.不等式3x﹣6>0的解集为.16.若点A(x+3,2)在第二象限,则x的取值范围是.17.一个两位数,它的十位数上的数字比个位上的数字大2,且这个两位数小于40,则这个两位数是.18.不等式3x﹣1>﹣4的最小整数解是.19.关于x的方程2x﹣2m=x+4的解为正数,则m的取值范围是.20.不等式3(x﹣1)≤x+2的正整数解是.三.解答题(共4小题)21.某商店计划购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.(1)求A、B两种型号的计算器每只进价各是多少元?(2)该商店计划购进这两种型号的计算器共50只.根据市场行情,销售一只A型计算器可获利9元,销售一只B型计算器可获利18元.该商店希望销售完这50只计算器,所获利润不少于购进总成本的25%.则该商店至少要采购B型计算器多少只?22.妈妈在超市购买两种优质水果.先购买了2千克甲水果和3千克乙水果,共花费90元;后又购买了1千克甲水果和2千克乙水果,共花费55元.(每次两种水果的售价都不变)(1)求甲水果和乙水果的售价分别是每千克多少元;(2)如果还需购买两种水果共12千克,要求费用不超过200元,那么甲水果至少购买多少千克?23.张老板要印制名片x张,有甲乙两个经销商来推销,甲经销商的价格是每份定价3元的名片打八折,但另收900元的制版费,乙经销商的价格是每份名片定价3元不变,但制版费900元打六折.(1)请直接用含x的式子表示甲、乙两个经销商的费用:甲,乙;(2)请你替张老板根据印刷量来选择方案.24.甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用8天,且甲队单独植树7天和乙队单独植树5天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)甲、乙两队共同植树5天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的2倍.那么甲队至少再单独施工多少天?参考答案一.选择题(共14小题)1.下列各式中,是一元一次不等式的是()A.5﹣3<8B.2x﹣1<C.≥8D.+2x≤18【分析】只要含有一个未知数,并且未知数的次数是1的不等式是一元一次不等式.【解答】解:A、不含有未知数,不是一元一次不等式,故本选项不符合题意;B、不是整式,故本选项不符合题意;C、不是整式,故本选项不符合题意;D、是只含有1个未知数,并且未知数的最高次数是1,用不等号连接的整式,是一元一次不等式,故本选项符合题意;故选:D.2.下列不等式中,是一元一次不等式的是()A.4x﹣5y<1B.4y+2≤0C.﹣1<2D.X2﹣3>5【分析】根据一元一次不等式的定义逐个判断即可.【解答】解:A、不是一元一次不等式,故本选项不符合题意;B、是一元一次不等式,故本选项符合题意;C、不是一元一次不等式,故本选项不符合题意;D、不是一元一次不等式,故本选项不符合题意;故选:B.3.不等式3≥2x﹣1的解集在数轴上表示正确的为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:﹣2x≥﹣1﹣3,﹣2x≥﹣4,x≤2,故选:B.4.不等式﹣x﹣1≤0的解集在数轴上表示为()A.B.C.D.【分析】先求出x的取值范围,再在数轴上表示出来即可选出答案.【解答】解;﹣x﹣1≤0,﹣x≤1,x≥﹣2,在数轴上表示:故选:C.5.不等式4(x﹣1)<3x﹣2的解集在数轴上表示正确的是()A.B.C.D.【分析】先根据不等式的性质求出此不等式的解集,再根据不等式的解集在数轴上的表示方法即可求解.【解答】解:4x﹣4<3x﹣2,解得x<2,故选:A.6.不等式4(x﹣2)≥2(3x﹣5)的正整数解有()A.3个B.2个C.1个D.0个【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项,系数化为1可得.【解答】解:去括号,得:4x﹣8≥6x﹣10,移项,得:4x﹣6x≥﹣10+8,合并同类项,得:﹣2x≥﹣2,系数化为1,得:x≤1,则不等式的正整数解为1,故选:C.7.不等式>x的最大整数解为()A.x=﹣1B.x=0C.x=1D.x=2【分析】根据不等式的解法求出不等式的解集,然后再找出最大整数解即可.【解答】解:>x,4﹣x>3x,﹣x﹣3x>﹣4,x<1,∴不等式>x的最大整数解是0.故选:B.8.关于x的不等式12﹣3x≥0的非负整数解共有()个.A.3B.4C.5D.6【分析】不等式移项后,将x系数化为1求出解集,找出解集中的非负整数解即可.【解答】解:不等式12﹣3x≥0,解得:x≤4,则不等式的非负整数解为0,1,2.,3,4,共5个.故选:C.9.张老师每天从甲地到乙地锻炼身体,甲、乙两地相距1.4千米.已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.200x+80(10﹣x)≥1400B.80x+200(10﹣x)≤1400C.200x+80(10﹣x)≥1.4D.80x+200(10﹣x)≤1.4【分析】根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:由题意可得:200x+80(10﹣x)≥1400,故选:A.10.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打几折?如果将该商品打x折销售,则下列不等式中能正确表示该商店的促销方式的是()A.120x≥80×5%B.120x﹣80≥80×5%C.120×≥80×5%D.120×﹣80≥80×5%【分析】直接利用打折与利润的计算方法得出不等关系进而得出答案.【解答】解:设该商品打x折销售,根据题意可得:120×﹣80≥80×5%.故选:D.11.一次环保知识竞赛共有25道题,每一题答对得4分,答错或不答都扣1分,在这次竟赛中,小明被评为优秀(85分或85分以上),小明至少要答对多少道题?如果设小明答对了x道题,根据题意列式得()A.4x﹣1×(25﹣x)>85B.4x+1×(25﹣x)≤85C.4x﹣1×(25﹣x)≥85D.4x+1×(25﹣x)>85【分析】根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:由题意可得,4x﹣1×(25﹣x)≥85,故选:C.12.三个连续自然数的和小于13,这样的自然数组共有()A.5组B.4组C.3组D.2组【分析】本题可设三个连续自然数分别为x﹣1,x,x+1,然后将三者相加令其的和大于0而小于13,解出x的取值,再在x的取值中找出自然数的个数即可知道有几组.【解答】解:设这三个连续自然数为:x﹣1,x,x+1,则0<x﹣1+x+x+1<13,即0<3x<13,∴0<x<,因此x=1,2,3,4共有4组.故选:B.13.某种出租车的收费标准是:起步价8元(即距离不超过3km,都付8元车费),超过3km 以后,每增加1km,加收1.2元(不足1km按1km计).若某人乘这种出租车从甲地到乙地经过的路程是xkm,共付车费14元,那么x的最大值是()A.6B.7C.8D.9【分析】由车费=起步价+1.2×超出3km路程结合共付车费14元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:依题意,得:8+1.2(x﹣3)≤14,解得:x≤8.故选:C.14.某社区超市以4元瓶从厂家购进一批饮料,以6元瓶销售近期计划进行打折销售,若这批饮料的销售利润不低于20%,则最多可打()A.六折B.七折C.七五折D.八折【分析】根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:设可以打a折,6×﹣4≥4×20%,解得,a≥8,即最多可打八折,故选:D.二.填空题(共6小题)15.不等式3x﹣6>0的解集为x>2.【分析】不等式移项,将x系数化为1,即可求出解集.【解答】解:移项得:3x>6,解得:x>2,故答案为:x>2.16.若点A(x+3,2)在第二象限,则x的取值范围是x<﹣3.【分析】点在第二象限时,横坐标<0,纵坐标>0,可得关于x的不等式,解可得答案.【解答】解:∵点P(x+3,2)位于第二象限,∴x+3<0,解得:x<﹣3,故答案为:x<﹣3.17.一个两位数,它的十位数上的数字比个位上的数字大2,且这个两位数小于40,则这个两位数是31.【分析】根据题意列出不等式,求出解集确定出所求即可.【解答】解:设个位上数字为x,则十位上数字为x+2,根据题意得:10(x+2)+x<40,解得:x<,即x=1,∴个位上数字为1,十位上数字为3,则这个两位数为31.故答案为:3118.不等式3x﹣1>﹣4的最小整数解是0.【分析】先求出不等式的解集,再求出不等式的最小整数解即可.【解答】解:3x﹣1>﹣4,3x>﹣3,x>﹣1,所以不等式3x﹣1>﹣3的最小整数解是0,故答案为:0.19.关于x的方程2x﹣2m=x+4的解为正数,则m的取值范围是m>﹣2.【分析】求出方程的解,根据方程的解是正数得出4+2m>0,求出即可.【解答】解:2x﹣2m=x+4,∴x=4+2m,∵方程的解是正数,∴4+2m>0,∴m>﹣2.即m的取值范围是m>﹣2.20.不等式3(x﹣1)≤x+2的正整数解是1,2.【分析】不等式去括号,移项合并,把x系数化为1,求出解集,确定出正整数解即可.【解答】解:去括号得:3x﹣3≤x+2,移项合并得:2x≤5,解得:x≤2.5,则不等式的正整数解为1,2,故答案为:1,2.三.解答题(共4小题)21.某商店计划购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.(1)求A、B两种型号的计算器每只进价各是多少元?(2)该商店计划购进这两种型号的计算器共50只.根据市场行情,销售一只A型计算器可获利9元,销售一只B型计算器可获利18元.该商店希望销售完这50只计算器,所获利润不少于购进总成本的25%.则该商店至少要采购B型计算器多少只?【分析】(1)根据A型计算器10只和B型计算器8只,共需要资金880元;若购进A 型计算器2只和B型计算器5只,共需要资金380元,得出等量关系,列出二元一次方程组即可;(2)根据经销商计划购进这两种型号的计算器共50只,销售一只A型计算器可获利9元,销售一只B型计算器可获利18元,销售完这两种型号的计算器,所获利润不少于购进总成本的25%,即可得出不等式,求出即可.【解答】解:(1)设A型计算器进价是x元,B型计算器进价是y元,得解得答:每只A型计算器进价是40元,每只B型计算器进价是60元.(2)设要采购B型计算器m只,根据题意可得:18m+9(50﹣m)≥[60m+40(50﹣m)]×25%,解得:m≥12.5,答:该商店至少要采购B型计算器13只.22.妈妈在超市购买两种优质水果.先购买了2千克甲水果和3千克乙水果,共花费90元;后又购买了1千克甲水果和2千克乙水果,共花费55元.(每次两种水果的售价都不变)(1)求甲水果和乙水果的售价分别是每千克多少元;(2)如果还需购买两种水果共12千克,要求费用不超过200元,那么甲水果至少购买多少千克?【分析】(1)设甲水果的售价为每千克x元,乙水果的售价为每千克y元,根据“先购买了2千克甲水果和3千克乙水果,共花费90元;后又购买了1千克甲水果和2千克乙水果,共花费55元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设甲水果购买m千克,则乙水果购买(12﹣m)千克,根据总价=单价×数量结合费用不超过200元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设甲水果的售价为每千克x元,乙水果的售价为每千克y元,依题意,得:,解得:.答:甲水果的售价为每千克15元,乙水果的售价为每千克20元.(2)设甲水果购买m千克,则乙水果购买(12﹣m)千克,依题意,得:15m+20(12﹣m)≤200,解得:m≥8.答:甲水果至少购买8千克.23.张老板要印制名片x张,有甲乙两个经销商来推销,甲经销商的价格是每份定价3元的名片打八折,但另收900元的制版费,乙经销商的价格是每份名片定价3元不变,但制版费900元打六折.(1)请直接用含x的式子表示甲、乙两个经销商的费用:甲(900+2.4x),乙(540+3x);(2)请你替张老板根据印刷量来选择方案.【分析】(1)根据甲、乙两个经销商的不同推销方式书写代数式;(2)根据题意列出不等式进行解答.【解答】解:(1)甲经销商的费用:(3x×0.8+900=900+2.4x)元.乙经销商的费用:(3x+900×0.6=540+3x)元.故答案是:(900+2.4x);(540+3x);(2)①由题意得:900+2.4x=540+3x解得x=600.所以,当x=600时,在甲、乙两个经销商处印刷的费用是一样的.②由题意得:900+2.4x>540+3x解得x<600.所以,当x<600时,在乙经销商处印刷的费用合适.③由题意得:900+2.4x<540+3x解得x>600.所以,当x>600时,在甲经销商处印刷的费用合适.综上所述,当x=600时,在甲或乙处印刷都可以;当x<600时,在乙经销商处印刷;当x>600时,在甲经销商处印刷.24.甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用8天,且甲队单独植树7天和乙队单独植树5天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)甲、乙两队共同植树5天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的2倍.那么甲队至少再单独施工多少天?【分析】(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+8)天,根据甲队单独植树7天和乙队单独植树5天的工作量相同,可得出关于x的一元一次方程,解之即可得出结论;(2)设甲队再单独施工y天,根据甲队完成的工作量+乙队完成的工作量不少于总工作量(1),即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+8)天,依题意,得:=,解得:x=20,∴x+8=28.答:甲队单独完成此项任务需28天,乙队单独完成此项任务需20天.(2)设甲队再单独施工y天,依题意,得:+≥1,解得:y≥8.答:甲队至少再单独施工8天.。
七年级数学下册 7.3 一元一次不等式组导学案 (新版)沪
7.3 一元一次不等式组1.了解一元一次不等式组和它的解集的概念,会解一元一次不等式组,并能利用数轴确定它的解集.2.会运用一元一次不等式组解决简单的应用问题,提高学生分析问题、解决问题的能力.3.学会运用数形结合的思想,体会数学的应用价值,培养理论联系实际的习惯.1.一元一次不等式组的概念由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组.例如,⎩⎪⎨⎪⎧2x +x <72,2x +x +6>72就是一元一次不等式组.再例如⎩⎪⎨⎪⎧3x -1<7-2x ,x +1≥0,⎩⎪⎨⎪⎧x +2<12,2x +6>0,6-x ≤24,⎩⎪⎨⎪⎧2+x 3<3x -12,3.5x <5-x等也都是一元一次不等式组.(1)组成不等式组的每个不等式必须是一元一次不等式;(2)这几个一元一次不等式必须是“关于同一个未知数”的不等式,如⎩⎪⎨⎪⎧x +1<0,y -3>5中含两个未知数x ,y ,故不是一元一次不等式组.(3)这里的“几个”可以是两个、三个或三个以上,如:⎩⎪⎨⎪⎧x -2<5,x +3>8,⎩⎪⎨⎪⎧x -7<0,2x +1>0,3x -2<6等都是一元一次不等式组.【例1】下列不等式组是一元一次不等式组的是( ).A .⎩⎪⎨⎪⎧x 2+1<0,x -3>0 B .⎩⎪⎨⎪⎧2x +1<x ,x -2>5yC .⎩⎪⎨⎪⎧x +1≥2,2x +3<6-x ,x >5D .⎩⎪⎨⎪⎧x +1<0,2x-x >0解析:A 中的不等式x 2+1<0与D 中的不等式2x-x >0都不是一元一次不等式;B 中的不等式的次数虽然都是1次的,但是含有两个未知数,故A ,B ,D 均不是一元一次不等式组.答案:C判断一个不等式组是一元一次不等式组,需满足两个条件:一是组成不等式组的不等式必须都是一元一次不等式且未知数都相同;二是不等式组中不等式的个数至少有2个.2.一元一次不等式组的解集组成一元一次不等式组的各个一元一次不等式的解集的公共部分,叫做这个一元一次不等式组的解集.当不等式组中各个不等式的解集没有公共部分时,我们称这个不等式组无解(即解集为空集).(1)几个不等式解集的公共部分,通常利用数轴来确定.公共部分是指数轴上被各个不等式解集的区域都覆盖住的部分,若无公共部分,则说这个不等式组无解或者说解集是空集.{ x ≥a x ≥b{ x ≤a x ≤b{ x ≥a x ≤b{ x ≤a x ≥b【例2-1】一元一次不等式组⎩⎪⎨⎪⎧x -3≥-1,x <4的解集在数轴上表示应为( ).解析:由不等式组⎩⎪⎨⎪⎧x -3≥-1,x <4得⎩⎪⎨⎪⎧x ≥2,x <4,再分别表示在数轴上为.故选C .答案:C【例2-2】下列说法正确的是( ).A .不等式组⎩⎪⎨⎪⎧ x >3,x >5的解集是5<x <3 B .不等式组⎩⎪⎨⎪⎧ x >-2,x <-3的解集是-3<x <-2C .不等式组⎩⎪⎨⎪⎧ x ≥2,x ≤2的解集是x =2 D .不等式组⎩⎪⎨⎪⎧x <-3,x >-3的解集是x ≠3解析:根据“同大取大,同小取小,大小、小大取中间,大大小小无解”判定.A .不等式组属于“同大取大”,所以解集为x >5;B .不等式组属于“大大、小小无解”,所以无解;C .不等式组属于“大小、小大取中间”,所以解集表示为2≤x ≤2,即x =2;D .不等式组属于“大大、小小无解”,所以无解. 答案:C3.一元一次不等式组的解法 (1)解不等式组的概念求一元一次不等式组解集的过程叫做解不等式组. (2)一元一次不等式组的解法和步骤由一元一次不等式组的解集的概念可得解一元一次不等式组的方法和步骤. ①分别求出这个不等式组中每一个不等式的解集; ②利用数轴,求出各个不等式的解集的公共部分;③用数学符号语言(即不等式的最简形式)来表示公共部分,即写出不等式组的解集. 步骤简记为:求分解,画公解,写组解.【例3-1】解不等式组⎩⎪⎨⎪⎧3x -5≤5x +1, ①1-2x >-7. ②解:解不等式①得x ≥-3.解不等式②得x <4.将不等式①、②的解集表示在数轴上,如下图.所以原不等式组的解集为-3≤x <4.解一元一次不等式组中每一个不等式的解集,然后通过将每个不等式的解集表示在数轴上,认真观察并找出公共部分确定不等式组的解集.【例3-2】解不等式组⎩⎪⎨⎪⎧5x +1≤4x +3, ①2x -3>x -4, ②2x +7>6+3x . ③分析:本题应根据解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴表示各个不等式的解集,并求出各个不等式解集的公共部分.解:解不等式①,得x ≤2.解不等式②,得x >-1.解不等式③,得x <1. 在同一条数轴上表示不等式①②③的解集,如图:故原不等式组的解集是-1<x <1.求三个或三个以上的不等式组成的不等式组的解集时,也是先求出各个不等式的解集,再借助数轴把各不等式的解集在数轴上表示出来,然后再确定公共部分.注意空心点和实心点的画法.4.列一元一次不等式组解决实际问题的一般步骤(1)审:弄清题意,明确已知量和未知量及各数量之间的关系; (2)设:设未知数(只能设一个未知数);(3)找:找出表示实际问题题意的所有不等关系; (4)列:根据这些不等关系列出不等式组; (5)解:解这个不等式组,求出解集;(6)答:写出符合题意的答案(包括单位名称等).(1)列不等式组解决实际问题的关键是找出所有不等关系,这需要运用数学思维方式抓住表示不等的关键词语,以及隐含的不等关系.(2)解决实际问题时,应根据实际意义检验结果的合理性.【例4】已知一件文化衫价格为18元,一个书包的价格是一件文化衫的2倍还少6元. (1)求一个书包的价格是多少元?(2)某公司出资1 800元,拿出不少于350元但不超过400元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?分析:(1)一个书包的价格是一件文化衫的2倍还少6元,即一个书包的价格是18×2-6=30(元);(2)由题意可知,剩余经费最少为1 800-400=1 400(元),最多为1 800-350=1 450(元),所以为这些学生每人购买一个书包和一件文化衫的总花费在1 400元~1 450元之间,也就是说总花费大于或等于1 400元,小于或等于1 450元.解:(1)因为18×2-6=30(元), 所以一个书包的价格是30元.(2)设还能为x 名学生每人购买一个书包和一件文化衫,根据题意得:⎩⎪⎨⎪⎧18+30x ≥1 800-400,18+30x ≤1 800-350,解得⎩⎪⎨⎪⎧x ≥2916,x ≤30524.于是这个不等式组的解集为2916≤x ≤30524.因为x 为正整数,所以x =30(名).故剩余经费还能为30名学生每人购买一个书包和一件文化衫.列不等式组解应用题,注意分析题目中的不等量关系,正确建立数学模型是解决问题的关键.(1)列不等式组时,几个不等式必须含有同一个未知数.(2)解应用题时,题目中较多的是求特殊解,如人数必须为自然数,这是隐含的条件. (3)找不等关系时,要找到题目中表示不等关系的关键词语.另外有一些需要根据实际情况和生活常识确定不等关系.5.求一元一次不等式组的特殊解不等式组的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式组的解集,然后根据未知数的范围确定它所满足的特殊条件的值.这类题目主要考查解不等式组的能力和对特殊解的理解.确定不等式组的解集可利用口诀,也可借助数轴,利用数形结合找到特殊解.【例5】解不等式组⎩⎪⎨⎪⎧x 2>-1,2x +1≥5x -1,并写出它的所有整数解.解:因为不等式x2>-1的解集为x >-2; 不等式2x +1≥5(x -1)的解集为x ≤2, 所以不等式组的解集为-2<x ≤2.因为该解集中所包含的整数解有-1,0,1,2,所以不等式组的整数解为-1,0,1,2. 6.一元一次双向不等式的求解双向不等式a <y <b 的求解(其中y 是关于x 的整式),是解不等式的一类常见的题型. 其解法一般有两种:(1)化为两个不等式组成的不等式组⎩⎪⎨⎪⎧y >a ,y <b来求解;(2)将不等式的左、中、右三部分都加(或减)同一个整式或都乘以(或除以)同一个正数(或负数),注意乘(除以)负数时两个不等号的方向都要改变,经过若干次变形,将不等式化为中间只含未知数x ,左右两边都不含未知数的形式,从而求出不等式的解集.【例6】求不等式-4<2x -13<-2的解集.解:(方法一)不等式-4<2x -13<-2可化为不等式组:⎩⎪⎨⎪⎧2x -13>-4, ①2x -13<-2, ②解不等式①,得x >-112.解不等式②,得x <-52.所以不等式组的解集是-112<x <-52.(方法二)去分母,得-12<2x -1<-6. 移项,得-11<2x <-5.系数化为1,得-112<x <-52.7.根据条件确定一元一次不等式组中字母系数的取值范围 由不等式组的解集或整数解的个数确定待定系数的取值范围时,常用的方法是先求出含有待定系数的不等式组的解集,然后结合数轴或将给出的条件代入,即可确定待定系数的取值范围,这是要注意端点的取舍.确定不等式组中字母参数的值或取值范围时,常要用到以下方法:(1)对照比较法——对照原不等式的化简、求解以及条件中字母的取值范围从而确定未知字母的范围.(2)分类讨论法——根据不等式组解集的四种情况,灵活选择.(3)数形结合——利用数轴来确定.数轴能够实现数与形的结合,能够使不等式组的解集形象地展现出来,尤其是不等式组的特殊解能够很容易求出来.【例7-1】若不等式组⎩⎪⎨⎪⎧x +9<5x +1,x >m +1的解集为x >2,则m 的取值范围是( ).A .m ≤2 B.m ≥2 C .m ≤1 D.m >1解析:原不等式组可变形为⎩⎪⎨⎪⎧x >2,x >m +1,因为不等式组的解集为x >2,根据“同大取大”法则可知,m +1≤2,解得m ≤1.故本题选C .答案:C【例7-2】不等式组⎩⎪⎨⎪⎧x -a >-1,x -a <2的解集中每一个x 的值均不在3≤x ≤7范围内,则a 的取值范围是________.解析:先化简不等式组得⎩⎪⎨⎪⎧ x >a -1,x <a +2,由题意知原不等式组有解集,即a -1<x <a +2有解,又由题意知原不等式组的解均不落在3≤x ≤7的范围内,从而有a +2≤3或a -1≥7,所以解得a ≤1或a ≥8.答案:a ≤1或a ≥88.与一元一次不等式组有关的综合题一元一次不等式组常和方程(组)综合在一起出现,考查方程(组)与不等式组的解法. 一般解法有两种:(1)正确求出方程(组)的解,并根据要求列出不等式组,求出不等式组的解集.(2)求出不等式组的解集,确定特殊解,再根据要求代入方程组,求出方程组的解.【例8】若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧ x -y =m -5,x +y =3m +3)中,x 的值为负数,y 的值为正数,求m 的取值范围.解:对于⎩⎪⎨⎪⎧x -y =m -5, ①x +y =3m +3, ② ①+②,得2x =4m -2,所以x =2m -1.②-①,得2y =2m +8,所以y =m +4.因为x 的值为负数,即x <0,y 的值为正数,即y >0, 所以⎩⎪⎨⎪⎧ 2m -1<0,m +4>0,解得-4<m <12. 故m 的取值范围为-4<m <12. 9.一元一次不等式组的实际应用列不等式组解实际问题与列方程组解实际问题的方法、步骤类似,关键是由实际问题中的不等关系列出不等式(组),建立解决问题的数学模型,通过解不等式(组)可以得到实际问题的答案.(1)根据题意设未知数,常常直接设未知数,或把与未知量联系紧密的量设为未知数.(2)建立相应的数学模型,根据不等关系列出不等式(题中出现“至多、至少、不大于、小于”等特征词),要根据题意列出所有不等式,一个意思列一个不等式,尽量简化.(3)解不等式组,结合问题的实际背景,找出适合题意的解,比如求人数或物品的数目、产品的件数等,只能取非负整数.(4)对于方案设计题要结合不等式组的解集,确定未知数的具体数值,一般要根据实际取解集中的整数,有几个整数值,即有几种方案.【例9】某商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示: 类别 冰箱 彩电进价(元/台) 2 320 1 900售价(元/台) 2 420 1 980为满足市场需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的56. (1)请你帮助该商场设计相应的进货方案;(2)哪种进货方案商场获得利润最大(利润=售价-进价),最大利润是多少? 解:(1)设冰箱采购x 台,则彩电采购(40-x )台,根据题意,得⎩⎪⎨⎪⎧ 2 320x +1 90040-x ≤85 000,x ≥5640-x .解不等式组,得18211≤x ≤2137,因为x 为正整数, 所以x =19,20,21.故该商场共有3种进货方案:方案一:冰箱购买19台,彩电购买21台方案二:冰箱购买20台,彩电购买20台;方案三:冰箱购买21台,彩电购买19台.(2)因为每台冰箱获利100元,每台彩电获利80元,所以购进冰箱越多获利越多,即方案三获利最多,最大利润是21(2 420-2 320)+19(1 980-1 900)=2 100+1 520=3 620(元).故方案三商场获得利润最大,最大利润是3 620元.。
2013-2014学年沪科版七年级下7.2一元一次不等式讲解与例题
7.2 一元一次不等式1.了解一元一次不等式的概念,掌握一元一次不等式的解法.2.了解解不等式的概念,会用不等式的性质解简单的不等式,并能用数轴表示解集.3.运用一元一次不等式建立数学模型来解决实际问题,体会探索问题的过程,感知数学的应用价值.1.一元一次不等式的概念含有一个未知数,未知数的次数是1、且不等号两边都是整式的不等式叫做一元一次不等式.如不等式x -2≥4,2x +1<11,x -3>2,0.2x +4≤5都是一元一次不等式.(1)一元一次不等式的一般形式:ax +b >(≥)0或ax +b <(≤)0.(a ≠0)(2)一元一次不等式的最简形式:ax >(≥)0或ax <(≤)0.(a ≠0)(3)一元一次不等式概念的理解:①表示不等关系,即式子是不等式.②不等号的左右两边都是整式.例如,1y <2,1x +3≥5就不是一元一次不等式. ③只含有一个未知数,即未知数的个数不能多.例如,2x +y >3不是一元一次不等式.④未知数的最高次数是1.如x 2+x -2≤1不是一元一次不等式.判断式子是否是一元一次不等式,上述四个条件缺一不可.一元一次不等式与一元一次方程的异同相同点:两者都只含有一个未知数,未知数的最高次数是1,左边和右边都是整式. 不同点:一元一次不等式表示不等关系,用不等号连接,不等号有方向;一元一次方程表示相等关系,用等号连接,等号没有方向.【例1】下列不等式是一元一次不等式的是( ).A .2x (x -3)>9B .x +5y <2C .6x -3>2D .1x-3>5 解析:A 中的2x (x -3)应将括号展开,否则容易误认为x 的指数为1,其最高次数为2,故不是一元一次不等式;B 中含有两个未知数,故不是一元一次不等式;D 中不等号左边不是整式,也不是一元一次不等式;只有C 符合一元一次不等式的定义.故选C . 答案:C2.不等式的解集 (1)一般地,能够使不等式成立的未知数的值,叫做这个不等式的解,所有这些解的全体称为这个不等式的解集.求不等式解集的过程叫做解不等式.例如,x =3,4,5,6,7.5,…都是不等式x +2≥5的解,可以用x ≥3来表示,其中x ≥3就是不等式x +2≥5的解集.(2)不等式的解集必须满足的条件:一是解集中的每一个数值都能使不等式成立,解集外的任何一个数值都不能使不等式成立;二是能够使不等式成立的所有数值都在解集中.不等式的解与不等式的解集是两个不同的概念,不等式的解集是由使不等式成立的所有未知数的值组成的,一个不等式的解集包括不等式的每一个解.即所有的解组成了解集,解集包括解.(3)检验一个数是否为不等式的解与检验一个数是否为方程的解的方法相同,即将这个数代入不等式中,看不等式是否成立(其中方程是看等号两边是否相等,而不等式是看是否与不等号方向相同).【例2】下列说法正确的个数是( ).(1)5是不等式x +2>6的解;(2)3是不等式y -1>2的解;(3)所有小于1的整数都是不等式x +1<2的解.A .1B .2C .3D .0解析:把x =5代入(1)中不等式的左、右两边,这时x +2=7,而7>6,即x +2>6成立,所以x =5是不等式x +2>6的解,故说法(1)正确;把y =3代入(2)中不等式的左、右两边,这时y -1=2,即y -1>2不成立,所以3不是不等式y -1>2的解,故说法(2)不正确;因为所有小于1的整数都能使x +1<2成立,故说法(3)正确.因此选B .答案:B3.一元一次不等式的解集及其表示(1)一元一次不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集.类似地,使一元一次不等式成立的所有的解,组成了一元一次不等式的解集.(2)解集的形式:任意一个一元一次不等式最终都化简为ax >b 或ax <b (a ≠0)的形式,其解集可分为以下两种情形:①当a >0时,ax >b 的解集为x >b a ,ax <b 的解集为x <b a ;②当a <0时,ax >b 的解集为x <b a ,ax <b 解集为x >b a .(3)一元一次不等式的解集可以用数轴来表示.x <a 的全体实数,在数轴上表示a 左边的所有点,不包括在内;x ≤a 表示小于或等于a 的全体实数,在数轴上表示a 左边的所有点,包括a 在内;x >a 表示大于a 的全体实数,在数轴上表示a 右边的所有点,不包括a 在内;x ≥a 表示大于或等于a 的全体实数,在数轴上表示a 右边的所有点,包括a 在内.【例3】写出下列数轴上所表示的不等式的解集:解:把数轴上的点所表示的数的范围用不等式表示,即为所求的解集.所以(1)的解集为x >0;(2)的解集为x ≤-1.4.解一元一次不等式的步骤解一元一次不等式与解一元一次方程的步骤一样,主要有以下几个步骤:(1)去分母:根据不等式的基本性质2或3,把不等式的两边都乘以各分母的最小公倍数,得到整数系数的不等式.(2)去括号:根据去括号法则去括号,特别要注意括号外面是负号时,括号里面的各项要改变符号.(3)移项:根据不等式的基本性质1,一般把含有未知数的项移到不等号的左边,常数项移到不等号的右边.(4)合并同类项:根据整式的运算法则,将同类项合并.(5)系数化为1:根据不等式的基本性质2或3,将未知数的系数化成1.解一元一次不等式时易错点:(1)去分母时,不含分母的项容易漏乘分母的最小公倍数.如不等式3+2-3x 5≤1+x 2去分母时,常数项3容易漏乘分母的最小公倍数10.(2)去括号时,括号前是负号的,括号内各项的符号均要变.如不等式3-5⎝ ⎛⎭⎪⎫15x -2-4(-1+5x )<0去括号时,不要忽视括号前面的负号.(3)移项时要变号.如不等式7x -6<4x -9移项时,要改变符号.(4)未知数的系数化为1时,不等式的两边都除以未知数的系数,当系数是负数时,不等号的方向改变.如在化简-0.8x ≤-1.6时,两边都除以-0.8,要改变不等号的方向.【例4】解不等式:1+x 3>5-x -22,并在数轴上表示其解集. 分析:将不等式左右两边同时乘以未知数的系数的最小公倍数,然后合并化简求解. 解:去分母,得6+2x >30-3(x -2).去括号,得6+2x >30-3x +6.移项,得2x +3x >30+6-6.合并同类项,得5x >30.未知数系数化为1,得x >6.不等式的解集在数轴上的表示如图所示:在解这个一元一次不等式时要注意移项时要改变符号,系数化为1时,如果同时乘以(或除以)同一个正数,不等号的方向不变,同时乘以(或除以)同一个负数,不等号的方向改变.5.一元一次不等式的应用与列一元一次方程解决实际问题一样,列一元一次不等式解应用题的步骤是:(1)审题.弄清题意和题目中的数量关系和不等关系,即分析题中已知什么、未知什么、求什么.(2)设元.即设未知数.分直接设和间接设两种,设时要带有单位.(3)列不等式.根据不等关系,用含有未知数的代数式表示出来.(4)解不等式.解所列不等式,求出未知数的范围.(5)检验并作答.检验所求解是否符合题意,是否符合实际情况,最后写出答案.【例5】某市自来水公司按如下标准收取水费,若每户每月用水不超过5 m 3,则每立方米收费1.5元;若每户每月用水超过5 m 3,则超过部分每立方米收费2元.小童家某月的水费不少于10元,那么她家这个月的用水量至少是多少?分析:本题目中水费计算方法与用水量在不同的范围内而有所不同,设小童家的用水量是x m 3,当x ≤5时,水费为1.5x 元;当x >5时,不超过5 m 3的部分共收水费为1.5×5元,超过5 m 3部分的水收费2(x -5)元,两部分共1.5×5+2(x -5)元.本题目中不等关系为:某月的水费不少于10元.解:设小童家的用水量是x m 3.由于10>1.5×5,所以小童家的用水量超过5 m 3.根据题意,得1.5×5+2(x -5)≥10.解这个不等式,得x ≥6.25(m 3).故小童家这个月的用水量至少是6.25 m 3.建立不等式模型,即把实际问题转化为不等式问题求解,根据不等关系列出不等式.不等关系的找法可抓住关键词语,如:“至少”“最多”“不超过”“不低于”.6.与一元一次不等式有关的综合题一般情况下,不等式的解有无数个,但在特定的条件下,不等式的解的个数可以是有限个,可以利用这种方法和技巧求不等式的特殊解.求不等式的特殊解时,要先求出不等式的所有解集,再从所有解集中找出题目中要求的特殊解.通常先用数轴表示不等式的解集,再通过数轴求特殊解.不等式的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先要确定不等式的解集,然后再找到相应的答案.【例6】求不等式5-4x 12<1的非正整数解. 分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出符合条件的非正整数解即可.解:解不等式5-4x 12<1. 去分母,得5-4x <12.移项,得-4x <12-5.合并同类项,得-4x <7.未知数系数化为1,得x >-74. 因此原不等式解集为x >-74. 该不等式的解集在数轴上表示为:故不等式5-4x 12<1的非正整数解为-1,0,共两个. 求不等式的特殊解,利用数轴表示解集可避免多解、漏解的现象.7.不等式解集的应用(1)不等式解集的应用范围很广,最典型的是求字母的取值范围.解决这一问题的关键是观察不等式中不等号的方向与其解集中不等号的方向是否一致.若不一致,则说明未知数的系数为负,即未知数的系数小于零;若一致,则说明未知数的系数为正,即未知数的系数大于零.从而把问题转化为关于参数的不等式,解这个不等式得到参数的解.(2)利用不等式的解集还可以解决以下问题:①判断代数式的值的大小关系;②求与之有关联的另一个不等式的解集;③与方程综合求代数式的值.解决这些问题的关键是正确地求出不等式的解集,根据题意列出新的方程或不等式.然后结合数轴或将给出的条件代入,即可确定字母系数的取值范围,但是要注意端点的取舍.【例7】m 取何值时,关于x 的方程23x -1=6m +5(x -m )的解是非负数. 分析:本题首先要解这个关于x 的方程,求出方程的解,根据解是非负数,可以得到一个关于m 的不等式,然后再根据不等式求出m 的范围.解:由原方程,解得x =-3m +313, 因为方程23x -1=6m +5(x -m )的解是非负数, 所以x ≥0,即-3m +313≥0. 解这个不等式,得m ≤-1.8.列一元一次不等式解决实际问题一元一次不等式的应用题与实际生活联系密切.此类题目涉及的知识点主要是一元一次不等式的解法,以及求不等式的特殊解(整数解、非负整数解、非正整数解、正整数解、负整数解).要加强建立不等式模型解决问题的数学意识.对涉及日常生活中的经营决策、方案设计、最佳效益等方面的问题,要了解其中的专业术语和数学关系.例如方案设计问题常常是根据题中的不等关系列不等式,得到某些量的限制条件,从而确定不同的方案,完成对某些实际问题的方案设计.根据题中字母或有关量的限制条件找出符合实际意义的解,一般不等式有无数个解,但应用题要求的往往是符合实际意义的、具体的、有限的特殊解.【例8】为了更好地满足人民生活需求,丰富市场供应,某地区农村温棚设施农业迅速发展,温棚种植面积在不断扩大.在耕地上培成一行一行的矩形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种.科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加它们的光合作用,提高单位面积的产量和经济效益.现有一个种植总面积为540 m 2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它解:设西红柿种了(24-x )垄.根据题意,得15x +30(24-x )≤540.解得x ≥12.∵x ≤14,且x 是正整数,∴x =12,13,14.故共有三种种植方案,分别是:方案一:草莓种植12垄,西红柿种植12垄;方案二:草莓种植13垄,西红柿种植11垄;方案三:草莓种植14垄,西红柿种植10垄.。
沪科版数学七年级下册 一元一次不等式的概念及解法
5 13
x≤ 143
3. 解下列不等式,并把它们的解集在数轴上表示出来:
(1)4x - 3 < 2x + 7;
(2) x 23≥3x45 .
解: (1) 原不等式的解集为 x < 5,
它在数轴上表示为:
-1 0 1 2 3 4 5 6
(2) 原不等式的解集为 x≤-11,
例4 已知不等式 x+8>4x+m (m 是常数) 的解集是
x<3,求 m.
解:因为 x+8>4x+m,
所以 x-4x>m-8,即-3x>m-8,x 1 (m 8).
因为其解集为 x<3,
3
所以 1 (m 8) 3,解得 m = -1.
3
方法总结:已知解集求字母系数的值,通常是先解
含有字母的不等式,再利用解集唯一性列方程求字 母的值.解题过程体现了方程思想.
解一元一次不等式
解方程: 4x - 1 = 5x + 15.
解:移项,得 4x - 5x = 15 + 1.
合并同类项,得 -x = 16.
系数化为 1,得 x = -16.
解不等式: 4x - 1 < 5x + 15.
解:移项,得 4x - 5x < 15 + 1.
合并同类项,得 -x < 16.
第7章 一元一次不等式与 不等式组
7.2 一元一次不等式
第1课时 一元一次不等式的解法
观察与思考 已知一台升降机的最大载重量是
1200 kg,在一名重 75 kg 的工人乘 坐的情况下,它最多能装载多少件 25 kg 重的货物?
一元一次不等式的概念 前面问题中涉及的数量关系是:
工人重 + 货物重 ≤ 最大载重量. 设能载 x 件 25 kg 重的货物,因为升降 机最大载重量是 1200 kg,所以有
7.2一元一次不等式导学案(4)(沪科版七年级下)
课题:7.2 一元一次不等式(4)第四课时 一元一次不等式(复习课)学习目标:1.梳理一元一次不等式的相关知识点,形成系统知识2.强化一元一次不等式的概念、性质和解法3.通过具体问题强化对一元一次不等式的理解和应用能力。
学习重点:复习一元一次不等式的解法和应用学习难点:性质3的正确使用一、知识梳理1.不等式2.不等式的5个基本性质:3.一元一次不等式的含义4.一元一次不等式的解法5.一元一次不等式的应用二、典例精析例1.下列四个命题中,正确的有( )①若a>b,则a+1>b+1 ②若a>b,则a-1>b-1③若a>b,则-2a<-2b ④若a>b,则2a<2b例2.如果不等式5)2(≤+x a 的解集是25+≥a x ,则a 的取值范围是 。
例3.比较22-a 和32-a 的大小,并说明理由。
32O例4. 解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来.例5.有一批货物,如果月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费.问这批货在月初还是月末售出好.三、自我测试一、选择题:1、如图所示的不等式的解集是……………( )A .a>2B .a<2C .a ≥2D .a ≤22、若y x <成立,则下列不等式成立的是……………………………( )A .y x 33-<-B .22+-<+-y xC .)2()2(--<--y xD .22-<-y x3、解不等式x x -≤-++312的过程:①x x 316≤++- ②163-≤-x x ③52≤-x ④25-≥x 其中造成解答错误的一步是…………( ) A ① B ② C ③ D ④4、关于x 的不等式22≤+-a x 的解集如图所示,那么a 的值是…( )A.-4 B.-2 C.0 D.25、三个连续自然数的和小于11,这样的自然数组共有…………( )A .1组B .2组C .3组D .4组6、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( )A .6折B .7折C .8折D .9折二、填空题11、请你写出一个解集为1-≤x 的一元一次不等式: 。
沪科版数学七年级下册7.2《一元一次不等式》教学设计
沪科版数学七年级下册7.2《一元一次不等式》教学设计一. 教材分析《一元一次不等式》是沪科版数学七年级下册第七章第二节的内容。
这一节主要介绍了一元一次不等式的概念、性质和求解方法。
通过本节课的学习,学生能够理解一元一次不等式的定义,掌握一元一次不等式的解法,并能运用不等式解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。
二. 学情分析七年级的学生已经学习了代数基础知识和一元一次方程,他们对代数概念有一定的理解。
但是,对于不等式的概念和性质,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握一元一次不等式的相关概念和解法。
同时,学生需要通过大量的练习,提高解题技能。
三. 教学目标1.知识与技能:使学生理解一元一次不等式的定义,掌握一元一次不等式的解法,能够运用不等式解决实际问题。
2.过程与方法:通过观察、分析和归纳,培养学生发现和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:一元一次不等式的定义和求解方法。
2.难点:一元一次不等式的应用和求解过程。
五. 教学方法1.讲授法:通过讲解一元一次不等式的定义和性质,使学生掌握基本概念。
2.引导法:通过引导学生观察、分析和归纳,培养学生发现和解决问题的能力。
3.实践法:通过大量的练习题,提高学生的解题技能。
六. 教学准备1.教学PPT:制作精美的PPT,展示一元一次不等式的定义、性质和求解方法。
2.练习题:准备适量的一元一次不等式练习题,包括基础题和提高题。
3.教学素材:收集一些与一元一次不等式相关的实际问题,用于课堂拓展。
七. 教学过程1.导入(5分钟)利用PPT展示一些与不等式相关的生活实例,引导学生关注不等式在现实生活中的应用。
提出问题,让学生思考:如何用数学语言来表示这些不等关系?2.呈现(10分钟)讲解一元一次不等式的定义和性质,通过PPT展示相关知识点,引导学生理解和掌握。
新课标沪科版七年级初一数学下册全册教案
3
概率的加法法则和乘法法则
介绍概率的加法法则和乘法法则,用于计算复杂 事件的概率。
统计与概率应用实例
01
02
03
预测天气
利用历史天气数据,通过 统计方法预测未来天气情 过统计方法计算平均 分、中位数等,评估学生 成绩水平。
抽奖游戏
设计一个抽奖游戏,通过 概率计算每个奖品的中奖 概率,确保游戏公平性。
三角形的性质与判定
三角形的定义、性质、判定方法等。
几何应用实例
生活中的几何图形:如建筑物、 艺术品等。
几何图形在生活中的应用:如建 筑设计、艺术创作等。
数学中的几何应用:如勾股定理 、相似三角形等在数学中的应用
。
04
CATALOGUE
统计与概率部分
统计基础知识
统计的基本概念
描述数据的收集、整理、分析和解释的过程和方法。
06
CATALOGUE
教学评价与反思
学生评价方法与标准
课堂表现
观察学生在课堂上的参与度、回 答问题的准确性和创新性等方面
进行评价。
作业完成情况
评估学生作业的完成度、正确率 和独立思考能力。
测验与考试
通过定期的测验和考试,检测学 生对所学知识的掌握程度和应用
能力。
教师自我评价内容与标准
教学目标达成度
加强对学生基础知识的训练,提高学生的基础技能水平。
个性化教学
针对不同学生的特点和需求,开展个性化教学,满足学生的不同需求 。
THANKS
感谢观看
01
例如,用代数方法解决实际问题,如路程问题、时间问题、工
作效率问题等。
代数在数学其他领域的应用
02
例如,用代数方法解决几何问题,如勾股定理的应用;用代数
沪科版初中数学七年级下册7.一元一次不等式组课件
设作业本的单价为x元,根据题意同样可以列出不等式 组,得
5x>5
分别解得
4x<5 x>1
X<1.25
x>1
①
X<1.25 ②
在同一数轴上表示不等式①,②的解集:
1
1.25
①,②的解集的公共部分记作: 1<x<1.25,
x>1 叫做一元一次不等式组
的 解集
X<1.25
归纳概念:
1. 由几个一元一次不等式组所组成的不等式组叫做一 元一次不等式组
8x≥94800×(1+2 ﹪ )
8x≤94800×(1+4 ﹪ )
类似于方程组,把这两个不等式合起来组成 一个一元一次不等式组
8x≥94800×(1+2 ﹪ ) 8x≤94800×(1+4 ﹪ )
导入2
问题2 小莉带5元去超市买作业本,她拿了5本,付款 时钱不够,于是小莉退掉一本,收银员找给她一些零钱, 请你估计一下,作业本单价是多少元?
解:原不等式组的解集为
-5 -4 -3 -2 -1 0
x 2
解:原不等式组的解集为
-5 -4 -3 -2 -1 0 1 2
x0
同大取大
例1. 求下列不等式组的解集:
(5)xx
Hale Waihona Puke 3, 7.解:原不等式组的解集为
0 1 2 3 45 6 7 89
x3
x 2, (6)x 5.
解:原不等式组的解集为
-7 -6 -5 -4 -3 -2 -1 0
x 5
x 1,
解:原不等式组的解集为
(7)x 4. -3 -2 -1 0 1 2 3 4 5
沪科版初中数学七年级下册 7.3.1 一元一次不等式组 教案
七年级数学教学设计§7.3 一元一次不等式组§7.3 一元一次不等式组教材分析本节课从实际的问题情境引入,得出一元一次不等式组,这是对整个不等式知识体系的完善.在有了对方程、方程组以及一元一次不等式的知识储备后,对于一元一次不等式组概念的理解并不难,本节课的教学重点和难点在于如何能灵活地解一元一次不等式组.教学目标一、知识与技能:1、了解一元一次不等式组及其解集的概念.2、会利用数轴和口诀求不等式组的解集.二、过程与方法:1、培养学生分析实际问题,抽象出数学关系的能力.2、培养学生初步数学建模的能力.三、情感、态度与价值观:加深学生对数形结合的作用的理解,让学生体会数学解题的直观性和简洁性的数学美.感受探索的乐趣和成功的体验,使学生养成独立思考的好习惯.教学重难点1、重点:一元一次不等式组的解法及其步骤.2、难点:确定两个不等式解集的公共部分.教法与学法分析1、教法:启发式、讨论式和讲练结合的教学方法.2、学法:实践、比较、探究的学习方式.教学课型新授课教学用具多媒体课件教学过程一、复习引入一元一次不等式的解法我们已经全部讲完,现在复习一下前面的内容.1、不等式的基本性质是什么?2、解一元一次不等式的一般步骤是什么?二、情境引入问题:(见幻灯片)题中一共有两种数量关系,讲解时应注意引导学生自主探究发现.解:设一个小星星x kg ,由题意,得:⎩⎨⎧>+>9034090x x 题中的x 应同时满足两个不等式,从而引出一元一次不等式组的概念. 定义:由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组.观察与思考:下列各式中,哪些是一元一次不等式组? 三、探索新知怎样确定不等式组⎩⎨⎧>+>9034090x x 中x 的取值范围呢?解:解不等式① 得:x <50解不等式② 得:x >30在数轴上分别表示不等式①, ②的解集同时满足两个不等式的未知数,既是两个不等式解集的公共部分,要找出公共部分,就要利用数轴,在此要引导学生重视数轴的作用,并指导学生如何找到数轴上对应解集的范围.定义:几个一元一次不等式的解集的公共部分,叫做这个一元一次不等式组的解集.求一元一次不等式组解集的过程叫做解不等式组.四、探究规律 0 10 20 30 40 50 221,(1)2 3.x x x +-<-≥⎧⎨⎩22238,(2)-57 1.x x x x +>+<-⎧⎨⎩3235,(3)1-7.x x <+>⎧⎪⎨⎪⎩583,(4)92.x y +>⎧⎨>-⎩83,(5)3 2.x x >-⎧⎨>⎩13,(6)84,72 1.x x x +>⎧⎪-≥⎨⎪<-⎩()⎨⎧>311x 、()⎨⎧>22x ⎨⎧-<1)1(2x 、()⎨⎧<32x通过四组不等式组解集的探究,总结出一元一次不等式组解集的规律,并以口诀的形式给出:同大取大;同小取小;大于小的,小于大的,取中间;大于大的,小于小的,无解.活动:开门大吉 每一扇门的后面都有一个题目,以游戏的形式让同学们抢答.提高学生们的学习兴趣和积极性.五、新知应用有了上面的铺垫,我们来完整的解一元一次不等式组.例1 解不等式组(1)⎩⎨⎧->+->-148212x x x x (2)⎩⎨⎧-≤+->14212x x x x 以上两个例题,可以与学生一起完成,本例是按规范格式完整地解答了一个一元一次不等式组,要求学生做作业时按此格式书写.解:(1)解不等式①,得 x>-1解不等式②,得 x<3∴ 该不等式组的解集是 -1<x<3 .(2)解不等式①,得 解不等式②,得∴ 该不等式组的解集是 . 六、归纳总结解一元一次不等式组的步骤:1、求出不等式组中每一个不等式的解集2、利用数轴或口决得出不等式组的解集-2 -1 0 1 2 3 4 ① ② ① ②31≥x 1≥x 1≥x3、写出不等式组的解集口决:同大取大;同小取小;大于小的,小于大的取中间;大于大的,小于小的无解.七、练习练习第2题请同学们在随堂本上完成课本P35八、小结1.由几个含有同一未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组.2.几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集.3.求不等式组的解集的过程,叫做解不等式组.4.解简单一元一次不等式组的方法:(1) 求出不等式组中几个不等式的解集,(2)利用数轴或口决得出不等式组的解集,(3)写出不等式组的解集.九、作业1、课堂本习题7.3第1、2题;2、同步作业7.3(一).板书设计。
沪科版初中数学七年级下册 7.2.2 一元一次不等式 教案
7.2 一元一次不等式第二课时学习目标:1.进一步熟练解一元一次不等式,并会在数轴上表示不等式的解集2.掌握含分母的一元一次不等式的解法学习重点:一元一次不等式的解法和用数轴表示不等式的解集.学习难点:去分母、化系数为1时注意不等式号方向.考点:一元一次不等式的解法和用数轴表示不等式的解集.教学准备:学习过程:一、复习:1.什么是一元一次不等式?含有一个未知数,未知数的次数是1、且不等号两边都是整式的不等式叫一元一次不等式。
2、不等式的基本性质。
学生齐读或背不等式的基本性质3、解一元一次不等式的一般步骤去分母:去括号:移项:合并同类项系数化为1:4.说出下列不等式变形是根据不等式的哪一条基本性质.12x-3x<-18,2-3x>-6x-2-9x<-18,6x-3x>-2-2x>2.3x>-4x>-4/3学生交流后回答二、探索新知:例1.解下列不等式,并把它们的解集分别表示在数轴上:(1)5x+2<-10;(2)-3(2x -4)≤0;(3)2-x <3x +10学生练习,叫3个学生上黑板板书,教师巡查指导然后点评。
例2 解不等式: ,并把它的解集表示在数轴上。
交流解一元一次方程与解一元一次不等式有哪些相同和不同的地方?为什么? 解: 去分母,得:3(4+x)+6≥8(x+1)去括号,得:12+3x+6≥8x+8移项,合并同类项3x -8x ≥8-18-5x ≥-10x ≤2练习 : 解下列不等式:(1)(2)解(1)去分母,得:2x -(4x -1)<3382(13)127x x x ---<-3)1(4124+≥++x x 3)1(4124+≥++x x 23)14(21<--x x 23)14(21<--x x移项,合并同类项,得:-2x<2系数化为1(即两边同时除以-2),得:x>-1解(2) 去分母,得:14x -7(3x -8)<4(13-x) -14去括号,得:14x -21x+56<52-4x -14移项,合并同类项,得:-3x<-18系数化为1,得:X>6解:(1)由题意可得不等式:2x -3>-3解这个不等式得:X>0所以当x>0时,代数式2x -3的值大于-3解:(2)由题意可得不等式:2x -3<-x+1解这个不等式得:X <所以当x>0时,代数式2x -3的值小于-x+1的值。
沪科版七年级数学下册导学案 7.3 一元一次不等式组(1)
课题:一元一次不等式与不等式组一元一次不等式组(1)主备人:杨明 时间:2011年2月 日年级 班 姓名:学习目标:1.知道一元一次不等式组及其解集的意义.2.初步感知利用一元一次不等式解集的数轴表示法求不等式组的解和解集的方法.3.体会数形结合的思想.学习重点:两个一元一次不等式所组成的一元一次不等式组的解法. 学习难点:确定两个不等式解集的公共部分. 一、学前准备1.一元一次不等式是: .2.解一元一次不等式的一般步骤是:3.由几个含有同一个______ 的__________________组成的不等式组,叫做一元一次不等式组.4.几个一元一次不等式解集的____________,叫做这个一元一次不等式组的解集.5.求一元一次不等式组解集____________,叫做解不等式组.预习疑难摘要: .二、探究活动(一)独立思考·解决问题1.用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水, 估计积存的污水在1200吨到1500吨之间, 那么大约需要多少时间能将污水抽完?分析:设需要x 分钟才能将污水抽完.积存的污水在1200吨到1500吨之间,应有1500301200≤≤x这实际上包括了两个不等式120030≥x 和150030≤x .⎩⎨⎧≤≥ ②. ①, 150030120030x x再如 ⎪⎪⎩⎪⎪⎨⎧≤⨯-≥⨯-206.010023176.010023x x像这样,由几个含有同一个未知数的一次不等式组成的______ ,就叫做一元一次不等式组.分别求这两个不等式的解集,得⎩⎨⎧≤≥.,5040x x同时满足不等式①、②的未知数x 应是这两个不等式解集的公共部分.在同一数轴上表示这两个不等式的解集, 找出公共部分.如图, 公共部分是40和50之间的数(包括40和50), 记作5040≤≤x . 这就是所列不等式组的解集.所提问题的答案为:大约需要40到50分钟能将污水抽完. 2.概念与方法:不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集. 求不等式组解集的过程叫做解不等式组. 方法:解一元一次不等式组, 通常可以先分别求出不等式中每一个不等式的解集, 再求出它们的公共部分. 利用数轴可以直观地帮助我们求出不等式组的解集.(二)师生探究·合作交流 1.解不等式组⎩⎨⎧>+>- ②. ①, 821213x x x解:解不等式①, 得 .解不等式②, 得 .在同一数轴上表示不等式①、②的解集, 如图, 可知所求不等式组的解集是 4>x .2.解不等式组: 21131x x +<-⎧⎨-≥⎩, ①. ②解:解不等式①,得 . 新课标第一网解不等式②, 得 .在同一数轴上表示不等式①、②的解集, 如图, 这两个不等式的解集①②没有公共部分,这时,我们说这个不等式组 .3.练一练:解不等式组,并把解集在数轴上表示出来.⎩⎨⎧≤--<+.13,112x x 3121,28.x x x ->+⎧⎨<⎩4.交流反思一元一次不等式组解集四种类型:(口诀:同大取大,同小取小;大于小的小于大的,取两者之间;大于大的小于小的,无解。
沪科版七年级数学下册优质教案
沪科版七年级数学下册优质教案一、教学内容本节课选自沪科版七年级数学下册,主要涵盖第六章《一元一次不等式及其应用》的13节。
详细内容包括:不等式的定义及性质;一元一次不等式的解法;一元一次不等式组的解法及应用。
二、教学目标1. 理解不等式的概念,掌握不等式的性质,能运用性质简化不等式。
2. 学会一元一次不等式的解法,并能解决实际问题。
3. 掌握一元一次不等式组的解法,能对不等式组进行求解、分析及应用。
三、教学难点与重点难点:一元一次不等式组的解法及应用。
重点:不等式的性质;一元一次不等式的解法。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、草稿纸、铅笔。
五、教学过程1. 实践情景引入:通过展示生活中的实际问题,引导学生思考如何用数学方法解决问题。
2. 知识讲解:(1) 不等式的定义及性质:通过例题讲解,让学生理解不等式的概念,掌握不等式的性质。
(2) 一元一次不等式的解法:以实例为载体,详细讲解一元一次不等式的解法步骤。
(3) 一元一次不等式组的解法:通过例题,让学生学会求解一元一次不等式组,并能分析其解集。
3. 随堂练习:针对本节课的知识点,设计具有代表性的练习题,让学生独立完成,巩固所学。
六、板书设计1. 不等式的定义及性质2. 一元一次不等式的解法3. 一元一次不等式组的解法七、作业设计1. 作业题目:(1) 解不等式:2x 3 > 5(2) 解不等式组:2x 3 > 5,x 2 < 42. 答案:(1) x > 4(2) 2.5 < x < 6八、课后反思及拓展延伸1. 反思:关注学生在课堂上的表现,了解他们对知识点的掌握情况,针对问题进行改进。
2. 拓展延伸:引导学生探索不等式的其他性质,以及解决实际问题中不等式的应用。
重点和难点解析1. 实践情景引入2. 一元一次不等式组的解法3. 课堂小结4. 作业设计一、实践情景引入实践情景引入是激发学生学习兴趣、提高课堂参与度的关键环节。
(基础题)沪科版七年级下册数学第7章 一元一次不等式和不等式组含答案
沪科版七年级下册数学第7章一元一次不等式和不等式组含答案一、单选题(共15题,共计45分)1、若不等式组的解集是x<2,则a的取值范围是()A.a<2B.a≤2C.a≥2D.无法确定2、已知,是有理数,下列各式中正确的是()A. B. C. D.3、不等式组的解集是,则的取值范围是().A. ≤0B. ≤1C.D.4、不等式x-3>2的解集为 ( )A.x>-1B.x<5C.x> 5D.x> - 55、不等式x-2>1的解集是( )A.x>1B.x>2C.x>3D.x>46、不等式组中,不等式①和②的解集在数轴上表示正确的是()A. B. C.D.7、若,则下列结论错误的是()A. B. C. D.8、下列变形中,正确的是()A.由2 x>﹣x+1得2 x﹣x>1B.由2﹣x<3得﹣x>3﹣2C.由﹣3 x≥﹣6得x≤2D.由2 x≥3得x≥9、从0,1,2,3,4,5,6这七个数中,随机抽取一个数,记为a,若a使关于x的不等式组的解集为x>1,且使关于x的分式方程=2的解为非负数,那么取到满足条件的a值的概率为()A. B. C. D.10、已知a为非负数,则下列各式中正确的是()A.a>0B.a≥0C.a<0D.a≤011、若关于x的不等式的整数解共有4个,则m的取值范围是()A. B. C. D.12、不等式2x﹣5≤4x﹣3的解集在数轴上表示应为()A. B. C. D.13、若a,b是正整数,且,则以(a,b)为坐标的点共有()个.A.12B.15C.21D.2814、不等式组的解集是()A.x>-3B.x<-3C.x>2D.无解15、已知实数a<b,则下列结论中,不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-4二、填空题(共10题,共计30分)16、国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为________ cm.17、不等式2x -1 > 3x -1 的解集为________.18、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润不低于160元,则至多可打________折19、不等式的解集是________.20、用一组,,的值说明命题“若,则”是错误的,这组值可以是________,________,________.21、对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式1※x<2,则不等式的非负整数解是________.22、若a<b<0,把1,1-a,1-b这三个数按由小到大的顺序用“<”连接起来:________23、关于x,y的二元一次方程组的解满足x+y>2,则a的范围为________.24、若代数式在实数范围内有意义,则x取值范围是________.25、某校开展“未成年人普法”知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记分.小明参加本次竞赛的得分超过100分,他至少答对了________题;三、解答题(共5题,共计25分)26、解不等式组并把解集表示在数轴上.27、某软件公司开发出一种图书管理软件,前期投入的开发、广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:一元一次不等式与不等式组
一元一次不等式(3)
主备人:杨明 时间:2011年2月 日
年级 班 姓名:
学习目标:
1.会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题.
2.经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系. 学习重点:一元一次不等式在实际问题中的应用
学习难点:挖掘题目中不等的数量关系,正确列出不等式。
一、学前准备
1.试用不等式表示下列关系:
(a) 某天的气温不低于8度 ________________________________;
(b)初一(A) 班的男生不小于25人 ________________________________; (c)汽车在行程过程中,速度一般不超过80km/h ______________________; (d)试用不等式表示下列问题:某次数学竞赛, 试题都是选择题, 答对一题得5分,不答或答错不得分也不扣分,小张在本次竞赛中想得分不低于80分。
请问他至少应该答对多少题? ________________________________ 。
2.列方程解应用题的一般步骤?
3.x 取何值时,代数式:x 的值82
3 ① 大于7-x ②小于7-x ③不大于7-x ④不小于7-x
预习疑难摘要: . 二、探究活动
(一)师生探究·合作交流
1.某学校计划购买若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你
是校长,你该怎么考虑,如何选择?
分析:
(1)、先独立思考,理解题意;再交流,发表自己的观点.
(2)、充分发表意见的基础上,归纳出以下三种采购方案:
①什么情况下,到甲商场购买更优惠?
②什么情况下,到乙商场购买更优惠?
③什么情况下,两个商场收费相同?
(3)、我们先来考虑方案:
设购买x台电脑,如果到甲商场购买更优惠.
问题1:如何列不等式?
问题2:如何解这个不等式?
解:设购买x台电脑,如果到甲商场购买更优惠,则
6000+6000(1-25%)(x-1)<6000(1-20%)x
去括号,得:6000+4500x-4500<4800x
移项且合并,得:-300x<-1500
不等式两边同除以-300,得:x>5
答:购买5台以上电脑时,甲商场更优惠.
请同学们自己完成方案(2)与方案(3),并做出全面的回答。
2.将若干只鸡放入若干个鸡笼,若每个笼里放4只,则有一只鸡无笼可放,若每个笼里放5只,则有一笼无鸡可放,问至少有几只鸡?几个笼?
3.小明的爸爸妈妈购买了手机,在怎样选择付费方式上,一时想不好,就请小明当参谋.爸爸说:使用“全球通”是这样收费的:每月交纳50元基础话费,然后每打1分钟,收费0.4元;妈妈说:使用“神州行”是这样收费的:不交纳基础话费,每打1分钟,收费0.6元.妈妈问小明在什么情况下使用“神州行”比较合适?请你和小明一起想一想,怎样解决这个问题?
4.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)
(二)交流总结
列一元一次不等式解应用题的一般步骤:
①审清题意;②设未知数;③由题意寻找不等关系,列出一元一次不等式;
④解一元一次不等式;⑤根据实际情况,求出符合题意的解.
练习:
1.求大于75的两位整数,使它的个位数字比十位数字大1.
2.把若干本书分给若干个学生,若每人分3本,就剩下45本;若每个学生分9本,则有一个学生虽分得到书,但不够9本,问有多少本书?有几个学生?
三、自我测试
1.某次人与自然的知识竞赛中共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,至少要答对几道题,其得分不少于80分?
2.某移动通讯公司开设两种业务:“全球通”月租费30元,每分钟通话费o.2元;“神州行”没有月租费,每分钟通话费0.4元(两种通话均指市内通话).如果一个月内通话x分钟,选择哪种通讯业务比较合算?
3.某单位要制作一批宣传资料.甲公司提出:每份材料收费20元,另收设计费3000元;乙公司提出:每份材料收费30元,不收设计费.请问什么情况下,选择甲公司比较合算?
四、应用与拓展
响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过
...132000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.
(1)至少购进乙种电冰箱多少台?
(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?
五、数 学 日 记
课题:一元一次不等式与不等式组 日期:_____年_____月____日 心情:_______ 本节课你有哪些收获?感受最深的
是什么? 预习时的疑难解决了吗?
老师我想对你说:。