2012届高考物理第一轮课时复习题26
2012年高考物理第一轮考点及考纲复习题(有答案)
2012年高考物理第一轮考点及考纲复习题(有答案)2012年高考一轮复习考点及考纲解读(八)恒定电流内容要求说明 64.电流。
欧姆定律。
电阻和电阻定律65.电阻率与温度的关系 66.半导体及其应用。
超导及其应用 67.电阻的串、并联。
串联电路的分压作用。
并联电路的分流作用 68.电功和电功率。
串联、并联电路的功率分配 69.电源的电动势和内电阻。
闭合电路的欧姆定律。
路端电压 70.电流、电压和电阻的测量:电流表、电压表和多用电表的使用。
伏安法测电阻 II I I IIII II II名师解读恒定电流部分是高考必考内容之一,特别是电学实验更是几乎每年必考。
常见题型有选择题、实验题、计算题,其中以实验题居多。
高考考查的重点内容有:欧姆定律,串、并联电路的特点,电功及电热,闭合电路的欧姆定律,电阻的测量(包括电流表、电压表内阻的测量)。
其中含容电路、电路动态变化的分析、功率分配问题是命题率较高的知识点,尤其电阻的测量、测量电源的电动势和内电阻更是连续多年来一直连考不断的热点。
复习时要理解串、并联电路的特点,闭合电路欧姆定律的含义,另外,要密切注意半导体、超导等与生产和生活相结合的新情景问题。
样题解读【样题1】(江都市2011届高三联考)一中学生为即将发射的“神州七号”载人飞船设计了一个可测定竖直方向加速度的装置,其原理可简化如图8-1,连接在竖直弹簧上的重物与滑动变阻器的滑动头连接,该装置在地面上静止时其电压表指针指在表盘中央的零刻度处,在零刻度的两侧分别标上对应的正、负加速度值。
关于这个装置在“神州七号”载人飞船发射、运行和回收过程中示数的判断正确的是 A.飞船在竖直加速升空的过程中,如果电压表的示数为正,则飞船在竖直减速返回地面的过程中,电压表的示数仍为正 B.飞船在竖直加速升空的过程中,如果电压表的示数为正,则飞船在竖直减速返回地面的过程中,电压表的示数为负 C.飞船在近地圆轨道上运行时,电压表的示数为零D.飞船在近地圆轨道上运行时,电压表的示数所对应的加速度应约为9.8m/s2 [分析] 飞船竖直加速升空的过程和竖直减速返回地面的过程中都发生超重现象,弹簧被压缩,变阻器的滑动头向下滑动,所以电压表的示数正负情况相同,A项正确,B项错误;飞船在近地圆轨道上运行时,处于完全失重状态,加速度等于重力加速度,约为9.8m/s2,C项错误,D项正确。
2012届高考物理第一轮课时复习训练题(有答案和解释)
2012届高考物理第一轮课时复习训练题(有答案和解释)第三节圆周运动及其应用一、单项选择题1.(2009年高考广东卷)如图所示是一个玩具陀螺,a、b和c是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b和c三点的线速度大小相等B.a、b和c三点的角速度相等C.a、b的角速度比c的大D.c的线速度比a、b的大解析:选B.由于a、b、c三点是陀螺上的三个点,所以当陀螺转动时,三个点的角速度相同,选项B正确,C错误;根据v=ωr,由于a、b、c三点的半径不同,ra=rb>rc,所以有va=vb>vc,选项A、D均错误.2.(2011年北京检测)在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些,汽车的运动可看成是做半径为R的圆周运动,设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()A.gRhLB.gRhdC.gRLhD.gRdh解析:选 B.汽车做匀速圆周运动:向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F向=mgtanθ,根据牛顿第二定律:F向=mv2R,tanθ=hd,解得汽车转弯时的车速v =gRhd,所以B对.3.(2011年北京西城检测)如图所示,在同一竖直平面内有两个正对着的半圆形光滑轨道,轨道的半径都是R.轨道端点所在的水平线相隔一定的距离x.一质量为m的小球能在其间运动而不脱离轨道,经过最低点B时的速度为v.小球在最低点B与最高点A对轨道的压力之差为ΔF(ΔF>0),不计空气阻力.则()A.m、x一定时,R越大,ΔF一定越大B.m、x一定时,v越大,ΔF一定越大C.m、R一定时,x越大,ΔF一定越大D.m、R一定时,v越大,ΔF一定越大解析:选C.小球到达最高点A时的速度vA不能为零,否则小球早在到达A点之前就离开了圆形轨道,m、R一定时,x越大,小球到达最高点A时的速度越小,小球在最低点B与最高点A对轨道的压力之差ΔF 一定越大,C正确.二、双项选择题4.(2011年广州一模)如图所示,水平的木板B托着木块A一起在竖直平面内做匀速圆周运动,从水平位置a沿逆时针方向运动到最高点b的过程中()A.B对A的支持力越来越大B.B对A的支持力越来越小C.B对A的摩擦力越来越大D.B对A的摩擦力越来越小解析:选BD.以A为研究对象,由于其做匀速圆周运动,故合外力提供向心力.在水平位置a点时,向心力水平向左,由B对它的静摩擦力提供,f=mω2r;重力与B对它的支持力平衡,即FN=mg.在最高点b 时,向心力竖直向下,由重力与B对它的支持力的合力提供,mg-FN =mω2r,此时f=0.由此可见,B对A的支持力越来越小,B对A的摩擦力也越来越小.5.(2011年深圳模拟)如图所示,M为固定在水平桌面上的有缺口的方形木块,abcd为34圆周的光滑轨道,a为轨道的最高点,de面水平且有一定长度.今将质量为m的小球从d点的正上方高为h处由静止释放,让其自由下落到d处并切入轨道内运动,不计空气阻力,则()A.在h一定的条件下,小球释放后的运动情况与小球的质量无关B.改变h的大小,就能使小球通过a点后,落回轨道内C.无论怎样改变h的大小,都不可能使小球通过b点后落回轨道内D.调节h的大小,使小球飞出de面(即飞到e的右面)是可能的解析:选AD.在h一定的条件下,小球释放后的运动情况与小球的质量无关,小球通过a点时的最小速度为vmin=gR,其中R为圆轨道的半径,所以它落到与de面等高的水平面上时的最小水平位移为smin=vmin2Rg=2R,所以改变h的大小,不可能使小球通过a点后落回轨道内,但使小球飞出de面(即飞到e的右面)是可能的.改变h的大小,使小球通过b点后在ba之间的某一点离开轨道做斜上抛运动并落回轨道内是可能的.故A、D正确.6.(2011年长沙三校测评)2010年2月16日,在加拿大温哥华举行的第二十一届冬奥会花样滑冰双人自由滑比赛落下帷幕,中国选手申雪、赵宏博获得冠军.如图所示,如果赵宏博以自己为转动轴拉着申雪做匀速圆周运动.若赵宏博的转速为30r/min,手臂与竖直方向夹角为60°,申雪的质量是50kg,她触地冰鞋的线速度为4.7m/s,则下列说法正确的是()A.申雪做圆周运动的角速度为πrad/sB.申雪触地冰鞋做圆周运动的半径约为2mC.赵宏博手臂拉力约是850ND.赵宏博手臂拉力约是500N解析:选AC.申雪做圆周运动的角速度等于赵宏博转动的角速度.则ω=30r/min=30×2π/60rad/s=πrad/s,由v=ωr得:r=1.5m,A正确,B 错误;由Fcos30°=mrω2解得F≈850N,C正确,D错误.7.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧管壁半径为R,小球半径为r,则下列说法正确的是()A.小球通过最高点时的最小速度vmin=+B.小球通过最高点时的最小速度vmin=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力解析:选BC.小球沿管上升到最高点的速度可以为零,故A错误,B正确;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力FN与球重力在背离圆心方向的分力Fmg的合力提供向心力,即:FN -Fmg=mv2R+r,因此,外侧管壁一定对球有作用力,而内侧管壁无作用力,C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力与小球速度大小有关,D错误.8.如图所示,光滑半球的半径为R,球心为O,固定在水平面上,其上方有一个光滑曲面轨道AB,高度为R/2.轨道底端水平并与半球顶端相切,质量为m的小球由A点静止滑下.小球在水平面上的落点为C(重力加速度为g),则()A.小球将沿半球表面做一段圆周运动后抛至C点B.小球将从B点开始做平抛运动到达C点C.OC之间的距离为2RD.小球从A运动到C的时间等于(1+2)Rg解析:选BC.小球从A到B由机械能守恒定律得mgR2=12mv2B,vB=gR;由mv2BR=mg可知,小球在半球顶端B点只受重力的作用,符合平抛运动的条件,故选项A错误,而B正确;从B到C,R=12gt2,OC=vBt,联立得t=2Rg,OC=2R,选项C正确;设从A到B的时间为tAB,由于R2Rg,故小球从A运动到C的时间大于(1+2)Rg,选项D 错误.三、非选择题9.如图所示,A、B两个齿轮的齿数分别为z1、z2,各自固定在过O1、O2的轴上,其中过O1的轴与电动机相连接,此轴的转速为n1,求:(1)B齿轮的转速n2;(2)A、B两个齿轮的半径之比;(3)在时间t内,A、B两齿轮转过的角度之比.解析:(1)相同时间内两齿轮咬合通过的齿数是相同的,则n1z1=n2z2,所以n2=z1z2n1.(2)设A、B半径分别是r1、r2,由于两轮边沿的线速度大小相等,则2πn1r1=2πn2r2,所以r1r2=n2n1=z1z2.(3)由ω=2πn得ω1ω2=n1n2=z2z1,再由φ=ωt得时间t内两齿轮转过的角度之比φ1φ2=ω1ω2=z2z1.答案:(1)z1z2n1(2)z1z2(3)z2z110.(2009年高考广东卷)如图所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A 点的高度为筒高的一半,内壁上有一质量为m的小物块.求:(1)当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;(2)当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度.解析:(1)当筒不转动时,物块静止在筒壁A点时受到重力、摩擦力和支持力三力作用而平衡,由平衡条件得摩擦力的大小f=mgsinθ=mgHH2+R2支持力的大小FN=mgcosθ=mgRH2+R2.(2)当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,物块在筒壁A点受到重力和支持力的作用,它们的合力提供向心力,设筒转动的角速度为ω,则有mgtanθ=mω2R2由几何关系得tanθ=HR联立以上各式解得:ω=2gHR.答案:(1)mgHH2+R2mgRH2+R2(2)2gHR1.(2011年江西五校联考)如图所示,用长为L的轻绳把一个小铁球悬挂在高2L的O点处,小铁球以O为圆心在竖直平面内做圆周运动且恰能到达最高点B处,则有()A.小铁球在运动过程中轻绳的拉力最大为5mgB.小铁球在运动过程中轻绳的拉力最小为mgC.若运动中轻绳断开,则小铁球落到地面时的速度大小为7gL D.若小铁球运动到最低点轻绳断开,则小铁球落到地面时的水平位移为2L解析:选C.小铁球以O为圆心在竖直平面内做圆周运动且恰能到达最高点B处,说明小铁球在最高点B处,轻绳的拉力最小为零,mg=mv2/L,v=gL;由机械能守恒定律得,小铁球运动到最低点时动能mv21/2=mv2/2+mg•2L,在最低点轻绳的拉力最大,由牛顿第二定律F-mg=mv21/L,联立解得轻绳的拉力最大为F=6mg;选项A、B错误.以地面为重力势能参考平面,小铁球在B点处的总机械能为mg•3L+12mv2=72mgL,无论轻绳是在何处断开,小铁球的机械能总是守恒的,因此到达地面时的动能12mv′2=72mgL,落到地面时的速度大小为v′=7gL,选项C正确.小铁球运动到最低点时速度v1=5gL,由s=v1t,L=12gt2,联立解得小铁球落到地面时的水平位移为s=10L,选项D错误.2.(2010年高考重庆卷)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d,手与球之间的绳长为34d,重力加速度为g.忽略手的运动半径和空气阻力.(1)求绳断开时球的速度大小v1和球落地时的速度大小v2.(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t,由平抛运动规律,有竖直方向:14d=12gt2水平方向:d=v1t解得v1=2gd由机械能守恒定律,有12mv22=12mv21+mg(d-34d),解得v2=52gd.(2)设绳能承受的最大拉力大小为T,这也是球受到绳的最大拉力大小.球做圆周运动的半径为R=34d由圆周运动向心力公式,有T-mg=mv21R得T=113mg.(3)设绳长为l,绳断时球的速度大小为v3,绳承受的最大拉力不变,有T-mg=mv23l,解得v3=83gl绳断后球做平抛运动,竖直位移为d-l,水平位移为s,时间为t1.有d -l=12gt21,s=v3t1得s=-,当l=d2时,s有极大值smax=233d.答案:(1)2gd52gd(2)113mg(3)d2233d。
2012届高考物理一轮复习课时训练:交变电流的产生和描述
2012届高考一轮物理复习(人教版)课时训练第十章 交变电流 传感器第二讲 变压器 电能的输送(本卷共12小题全部为选择题,共120分)1.图10-2-19为某小型水电站的电能输送示意图,A 为升压变压器,其输入功率为P 1,输出功率为P 2,输出电压为U 2;B 为降压变压器,其输入功率为P 3,输入电压为U 3.A 、B 均为理想变压器,输电线的总电阻为r ,则下列关系式正确的是( )图10-2-19A .P 1>P 2B .P 2=P 3C .U 2>U 3D .U 2=U 3解析:由变压器原理知,P 1=P 2=P 3+ΔP =P 4+ΔP ,U 2=U 3+ΔU ,选C.答案:C2.(2010·天津理综,7)为探究理想变压器原、副线圈电压、电流的关系,将原线圈接到电压有效值不变的正弦交流电源上,副线圈连接相同的灯泡L 1、L 2,电路中分别接了理想交流电压表V 1、V 2和理想交流电流表A 1、A 2,导线电阻不计,如图10-2-20所示.当开关S 闭合后( )图10-2-20A .A 1示数变大,A 1与A 2示数的比值不变B .A 1示数变大,A 1与A 2示数的比值变大C .V 2示数变小,V 1与V 2示数的比值变大D .V 1示数不变,V 1与V 2示数的比值不变解析:交流电源的电压有效值不变,即V 1示数不变,因U 1U 2=n 1n 2,故V 2示数不变,V 1与V 2示数的比值不变,D 对.S 闭合使负载总电阻减小,I 2=U 2R ,所以I 2增大.因I 1I 2=n 2n 1,所以A 1示数增大,A 1与A 2示数比值不变,A 对. 答案:AD3.如图10-2-21所示,一理想变压器原副线圈匝数比为n 1∶n 2=4∶1,原线圈ab 间接一电压为u =2202sin 100πt (V)的交流电源,灯泡L 标有“36 V 18 W ”,当滑动变阻器R 的滑片处在某位置时,电流表示数为0.25 A ,灯泡L 刚好正常发光,则()图10-2-21A .滑动变阻器R 消耗的功率为36 WB .定值电阻R 0的电阻值为19 ΩC .流过灯泡L 的交变电流频率为25 HzD .将滑动变阻器R 的滑片向上滑时,灯泡L 的亮度变暗解析:本题考查理想变压器及电路的动态分析的相关知识.根据电流表示数和原副线圈的匝数之比可知副线圈中的电流大小为1 A ,灯泡正常发光可知,灯泡所在支路电流为0.5 A ,故滑动变阻器所在支路电流为0.5 A ,电压为36 V ,根据P =UI 可知滑动变阻器消耗的功率为18 W ,故A 错;根据原副线圈的匝数之比可知副线圈两端的电压的有效值为55 V ,则R 0两端电压为19 V ,R 0的电阻为19 Ω,故B 正确;原副线圈电流的频率应相同为50 Hz ,故C 错误;滑动变阻器滑片向上滑,阻值增大,则并联电阻的阻值变大,并联电路两端电压变大,灯泡将变亮,故D 错误,此题为中等难度题.答案:B4. 如图10-2-22所示为远距离高压输电的示意图.关于远距离输电,下列表述正确的是( )A .增加输电导线的横截面积有利于减少输电过程中的电能损失B .高压输电是通过减小输电电流来减少电路的发热损耗的C .在输送电压一定时,输送的电功率越大,输电过程中的电能损失越小D .高压输电必须综合考虑各种因素,不一定是电压越高越好解析:根据P =I 2R 可知,在电流I 一定的情况下,减小电阻R 可以减少电路上的电能损失,而R =ρL S,所以增大输电线横截面积S 有利于减少输电过程中的电能损失,A 对;由公式P =I 2R 可得,若设输送的电功率为P ′,则P =P ′2U 2R ,可见,在输送电压U 一定时,输送的电功率P ′越大,输电过程中的电能损失越大,C 错误.答案:ABD5. 如图10-2-23所示,理想变压器的原线圈两端输入的交变电压保持恒定.则当开关S 合上时,下列说法正确的是()图10-2-22图10-2-23A.电压表的示数变小B.原线圈的电流增大C.流过R1的电流不变D.变压器的输入功率减小解析:本题考查交流电.由于原、副线圈两端电压不变,当开关S闭合时,回路中总电阻减小,根据闭合电路欧姆定律可知干路上电流增加,但并联电路两端电压不变,选项A错误,B正确;由于R1两端电压不变,由部分电路欧姆定律可知,通过R1的电流不变,选项C正确;由于理想变压器输入功率与输出功率相等,输出电压不变,电流增加,输出功率增加,选项D错误.答案:BC6. (2010·东北三省四市联考)如图10-2-24,一理想自耦变压器的原线触头P与线圈始终接触良好,下列判断正确的是()A.若通过电路中A、C两处的电流分别为I A、I C则I A>I CB.若仅将触头P向A端滑动,则电阻R消耗的电功率增大图10-2-24 C.若仅使电阻R增大,则原线圈的输入电功率增大D.若在使电阻R增大的同时,将触头P向A端滑动,则通过A处的电流增大解析:自耦变压器是指它的绕组是初级和次级在同一绕组上的变压器.通过改变初、次级的线圈匝数比的关系来改变初、次级线圈两端电压,实现电压的变换.原、副线圈两端电压与其匝数成正比.理想自耦变压器的原线圈接有正弦交变电压,若仅将触头P 向A端滑动,电阻R两端的电压增大,则电阻R消耗的电功率增大,选项B正确.答案:B7.“5·12”汶川大地震发生后,山东省某公司向灾区北川捐赠一批柴油发电机.该柴油发电机说明书的部分内容如表所示.现在用一台该型号的柴油发电机给灾民临时安置区供电,发电机到安置区的距离是400 m,输电线路中的火线和零线均为GBCZ60型单股铜导线,该型导线单位长度的电阻为2.5×10-4Ω/m.安置区家用电器的总功率为44 kW,当这些家用电器都正常工作时,下列说法中正确的是()A.输电线路中的电流为20 AB.输电线路损失的电功率为8 000 WC.发电机实际输出电压是300 VD.如果该柴油发电机发的电是正弦交流电,则输出电压最大值是300 V解析:I 线=I 0=P 0U 0=4.4×104220A =200 A ;线路损失功率P 线=I 2线R 线=8 000 W ,线路两端电压U =I 线R 线=40 V ,所以发电机输出电压为260 V ;如果该柴油发电机发的电是正弦交流电,则输出电压最大值是260 2 V.答案:B8.如图10-2-25甲所示,为一种可调压自耦变压器的结构示意图,线圈均匀绕在圆环型铁芯上,若AB 间输入如图乙所示的交变电压,转动滑动触头P 到如图甲中所示位置,在BC 间接一个55 Ω的电阻(图中未画出),则()图10-2-25A .该交流电的电压瞬时值表达式为u =2202sin(25πt )VB .该交流电的频率为25 HzC .流过电阻的电流接近于4 AD .电阻消耗的功率接近于220 W解析:由题中图乙可知正弦交流电的周期T =0.04 s ,则f =1T=25 Hz ,ω=2πf =50π rad/s ,所以该交流电的电压瞬时值的表达式为u =2202sin(50πt )V ,A 错误,B 正确;从题图甲中可以看出,自耦变压器的副线圈的匝数约是原线圈匝数的12,故副线圈两端的电压约为110 V ,流过电阻的电流约为2 A ,C 项错误;电阻消耗的功率P =U 2I 2=220 W ,D 项正确.答案:BD9. (2010·海南卷,9)如图10-2-26所示,一理想变压器原副线圈匝数之比为4∶1,原线圈两端接入一正弦交流电源;副线圈电路中R 为负载电阻,交流电压表和交流电流表都是理想电表.下列结论正确的是( )A .若电压表读数为6 V ,则输入电压的最大值为24 2 VB .若输入电压不变,副线圈匝数增加到原来的2倍,则电流表的读数减小到原来的一半C .若输入电压不变,负载电阻的阻值增加到原来的2倍,则输入功率也增加到原来的2倍D .若保持负载电阻的阻值不变,输入电压增加到原来的2倍,则输出功率增加到原来的4倍解析:本题考查变压器的原理以及交流电的有关知识,意在考查考生对交变电流的认识和理解.因为电压表的读数为6 V ,则变压器的输出电压的有效值为6 V ,由U 1U 2=n 1n 2, 图10-2-26故U 1=4U 2=24 V ,所以输入电压的最大值为U m =2U 1=24 2 V ,所以选项A 正确;若输入电压不变,副线圈匝数增加,则U 2增大,由I 2=U 2R可知,电流表示数增大,所以选项B 不对;输入电压和匝数比不变,则电压值不变,当负载电阻R 变大时,则I 2=U 2R,电流变小,故P 1=P 2=U 2I 2,所以输入功率也减小,所以选项C 错;若负载电阻R 不变,输入电压变为原来的2倍,则输出电压也变为原来的2倍,I 2=U 2R则输出电流也变为原来的2倍,故输出功率P 2=U 2I 2变为原来的4倍,所以选项D 正确. 答案:AD10.(2011·临沂模拟)随着社会经济的发展,人们对能源的需求也日益扩大,节能变得越来越重要.某发电厂采用升压变压器向某一特定用户供电,用户通过降压变压器用电,若发电厂输出电压为U 1,输电导线总电阻为R ,在某一时段用户需求的电功率为P 0,用户的用电器正常工作的电压为U 2.在满足用户正常用电的情况下,下列说法正确的是( )A .输电线上损耗的功率为P 20R U 22B .输电线上损耗的功率为P 20R U 21C .若要减少输电线上损耗的功率可以采用更高的电压输电D .采用更高的电压输电会降低输电的效率解析:设发电厂输出功率为P ,则输电线上损耗的功率ΔP =P -P 0,ΔP =I 2R =P 2R U 21,A 、B 项错误;采用更高的电压输电,可以减小导线上的电流,故可以减少输电线上损耗的功率,C 项正确;采用更高的电压输电,输电线上损耗的功率减少,则发电厂输出的总功率减少,故可提高输电的效率,D 项错误. 答案:C11.如图10-2-27所示,理想变压器原、副线圈的匝数比为3∶1,L 1、L 2、L 3为三只规格均为“9 V 6 W ”的相同灯泡,各电表均为理想交流电表,输入端接入如图10-2-28所示的交变电压,则以下说法中不正确的是( )图10-2-27 图10-2-28A .电流表的示数为2 AB .电压表的示数为27 2 VC .副线圈两端接入耐压值为9 V 的电容器恰能正常工作D .变压器副线圈中交变电流的频率为50 Hz解析:副线圈两端电压有效值是9 V ,三只规格均为“9 V 6 W ”的相同灯泡并联,电流表的示数为2 A ,A 正确;电压表示数为有效值27 V ,B 错;副线圈两端电压最大值是9 2 V ,副线圈两端接入耐压值为9 V 的电容器不能正常工作,C 错;交变电流的周期是0.02 s ,变压器副线圈中交变电流的频率为50 Hz ,D 正确.答案:BC12.一个探究性学习小组利用示波器,绘制出了一个原、副线圈 匝数比为2∶1的理想变压器的副线圈两端输出电压u 随时间t 变化的图象,如图10-2-29所示(图线为正弦曲线).则下列说法正确的是( )A .该变压器原线圈输入电压的瞬时值表达式为u =20sin(100πt )VB .接在副线圈两端的交流电压表的示数为7.1 VC .该变压器原线圈输入频率为50 HzD .接在副线圈两端的阻值为20 Ω的白炽灯消耗的功率为2.5 W解析:由图象知该交变电压的最大值为10 V ,周期为4×10-2 s ,其角速度ω=2πTrad/s ,则原线圈输入电压的瞬时值表达式为u =20sin(50πt )V ,A 项错误;交流电压表的示数为有效值,U =102V ≈7.1 V ,B 项正确;该交变电压的频率f =1T =25 Hz ,变压器不改变交变电流的频率,C 项错误;计算白炽灯的功率要用有效值,P =U 2R=2.5 W ,D 项正确. 答案:BD图10-2-29。
2012高考物理第一轮测试题精选 (1)
2011高考物理热点预测专题2·牛顿定律及其应用高考预测:从近年来的高考来看,2010年高考中,本专题可能以下列题型出现:1.选择题。
一般可结合“弹簧模型”、牛顿定律等知识,考查考生对加速度和牛顿第二定律的理解。
2.实验题。
近几年本专题实验主要考查加速度的测量及牛顿第二定律,另外“探究加速度与力和质量的关系”的实验有好几年没有列入高考中,而新教材中专门列出一节的内容。
这一重大变化,应引起大家足够的重视。
3.计算题。
牛顿运动定律及其应用历年高考的必考内容。
近年这部分内容的考查更趋向于对考生分析问题、应用知识的能力以及牛顿运动定律与运动学等知识的综合问题。
一、选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
全部选对的得4分,选对但不全的得2分,有选错的或不答的得0分。
)1、一辆汽车恒定的功率牵引下,在平直的公路上由静止出发,在4min的时间里行驶了1800m,在4min末汽车的速度是( )A.等于7.5m/sB.一定小于15m/sC.可能等于15m/sD.可能大于15m/s2、如图所示,有一箱装得很满的土豆,以一定的初速度在动摩擦因数为μ的水平面上做匀减速运动,不计其他外力及空气阻力,则中间一质量为m的土豆A受到其他土豆对它的作用力应是( )A.mg B.mgμC.2-mg1μ+1μmg D.23、同学们在由静止开始向上运动的电梯里,把一测量加速度的小探头固定在一个质量2-20图象(设F为手提拉力,g=9.8 m/s2)中正确的是()4、如图2-21所示,一根轻弹簧竖直直立在水平面上,下端固定。
在弹簧正上方有一个物块从高处自由下落到弹簧上端O ,将弹簧压缩。
当弹簧被压缩了x 0时,物块的速度减小到零。
从物块和弹簧接触开始到物块速度减小到零过程中,物块的加速度大小a 随下降位移大小x 变化的图象,可能是图2-22中的( )5、如图所示,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连,设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是( )A.向右做加速运动B.向右做减速运动C.向左做加速运动D.向左做减速运动6、物体A 、B 均静止在同一水平面上,其质量分别为A m 和B m ,与水平面间的动摩擦因数分别为A μ和B μ,现用水平力F 分别拉物体A 、B ,它们的加速度a 与拉力F 的关系图象如图2-24所示,由图象可知( )A .B A m m > B .B A m m <C .B A μμ>D .B A μμ<7、如图2-25所示,质量为2m 的物块A ,与水平地面的摩擦不计,质量为m 的物块B 与地面的摩擦因数为μ,在已知水平推力F 的作用下,A 、B 做加速运动,则A 和B 之间的作用力为( )图2-25A .32mg F μ+ B .322mg F μ+C .323mgF μ+ D .32mg μ8、一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15㎏的重物,重物静止于地面上,有一质量m=10㎏的猴子,从绳的另一端沿绳向上爬如图8所示,不计滑轮摩擦,在重物不离开地面的条件下,猴子向上爬的最大加速度约为( )A 、25m/s ²B 、5m/s ²C 、10m/s ²D 、15 m/s ² 9、一个小孩从滑梯上滑下的运动可看作匀加速直线运动,第一次小孩单独从滑梯上滑下,加速度为α1,第二次小孩抱上一只小狗后再从滑梯上滑下(小狗不与滑梯接触),加速度为α2,则 ( )A .α1=α2B .αl <α2C .αl >α 2D .无法判断αl 与α2的大小10、物体由静止的传送带顶端从静止开始下滑到底端所用时间为t ,若在物体下滑过程中,传送带开始顺时针转动,如图4所示,物体滑到底端所用时间t ˊ,则关于t 和t ˊ的关系一定有( )A .t ˊ>tB . t ˊ=tC .t ˊ< tD .不能确定。
2012届高考物理第一轮课时复习题421
廊坊八中2012年高考一轮复习课时作业课时作业42碰撞爆炸与反冲时间:45分钟满分:100分一、选择题(8×8′=64′)图11.如图1所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则()A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶10解析:两物体的运动是同向追击(都向右运动),只有后边的物体速度大于前边的物体才能发生碰撞,以此分析应该是A球在左方追击B球,发生碰撞,A球的动量减小4 kg·m/s,其动量变为2 kg·m/s,根据动量守恒B球动量增加4 kg·m/s,其动量变为10 kg·m/s,则A、B两球的速度关系为2∶5.答案:A2.(2011·德州模拟)科学家试图模拟宇宙大爆炸初的情境,他们使两个带正电的不同重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞.为了使碰撞前的动能尽可能多地转化为内能,关键是设法使这两个重离子在碰撞前的瞬间具有相同大小的() A.速率B.质量C.动量D.动能解析:尽量减小碰后粒子的动能,才能增大内能,所以设法使这两个重离子在碰撞前的瞬间具有相同大小的动量.答案:C图23.(2011·徐州模拟)如图2所示,A、B两个木块用轻弹簧相连接,它们静止在光滑水平面上,A和B的质量分别是99m和100m,一颗质量为m的子弹以速度v0水平射入木块A内没有穿出,则在以后的过程中弹簧弹性势能的最大值为( )A.m v 02400B.m v 02200C.99m v 02200D.199m v 02400解析:子弹打木块A ,动量守恒,m v 0=100m v 1=200m v 2,弹性势能的最大值E p =12×100m v 12-12×200m v 22=m v 02400. 答案:A4.质量为m 的小球A ,在光滑的水平面上以速度v 0与质量为2m 的静止小球B 发生正碰,碰撞后A 球的动能恰变为原来的19,则B 球的速度大小可能是( ) A.13v 0 B.23v 0 C.49v 0 D.89v 0 解析:依题意,碰后A 的动能满足:12m v A 2=19×12m v 02得v A =±13v 0,代入动量守恒定律得m v 0=±m ·13v 0+2m v B ,解得v B =13v 0及v B ′=23v 0 答案:AB5.质量为M 的木块置于光滑水平面上,一质量为m 的子弹以水平速度v 0打入木块并停在木块中,如图3所示,此过程中木块向前运动位移为s ,子弹打入木块深度为d ,则下列判断正确的是( )图3A .木块对子弹做功12m v 02 B .子弹对木块做功12M v 02 C .子弹动能减少等于木块动能的增加D .木块、子弹的机械能一定减少解析:设木块、子弹的共同速度为v ,则m v 0=(M +m )v ①木块对子弹做功W 1=12m v 2-12m v 02② 子弹对木块做功W 2=12M v 2③解得W 1<0 W 2<12m v 02,A 、B 错;由于系统克服摩擦阻力做功,机械能一定减少,所以C 错,D 对.答案:D图46.如图4所示在质量为M 的小车中挂有一单摆,摆球的质量为m 0,小车和单摆以恒定的速度v 沿光滑水平地面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪些情况是可能发生的( )A .小车、木块、摆球的速度都发生变化,分别变为v 1、v 2、v 3,满足(M +m 0)v =M v 1+m v 2+m 0v 3B .摆球的速度不变,小车和木块的速度变化为v 1和v 2,满足M v =M v 1+m v 2C .摆球的速度不变,小车和木块的速度都变为v 1,满足M v =(M +m )v 1D .小车和摆球的速度都变为v 1,木块的速度变为v 2,满足(M +m 0)v =(M +m 0)v 1+m v 2 解析:摆球未受到水平力作用,球的速度不变,可以判定A 、D 项错误,小车和木块碰撞过程,水平方向无外力作用,系统动量守恒,而题目对碰撞后小车与木块是分开还是连在一起,没有加以说明,所以两种情况都可能发生,即B 、C 选项正确.答案:BC图57.如图5所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑( )A .在以后的运动过程中,小球和槽的动量始终守恒B .在下滑过程中小球和槽之间的相互作用力始终不做功C .被弹簧反弹后,小球和槽都做速率不变的直线运动D .被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处解析:小球与槽组成的系统在水平方向动量守恒,由于小球与槽质量相等,分离后小球和槽的速率大小相等,小球与弹簧接触后,由能量守恒可知,它将以原速率被反向弹回,故C 项正确.答案:C图68.如图6所示,质量为0.5 kg 的小球在距离车底面高20 m 处以一定的初速度向左平抛,落在以7.5 m/s 速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4 kg ,设小球在落到车底前瞬时速度是25 m/s ,取g =10 m/s 2,则当小球与小车相对静止时,小车的速度是( )A .5 m/sB .4 m/sC .8.5 m/sD .9.5 m/s解析:对小球落入小车前的过程,平抛的初速度设为v 0,落入车中的速度设为v ,下落的高度设为h ,由机械能守恒得:12m v 02+mgh =12m v 2,解得v 0=15 m/s ,车的速度在小球落入前为v 1=7.5 m/s ,落入后相对静止时的速度为v 2,车的质量为M ,设向左为正方向,由水平方向动量守恒得:m v 0-M v 1=(m +M )v 2,代入数据可得:v 2=-5 m/s ,说明小车最后以5 m/s 的速度向右运动.答案:A二、计算题(3×12′=36′)图79.如图7所示,长12 m ,质量为50 kg 的木板右端有一立柱,木板与地面间的动摩擦因数为0.1,质量为50 kg 的人立于木板左端,木板与人均静止,当人以4 m/s 2的加速度匀加速向右奔跑至板右端时立即抱住木柱,试求:(g 取10 m/s 2)(1)人在奔跑过程中受到的摩擦力的大小.(2)人从开始奔跑至到达木板右端所经历的时间.(3)人抱住木柱后,木板向什么方向滑动?还能滑行多远的距离?解析:人相对木板奔跑时,设人的质量为m ,加速度为a 1,木板的质量为M ,加速度大小为a 2,人与木板间的摩擦力为f ,根据牛顿第二定律,对人有:f =ma 1=200 N ;(2)设人从木板左端开始跑到右端的时间为t ,对木板受力分析可知:f -μ(M +m )g =Ma 2故a 2=f -μ(M +m )g M=2 m/s 2,方向向左; 由几何关系得:12a 1t 2+12a 2t 2=L ,代入数据得:t =2 s (3)当人奔跑至右端时,人的速度v 1=a 1t =8 m/s ,木板的速度v 2=a 2t =4 m/s ;人抱住木柱的过程中,系统所受的合外力远小于相互作用的内力,满足动量守恒条件,有:m v 1-M v 2=(m +M )v (其中v 为二者共同速度)代入数据得v =2 m/s ,方向与人原来运动方向一致;以后二者以v =2 m/s 为初速度向右作减速滑动,其加速度大小为a =μg =1 m/s 2,故木板滑行的距离为s =v 22a=2 m. 答案:(1)200 N (2)2 s (3)向右减速滑动 2 m图810.在绝缘水平面上放一个质量m =2.0×10-3 kg 的带电滑块A ,所带电荷量q =1.0×10-7 C .在滑块A 的左边l =0.3 m 处放置一个不带电的绝缘滑块B ,质量m ′=4.0×10-3 kg ,B 与一端连在竖直墙壁上的轻弹簧接触(不连接)且弹簧处于自然状态,弹簧原长s =0.05 m .如图8所示,在水平上方空间加一水平向左的匀强电场,电场强度的大小为E =4.0×105 N/C ,滑块A 由静止释放后向左滑动并与滑块B 发生碰撞,设碰撞时间极短,碰撞后两个滑块结合在一起共同运动并一起压缩弹簧至最短处(弹性限度内),此时弹性势能E 0=3.2×10-3 J ,两个滑块始终没有分开,两个滑块的体积大小不计,与平面间的动摩擦因数均为μ=0.5,取g =10 m/s 2,求:(1)两个滑块碰撞后刚结合在一起的共同速度v .(2)两个滑块被弹簧弹开后距竖直墙壁的最大距离s ′.解析:(1)设两个滑块碰前A 的速度为v 1,由动能定理有:qEl -μmgl =12m v 12 解得:v 1=3 m/s.A ,B 两个滑块碰撞,由于时间极短,动量守恒,设共同速度为v ,由动量守恒定律可得,m v 1=(m ′+m )v解得:v =1.0 m/s.(2)碰后A ,B 一起压缩弹簧到最短,设弹簧压缩量为x 1,由动能定理有:qEx 1-μ(m ′+m )gx 1-E 0=0-12(m ′+m )v 2 解得:x 1=0.02 m.设反弹后A ,B 滑行了x 2距离后速度减为0,由动能定理得:E 0-qEx 2-μ(m ′+m )gx 2=0解得:x 2≈0.05 m.以后,因为qE >μ(m ′+m )g ,滑行还会向左运动,但弹开的距离将逐渐变小,所以最大距离为:s ′=x 2+s -x 1=0.05 m +0.05 m -0.02 m =0.08 m.答案:(1)1.0 m/s (2)0.08 m11.(2010·全国卷Ⅱ)小球A 和B 的质量分别为m A 和m B ,且m A >m B .在某高度处将A 和B 先后从静止释放.小球A 与水平地面碰撞后向上弹回,在释放处下方与释放处距离为H 的地方恰好与正在下落的小球B 发生正碰.设所有碰撞都是弹性的,碰撞时间极短.求小球A 、B 碰撞后B 上升的最大高度.解析:根据题意,由运动学规律可知,小球A 与B 碰撞前的速度大小相等,设均为v 0,由机械能守恒有m A gH =12m A v 02① 设小球A 与B 碰撞后的速度分别为v 1和v 2,以竖直向上方向为正,由动量守恒有 m A v 0+m B (-v 0)=m A v 1+m B v 2②由于两球碰撞过程中能量守恒,故12m A v 02+12m B v 02=12m A v 12+12m B v 22③ 联立②③式得v 2=3m A -m B m A +m B v 0④ 设小球B 能上升的最大高度为h ,由运动学公式有h =v 222g⑤ 由①④⑤式得h =(3m A -m B m A +m B)2H .⑥ 答案:(3m A -m B m A +m B)2H。
2012届高考物理第一轮专题复习题2
2012届高考一轮物理复习(人教版)课时训练第五章机械能守恒定律第4讲实验五探究动能定理1.如图5-4-7所示,是某研究性学习小组做探究“橡皮筋做的功和物体速度变化的关系”的实验,图中是小车在一条橡皮筋作用下弹出,沿木板滑行的情形,这时,橡皮筋对小车做的功记为W.当我们用2条、3条……完全相同的橡皮筋并在一起进行第2次、第3次……实验时,每次橡皮筋都拉伸到同一位置释放.小车每次实验中获得的速度由打点计时器所打的纸带测出.图5-4-7除了图中的已给出的实验器材外,还需要的器材有() A.交流电源B.天平C.秒表D.刻度尺答案:AD2.在“探究动能定理”的实验中,某同学是用下面的方法和器材进行实验的:放在长木板上的小车,由静止开始在几条完全相同的橡皮筋的作用下沿木板运动,小车拉动固定在它上面的纸带,纸带穿过打点计时器.关于这一实验,下列说法中正确的是() A.长木板要适当倾斜,以平衡小车运动中受到的阻力B.重复实验时,虽然用到橡皮筋的条数不同,但每次应使橡皮筋拉伸的长度相同C.利用纸带上的点计算小车的速度时,应选用纸带上打点最密集的部分进行计算D.利用纸带上的点计算小车的速度时,应选用纸带上打点最均匀的部分进行计算解析:在本题的实验中,由于小车在运动中受到阻力(摩擦力和纸带的阻力),所以要使长木板适当倾斜,以平衡小车运动过程中受到的阻力,重复实验时,为了使橡皮筋对小车所做的功与它的条数成正比,所以用到橡皮筋的条数虽然不同,但每次应使橡皮筋拉伸的长度相同,利用纸带上的点计算小车的速度时,由于要计算的是小车脱离橡皮筋后匀速运动的速度,所以应选用纸带上打点最均匀的部分进行计算,故A,B,D选项是正确的.答案:ABD3.探究力对原来静止的物体做的功与物体获得的速度的关系,实验装置如图5-4-8所示,实验主要过程如下:图5-4-8(1)设法让橡皮筋对小车做的功分别为W、2W、3W、…;(2)分析打点计时器打出的纸带,求出小车的速度v1、v2、v3…;(3)作出W-v草图;(4)分析W-v图象.如果W-v图象是一条直线,表明W∝v;如果不是直线,可考虑是否存在W∝v2、W∝v3、W∝v等关系.以下关于该实验的说法中正确的是________.A.本实验设法让橡皮筋对小车做的功分别为W、2W、3W、….所采用的方法是选用同样的橡皮筋,并在每次实验中使橡皮筋拉伸的长度保持一致.当用1条橡皮筋进行实验时,橡皮筋对小车做的功为W,用2条、3条、…橡皮筋并在一起进行第2次、第3次、…实验时,橡皮筋对小车做的功分别是2W、3W、….B.小车运动中会受到阻力,用补偿的方法,可以使木板适当倾斜.C.某同学在一次实验中,得到一条记录纸带.纸带上打出的点,两端密、中间疏.出现这种情况的原因,可能是没有使木板倾斜或倾角太小.D.根据记录纸带上打出的点,求小车获得的速度的方法,是以纸带上第一点到最后一点的距离来进行计算解析:由于选用同样的橡皮筋,并且每次实验中橡皮筋拉伸的长度相同,因此每条橡皮筋对小车做的功都相同,故A正确;小车在运动中受到的阻力,采取平衡摩擦力的方法补偿,让木板固定在有打点计时器的一端适当抬高,使重力的下滑分力与摩擦力平衡,故B正确;纸带上的点两端密、中间疏,说明小车先在橡皮筋拉力作用下加速,后在阻力作用下减速,故C正确;由于橡皮筋松弛后,小车做匀速运动,此时的速度是橡皮筋对小车做功后的最大速度,故求速度应用匀速的那一段的数据,而不应该使用从第一点到最后一点的数据来计算,故D项错,A、B、C正确.答案:ABC4.用图5-4-9甲所示的装置进行探究动能定理的实验,实验时测得小车的质量为m,木板的倾角为θ.实验过程中,选出一条比较清晰的纸带,用直尺测得各点与A点间的距离如图5-4-9乙所示.已知打点计时器打点的周期为T,重力加速度为g,小车与斜面间摩擦可忽略不计.图5-4-9若取BD 段研究小车的动能变化,求动能的变化正确的表达式是 ( )A .mg (d 3-d 1)sin θB .mg (d 3-d 1)C.12m ⎝⎛⎭⎫d 4-d 22T 2 D .md 4(d 4-2d 2)/8T 2 答案:D5.探究能力是进行物理学研究的重要能力之一.物体因绕轴转动而具有的动能叫转动动能,转动动能的大小与物体转动的角速度有关.为了研究某一砂轮的转动动能E k 与角速度ω的关系,某同学采用了下述实验方法进行探索:如图5-4-10所示,先让砂轮由动力带动匀速旋转,测得其角速度ω,然后让砂轮脱离动力,由于克服转轴间 图5-4-10 摩擦力做功,砂轮最后停下,测出砂轮脱离动力到停止转动的圈数n ,通过分析实验数据, 得出结论.经实验测得的几组ω和n 如下表所示:另外已测试砂轮转轴的直径为1 cm ,转轴间的摩擦力为10πN. (1)计算出砂轮每次脱离动力的转动动能,并填入上表中.(2)由上述数据推导出该砂轮的转动动能E k 与角速度ω的关系式为________________. 解析:(1)从脱离动力到最后停止转动,由动能定理得-F f ·n ·πD =0-E k0,即E k0=nF f πD =0.1n 将n 的不同数值代入可得到相应的转动动能如下表:答案:(1)(2)E k =2ω26.某实验小组采用如图5-4-11所示的装置探究“动能定理”,图中小车中可放置砝码.实 验中,小车碰到制动装置时,钩码尚未到达地面.打点计时器工作频率为50 Hz.图5-4-11(1)实验的部分步骤如下:①在小车中放入砝码,把纸带穿过打点计时器,连在小车后端,用细线连接小车和钩码; ②将小车停在打点计时器附近,________,________,小车拖动纸带,打点计时器在纸 带上打下一列点,________;③改变钩码或小车中砝码的数量,更换纸带,重复②的操作.(2)图5-4-12是钩码质量为0.03 kg ,砝码质量为0.02 kg 时得到的一条纸带,在纸带上 选择起始点O 及A 、B 、C 、D 和E 五个计数点,可获得各计数点到O 的距离x 及对应时刻小车的瞬时速度v,请将C点的测量结果填在表1中的相应位置.图5-4-12图5-4-13(3)在小车的运动过程中,对于钩码、砝码和小车组成的系统,________做正功,________ 做负功.(4)实验小组根据实验数据绘出了图中的图线(其中Δv2=v2-v20).根据图线5-4-13可获得的结论是______________________________________________________________.要验证“动能定理”,还需测量的物理量是摩擦力和________.答案:(1)②接通打点计时器电源,释放小车,关闭打点计时器电源(2)5.05~5.100.48~0.50(3)重力(钩码的重力)摩擦力(阻力)(4)Δv2∝x(速度平方的变化与位移成正比)小车的质量。
2012年高考第一轮复习(共218页)
2012年高考第一轮复习(共218页)2012年高考第一轮复习之一-------力物体的平衡复习要点1.力的概念及其基本特性2.常见力的产生条件,方向特征及大小确定3.受力分析方法4.力的合成与分解5.平衡概念及平衡条件6.平衡条件的应用方法二、难点剖析1.关于力的基本特性力是物体对物体的作用。
力作用于物体可以使受力物体形状发生改变;可以使受力物体运动状态(速度)发生改变。
影响力的“使物体变形”和“使物体变速”效果的因素有:力的大小、力的方向和力的作用点,我们反影响力的作用效果的上述三个因素称为“力的三要素”。
对于抽象的力概念,通常可以用图示的方法使之形象化:以有向线段表示抽象的力。
在研究与力相关的物理现象时,应该把握住力概念的如下基本特性。
(1)物质性:由于力是物体对物体的作用,所以力概念是不能脱离物体而独立存在的,任意一个力必然与两个物体密切相关,一个是其施力物体,另一个是其受力物体。
把握住力的物质性特征,就可以通过对形象的物体的研究而达到了解抽象的力的概念之目的。
(2)矢量性:作为量化力的概念的物理量,力不仅有大小,而且有方向,在相关的运算中所遵从的是平行四边形定则,也就是说,力是矢量。
把握住力的矢量性特征,就应该在定量研究力时特别注意到力的方向所产生的影响,就能够自觉地运用相应的处理矢量的“几何方法”。
(3)瞬时性:力作用于物体必将产生一定的效果,物理学之所以十分注重对力的概念的研究,从某种意义上说就是由于物理学十分关注力的作用效果。
而所谓的力的瞬时性特征,指的是力与其作用效果是在同一瞬间产生的。
把握住力的瞬时性特性,应可以在对力概念的研究中,把力与其作用效果建立起联系,在通常情况下,了解表现强烈的“力的作用效果”往往要比直接了解抽象的力更为容易。
(4)独立性:力的作用效果是表现在受力物体上的,“形状变化”或“速度变化”。
而对于某一个确定的受力物体而言,它除了受到某个力的作用外,可能还会受到其它力的作用,力的独立性特征指的是某个力的作用效果与其它力是否存在毫无关系,只由该力的三要素来决定。
2012届高考物理第一轮课时复习题282
廊坊八中2012年高考一轮复习课时作业 课时作业28 法拉第电磁感应定律 自感 涡流时间:45分钟 满分:100分一、选择题(8×8′=64′)1.穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2 Wb ,则( ) A .线圈中感应电动势每秒增加2 V B .线圈中感应电动势每秒减少2 V C .线圈中感应电动势始终为2 VD .线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2 V 解析:由E =ΔΦΔt 知:ΔΦ/Δt 恒定,所以E =2 V.答案:C2.下列关于感应电动势大小的说法中,正确的是( ) A .线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B .线圈中磁通量越大,产生的感应电动势一定越大C .线圈放在磁感应强度越强的地方,产生的感应电动势一定越大D .线圈中磁通量变化越快,产生的感应电动势越大解析:由法拉第电磁感应定律E =n ΔΦΔt 知,感应电动势与磁通量的变化率成正比,与磁通量的大小、磁通量的变化和磁感应强度无关,故只有D 项正确.答案:D3.如图1所示,MN 、PQ 为两条平行的水平放置的金属导轨,左端接有定值电阻R ,金属棒ab 斜放在两导轨之间,与导轨接触良好,磁感应强度为B 的匀强磁场垂直于导轨平面,设金属棒与两导轨接触点之间的距离为L ,金属棒与导轨间夹角为60°,以速度v 水平向右匀速运动,不计导轨和棒的电阻,则流过金属棒中的电流为( )图1A .I =BL vRB .I =3BL v2RC .I =BL v 2RD .I =3BL v3R解析:因为导体棒匀速运动,所以平均感应电动势的大小等于瞬时感应电动势的大小 又因为题中L 的有效长度为3L 2,故E =B v 3L 2 据闭合电路欧姆定律得I =3BL v2R. 答案:B图24.如图2所示是法拉第做成的世界上第一台发电机模型的原理图.将铜盘放在磁场中,让磁感线垂直穿过铜盘;图中a 、b 导线与铜盘的中轴线处在同一平面内;转动铜盘,就可以使闭合电路获得电流.若图中铜盘半径为L ,匀强磁场的磁感应强度为B ,回路总电阻为R ,从上往下看逆时针匀速转动铜盘的角速度为ω.则下列说法正确的是( )A .回路中有大小和方向作周期性变化的电流B .回路中电流大小恒定,且等于BL 2ω2RC .回路中电流方向不变,且从b 导线流进灯泡,再从a 导线流向旋转的铜盘D .若将匀强磁场改为仍然垂直穿过铜盘的按正弦规律变化的磁场,不转动铜盘,灯泡中也会有电流流过解析:铜盘在转动的过程中产生恒定的电流I =BL 2ω2R ,A 错B 对;由右手定则可知铜盘在转动的过程中产生恒定的电流从b 导线流进灯泡,再从a 导线流向旋转的铜盘,C 正确;若将匀强磁场改为仍然垂直穿过铜盘的按正弦规律变化的磁场,不转动铜盘时闭合回路磁通量不发生变化,灯泡中没有电流流过,D 错误.答案:BC图35.一个由电阻均匀的导线绕制成的闭合线圈放在匀强磁场中,如图3所示,线圈平面与磁场方向成60°角,磁感应强度随时间均匀变化,用下列哪种方法可使感应电流增加一倍( )A .把线圈匝数增加一倍B .把线圈面积增加一倍C .把线圈半径增加一倍D .改变线圈与磁场方向的夹角解析:设导线的电阻率为ρ,横截面积为S 0,线圈的半径为r ,则I =ER =nΔΦΔt R =nπr 2ΔBΔt sin θρn ·2πrS 0=S 0r 2ρ·ΔB Δt ·sin θ可见将r 增加一倍,I 增加1倍,将线圈与磁场方向的夹角改变时,sin θ不能变为原来的2倍(因sin θ最大值为1),若将线圈的面积增加一倍,半径r 增加(2-1)倍,电流增加(2-1)倍,I 与线圈匝数无关.答案:C图46.如图4所示的电路中,线圈L 的自感系数足够大,其直流电阻忽略不计,L A 、L B 是两个相同的灯泡,下列说法中正确的是( )A .S 闭合后,L A 、LB 同时发光且亮度不变 B .S 闭合后,L A 立即发光,然后又逐渐熄灭C .S 断开的瞬间,L A 、L B 同时熄灭D .S 断开的瞬间,L A 再次发光,然后又逐渐熄灭解析:线圈对变化的电流有阻碍作用,开关接通时,L A 、L B 串联, 同时发光,但电流稳定后线圈的直流电阻忽略不计,使L A 被短路,所以A 错误,B 正确;开关断开时,线圈阻碍电流变小,产生自感电动势,使L A 再次发光,然后又逐渐熄灭,所以C 错误,D 正确.答案:BD7.图5如图5所示是高频焊接原理示意图.线圈中通以高频变化的电流时,待焊接的金属工件中就产生感应电流,感应电流通过焊缝产生大量热量,将金属熔化,把工件焊接在一起,而工件其他部分发热很少.以下说法正确的是( )A .电流变化的频率越高,焊缝处的温度升高得越快B .电流变化的频率越低,焊缝处的温度升高得越快C .工件上只有焊缝处温度升得很高是因为焊缝处的电阻小D .工件上只有焊缝处温度升得很高是因为焊缝处的电阻大解析:在互感现象中产生的互感电动势的大小与电流的变化率成正比,电流变化的频率越高,感应电动势越大,由欧姆定律I =ER 知产生的涡流越大,又P =I 2R ,R 越大P 越大,焊缝处的温度升高得越快.答案:AD8.(2010·浙江高考)半径为r 带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d ,如图6甲所示.有一变化的磁场垂直于纸面,规定向内为正,变化规律如图6乙所示.在t =0时刻平板之间中心有一重力不计,电荷量为q 的静止微粒.则以下说法正确的是( )图6A.第2秒内上极板为正极B.第3秒内上极板为负极C.第2秒末微粒回到了原来位置D.第2秒末两极板之间的电场强度大小为0.2πr2/d解析:根据法拉第电磁感应定律可知感应电动势大小(即电容器两极间电压大小)始终为0.1πr2,由楞次定律可判定0~1 s下极板为正极、1~3 s上极板为正极,3~4 s下极板为正极,选项A正确,B、D错误;第2 s末微粒离原位置最远,选项C错误.图7答案:A二、计算题(3×12′=36′)9.(2009·全国卷Ⅱ)图8如图8,匀强磁场的磁感应强度方向垂直于纸面向里,大小随时间的变化率ΔBΔt=k,k为负的常量.用电阻率为ρ、横截面积为S的硬导线做成一边长为l的方框.将方框固定于纸面内,其右半部位于磁场区域中.求:(1)导线中感应电流的大小;(2)磁场对方框作用力的大小随时间的变化率. 解析:(1)导线框的感应电动势为ε=ΔΦΔt ①ΔΦ=12l 2ΔB ②导线框中的电流为I =εR③式中R 是导线框的电阻,根据电阻率公式有R =ρ4lS ④联立①②③④式,将ΔB Δt =k 代入得I =klS8ρ⑤(2)导线框所受磁场的作用力的大小为f =BIl ⑥ 它随时间的变化率为Δf Δt =Il ΔBΔt ⑦由⑤⑦式得Δf Δt =k 2l 2S8ρ⑧图910.(2010·山东济宁质检)如图9所示,匀强磁场的磁感应强度B =0.1 T ,金属棒AD 长0.4 m ,与框架宽度相同,电阻r =1.3 Ω,框架电阻不计,电阻R 1=2 Ω,R 2=1 Ω.当金属棒以5 m/s 速度匀速向右运动时,求:(1)流过金属棒的感应电流为多大?(2)若图中电容器C 为0.3 μF ,则电容器中储存多少电荷量? 解析:(1)棒产生的电动势E =Bl v =0.2 V 外电阻R =R 1R 2R 1+R 2=23Ω通过棒的感应电流I =ER +r =0.1 A(2)电容器两板间的电压U =IR =115 V带电量Q =CU =2×10-8 C 答案:(1)0.1 A (2)2×10-8 C11.(2010·广州三校联考)如图10甲所示,光滑且足够长的平行金属导轨MN 和PQ 固定在同一水平面上,两导轨间距L =0.2 m ,电阻R =0.4 Ω,导轨上停放一质量m =0.1 kg 、电阻r =0.1 Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B =0.5 T 的匀强磁场中,磁场的方向竖直向下,现用一外力F 沿水平方向拉杆,使之由静止开始运动,若理想电压表示数U 随时间t 变化关系如图乙所示.求:图10(1)金属杆在5 s 末的运动速率; (2)第4 s 末时外力F 的功率. 解析:(1)因为:U =BL v R +r R ,a =Δv Δt所以:ΔU Δt =BLR R +r ·ΔvΔt 即:a =0.5 m/s 2金属棒做匀加速直线运动v 5=at 5=2.5 m/s (2)v 4=at 4=2 m/s ,此时:I =BL v 4R +r=0.4 A F 安=BIL =0.04 N对金属棒:F -F 安=ma ,F =0.09 N 故:P F =F v 4=0.18 W 答案:(1)2.5 m/s (2)0.18 W。
2012届高考物理第一轮专题复习题26
课时16第三节 机械能守恒定律一、选择题1.如图所示,在两个质量分别为m 和2m 的小球a 和b 之间,用一根长为L 的轻杆连接(杆的质量可不计),而小球可绕穿过轻杆中心O 的水平轴无摩擦转动,现让轻杆处于水平位置,然后无初速度释放,重球b 向下,轻球a 向上,产生转动,在杆转至竖直的过程中( )A .b 球的重力势能减小,动能增加B .a 球的重力势能增加,动能减小C .a 球和b 球的总机械能守恒D .a 球和b 球的总机械能不守恒解析:选AC.两球组成的系统,在运动中除动能和势能外没有其他形式的能转化,所以系统的机械能守恒.2. (2011年广东佛山模拟)在一次课外趣味游戏中,有四位同学分别将四个质量不同的光滑小球沿竖直放置的内壁光滑的半球形碗的碗口内侧同时由静止释放,碗口水平,如图所示.他们分别记下了这四个小球下滑速率为v 时的位置,则这些位置应该在同一个( )A .球面B .抛物面C .水平面D .椭圆面解析:选C.因半球形碗的内壁光滑,所以小球下滑过程中机械能守恒,取小球速率为v时所在的平面为零势能面,则根据机械能守恒定律得mgh =12m v 2,因为速率v 相等,所以高度相等,与小球的质量无关,即这些位置应该在同一个水平面上,C 正确.3.(2011年江苏启东中学质检)如图所示,A 、B 两球质量相等,A 球用不能伸长的轻绳系于O 点,B 球用轻弹簧系于O ′点,O 与O ′点在同一水平面上,分别将A 、B 球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球达到各自悬点的正下方时,两球仍处在同一水平面上,则( )A .两球到达各自悬点的正下方时,两球动能相等B .两球到达各自悬点的正下方时,A 球动能较大C .两球到达各自悬点的正下方时,B 球动能较大D .两球到达各自悬点的正下方时,A 球受到向上的拉力较大解析:选BD.整个过程中两球减少的重力势能相等,A 球减少的重力势能完全转化为A 球的动能,B 球减少的重力势能转化为B 球的动能和弹簧的弹性势能,所以A 球的动能大于B 球的动能,所以B 正确;在O 点正下方位置根据牛顿第二定律,小球所受拉力与重力的合力提供向心力,则A 球受到的拉力较大,所以D 正确.4. (2011年江苏苏、锡、常、镇四市联考)如图所示,质量均为m的A 、B 两个小球,用长为2L 的轻质杆相连接,在竖直平面内,绕固定轴O 沿顺时针方向自由转动(转动轴在杆的中点),不计一切摩擦,某时刻A 、B 球恰好在如图所示的位置,A 、B 球的线速度大小均为v ,下列说法正确的是( )A .运动过程中B 球机械能守恒B .运动过程中B 球速度大小不变C .B 球在运动到最高点之前,单位时间内机械能的变化量保持不变 D .B 球在运动到最高点之前,单位时间内机械能的变化量不断改变解析:选BD.以A 、B 球为系统,两球在运动过程中,只有重力做功(轻杆对两球做功的和为零),两球的机械能守恒.以过O 点的水平面为重力势能的参考平面时,系统的总机械能为E =2×12m v 2=m v 2.假设A 球下降h ,则B 球上升h ,此时两球的速度大小是v ′,由机械能守恒定律知m v 2=12m v ′2×2+mgh -mgh ,得到v ′=v ,故运动过程中B 球速度大小不变.当单独分析B 球时,B 球在运动到最高点之前,动能保持不变,重力势能在不断增加.由几何知识可得单位时间内机械能的变化量是不断改变的,B 、D 正确.5.(2011年东北地区名校联考)如图所示,一物体以速度v 0冲向光滑斜面AB ,并能沿斜面升高h ,下列说法正确的是( )A .若把斜面从C 点锯断,由机械能守恒定律知,物体冲出C 点后仍能升高hB .若把斜面弯成如图所示的半圆弧形,物体仍能沿AB ′升高hC .若把斜面从C 点锯断或弯成如图所示的半圆弧形,物体都不能升高h ,因为物体的机械能不守恒D .若把斜面从C 点锯断或弯成如图所示的半圆弧形,物体都不能升高h ,但物体的机械能仍守恒解析:选D.若把斜面从C 点锯断,物体到达最高点时水平速度不为零,由机械能守恒定律知,物体冲出C 点后不能升高h ;若把斜面弯成如题图所示的半圆弧形,物体在升高h 之前已经脱离轨道.物体在这两种情况下机械能均守恒.6.(2011年盐城第一次调研)如图所示,离水平地面一定高处水平固定一内壁光滑的圆筒,筒内固定一轻质弹簧,弹簧处于自然长度.现将一小球从地面以某一初速度斜向上抛出,刚好能水平进入圆筒中,不计空气阻力.下列说法中正确的是( )A .弹簧获得的最大弹性势能小于小球抛出时的动能B .小球从抛出到将弹簧压缩到最短的过程中小球的机械能守恒C .小球抛出的初速度大小仅与圆筒离地面的高度有关D .小球从抛出点运动到圆筒口的时间与小球抛出时的角度无关解析:选AB.小球从抛出到弹簧压缩到最短的过程中,只有重力和弹力做功,小球的机械能守恒.即12m v 20=mgh +E p ,所以E p <E k0,故A 对,B 对.斜上抛运动可分解为竖直上抛运动和水平方向的匀速直线运动,所以h =0-v 20sin θ-2g=v 20sin θ2g (θ为v 0与水平方向的夹角).即v 0=2gh sin θ,知C 错;由0=v 0sin θ-gt ,t =v 0sin θg知D 错. 7.(2011年福建福州第一次模拟)如图所示,小车上有固定支架,一可视为质点的小球用轻质细绳拴挂在支架上的O 点处,且可绕O 点在竖直平面内做圆周运动,绳长为L .现使小车与小球一起以速度v 0沿水平方向向左匀速运动,当小车突然碰到矮墙后,车立即停止运动,此后小球上升的最大高度可能是( ) A .大于v 202g B .小于v 202g C .等于v 202gD .等于2L 答案:BCD8.(2011年河南安阳质检)ABCD 是一段竖直平面内的光滑轨道,AB 段与水平面成α角,CD 段与水平面成β角,其中BC 段水平,且其长度大于L .现有两小球P 、Q ,质量分别是2m 、m ,用一长为L 的轻质直杆连接,将P 、Q 由静止从高H 处释放,在轨道转折处用光滑小圆弧连接,不考虑两小球在轨道转折处的能量损失.则小球P 滑上CD 轨道的最大高度h 为( )A .h =HB .h =H +L (2sin α-sin β)3C .h =H +L sin βD .h =H +L (sin α-sin β)3解析:选B.P 、Q 整体上升的过程中,机械能守恒,以地面为重力势能的零势面,根据机械能守恒定律有:mgH +2mg (H +L sin α)=2mgh +mg (h +L sin β),解方程得:h =H +L (2sin α-sin β)3. 9. (2011年广东调研考试)如图所示,一质量为m 的滑块以初速度v从固定于地面的斜面底端A 开始冲上斜面,到达某一高度后返回A ,斜面与滑块之间有摩擦.下列各项分别表示它在斜面上运动的速度v 、加速度a 、势能E p 和机械能E 随时间的变化图象,可能正确的是( )解析:选C.由牛顿第二定律可知,滑块上升阶段有:mg sin θ+F f =ma 1,下滑阶段有:mg sin θ-F f =ma 2,因此a 1>a 2,B 选项错误;且v >0和v <0时,速度图象的斜率不同,故A 选项错误;由于摩擦力始终做负功,机械能一直减小,故选项D 错误;重力势能先增大后减小,且上升阶段加速度大,势能变化快,下滑阶段加速度小,势能变化慢,故选项C 正确.10.(2011年江西六所重点中学联考)面积很大的水池,水深为H ,水面上浮着一正方体木块,木块边长为a ,密度为水的1/2,质量为m .开始时,木块静止,有一半没入水中,如图所示.现用力将木块缓慢地压到池底.在这一过程中( )A .木块的机械能减少了mg (H -a 2) B .水池中水的机械能不变C .水池中水的机械能增加了2mg (H -a 2) D .水池中水的机械能增加了2mg (H -5a 8) 解析:选AD.用力将木块缓慢地压到池底的过程中,木块下降的深度为H -a 2,所以木块的机械能减少了mg (H -a 2),A 对;因水池面积很大,可忽略因木块压入水中所引起的水深变化,木块刚好完全没入水中时,图中原来处于划斜线区域的水被排开,结果等效于使这部分水平铺于水面,这部分水的质量为m ,上升的高度为34a ,其势能的增加量为ΔE 水1=mgH -mg (H -34a )=34mga ;木块从刚好完全没入水中到压入池底的过程中,等效成等体积的水上升到木块刚好完全没入水中的位置,这部分水的质量为2m ,上升的高度为H -a ,势能的增加量为ΔE 水2=2mg (H -a ),所以水池中水的机械能增加了ΔE 水=ΔE 水1+ΔE 水2=2mg (H -5a 8),D 对. 二、计算题11.(2010年高考江苏卷)在游乐节目中,选手需借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论.如图所示,他们将选手简化为质量m =60 kg 的质点,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角α=53°,绳的悬挂点O 距水面的高度为H =3 m ,不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深.取重力加速度g =10 m/s 2,sin 53°=0.8,cos 53°=0.6.(1)求选手摆到最低点时对绳拉力的大小F ;(2)若绳长l =2 m ,选手摆到最高点时松手落入水中.设水对选手的平均浮力F f 1=800 N ,平均阻力F f 2=700 N ,求选手落入水中的深度d ;(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落点距岸边越远;小阳却认为绳越短,落点距岸边越远.请通过推算说明你的观点.解析:(1)由机械能守恒定律得mgl (1-cos α)=12m v 2① 选手做圆周运动,有F ′-mg =m v 2l解得F ′=(3-2cos α)mg且选手对绳的拉力F =F ′则F =1080 N.(2)由动能定理得 mg (H -l cos α+d )-(F f 1+F f 2)d =0则d =mg (H -l cos α)F f 1+F f 2-mg解得d =1.2 m.(3)选手从最低点做平抛运动,则有x =v t ,H -l =12gt 2 联立①式解得x =2l (H -l )(1-cos α)当l =H 2时,x 有最大值,解得l =1.5 m 因此,两人的看法均不正确.当绳长越接近1.5 m 时,落点距岸边越远.答案:(1)1080 N (2)1.2 m (3)见解析12.(2011年青岛高三摸底考试)如图所示,一内壁光滑的细管弯成半径为R =0.4 m 的半圆形轨道CD ,竖直放置,其内径略大于小球的直径,水平轨道与竖直半圆轨道在C 点连接完好.置于水平轨道上的弹簧左端与竖直墙壁相连,B 处为弹簧的自然状态.将一个质量为m =0.8 kg 的小球放在弹簧的右侧后,用力向左侧推小球而压缩弹簧至A 处,然后将小球由静止释放,小球运动到C 处后对轨道的压力为F 1=58 N .水平轨道以B 处为界,左侧AB 段长为x =0.3 m ,与小球的动摩擦因数为μ=0.5,右侧BC 段光滑.g =10 m/s 2,求:(1)弹簧在压缩时所储存的弹性势能.(2)小球运动到轨道最高处D 点时对轨道的压力.解析:(1)对小球在C 处,由牛顿第二定律及向心力公式得 F 1-mg =m v 21Rv 1=(F 1-mg )R m=(58-0.8×10)×0.40.8=5(m/s) 从A 到B 由动能定理得E p -μmgx =12m v 21E p =12m v 21+μmgx =12×0.8×52+0.5×0.8×10×0.3=11.2(J) (2)从C 到D 由机械能守恒定律得12m v 21=2mgR +12m v 22 v 2=v 21-4gR =52-4×10×0.4=3(m/s)由于v 2>gR =2 m/s ,所以小球在D 处对轨道外壁有压力. 小球在D 处,由牛顿第二定律及向心力公式得 F 2+mg =m v 22R F 2=m (v 22R -g )=0.8×(320.4-10)=10(N) 由牛顿第三定律可知,小球在D 点对轨道的压力大小为10 N ,方向竖直向上. 答案:(1)11.2 J (2)10 N 方向竖直向上。
2012届高考物理第一轮课时复习训练题(附答案)
2012届高考物理第一轮课时复习训练题(附答案)第二节带电粒子在磁场中的运动一、单项选择题1.(2011年广东广州模拟)速率相同的电子垂直磁场方向进入四个不同的磁场,其轨迹如下图所示,则磁场最强的是()解析:选D.由qvB=mv2r得r=mvqB,速率相同时,半径越小,磁场越强,选项D正确.2.初速度为v0的电子,沿平行于通电长直导线的方向射出,直导线中的电流方向与电子的初始运动方向如图所示,则()A.电子将向右偏转,速率不变B.电子将向左偏转,速率改变C.电子将向左偏转,速率不变D.电子将向右偏转,速率改变解析:选A.由安培定则可知,直导线右侧的磁场方向垂直纸面向里,电子带负电,用左手定则判断洛伦兹力的方向时,四指指向负电荷运动的反方向,大拇指指向此时洛伦兹力的方向,方向向右,电子向右偏转;而洛伦兹力不做功,则速率不变,故A正确.3.(2011年浙江杭州模拟)质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示,离子源S产生的各种不同正离子束(速度可看成零),经加速电场加速后垂直进入有界匀强磁场,到达记录它的照相底片P上,设离子射出磁场的位置到入口处S1的距离为x,下列判断正确的是()A.若离子束是同位素,则x越大,离子进入磁场时速度越小B.若离子束是同位素,则x越大,离子质量越小C.只要x相同,则离子质量一定不相同D.只要x相同,则离子的比荷一定相同解析:选D.在加速电场中,qU=12mv2;在磁场中qvB=mv2R;由几何关系知x=2R;以上三式联立可得x=2mvqB=2B2mUq,只有选项D 正确.4.(2011年山东淄博模拟)如图所示,ABC为与匀强磁场垂直的边长为a的等边三角形,磁场垂直纸面向外,比荷为em的电子以速度v0从A 点沿AB方向射入,欲使电子能经过BC边,则磁感应强度B的取值应为()A.B>3mv0aeB.B<2mv0aeC.B<3mv0aeD.B>2mv0ae解析:选C.如图所示,由题意知,当电子正好经过C点,此时圆周运动的半径R=a2/cos30°=a3,要想电子从BC边经过,圆周运动的半径要大于a3,由带电粒子在磁场中运动的公式r=mvqB,有a3>mv0eB,即B<3mv0ae,C选项正确.二、双项选择题5.(2011年广东四校联考)质量为m、带电荷量为q的粒子(忽略重力)在磁感应强度为B的匀强磁场中做匀速圆周运动,形成空间环形电流.已知粒子的运动速率为v、半径为R、周期为T,环形电流的大小为I.则下面说法正确的是()A.该带电粒子的比荷为qm=BRvB.在时间t内,粒子转过的圆弧对应的圆心角为θ=qBtmC.当速率v增大时,环形电流的大小I保持不变D.当速率v增大时,运动周期T变小解析:选BC.在磁场中,由qvB=mv2R,得qm=vBR,选项A错误;在磁场中运动周期T=2πmqB与速率无关,选项D错误;在时间t内,粒子转过的圆弧对应的圆心角θ=tT•2π=qBtm,选项B正确;电流定义I=qT=Bq22πm,与速率无关,选项C正确.6.(2011年深圳模拟)1932年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示.这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是()A.离子由加速器的中心附近进入加速器B.离子由加速器的边缘进入加速器C.离子从磁场中获得能量D.离子从电场中获得能量解析:选AD.回旋加速器对离子加速时,离子是由加速器的中心附近进入加速器的,故选项A正确,选项B错误;离子在磁场中运动时,洛伦兹力不做功,所以离子的能量不变,故选项C错误;D形盒D1、D2之间存在交变电场,当离子通过交变电场时,电场力对离子做正功,离子的能量增加,所以离子的能量是从电场中获得的,故选项D正确.7.(2011年辽宁锦州模拟)如图所示,圆柱形区域的横截面在没有磁场的情况下,带电粒子(不计重力)以某一初速度沿截面直径方向入射时,穿过此区域的时间为t;若该区域加沿轴线方向的匀强磁场,磁感应强度为B,带电粒子仍以同一初速度沿截面直径入射,粒子飞出此区域时,速度方向偏转了π/3,根据上述条件可求得的物理量为()A.带电粒子的初速度B.带电粒子在磁场中运动的半径C.带电粒子在磁场中运动的周期D.带电粒子的比荷解析:选CD.设圆柱形区域的半径为R,粒子的初速度为v0,则v0=2Rt,由于R未知,无法求出带电粒子的初速度,选项A错误;若加上磁场,粒子在磁场中的轨迹如图所示,设运动轨迹半径为r,运动周期为T,则T=2πrv0,速度方向偏转了π/3,由几何关系得,轨迹圆弧所对的圆心角θ=π/3,r=3R,联立以上式子得T=3πt;由T=2πm/qB得q/m =23Bt,故选项C、D正确;由于R未知,无法求出带电粒子在磁场中做圆周运动的半径,选项B错误.8.(2011年上海模拟)环形对撞机是研究高能粒子的重要装置,其核心部件是一个真空的圆环状的空腔.若带电粒子的初速度可视为零,经电压为U的电场加速后,沿圆环切线方向注入对撞机的环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为 B.带电粒子将被局限在圆环状空腔内运动.要维持带电粒子在圆环内做半径确定的圆周运动,下列说法中正确的是()A.对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B 越小B.对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B 越大C.对于给定的带电粒子,加速电压U越大,粒子运动周期越小D.对于给定的带电粒子,不管加速电压U多大,粒子运动的周期都不变解析:选AC.带电粒子先经电压为U的电场加速,由动能定理有qU=12mv2,沿圆环切线方向注入对撞机的环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,粒子做匀速圆周运动,由qvB=mv2R,解得:R=1B2mUq,因半径R确定,对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B越小,选项A正确;对于给定的带电粒子,加速电压U越大,磁感应强度越大,由周期公式T=2πmqB,所以粒子运动周期越小,选项C正确,选项D错误.三、非选择题9.在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示.一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出.(1)请判断该粒子带何种电荷,并求出其比荷qm.(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B′多大?此次粒子在磁场中运动所用时间t是多少?解析:(1)由粒子的飞行轨迹,利用左手定则可知,该粒子带负电荷.粒子由A点射入,由C点飞出,其速度方向改变了90°,则粒子轨迹半径r=R,又qvB=mv2R,则粒子的比荷为qm=vBr.(2)令粒子飞出磁场的点为D点,则粒子从D飞出磁场速度方向改变了60°角,故AD弧所对圆心角为60°角.用粒子速度的偏向角的角平分线及一处(A点)速度的垂线可找出圆心.粒子做圆周运动的半径:R′=rcot30°=3r,又:R′=mvqB′,所以B′=33B,粒子在磁场中飞行时间t=16T=16•2πmqB′=3πr3v.答案:(1)负电vBr(2)3B33πr3v10.(2011年东北四市联考)如图所示,在空间有一直角坐标系xOy,直线OP与x轴正方向的夹角为30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP是它们的理想边界,OP上方区域Ⅰ中磁场的磁感应强度为B.一质量为m,电荷量为q的质子(不计重力,不计质子对磁场的影响)以速度v从O点沿与OP成30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直打在x 轴上的Q点(图中未画出),试求:(1)区域Ⅱ中磁场的磁感应强度大小;(2)Q点到O点的距离.解析:(1)设质子在匀强磁场区域Ⅰ和Ⅱ中做匀速圆周运动的轨道半径分别为r1和r2,区域Ⅱ中磁感应强度为B′,由牛顿第二定律得qvB=mv2r1qvB′=mv2r2粒子在两区域运动的轨迹如图所示,由几何关系可知,质子从A点出匀强磁场区域Ⅰ时的速度方向与OP的夹角为30°,故质子在匀强磁场区域Ⅰ中运动轨迹对应的圆心角为θ=60°则ΔO1OA为等边三角形OA=r1r2=OAsin30°=12r1解得区域Ⅱ中磁感应强度为B′=2B.(2)Q点到O点的距离为x=OAcos30°+r2=(3+12)mvqB.答案:(1)2B(2)(3+12)mvqB1.(2010年高考江苏卷)如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO′与SS′垂直.a、b、c三个质子先后从S点沿垂直于磁场的方向射入磁场,它们的速度大小相等,b的速度方向与SS′垂直,a、c的速度方向与b的速度方向间的夹角分别为α、β,且α>β.三个质子经过附加磁场区域后能到达同一点S′,则下列说法中正确的有()A.三个质子从S运动到S′的时间相等B.三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO′轴上C.若撤去附加磁场,a到达SS′连线上的位置距S点最近D.附加磁场方向与原磁场方向相同解析:选CD.三个质子运动的弧长不同,但速度大小相同,所以运动的时间一定不同,选项A错误;假设三个质子在附加磁场以外区域运动轨迹的圆心均在OO′轴上,则必定三个质子运动轨迹的半径不同,这与R=mvqB都相同相矛盾,所以选项B错误;若撤去附加磁场,画出三个质子的运动轨迹(图略),a、b、c三个质子到达SS′连线的位置距离S 的长度分别为sa=2Rcosα,sb=2R,sc=2Rcosβ,由于α>β,所以sa 最小,选项C正确;由于撤去附加磁场sb最大,加上附加磁场三者都经过S′,又由于质子b经过附加磁场区域最大,所以附加磁场应起到“加强偏转”的作用,即附加磁场方向与原磁场方向相同,选项D正确.2.(2010年高考山东卷)如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m、带电量+q、重力不计的带电粒子,以初速度v1垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功W1.(2)粒子第n次经过电场时电场强度的大小En.(3)粒子第n次经过电场所用的时间tn.(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).解析:(1)设磁场的磁感应强度大小为B,粒子第n次进入磁场时的半径为Rn,速度为vn,由牛顿第二定律得qvnB=mv2nRn①由①式得vn=qBRnm②因为R2=2R1,所以v2=2v1③对于粒子第一次在电场中的运动,由动能定理得W1=12mv22-12mv21④联立③④式得W1=3mv212.⑤(2)粒子第n次进入电场时速度为vn,出电场时速度为vn+1,有vn=nv1,vn+1=(n+1)v1⑥由动能定理得qEnd=12mv2n+1-12mv2n⑦联立⑥⑦式得En= 2n+1 mv212qd.⑧(3)设粒子第n次在电场中运动的加速度为an,由牛顿第二定律得qEn=man⑨由运动学公式得vn+1-vn=antn⑩联立⑥⑧⑨⑩式得tn=2d 2n+1 v1.(4)如图所示.答案:(1)32mv21(2) 2n+1 mv212qd(3)2d 2n+1 v1(4)如解析图所示。
2012届高考物理第一轮精练跟踪复习题(附答案和解释)
2012届高考物理第一轮精练跟踪复习题(附答案和解释)第二章第二单元力的合成与分解一、单项选择题(本题共6小题,每小题7分,共42分)1.手握轻杆,杆的另一端安装有一个小滑轮C,支持着悬挂重物的绳子,如图1所示,现保持滑轮C的位置不变,使杆向下转动一个角度,则杆对滑轮C的作用力将()A.变大B.不变C.变小D.无法确定2.如图2所示,用一根长为l的细绳一端固定在O点,另一端悬挂质量为m的小球A,为使细绳与竖直方向夹30°角且绷紧,小球A处于静止,对小球施加的最小的力是()A.3mgB.32mgC.12mgD.33mg3.(2010•镇江模拟)如图3所示是用来粉刷墙壁的涂料滚的示意图.使用时,用撑竿推着涂料滚沿墙壁上下滚动,把涂料均匀地粉刷到墙壁上.撑竿的重量和墙壁的摩擦均不计,而且撑竿足够长.粉刷工人站在离墙壁某一距离处缓缓上推涂料滚,使撑竿与墙壁间的夹角越来越小.该过程中撑竿对涂料滚的推力为F1,墙壁对涂料滚的支持力为F2,下列说法正确的是()A.F1、F2均减小B.F1、F2均增大C.F1减小,F2增大D.F1增大,F2减小4.如图4甲所示为杂技表演的安全网示意图,网绳的结构为正方格形,O、a、b、c、d…等为网绳的结点.安全网水平张紧后,若质量为m的运动员从高处落下,并恰好落在O点上.该处下凹至最低点时,网绳dOe、bOg均成120°向上的张角,如图乙所示,此时O点受到的向下的冲击力大小为F,则这时O点周围每根网绳承受的力的大小为() A.FB.F2C.F+mgD.F+mg25.(如图5所示,质量为m的等边三棱柱静止在水平放置的斜面上.已知三棱柱与斜面之间的动擦因数为μ,斜面的倾角为30°,则斜面对三棱柱的支持力与摩擦力的大小分别为()A.32mg和12mgB.12mg和32mgC.12mg和12μmgD.32mg和32μmg6.在建筑工地上有时需要将一些建筑材料由高处送到低处,为此工人们设计了一种如图6所示的简易滑轨:两根圆柱形木杆AB和CD相互平行,斜靠在竖直墙壁上,把一摞弧形瓦放在两木杆构成的滑轨上,瓦将沿滑轨滑到低处.在实际操作中发现瓦滑到底端时速度较大,有时会摔碎,为了防止瓦被损坏,下列措施中可行的是()A.增加每次运送瓦的块数B.减少每次运送瓦的块数C.增大两杆之间的距离D.减小两杆之间的距离二、多项选择题(本题共4小题,每小题7分,共28分.每小题有多个选项符合题意,全部选对的得7分,选对但不全的得3分,错选或不答的得0分)7.如图7所示,一个物体由绕过定滑轮的绳拉着,分别用图中所示的三种情况拉住,在这三种情况下,若绳的张力分别为F1、F2、F3,轴心对定滑轮的支持力分别为FN1、FN2、FN3.滑轮的摩擦、质量均不计,则()A.FN1>FN2>FN3B.FN1=FN2=FN3C.F1=F2=F3D.F1<F2<F38.如图8所示,用两根细线把A、B两小球悬挂在天花板上的同一点O,并用第三根细线连接A、B两小球,然后用某个力F作用在小球A上,使三根细线均处于直线状态,且OB细线恰好沿竖直方向,两小球均处于静止状态.则该力可能为图中的()A.F1B.F2C.F3D.F49.如图9所示,A、B两物体的质量分别为mA、mB,且mA>mB,整个系统处于静止状态.滑轮的质量和一切摩擦均不计,如果绳一端由Q 点缓慢地向左移到P点,整个系统重新平衡后,物体A的高度和两滑轮间绳与水平方向的夹角θ变化情况是()A.物体A的高度升高B.物体A的高度降低C.θ角不变D.θ角变小10.如图10所示,轻质光滑滑轮两侧用细绳连着两个物体A与B,物体B放在水平地面上,A、B均静止.已知A和B的质量分别为mA、mB,绳与水平方向的夹角为θ,则()A.物体B受到的摩擦力可能为0B.物体B受到的摩擦力为mAgcosθC.物体B对地面的压力可能为0D.物体B对地面的压力为mBg-mAgsinθ三、计算题(本题共2小题,共30分.解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)11.(15分)(2008•重庆高考)滑板运动是一项非常刺激的水上运动,研究表明,在进行滑板运动时,水对滑板的作用力FN垂直于板面,大小为kv2,其中v为滑板速率(水可视为静止).某次运动中,在水平牵引力作用下,当滑板和水面的夹角θ=37°时(如图11所示),滑板做匀速直线运动,相应的k=54kg/m,人和滑板的总质量为108kg,试求(重力加速度g取10m/s2,sin37°=35,忽略空气阻力):(1)水平牵引力的大小;(2)滑板的速率.12.(15分)榨油在我国已有上千年的历史,较早时期使用的是直接加压式榨油方法.而现在已有较先进的榨油方法,某压榨机的结构示意图如图12所示,其中B点为固定铰链,若在A铰链处作用一垂直于壁的力F,则由于力F的作用,使滑块C压紧物体D,设C与D光滑接触,杆的重力及滑块C的重力不计.压榨机的尺寸如图所示,l=0.5m,b=0.05m.求物体D所受压力的大小是F的多少倍?第二章第二单元力的合成与分解【参考答案与详细解析】一、单项选择题(本题共6小题,每小题7分,共42分)1.解析:杆对滑轮C的作用力大小等于两绳的合力,由于两绳的合力不变,故杆对滑轮C的作用力不变.答案:B2.解析:将mg在沿绳方向与垂直于绳方向分解,如图所示.所以施加的力与F1等大反向即可使小球静止,故Fmin=mgsin30°=12mg,故选C.答案:C3.解析:在缓缓上推过程中涂料滚受力如图所示.由平衡条件可知:F1sinθ-F2=0F1cosθ-G=0解得F1=GcosθF2=Gtanθ由于θ减小,所以F1减小,F2减小,故正确答案为A.答案:A4.解析:O点周围共有4根绳子,设每根绳子的力为F′,则4根绳子的合力大小为2F′,所以F=2F′,所以F′=F2,应选B.答案:B5.解析:三棱柱受到重力、支持力和摩擦力三个力的作用而平衡,故FN=mgcos30°=32mg,Ff=mgsinθ=12mg,A正确.答案:A6.解析:沿两个杆的方向仰视或俯视,弧形瓦受到两个杆各自提供的两个支持力,且支持力垂直于瓦面和杆倾斜向上,如图所示.因为瓦在垂直两杆的平面内受力平衡,即其垂直分量不变,所以两杆之间距离越大支持力的方向就越倾斜,支持力也就越大,滑动摩擦力Ff随着支持力的增大而增大;根据牛顿第二定律得弧形瓦下滑的加速度a=gsinα-Ffm,其值会随Ff增大而减小;因为弧形瓦滑到底端的路程即木杆的长度一定,所以加速度越小,到达底端的速度就越小,C正确.答案:C二、多项选择题(本题共4小题,每小题7分,共28分.每小题有多个选项符合题意,全部选对的得7分,选对但不全的得3分,错选或不答的得0分)7.解析:由于定滑轮只改变力的方向,不改变力的大小,所以F1=F2=F3=G,又轴心对定滑轮的支持力等于绳对定滑轮的合力.而已知两个分力的大小,其合力与两分力的夹角θ满足关系式:F=G2+G2+2GGcosθ=G2(1+cosθ),θ越大,F越小,故FN1>FN2>FN3,选项A、C正确.答案:AC8.解析:由于小球B处于静止状态,且细线OB沿竖直方向,因此细线AB无弹力,对小球A受力分析,由于它受力平衡,并根据小球A受到的细线的拉力和重力的方向可知,施加给小球A的力F应沿F2或F3的方向,故选B、C.答案:BC9.解析:最终平衡时,绳的拉力F大小仍为mAg,由二力平衡可得2Fsinθ=mBg,故θ角不变,但因悬点由Q到P,左侧部分绳子变长,故A 应升高,所以A、C正确.答案:AC10.解析:对B受力分析如右图所示,则水平方向上:Ff=FT•cosθ由于FT=mAg所以Ff=mAgcosθ,故A错B对;竖直方向上:FNB+FTsinθ=mBg所以FNB=mBg-FTsinθ=mBg-mAgsinθ,故C错D对.答案:BD三、计算题(本题共2小题,共30分.解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)11.解析:(1)以滑板和运动员为研究对象,其受力如图所示由共点力平衡条件可得FNcosθ=mg①FNsinθ=F②由①、②联立,得F=810N(2)FN=mg/cosθ,FN=kv2得v=mgkcosθ=5m/s.答案:(1)810N(2)5m/s12.解析:按力F的作用效果沿AB、AC方向分解为F1、F2,如图甲所示,则F1=F2=F2cosθ由几何知识得tanθ=lb=10.按力F2的作用效果沿水平向左和竖直向下分解为FN′、FN,如图乙所示,则FN=F2sinθ,以上各式联立解得FN=5F,所以物体D所受压力的大小是F的5倍.答案:5倍。
2012高考物理一轮复习试题2
2012高考物理一轮复习试题2一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后的括号内)1.从某高处释放一粒小石子,经过1 s从同一地点再释放另一粒小石子,则在它们落地之前,两粒石子间的距离将()A.保持不变B.不断增大[来源:学科网]C.不断减小D.有时增大,有时减小解析:设第1粒石子运动的时间为t s,则第2粒石子运动的时间为(t-1) s,则经过时间t s,两粒石子间的距离为Δh=12gt2-12g(t-1)2=gt-12g,可见,两粒石子间的距离随t的增大而增大,故B正确.答案:B2.以35 m/s的初速度竖直向上抛出一个小球,不计空气阻力,g取10 m/s2.以下判断正确的是()A.小球到最大高度时的速度为0B.小球到最大高度时的加速度为0C.小球上升的最大高度为61.25 mD.小球上升阶段所用的时间为3.5 s解析:小球到最大高度时的速度为0,但加速度仍为向下的g,A正确,B错误;由H=v202g=61.25 m,可知C正确;由t=v0g=3510s=3.5 s,可知D正确.答案:ACD3.汽车以20 m/s的速度做匀速运动,某时刻关闭发动机而做匀减速运动,加速度大小为5 m/s2,则它关闭发动机后通过37.5 m所需时间为() A.3 s B.4 s[来源:学|科|网]C.5 s D.6 s解析:由位移公式得:s=v0t-12at2解得t1=3 s t2=5 s因为汽车经t0=v0a=4 s停止,故t2=5 s舍去,应选A.[来源:]答案:A4.(探究创新题)正在匀加速沿平直轨道行驶的长为L的列车,保持加速度不小)是均匀变化(即v=kh,k是个常数)的可能性.答案:B7.(思维拓展题)物体以速度v匀速通过直线上的A、B两点,所用时间为t.现在物体从A点由静止出发,先做匀加速直线运动(加速度为a1),到某一最大速度v m后立即做匀减速直线运动(加速度大小为a2),至B点速度恰好减为0,所用时间仍为t,则物体的()A.v m只能为2v,与a1、a2的大小无关B.v m可为许多值,与a1、a2的大小有关C.a1、a2须是一定的D.a1、a2必须满足a1·a2a1+a2=2vt解析:由AB=v t=v m2t1+v m2t2=v m2t得,v m=2v,与a1、a2的大小无关,故A正确;由t1=v ma1,t2=v ma2得t=v ma1+v ma2,即得a1·a2a1+a2=2vt,故D也正确.答案:AD8.一辆汽车拟从甲地开往乙地,先由静止启动做匀加速直线运动,然后保持匀速直线运动,最后做匀减速直线运动,当速度减为0时刚好到达乙地.从汽车启动开始计时,下表给出某些时刻汽车的瞬时速度,据表中的数据通过分析、计算可以得出汽车()时刻(s) 1.0 2.0 3.0 5.07.09.510.5速度(m/s) 3.0 6.09.012129.0 3.0 A.B.匀加速直线运动经历的时间为5.0 sC.匀减速直线运动经历的时间为2.0 sD.匀减速直线运动经历的时间为4.0 s解析:从题表中看出,匀速的速度为12 m/s.从t=1.0 s到t=3.0 s,各秒内速度变化相等,做匀加速直线运动,a=9.0-3.03.0-1.0m/s2=3 m/s2.匀加速的时间t=v/a=123s=4.0 s,故选项A对,B错;匀减速的加速度a=3.0-9.010.5-9.5m/s2=-6 m/s2.匀减速的时间t =0-v a =-12-6s =2.0 s ,故选项C 对,D 错.答案:AC9.(2011年孝感模拟)如图所示,水龙头开口处A 的直径d 1=2 cm ,A 离地面B 的高度h =80 cm ,当水龙头打开时,从A 处流出的水流速度v 1=1 m/s ,在空中形成一完整的水流束.则该水流束在地面B 处的截面直径d 2约为(g 取10 m/s 2)( )A .2 cmB .0.98 cmC .4 cmD .应大于2 cm ,但无法计算解析:水流由A 到B 做匀加速直线运动,由v 2B -v 21=2gh 可得:v B = 17 m/s ,由单位时间内通过任意横截面的水的体积均相等,可得:v 1·Δt ·14πd 21=v B ·Δt ·14πd 22, 解得:d 2=0.98 cm , 故B 正确. 答案:B10.在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度g 值,g 值可由实验精确测定,以铷原子钟或其他手段测时间,能将g 值测得很准.具体做法是:将真空长直管沿竖直方向放置,自其中O 点竖直向上抛出小球,小球又落至原处O 点的时间为T 2,在小球运动过程中经过比O 点高H 的P 点,小球离开P 点后又回到P 点所用的时间为T 1,测得T 1、T 2和H ,可求得g 等于( )A.8H T 22-T 21B.4HT 22-T 21C.8H (T 2-T 1)2 D.H 4(T 2-T 1)2[来源:学科网]解析:设从O 点到最高点为H 2,[来源:学科网] 则H 2=12g (T 22)2,由P 点到最高点的距离为H 2-H ,[来源:Z|xx|]则H2-H=12g(T12)2,由以上两式解得:g=8HT22-T21,故选A.答案:A二、非选择题(本题共2小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)(2010年高考全国Ⅰ卷)汽车由静止开始在平直的公路上行驶,0~60 s内汽车的加速度随时间变化的图线如图所示.(1)画出汽车在0~60 s内的v-t图线;(2)求在这60 s内汽车行驶的路程.解析:(1)0~10 s内,汽车做初速度为0的匀加速直线运动,10 s末速度v1=a1t1=2×10 m/s=20m/s10~40 s内,汽车做匀速直线运动,40~60 s内,汽车做匀减速直线运动.[来源:学_科_网]60 s末的速度v2=v1+a2t2=20 m/s-1×20 m/s=0.v-t图线如图所示.(2)s=12v1t1+v1t+12(v1+v2)t2=12×20×10 m+20×30 m+12×(20+0)×20 m=900 m.答案:(1)见解析(2)900 m12.(15分)(综合提升)如图所示,在国庆阅兵式中,某直升飞机在地面上空某高度A位置处于静止状态待命,要求该机10时56分40秒由静止状态沿水平方向做匀加速直线运动,经过AB段加速后,进入BC段的匀速受阅区,11时准时通过C位置,如右图所示已知s AB=5 km,s BC=10 km.问:(1)直升飞机在BC段的速度大小是多少?(2)在AB段做匀加速直线运动时的加速度大小是多少?解析:(1)由题意知t=t1+t2=200 ss AB=0+v2t1=5 000 ms BC=v t2=10 000 m 解得:v=100 m/s(2)因为t1=2s ABv=100 s所以a=v-0t1=1 m/s2答案:(1)100 m/s(2)1 m/s2。
2012高考物理一轮复习试题1
2012高考物理一轮复习试题1 DC.瞬时速度大小不得超过这一规定数值D.汽车上的速度计指示值,有时还是可以超过这一规定值的解析:限速标志上的数值为这一路段汽车行驶的瞬时速度的最大值,汽车上的速度计指示值为汽车行驶的瞬时速度值,不能超过这一规定值,故只有C正确.答案:C4.三个质点A、B、C均由N点沿不同路径运动至M点,运动轨迹如图所示,三个质点同时从N点出发,同时到达M点.下列说法正确的是()A.三个质点从N点到M点的平均速度相同B.三个质点任意时刻的速度方向都相同C.三个质点从N点出发到任意时刻的平均速度都相同D.三个质点从N点到M点的位移不同解析:位移是指物体在空间的位置的变化,用从物体初位置指向末位置的矢量表示,三个质点的始、末位置相同,故三个质点的位移相同,D错误;由于运动时间相同,由平均速度的定义可知,平均速度也相同,A正确;曲线运动的方向沿轨迹的切线方向,所以不是任意时刻速度方向都相同的,B错误;任意时刻三个质点的位移并不相同,平均速度也不同,C错误.答案:A5.某赛车手在一次野外训练中,先利用地图计算出出发地和目的地的直线距离为9 km,从出发地到目的地用了5分钟,赛车上的里程表指示的里程数值增加到15 km,当他经过某路标时,车内速度计指示的示数为150 km/h,那么可以确定的是()A.在整个过程中赛车手的平均速度是108 km/hB.在整个过程中赛车手的平均速度是180 km/h[来源:学科网ZXXK]C.在整个过程中赛车手的平均速率是108 km/hD.经过路标时的瞬时速度是150 km/h解析:整个过程中赛车手的平均速度为v=st=95/60km/h=108 km/h.A正确,B错误;而平均速率v=lt=155/60km/h=180 km/h,C错误;车内速度计指示的速度为汽车通过某位置的瞬时速度,D正确.答案:AD[来源:学。
科。
网]6.(思维拓展)下列说法中与人们的日常习惯相吻合的是()A.测量三楼楼道内日光灯的高度,选择三楼地板为参考系B.测量井的深度,以井底为参考系,井“深”为0米C.以卡车司机为参考系,卡车总是静止的D.以路边的房屋为参考系判断自己是否运动[来源:学.科.网]解析:在解答本题时,很多同学受生活习惯的影响,往往错误地认为参考系只能选地面,其实不然,如A选项,可以选择与地面相对静止的三楼地板为参考系.参考系的选择没有对错之分,只有合理与不合理的区别,只要有利于问题的研究,选择哪个物体为参考系都可以.[来源:学.科.网Z.X.X.K][来源:学+科+网] 答案:AD7.一个做变速直线运动的物体,加速度逐渐减小到零,那么该物体的运动情况可能是()A.速度不断增大,到加速度为零时,速度达到最大,而后做匀速直线运动B.速度不断减小,到加速度为零时,物体运动停止C.速度不断减小到零,然后向相反方向做加速运动,而后物体做匀速直线运动D.速度不断减小,到加速度为零时速度减小到最小,而后物体做匀速直线运动解析:变速直线运动的物体可以是加速,也可以是减速,加速度不断减小到零表明物体速度变化的越来越慢至速度不变,故A、B、C、D都正确.答案:ABCD8.在央视开年大戏《闯关东》中,从山东龙口港到大连是一条重要的闯关东路线.假设有甲、乙两船同时从龙口港出发,甲船路线是龙口—旅顺—大连,乙船路线是龙口—大连.两船航行两天后都在下午三点到达大连,以下关于两船全航程的描述中正确的是()A.两船的速度相同,位移不相同B.两船的平均速度相同C.“两船航行两天后都在下午三点到达大连”一句中,“两天”指的是时间间隔,“下午三点”指的是时刻D.在研究两船的航行时间时,可以把船视为质点解析:在本题中路程是船运动轨迹的长度,位移是龙口指向大连的有向线段,两船的路程不相同,位移相同,故A错误;平均速度等于位移除以时间,故B正确;时刻是指某一瞬间,时间间隔是两时刻间的间隔,故C正确;在研究两船的航行时间时,船的大小和形状对所研究的问题影响可以忽略不计,故D正确.答案:BCD9.(探究创新)在两条相互垂直的水平直道上,甲正以3 m/s的速度自西向东朝十字路口走去,乙正以4 m/s的速度通过十字路口向北走去,此时甲、乙之间的距离为100 m.则在以后的过程中,甲、乙之间的最小距离是() A.100 m B.80.8 mC.80 m D.70.7 m解析:从乙正以4 m/s的速度通过十字路口向北走去时开始计时,t时刻两者的距离s=(100-3t)2+(4t)2m=25(t-12)2+6 400 m,则当t=12 s时,s有最小值为80 m,C正确.答案:C10.(2011年福州模拟)甲、乙两辆汽车沿平直公路从某地同时驶向同一目标,甲车在前一半时间内以速度v1做匀速直线运动,后一半时间内以速度v2做匀速直线运动;乙车在前一半路程中以速度v1做匀速直线运动,后一半路程中以速度v2做匀速直线运动,则()A.甲先到达B.乙先到达C.甲、乙同时到达D.不能确定解析:设甲、乙两车从某地到目的地距离为s,则对甲车有t甲=2sv1+v2;对乙车有t乙=s2v1+s2v2=(v1+v2)s2v1v2,所以t甲t乙=4v1v2(v1+v2)2,由数学知识知(v1+v2)2>4v1v2,故t甲<t乙,A正确.答案:A二、非选择题(本题共2小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)一辆客车在某高速公路上行驶,在经过某直线路段时,司机驾车做匀速直线运动.司机发现其正要通过正前方高山悬崖下的隧道,于是鸣笛,经t1=5 s后听到回声,听到回声后又行驶了t2=10 s,司机第二次鸣笛,又经t3=2 s 后听到回声,请根据以上数据判断客车是否超速行驶.(已知此高速路段最高限速为120 km/h,声音在空气中的传播速度为340 m/s)解析:设客车的速度为v1,声音的速度为v2,第一次鸣笛时客车离隧道口的距离为L1,第二次鸣笛时客车离隧道口的距离为L2,则有v2t1=2L1-v1t1v2t3=2L2-v1t3又L2=L1-v1(t2+t1)以上三式联立可得:v1=v29≈37.8 m/s≈136 km/h>120 km/h[来源:学科网ZXXK]故客车超速行驶答案:见解析12.(15分)(综合提升)南京军区某部进行了一次海上军事演习,一艘鱼雷快艇以30 m/s的速度追击前面同一直线上正在逃跑的敌舰.当两者相距L0=2 km时,以60 m/s的速度发射一枚鱼雷,经过t1=50 s艇长通过望远镜看到了鱼雷击中敌舰爆炸的火光,同时发现敌舰仍在继续逃跑,于是马上发出了第二次攻击的命令,第二枚鱼雷以同样速度发射后,又经t2=30 s,鱼雷再次击中敌舰并将其击沉.求第一枚鱼雷击中前后,敌舰逃跑的速度v1、v2分别为多大?解析:第一枚鱼雷击中前,敌舰逃跑的速度v1,当鱼雷快艇与敌舰相距L0=2 km时,发射第一枚鱼雷,以t1=50 s击中敌舰,则有(v-v1)t1=L0,即:(60-v1)×50=2 000解得v1=20 m/s.击中敌舰时,鱼雷快艇与敌舰的距离为L0-(30-v1)t1=1 500 m马上发射第二枚鱼雷,击中前瞬间敌舰的速度为v2,经t2=30 s,鱼雷再次击中敌舰,则有(v-v2)t2=1 500,即:(60-v2)×30=1 500,解得v2=10 m/s.[来源:学§科§网Z§X§X§K]答案:20 m/s10 m/s。
2012高考物理一轮复习试题4
一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后的括号内)1.A、B两物体叠放在一起,用手托住静靠在竖直墙上,突然释放,它们同时沿墙面下滑,如图所示,已知m A>m B,则()A.物体A只受重力作用B.物体B受重力和A对它的压力C.物体A处于完全失重状态D.物体A、B都受到墙面的摩擦力解析:释放后,因物体A、B与墙面间无压力,故无摩擦力,两物体均只受重力作用,做自由落体运动,处于完全失重状态,故A、C正确,B、D错误.[来源:Z。
xx。
]答案:AC2.(2011年石家庄模拟)如图所示,传送带向右上方匀速运转,石块从漏斗里竖直掉落到传送带上,然后随传送带向上运动,下述说法中正确的是()[来源:]A.石块落到传送带上可能先做加速运动后做匀速运动B.石块在传送带上一直受到向右上方的摩擦力作用C.石块在传送带上一直受到向左下方的摩擦力作用D.开始时石块受到向右上方的摩擦力后来不受摩擦力解析:由相对运动可知,石块受到向上的滑动摩擦力,使石块加速向上运动,达到与皮带共速,若所经位移大于两轮间距,则一直加速;若达到共速时所经位移小于两轮间距,共速后石块与皮带相对静止,此后受静摩擦力的作用,方向仍沿皮带向上.[来源:学科网]答案:AB3.质量均匀分布的A、B、C三个物体如图所示放置,其中A、B两个相同的物体并排放在水平面上,梯形物体C叠放在物体A、B的上表面,已知所有接触面均光滑且各物体都处于静止状态,则下列说法中正确的是()A.物体B对地面的压力等于物体A对地面的压力B.物体B对地面的压力大于物体A对地面的压力C.物体B对物体A有向左的压力D.物体A、B之间没有相互作用力解析:由于A、B、C三个物体质量均匀分布,所以梯形物体C的重心应该在中位线的右侧.则梯形物体C对物体B的压力为其重力,物体C对物体A的压力为零,A错误、B正确.虽然A、B两物体相互接触,但是彼此不挤压,没有发生形变,C错误、D正确.答案:BD4.用力将如图所示的装有塑料钩的轻圆盘压紧在竖直的墙壁上,排出圆盘与墙壁之间的空气,松开手后往钩上挂上适当的物体,圆盘不会掉下来.这是因为物体对圆盘向下的拉力()[来源:学+科+网]A.与大气对圆盘的压力平衡B.与墙壁对圆盘的摩擦力平衡C.与墙壁对圆盘的支持力平衡D.与物体所受的重力平衡解析:以圆盘为研究对象,分析它的受力情况:水平方向有大气的压力和墙壁的支持力,竖直方向有向下的重力(可忽略不计)及重物的拉力、沿墙壁向上的静摩擦力,B正确.答案:B5.如图所示,物块A放在倾斜的木板上,木板的倾角α分别为30°和45°时物块所受摩擦力的大小恰好相同,则物块和木板间的动摩擦因数为()A.1/2 B. 3/2C. 2/2D. 5/2解析:根据题意知:木板的倾角α为30°时物块所受到的静摩擦力与木板的倾角α为45°时物块所受到的滑动摩擦力大小相等,即mg sin 30°=μmg cos 45°,解之得μ=2/2,C正确.[来源:学,科,网]答案:C6.(2011年扬州模拟)如图所示,重80 N的物体A放在倾角为30°的粗糙斜面上,有一根原长为10 cm,劲度系数为1 000 N/m的弹簧,其一端固定在斜面底端,另一端放置物体A后,弹簧长度缩短为8 cm,现用一测力计沿斜面向上拉物体,若滑块与斜面间最大静摩擦力为25 N,当弹簧的长度仍为8 cm时,测力计读数不可能为() A.10 N B.20 NC.40 N D.60 N解析:设滑块与斜面的静摩擦力沿斜面向上,由平衡条件得:F+f+kx=mg sin 30°,可得:F+f=20 N.F由0逐渐增大的过程中,f逐渐减小,当f=0时,F为20 N;故A、B均可能;当f沿斜面向下时,F+kx=f+mg sin 30°,有:F=f+20 N,随F增大,f也逐渐增大,直到f=25 N,此时F=45 N,当F>45 N,滑块就沿斜面滑动,故测力计的读数不可能为60 N.答案:D7.(探究创新)如图所示,水平桌面上平放一叠共计54张的扑克牌,每一张扑克牌的质量均为m.用一手指以竖直向下的力压第1张扑克牌,并以一定速度向右移动手指,确保手指与第1张扑克牌之间有相对滑动.设最大静摩擦力与滑动摩擦力相同,手指与第1张扑克牌之间的动摩擦因数为μ1,相邻两张扑克牌间的动摩擦因数均为μ2,第54张扑克牌与桌面间的动摩擦因数为μ3,且有μ1<μ2<μ3.则下列说法中正确的是()A.第2张扑克牌到第53张扑克牌之间可能发生相对滑动B.第2张扑克牌到第53张扑克牌之间不可能发生相对滑动C.第1张扑克牌受到手指的摩擦力向左D.第54张扑克牌受到水平桌面的摩擦力向左解析:手指与第1张扑克牌之间有相对滑动.手指对第1张扑克牌的滑动摩擦力为μ1F,第1张扑克牌与第2张扑克牌之间的动摩擦因数为μ2,假设能滑动,则第2张扑克牌对第1张扑克牌的滑动摩擦力为μ2(F+mg)>μ1F,与假设矛盾,因此不会滑动,第2张扑克牌到第53张扑克牌之间都不可能发生相对滑动,A错误,B正确;第1张扑克牌受到手的摩擦力向右,C错误;由整体法知第54张扑克牌受到水平桌面的摩擦力向左,D正确.答案:BD8.(思维拓展)如图所示,斜面固定在地面上,倾角为37°(sin 37°=0.6,cos 37°=0.8),质量为1 kg的滑块,以一定的初速度沿斜面向下滑,斜面足够长,滑块与斜面间的动摩擦因数为0.8.该滑块所受摩擦力f随时间变化的图象是图中的(取初速度方向为正方向,取g=10 m/s2)()解析:由于mg sin 37°<μmg cos 37°,滑块减速下滑,因斜面足够长,故滑块最终一定静止在斜面上,开始阶段f滑=μmg cos 37°=6.4 N,方向沿斜面向上;静止在斜面上时,f静=mg sin 37°=6 N,方向沿斜面向上,由于取初速度方向为正方向,故图象A正确,B、C、D均错误.答案:A9.(2009年高考天津卷)物块静止在固定的斜面上,分别按图示的方向对物块施加大小相等的力F,A中F垂直于斜面向上,B中F垂直于斜面向下,C中F 竖直向上,D中F竖直向下,施力后物块仍然静止,则物块所受的静摩擦力增大的是()解析:对物块进行受力分析,由平衡条件知,A、B两种情况时摩擦力的大小不变,C中F竖直向上,静摩擦力将减小,D中F竖直向下,静摩擦力由mg sin θ变为(mg+F)sin θ,所以静摩擦力增大,故D正确.答案:D10.某同学用传感器来探究摩擦力.他的实验步骤如下:①将力传感器接入数据采集器,再连接到计算机上;②将一质量m=3.75 kg的木块置于水平桌面上,用细绳将木块和传感器连接起来;③打开计算机,使数据采集器工作,然后沿水平方向缓慢地拉动细绳,木块运动一段时间后停止拉动;④将实验得到的数据经计算机处理后在屏幕上显示出如图所示的图象.下列有关这个实验的几个说法,其中正确的是()A.0~6 s内木块一直受到静摩擦力的作用[来源:学科网]B.最大静摩擦力比滑动摩擦力大C.木块与桌面间的动摩擦因数为0.08D.木块与桌面间的动摩擦因数为0.11解析:因木块始终缓慢运动,所受合力为零,故细绳的拉力与木块受到的摩擦力等大反向,由图可知,0~2 s内细绳的拉力为零,木块所受的摩擦力为零,故A错误;木块在2 s~6 s内,所受的静摩擦力随拉力的增大而增大,6 s后,摩擦力大小不变,应为滑动摩擦力,6 s时的f=4 N为最大静摩擦力,由f滑=μN=μmg =0.08,故B、C正确,D错误.可得,μ=33.75×10答案:BC二、非选择题(本题共2小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)如图所示,两木块的质量分别为m1和m2,两轻质弹簧A、B的劲度系数分别为k1和k2,若在m1上再放一质量为m0的物体,待整个系统平衡时,m1下降的位移为多少?[来源:学#科#网]解析:未放m0时,A、B的形变量:Δx A=m1gk1,Δx B=(m1+m2)gk2当放上m0时,A、B的形变量:Δx A′=m1g+m0gk1,Δx B′=(m1+m2+m0)gk2故放上m0后,m1下降的位移:Δx=(Δx A′+Δx B′)-(Δx A+Δx B)=m0g k1+k2 k1k2.答案:m0g k1+k2 k1k212.(15分)(综合提升)密度大于液体密度的固体颗粒,在液体中竖直下沉,但随着下沉速度变大,固体所受的阻力也变大,故下沉到一定深度后,固体颗粒就会匀速下沉.该实验是研究球形固体颗粒在水中竖直匀速下沉的速度与哪些量有关的实验,实验数据的记录如下表:(水的密度为ρ0=1.0×103 kg/m3)次序[来源:学。
2012届高考物理第一轮课时复习训练题(有答案)
2012届高考物理第一轮课时复习训练题(有答案)第三节机械能守恒定律一、单项选择题1.如图所示,质量为m的小球,从离桌面H高处由静止下落,桌面离地高度为h.若以桌面为参考平面,那么小球落地时的重力势能及整个过程中重力势能的变化分别是()A.mgh,减少mg(H-h)B.mgh,增加mg(H+h)C.-mgh,增加mg(H-h)D.-mgh,减少mg(H+h)解析:选D.以桌面为参考平面,则小球落地时的重力势能为-mgh.整个过程重力做的功WG=mg(H+h).故小球重力势能减少mg(H+h),故选D.2.(2011年中山市质检)如图所示,A、B两球质量相等,A球用不能伸长的轻绳系于O点,B球用轻弹簧系于O′点,O与O′点在同一水平面上.分别将A、B球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球达到各自悬点的正下方时,两球仍处在同一水平面上.则()A.两球到达各自悬点的正下方时,两球动能相等B.两球到达各自悬点的正下方时,A球动能较大C.两球到达各自悬点的正下方时,B球动能较大D.两球到达各自悬点的正下方时,A球减少的重力势能较多解析:选B.A球下摆过程中,因机械能守恒mgL=12mv2A①B球下摆过程中,因机械能守恒mgL=Ep弹+12mv2B②由①②式得12mv2A=Ep弹+12mv2B可见12mv2A>12mv2B,故B正确.3.(2011年广东联考)如图所示,一根长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b.a球质量为m,静置于地面;b球质量为3m,用手托住,高度为h,此时轻绳刚好拉紧.从静止开始释放b后,a可能达到的最大高度为()A.hB.1.5hC.2hD.2.5h解析:选B.在b落地前,a、b组成的系统机械能守恒,且a、b两物体速度大小相等,根据机械能守恒定律可知:3mgh-mgh=12(m+3m)v2⇒v=gh,b球落地时,a球高度为h,之后a球向上做竖直上抛运动,此过程中机械能守恒,12mv2=mgΔh⇒Δh=v22g=h2,所以a球可能达到的最大高度为1.5h,B项正确.二、双项选择题4.(2011年江苏盐城月考)下列关于机械能是否守恒的论述,正确的是()A.做变速曲线运动的物体,机械能可能守恒B.沿水平面运动的物体,机械能一定守恒C.合外力对物体做功等于零时,物体的机械能一定守恒D.只有重力对物体做功时,机械能一定守恒解析:选AD.判断机械能是否守恒,就要依据机械能守恒的条件来分析.要看是不是只有重力(或系统内弹簧的弹力)做功,而不是看物体如何运动.物体做变速曲线运动,机械能可能守恒,如平抛运动,A对;合外力做功为零,只是动能不变,势能的变化情况不确定,机械能不一定守恒,如物体匀速下落,机械能减少,C错;沿水平面运动的物体,重力势能不变,如果不是匀速,动能发生变化,机械能就不守恒,B 错;只有重力对物体做功时,机械能一定守恒,D对.5.(2011年长沙模拟)一个高尔夫球静止于平坦的地面上,在t=0时球被击出,飞行中球的速率与时间的关系如图所示.若不计空气阻力的影响,根据图象提供的信息可以求出()A.高尔夫球在2.5s时落地B.高尔夫球上升的最大高度C.人击球时对高尔夫球做的功D.高尔夫球落地时离击球点的距离解析:选BD.球刚被击出时v0=31m/s,根据机械能守恒,小球到达最高点时重力势能最大,动能最小,所以v=19m/s时小球处于最高点.由12mv20=mgh+12mv2,可求最大高度为30m,B项正确.仍根据机械能守恒,小球落地时速度与击出时速度相等,所以高尔夫球5s时落地,A项错误.研究击球过程,根据动能定理,人做的功W=12mv20,由于m未知,所以求不出W,C项错误,研究球的水平分运动,由x=vxt,其中vx=19m/s,t=5s,可求得x=95m,D项正确.6.(2011年惠州一中月考)如图所示,一物体从光滑斜面AB底端A点以初速度v0上滑,沿斜面上升到最大高度为h的B点.下列说法中正确的是(设下列情境中物体从A点上滑的初速度仍为v0)()A.若把斜面CB部分截去,物体冲出C点后上升的最大高度仍为h B.若把斜面AB变成曲面AEB,物体沿此曲面上升仍能到达B点C.若把斜面弯成圆弧形D,物体仍能沿圆弧升高hD.若把斜面弯成圆弧形D,物体不能沿圆弧升高h解析:选BD.对A项,物体滑出C点后做斜上抛运动,虽然机械能守恒,但在其最高点处物体保留水平速度,故其高度要小于h,A错;对B项,物体到达最高点不必保留速度,故高度能达到h,B对;对C项,物体若能到达圆弧最高点,则在最高点最小速度要达到v=gh2,虽然机械能守恒,但物体不可能到达最高点且速度为零,故C错D对.7.质量相同的两个小球,分别用长为l和2l的细绳悬挂在天花板上,如图所示,分别拉起小球使线伸直呈水平状态,然后轻轻释放,当小球到达最低位置时()A.两球运动的线速度相等B.两球运动的角速度相等C.两球运动的加速度相等D.细绳对两球的拉力相等解析:选CD.小球在摆动过程中,只有重力做功,故ΔEp=ΔEk,即mgh =12mv2,所以v=2gh,由上式可知两球线速度不相等,由v=ω•r,所以ω=vh=2gh,因绳长不同故角速度不相等.小球运动的加速度a =v2r=2g,故两小球最低点时的加速度与绳长无关,绳子拉力F=mg +ma=3mg,与绳长无关,故CD正确.8.如图所示,长度相同的三根轻杆构成一个正三角形支架,在A处固定质量为2m的小球,B处固定质量为m的小球,支架悬挂在O点,可绕过O点并与支架所在平面相垂直的固定轴转动.开始时OB与地面相垂直.放手后开始运动,在不计任何阻力的情况下,下列说法正确的是()A.A球到达最低点时速度为零B.A球机械能减少量等于B球机械能增加量C.B球向左摆动所能达到的最高位置应等于A球开始运动时的高度D.当支架从左向右回摆时,A球一定能回到起始高度解析:选BD.因A处小球质量大,处的位置高,图示中三角形框架处于不稳定状态,释放后支架就会向左摆动.摆动过程中只有小球受的重力做功,故系统的机械能守恒,选项B正确,D选项也正确.A球到达最低点时,若设支架边长为L,A球下落的高度便是12L,有mg•(12L)的重力势能转化为支架的动能和B球的重力势能,因而此时A球速度不为零,选项A错.当A球到达最低点时有向左运动的速度,还要继续左摆,B球仍要继续上升,因此B球能达到的最高位置比A球的最高位置要高,C选项错.三、非选择题9.(2011年广东东莞质检)一个质量为m=0.20kg的小球系于轻质弹簧的一端,且套在光滑竖立的圆环上,弹簧的上端固定于环的最高点A处,环的半径R=0.5m,弹簧的原长l0=0.50m,劲度系数为4.8N/m,如图所示,若小球从图中所示位置B点由静止开始滑动到最低点C时,弹簧的弹性势能Ep弹=0.60J,求:(1)小球到C点时的速度vC的大小;(2)小球在C点时对环的作用力.(g取10m/s2)解析:(1)小球从B到C过程中机械能守恒:mgR(2-cos60°)=12mv2C +Ep弹所以vC=3gR-2Ep弹m=3×10×0.5-2×0.60.2m/s=3m/s.(2)根据胡克定律:F弹=kx=4.8×0.5N=2.4N小球在C点时应用牛顿第二定律:F弹+FN-mg=mv2CR所以FN=mg-F弹+mv2CR=(0.2×10-2.4+0.2×320.5)N=3.2N根据牛顿第三定律,小球对环的作用力为3.2N,方向竖直向下.答案:(1)3m/s(2)3.2N方向竖直向下10.(创新题)质量为50kg的男孩在距离河面40m高的桥上做“蹦极跳”,未拉伸前,长度为15m的弹性绳AB一端缚着他的双脚,另一端则固定在桥上的A点,如图甲所示,男孩从桥面下坠,达到的最低点为水面上的一点D,假定绳在整个运动中遵循胡克定律.不计空气阻力、男孩的身高和绳的重力(g取10m/s2).男孩的速率v跟下落的距离h的变化关系如图乙所示.问:(1)当男孩在D点时,求绳所储存的弹性势能;(2)绳的劲度系数是多少?(3)就男孩在AB、BC、CD期间的运动,试讨论作用于男孩的力.解析:(1)ΔEk=mghAD-Ep=0所以Ep=mghAD=2×104J.(2)当v=vm=20m/s(C点为平衡位置)时,有mg=kx=k(23-15),所以k=5008N/m=62.5N/m.(3)AB间仅受重力作用,BC间受重力与弹力作用,且重力大于弹力,CD 间弹力大于重力,重力的方向竖直向下,弹力的方向竖直向上.答案:(1)2×104J(2)62.5N/m(3)见解析1.(2011年河南安阳模拟)ABCD是一段竖直平面内的光滑轨道,AB段与水平面成α角,CD段与水平面成β角,其中BC段水平,且其长度大于L.现有两小球P、Q,质量分别是2m、m,用一长为L的轻质直杆连接,将P、Q由静止从高H处释放,在轨道转折处用光滑小圆弧连接,不考虑两小球在轨道转折处的能量损失.则小球P滑上CD轨道的最大高度h为()A.h=HB.h=H+-C.h=H+LsinβD.h=H+-解析:选B.P、Q整体上升的过程中,机械能守恒,以地面为重力势能的零势面,根据机械能守恒定律有:mgH+2mg(H+Lsinα)=2mgh+mg(h+Lsinβ),解方程得:h=H+-2.(2011年佛山联考)如图所示,AB为光滑的水平面,BC是倾角为α的足够长的光滑斜面(斜面体固定不动).AB、BC间用一小段光滑圆弧轨道相连.一条长为L的均匀柔软链条开始时静止的放在ABC面上,其一端D至B的距离为L-a.现自由释放链条,则:(1)链条下滑过程中,系统的机械能是否守恒?简述理由.(2)链条的D端滑到B点时,链条的速率为多大?解析:(1)链条机械能守恒.因为斜面是光滑的,只有重力做功,符合机械能守恒的条件.(2)设链条质量为m,始末状态的重力势能变化可认为是由L-a段下降高度h引起的,即:h=(L-a2+a)•sinα=L+a2•sinα,而该部分的质量为:m′=L-aLm即重力势能变化量为:ΔEp=m′gh=L-aLmg•L+a2sinα=L2-a22Lmgsinα因为软链的初速度为零,所以有:ΔEk=12mv2由机械能守恒定律ΔEp减=ΔEk增得:L2-a22Lmgsinα=12mv2即:v=-答案:(1)见解析-。
2012届高考物理总复习课时训练卷(带答案和解释)
2012届高考物理总复习课时训练卷(带答案和解释)1.一天,下着倾盆大雨,某人乘坐列车时发现车厢的双层玻璃窗内积水了,列车进站过程中,他发现水的形状应是()解析:列车进站减速,水要保持原来运动状态,故前倾,双层玻璃中的水有相对列车向前运动的趋势,所以使前进方向水增高,选C.答案:C2.2010年第十一届全国极限运动大赛滑板比赛在湖州成功举办.如图所示,在水平地面上的一名滑板运动员双脚站在滑板上以一定的速度向前滑行,在横杆前起跳并越过杆,从而使运动员与滑板分别从杆的上、下方通过.假设运动员和滑板在运动过程中受到的各种阻力忽略不计,运动员能顺利完成该动作,最终仍能落在滑板原来的位置,要使这个表演成功,运动员在起跳的过程中有()A.双脚对滑板的作用力方向竖直向上B.运动员对滑板的作用力大小等于运动员的重力C.跳起之前运动员只受两个力作用D.滑板对运动员的作用力方向向上偏前解析:因为运动员在滑板向上的作用力下跳起,由作用力与反作用力的关系可知,双脚对滑板的作用力竖直向下,A错误;由于滑板对运动员的作用力大于运动员的重力,所以运动员对滑板的作用力大于运动员的重力,B错误;跳起之前,运动员只受两个力作用,C正确;滑板对运动员的作用力竖直向上,运动员能向前运动是因为其惯性,D错误.答案:C3.在都灵冬奥会上,张丹和张昊一起以完美的表演赢得了双人滑冰比赛的银牌.在滑冰表演刚开始时他们静止不动,随着优美的音乐响起在相互猛推一下之后他们分别向相反方向运动.假定两人与冰面间的动摩擦因数相同.已知张丹在冰上滑行的距离比张昊远,这是由于() A.在推的过程中,张丹推张昊的力小于张昊推张丹的力B.在推的过程中,张丹推张昊的时间小于张昊推张丹的时间C.在刚分开时,张丹的初速度大于张昊的初速度D.在刚分开时,张丹的加速度小于张昊的加速度解析:根据牛顿第三定律,在推的过程中,作用力和反作用力是等大、反向、共线的,它们总是同时产生、同时消失、同时变化的,所以推力大小相等,作用时间相同.由于两人和冰面的动摩擦因数相同,根据牛顿第二定律求得两人的加速度相同(均为μg),由运动学公式v2=2ax及,加速度相同可知,张丹在冰上滑行的距离比张昊远,说明在刚分开时,张丹的初速度大于张昊的初速度,故选C.答案:C4.(2010年东莞模拟)跳高运动员蹬地后上跳,在起跳过程中() A.运动员蹬地的作用力大小大于地面对他的支持力大小B.运动员蹬地的作用力大小等于地面对他的支持力大小C.运动员所受的支持力和重力相平衡D.运动员所受的合力一定向上解析:运动员蹬地的作用力与地面对他的支持力是作用力和反作用力,大小相等、方向相反,B正确;运动员起跳过程,是由静止获得速度的过程,因而有竖直向上的加速度,合力竖直向上,运动员所受的支持力大于重力,D正确.答案:BD5.(2010年无锡模拟)下列关于力和运动的关系的说法中,正确的是() A.没有外力作用时,物体不会运动,这是牛顿第一定律的体现B.物体受力越大,运动得越快,这是符合牛顿第二定律的C.物体所受合外力为零,则速度一定为零;物体所受合外力不为零,则速度也一定不为零D.物体所受的合外力最大时,速度却可以为零;物体所受的合外力最小时,速度却可以最大解析:运动不需要力来维持,物体不受力时,可以做匀速运动,A不正确;物体受力大,加速度大,速度变化快,但速度不一定大,B不正确;力的大小与速度大小之间没有直接联系,C不正确,D正确.答案:D6.如图所示,一个劈形物ABC各面光滑,放在固定的斜面上,AB成水平并放上一个光滑小球,把物体ABC从静止开始释放,则小球在碰到斜面以前的运动轨迹是()A.沿斜面的直线B.竖直的直线C.弧形曲线D.折线解析:因小球在物体ABC上从静止释放过程中,水平方向不受力的作用,由于惯性,水平方向仍保持静止而没有运动,所以小球在碰到斜面前的运动轨迹是竖直线,故选B项.答案:B7.(2010年泰安模拟)根据牛顿运动定律,以下说法中正确的是() A.人只有在静止的车厢内,竖直向上高高跳起后,才会落在车厢的原来位置B.人在沿直线匀速前进的车厢内,竖直向上高高跳起后,将落在原来位置C.人在沿直线加速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方D.人在沿直线减速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方解析:由于惯性,人竖直向上跳起后水平方向的速度与人跳起时车的速度相等,故车静止时或做匀速直线运动时,人均落在原来的位置,故A错误,B正确;当车加速前进时,人竖直跳起后,水平方向以此时该车的速度做匀速直线运动,而车做加速直线运动,故人将落在起跳点的后方,C正确;同样的道理,可分析D错误.答案:BC8.(2010年芜湖质量检测)利用牛顿第三定律,有人设计了一种交通工具,在平板车上装了一个电风扇,风扇运转时吹出的风全部打到竖直固定在小车中间的风帆上,靠风帆受力而向前运动,如图所示.对于这种设计,下列分析中正确的是()A.根据牛顿第二定律,这种设计能使小车运行B.根据牛顿第三定律,这种设计能使小车运行C.这种设计不能使小车运行,因为它违反了牛顿第二定律D.这种设计不能使小车运行,因为它违反了牛顿第三定律解析:风扇运转时,风扇对空气有作用力,同时空气对风扇也有反作用力,空气对帆有作用力,帆、风扇都固定在车上,那么对小车分析,受到空气对车上的帆和空气对风扇的方向相反、大小相等的作用力,小车受力平衡,车不动,正确选项为D.答案:D9.(2010年辽宁大连)如图所示为杂技“顶杆”表演,一人站在地上,称为“底人”,肩上扛一质量为M的竖直竹竿,当竿上一质量为m的人以加速度a加速下滑时,竿对“底人”的压力大小大小为()A.(M+m)gB.(M+m)g-maC.(M+m)g+maD.(M-m)g解析:把质量为m的人和竹竿当作整体,则(M+m)g-FN=ma,所以FN=(M+m)g-ma,再由牛顿第三定律可知,竿对“底人”的压力大小也为(M+m)g-ma.答案:B10.大人能拉动小孩,而小孩不能拉动大人,可见,大人拉小孩的力比小孩拉大人的力大.还有,用手打人,总是被打的人感到痛,甚至受伤.可见,作用力大于反作用力.因此牛顿第三定律不成立.你认为这种看法对吗?为什么?解析:这些看法不对.大人拉小孩与小孩拉大人的力为一对作用力与反作用力大小相等、方向相反,大人没动,因拉力与摩擦力平衡,而小孩受到的拉力大于地面给他的摩擦力,改变了运动状态.用手打人,手对被打的人与被打的人对手之间的力为一对作用力与反作用力依然大小相等,之所以被打的人感到痛是因为受力部位不同,肌肉承受能力不同.答案:见解析11.(2009年安徽)在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚韧不拔的意志和自强不息的精神.为了探求上升过程中运动员与绳索和吊椅间的作用,可将过程简化.一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员拉住,如图所示.设运动员的质量为65kg,吊椅的质量为15kg,不计定滑轮与绳子间的摩擦,重力加速度取g=10m/s2.当运动员与吊椅一起以加速度a=1m/s2上升时,试求:(1)运动员竖直向下拉绳的力;(2)运动员对吊椅的压力.解析:(1)设运动员和吊椅的质量分别为M和m,绳拉运动员的力为F.以运动员和吊椅整体为研究对象,受到重力的大小为(M+m)g,向上的拉力为2F,根据牛顿第二定律有2F-(M+m)g=(M+m)a解得:F=440N根据牛顿第三定律,运动员拉绳的力的大小为440N,方向竖直向下.(2)以运动员为研究对象,运动员受到三个力的作用,重力大小Mg,绳的拉力F,吊椅对运动员的支持力FN.根据牛顿第二定律F+FN-Mg=Ma,解得FN=275N根据牛顿第三定律,运动员对吊椅压力大小为275N,方向竖直向下.答案:(1)440N(2)275N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
廊坊八中2012年高考一轮复习课时作业 课时作业26 带电粒子在复合场中的运动时间:45分钟 满分:100分一、选择题(8×8′=64′)图11.目前有一种磁强计,用于测定地磁场的磁感应强度.磁强计的原理如图1所示,电路有一段金属导体,它的横截面是宽为a 、高为b 的长方形,放在沿y 轴正方向的匀强磁场中,导体中通有沿x 轴正方向、大小为I 的电流.已知金属导体单位体积中的自由电子数为n ,电子电荷量为e ,金属导电过程中,自由电子所做的定向移动可视为匀速运动.两电极M 、N 均与金属导体的前后两侧接触,用电压表测出金属导体前后两个侧面间的电势差为U .则磁感应强度的大小和电极M 、N 的正负为( )A.nebU I ,M 正、N 负B.neaU I ,M 正、N 负C.nebU I,M 负、N 正D.neaU I,M 负、N 正解析:由左手定则知,金属中的电子在洛伦兹力的作用下将向前侧面聚集,故M 负、N 正.由F 电=F 洛即U a e =Be v ,I =ne v S =ne v ab ,得B =nebUI.答案:C图22.如图2所示,实线表示在竖直平面内匀强电场的电场线,电场线与水平方向成α角,水平方向的匀强磁场与电场正交,有一带电液滴沿斜向上的虚线l 做直线运动,l 与水平方向成β角,且α>β,则下列说法中错误的是( )A .液滴一定做匀变速直线运动B.液滴一定带正电C.电场线方向一定斜向上D.液滴一定做匀速直线运动解析:在电磁场复合区域粒子一般不会做匀变速直线运动,因速度变化洛伦兹力变化,合外力一般变化,如果v∥B,f洛=0,也可以做匀变速运动.答案:A图33.在某地上空同时存在着匀强的电场与磁场,一质量为m的带正电小球,在该区域内沿水平方向向右做直线运动,如图3所示,关于场的分布情况可能的是() A.该处电场方向和磁场方向垂直B.电场竖直向上,磁场垂直纸面向里C.电场斜向里侧上方,磁场斜向外侧上方,均与v垂直D.电场水平向右,磁场垂直纸面向里解析:带电小球在复合场中运动一定受重力和电场力,是否受洛伦兹力需具体分析.A 选项中若电场、磁场方向与速度方向垂直,则洛伦兹力与电场力垂直,如果与重力的合力为0就会做直线运动.B选项中电场力、洛伦兹力都向上,若与重力合力为0,也会做直线运动.C选项中电场力斜向里侧上方,洛伦兹力向外侧下方,若与重力的合力为0,就会做直线运动.D选项三个力的合力不可能为0,因此选项A、B、C正确.答案:ABC图44.如图4所示,光滑绝缘杆固定在水平位置上,使其两端分别带上等量同种正电荷Q1、Q2,杆上套着一带正电小球,整个装置处在一个匀强磁场中,磁感应强度方向垂直纸面向里,将靠近右端的小球从静止开始释放,在小球从右到左的运动过程中,下列说法中正确的是()A.小球受到的洛伦兹力大小变化,但方向不变B.小球受到的洛伦兹力将不断增大C.小球的加速度先减小后增大D.小球的电势能一直减小解析:Q1、Q2连线上中点处电场强度为零.从中点向两侧电场强度增大且方向都指向中点,故小球所受电场力指向中点.小球从右向左运动过程中,小球的加速度先减小后增大,C正确;速度先增大后减小,洛伦兹力大小变化,由左手定则知,洛伦兹力方向不变.故A正确,B 错误;小球的电势能先减小后增大,D 错误.答案:AC图55.(2009·广东高考)如图5是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有强度为B 0的匀强磁场.下列表述正确的是( )A .质谱仪是分析同位素的重要工具B .速度选择器中的磁场方向垂直纸面向外C .能通过狭缝P 的带电粒子的速率等于E /BD .粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小解析:粒子先在电场中加速,进入速度选择器做匀速直线运动,最后进入磁场做匀速圆周运动.在速度选择器中受力平衡:Eq =q v B 得v =E /B ,方向由左手定则可知磁场方向垂直纸面向外,B 、C 正确.进入磁场后,洛伦兹力提供向心力,q v B 0=m v 2R 得,R =m v qB 0,所以荷质比不同的粒子偏转半径不一样,所以,A 对,D 错.答案:ABC6.在真空中,匀强电场方向竖直向下,匀强磁场方向垂直纸面向里.三个油滴带有等量同种电荷,其中a 静止,b 向右匀速运动,c 向左匀速运动,则它们的重力G a 、G b 、G c 的关系为( )A .G a 最大B .G b 最大C .G c 最大D .不能确定解析:由a 静止有qE =G a ,故油滴带负电;对b 受力平衡有qE =q v B +G b ;对c 受力平衡有qE +q v B =G c .由此可知三个油滴的重力满足G c >G a >G b ,故选项C 正确.答案:C图67.如图6所示,质量为m 、电荷量为q 的微粒,在竖直向下的匀强电场、水平指向纸内的匀强磁场以及重力的共同作用下做匀速圆周运动,下列说法中正确的是( )A .该微粒带负电,电荷量q =mgEB .若该微粒在运动中突然分成荷质比相同的两个粒子,分裂后只要速度不为零且速度方向仍与磁场方向垂直,它们均做匀速圆周运动C .如果分裂后,它们的荷质比相同,而速率不同,那么它们运动的轨道半径一定不同D .只要一分裂,不论它们的荷质比如何,它们都不可能再做匀速圆周运动解析:带电微粒在有电场力、洛伦兹力和重力作用的区域能够做匀速圆周运动,说明重力必与电场力大小相等、方向相反,由于重力方向总是竖直向下,故微粒受电场力方向向上,从题图中可知微粒带负电,选项A 正确.微粒分裂后只要荷质比相同,所受电场力与重力一定平衡(选项A 中的等式一定成立),只要微粒的速度不为零,必可在洛伦兹力作用下做匀速圆周运动,选项B 正确、D 错误.根据半径公式r =m vqB 可知,在荷质比相同的情况下,半径只跟速率有关,速率不同,则半径一定不同,选项C 正确.答案:ABC图78.目前,世界上正在研究一种新型发电机叫磁流体发电机.如图7表示了它的原理:将一束等离子体喷射入磁场,在场中有两块金属板A 、B ,这时金属板上就会聚集电荷,产生电压.如果射入的等离子体速度均为v ,两金属板的板长为L ,板间距离为d ,板平面的面积为S ,匀强磁场的磁感应强度为B ,方向垂直于速度方向,负载电阻为R ,电离气体充满两板间的空间.当发电机稳定发电时,电流表示数为I .那么板间电离气体的电阻率为( )A.S d (Bd vI -R ) B.S d (BL v I -R ) C.S L (Bd v I-R ) D.S L (BL v I-R ) 解析:当粒子受的电场力与洛伦兹力平衡时,两板电压即为电动势,即q v B =q Ud ,得U=Bd v .又I =U R +r,r =ρdS由此可解得ρ=S d (Bd vI -R ),故选项A 正确.答案:A二、计算题(3×12′=36′)图89.如图8所示,水平向左的匀强电场E =4 V/m ,垂直纸面向里的匀强磁场B =2 T ,质量m =1 g 的带正电的小物块A ,从M 点沿绝缘粗糙的竖直壁无初速滑下,滑行0.8 m 到N 点时离开竖直壁做曲线运动,在P 点时小物块A 瞬时受力平衡,此时速度与水平方向成45°.若P 与N 的高度差为0.8 m ,求:(1)A 沿壁下滑过程中摩擦力所做的功; (2)P 与N 的水平距离.解析:分清运动过程,应用动能定理列式求解.(1)物体在N 点时,墙对其弹力为零,水平方向Eq =q v B , 所以v =EB =2 m/s ,由M →N 过程据动能定理:mg MN +W f =12m v 2-0,所以W f =-6×10-3 J.图9(2)设在P 点速度为v ′其受力如图9所示,所以Eq =mg ,q v ′B =2Eq ,得v ′=2 2 m/s.设N 、P 水平距离x ,竖直距离y ,物体由N →P 过程电场力和重力做功,由动能定理 mgy -Eq ·x =12m v ′2-12m v 2,得x =0.6 m.答案:(1)-6×10-3 J (2)0.6 m图1010.如图10所示,Oxyz 坐标系的y 轴竖直向上,在坐标系所在的空间存在匀强电场和匀强磁场,电场方向与x 轴平行.从y 轴上的M 点(0,H,0)无初速释放一个质量为m 、电荷量为q 的带负电的小球,它落在xz 平面上的N (L,0,b )点(L >0,b >0).若撤去磁场则小球落在xz 平面的P 点(L,0,0).已知重力加速度为g .(1)已知匀强磁场方向与某个坐标轴平行,试判断其可能的具体方向; (2)求电场强度E 的大小; (3)求小球落至N 点时的速率v .解析:(1)用左手定则判断出:磁场方向为-x 方向或-y 方向.(2)在未加匀强磁场时,带电小球在电场力和重力作用下落到P 点,设运动时间为t ,小球自由下落,有H =12gt 2小球沿x 轴方向只受电场力作用F E =qE 小球沿x 轴的位移为L =12at 2小球沿x 轴方向的加速度a =F Em联立求解,得:E =mgLqH(3)带电小球在匀强磁场和匀强电场共存的区域运动时,洛仑兹力不做功电场力做功为W E =qEL重力做功为W G =mgH设落到N 点速度大小为v ,根据动能定理有mgH +qEL =12m v 2解得v =2g H 2+L 2H答案:(1)-x 方向或-y 方向 (2)mgLqH(3)2g H 2+L 2H图1111.(2009·辽宁/宁夏高考)如图11所示,在第一象限有一匀强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一匀强磁场,磁场方向与纸面垂直.一质量为m 、电荷量为-q (q >0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离开磁场.粒子在磁场中的运动轨迹与y 轴交于M 点.已知OP =l ,OQ =23l .不计重力.求:(1)M 点与坐标原点O 间的距离; (2)粒子从P 点运动到M 点所用的时间. 解析:图12(1)带电粒子在电场中做类平抛运动,沿y 轴负方向上做初速度为零的匀加速运动,设加速度的大小为a ;在x 轴正方向上做匀速直线运动,设速度为v 0;粒子从P 点运动到Q 点所用的时间为t 1,进入磁场时速度方向与x 轴正方向夹角为θ,则a =qEm ①t 1=2y 0a② v 0=x 0t 1③其中x 0=23l ,y 0=l .又有tan θ=at 1v 0④联立②③④式,得θ=30°⑤因为M 、O 、Q 点在圆周上,∠MOQ =90°,所以MQ 为直径.从图中的几何关系可知, R =23l ⑥ MO =6l ⑦(2)设粒子在磁场中运动的速度为v ,从Q 到M 点运动的时间为t 2,则有 v =v 0cos θ⑧ t 2=πR v ⑨带电粒子自P 点出发到M 点所用的时间t 为 t =t 1+t 2⑩联立①②③⑤⑥⑧⑨⑩式,并代入数据得t =⎝⎛⎭⎫32π+1 2mlqE ⑪ 答案:(1)6l (2)⎝⎛⎭⎫32π+1 2mlqE。