HUBA_604[1]

合集下载

[资料]HUBA压力传感器

[资料]HUBA压力传感器

HUBA压力传感器000TECK/泰克仪表代理瑞士HUBA压力传感器(HUBA511压力传感器、HUBA501压力传感器、HUBA520OEM型压力传感器、HUBA506压力传感器)HUBA压力传感器广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业000常年备货列表:000HUBA压力传感器511系列:000Huba 511.900003572 压力传感器-1-0 BAR 4-20 mA R1/4Huba 511.911003571 压力传感器0-1 BAR 4-20 mA R1/4Huba 511.911004041 压力传感器0-1 BAR 0.5-4.5VHuba 511.914001571 压力传感器0-2.5 BAR 0-5VDCHuba 511.914603571 压力传感器0-2.5 BAR 4-20 mAHuba 511.933003242 压力传感器0-40 BAR 4-20 mA 付AMPHuba 511.933003572 压力传感器0-40 BAR 4-20 mA R1/4HUBA压力传感器501系列:000Huba 510.930S03740 压力传感器0-10BAR 4-20MA,R1/4Huba 510.931S03030 压力传感器0-16 BAR 出线Huba 510.933S03540 压力传感器0-40BARHuba 510.99017 压力传感器0-40BAR 4-20mAHuba 510.99037 压力传感器0~25BAR 出线1.5M R1/4Huba 510.99069 压力传感器0-400BAR 0-10V G1/4 M12瑞士HUBA506压力传感器常用型号:(常备货)000Huba 506.930A03021W 压力传感器-1~9 BAR 4-20mAHuba 506.932A03121W 压力传感器0-25BAR 4-20MAHuba 506.932A03141W 压力传感器-1~25bar 4~20mA R1/4Huba 506.933A03141W 压力传感器-1-40BAR 4-20ma R1/4Huba 506.933A06121W 压力传感器-1~39bar 1~5VTECK/泰克仪表所销售的瑞士HUBA压力传感器为瑞士进口产品,公司备有常规型号,供货周期为即时发货。

净化空调系统控制方案说明

净化空调系统控制方案说明

净化空调系统控制方案说明一、室内恒温恒湿控制机组1 系统目标对服务于医院净化室(手术室)的空调系统及其配套设备,采用组态灵活SIEMENS控制器进行全面的监控和管理,使之满足空气环境之要求,同时达到高效节能运行之目的。

2设计原则2.1 采用当今最先进的SIEMENS控制产品,运用数字控制技术,建立全部受控设备的控制系统;2.2 注重系统的可靠性和维护、管理的便捷性,采用一对一控制,即一台现场控制器控制一套空调系统;2.3 系统控制精度:温度≤±1℃,湿度≤±5%。

3机组启动控制方式组合式空调机组:送风机起动控制,室内排风机随送风机起停。

4空调机组现场控制站●设备配置✧控制器:控制器采用SIEMENS可编程带背光液晶显示控制器。

✧温/湿度传感器:采用SIEMENS风道式温湿度传感器对回风温/湿度进行采样监控。

✧空气压差开关:采用SIEMENS空气压差开关,空调机组缺风、中效滤网报警、高效滤网报警监控。

(空调机组缺风压差开关、中效滤网报警压差开关由空调厂家随机配备,配备压差开关也可为其他品牌产品。

)✧高温断路开关:采用风道式手动复位高温断路开关,对电加热进行监控。

✧水阀执行器:冷水阀采用SIEMENS比例调节阀及配套电动执行器。

✧加湿器控制:输出0-10无级比例调节信号控制加湿量。

✧综合控制:提供温度、湿度显示和设定,机组起停、值机、运行、故障、高效滤网报警等操作和监控信号。

●功能配置通过现场控制柜配套相关外围设备可实现如下功能:✧空调机组各种报警及安全保护:包括消防连锁、缺风压差报警、滤网压差报警、紧急停机、机组高温报警、风机故障报警、各种电气保护功能等;✧空调机组各参数检测功能:包括机组回风(送风)温度、湿度。

✧空调机组各状态检测功能:风机运行、故障信号;急停信号;值机信号。

✧空调系统各控制功能:恒温恒湿节能控制;快速逼近设定值控制;空调系统控制参数设定与修改(温湿度设定参数既可在控制柜修改,也可在每间手术室情报面板单独修改)。

高真空用门阀 XGT312-50336- XGT313-50336- 使用说明书

高真空用门阀 XGT312-50336-   XGT313-50336-   使用说明书

文件No.XG*-OMV0028-A高真空用门阀XGT312-50336-**XGT313-50336-**安全注意事项 2~31.规格 42.型式表示 53.构造・作动 6~84.注意事项 9~105.更换零部件表 116.维护方法 117.故障与对策 12附件资料・・・维修要领书 13~15门阀安全注意事项此处所示的注意事项是为了确保您能安全正确地使用本产品,预先防止对您和他人造成危害和伤害而制定的。

这些注意事项,按照危害和损伤的大小及紧急程度分为“注意”“警告”“危险”三个等级。

无论哪个等级都是与安全相关的重要内容,所以除了遵守国际规格(ISO/IEC)、日本工业规格(JIS)※1)以及其他安全法规※2)外,这些内容也请务必遵守。*1) ISO 4414: Pneumatic fluid power -- General rules relating to systemsISO 4413: Hydraulic fluid power -- General rules relating to systemsIEC 60204-1: Safety of machinery -- Electrical equipment of machines (Part 1: General requirements) ISO 10218-1992: Manipulating industrial robots-SafetyJIS B 8370: 空气压系统通则JIS B 8361: 油压系统通则JIS B 9960-1: 机械类的安全性‐机械的电气装置(第1部: 一般要求事项)JIS B 8433-1993: 产业用操作机器人-安全性等*2) 劳动安全卫生法等注意误操作时,有人员受伤的风险,以及物品破损的风险。警告误操作时,有人员受到重大伤害甚至死亡的风险。

危险在紧迫的危险状态下,如不回避会有人员受到重大伤害甚至死亡的风险。警告①本产品的适合性由系统设计者或规格制定者来判断。因为本产品的使用条件多样化,所以请由系统的设计者或规格的制定者来判断系统的适合性。

NETGEAR WAX628 Insight Managed WiFi 6 AX5400 Acces

NETGEAR WAX628 Insight Managed WiFi 6 AX5400 Acces

NETGEAR, Inc.350 East Plumeria Drive San Jose, CA 95134, USA© NETGEAR, Inc., NETGEAR and the NETGEAR Logo are trademarks of NETGEAR, Inc. Anynon‑NETGEAR trademarks are used for reference purposes only.July 2022NETGEAR INTERNATIONAL LTD Floor 1, Building 3,University Technology Centre Curraheen Road, Cork, T12EF21, IrelandInstallation GuideInsight Managed WiFi 6 AX5400 Access PointNOTE: You can power up the WAX628 by connecting it to a PoE+ switch, or you can purchase a power adapter separately.Overview1Power/Cloud LED 2LAN 1 LED 3LAN 2 LED 4 2.4 GHz WLAN LED 55 GHz WLAN LED 6DC power connector 7LAN 1/PoE+ port 8LAN 2 port 9Reset button1. Connect to power and InternetPower up the WAX628 access point (AP) by connecting the LAN 1/PoE+ port to a PoE+ switch that supplies 802.3at power, or to a power adapter.Make sure that the AP has Internet connectivity: •If you connect the AP to a switch, make sure that the switch has Internet connectivity. •If you use a power adapter to provide power, use an Ethernet cable to connect theLAN 1/PoE+ port on the AP to a router or other network device on a network with Internetconnectivity.Metal bracket with T‑bar, lock screw,and 4 short screws 3 tall screws and anchors for wall mountingAfter starting up and during setup, the AP’s LEDs can light in these colors:For more information about the LEDs, see the user manual, which you can download by visiting /support/download.Terms of UseThis device must be professionally installed. It is the installer’s responsibility to follow local country regulations including operations within legal frequency channels, output power and DFS requirements. Vendor or Reseller or Distributor is not responsible for illegal wireless operations. Please see Device’s Terms and Conditions for more details.B. Configure the AP with the NETGEAR Insight app1. Connect your mobile device to the AP’s setup SSID (WiFi network name) using one of thefollowing methods:• Scan the QR code : You can use the QR code on the label to connect to the APs SSID.•Connect manually : The setup SSID is on the AP label on the bottom of the AP and is shown in the format NETGEARxxxxxx‑SETUP , where xxxxxx are the last six digits of the AP’s MAC address. The default WiFi passphrase is sharedsecret .2. Open the NETGEAR Insight app.3. Enter the email address and password for your account and tap LOG IN .4. Add a new network location where you want to add the AP by tapping the Next button , andthen tapping OK . You can also select an existing network location.The device admin password that you entered for the new network location replaces the existing admin password on all devices that you add to the network location.In most situations, Insight detects the AP automatically, which can take several minutes.5. To add the AP to your network location, do one of the following:• If the AP is automatically detected and listed in the Insight Manageable Devices section, tap the icon for the AP , and then tap the ADD DEVICE button.•If the AP is not automatically detected, or you prefer to use another method to add the AP , tap the + icon in the top bar, and do one of the following:-Tap the SCAN BARCODE OR QR CODE button, and then scan the AP’s code. -Tap the Enter Serial Number and MAC Address link, and then manually enter theAP’s serial number and MAC address.A. Configure the AP with the NETGEAR Insight Cloud Portal1. Make sure that the AP is connected to the Internet.2. On a computer or tablet, visit /.3. Enter the email address and password for your NETGEAR account and click the NETGEARSign In button.4. Only if you are an Insight Pro user, select the organization to which you want to add the AP .5. Add a new network location where you want to add the AP , or select an existing networklocation.6. Click the + (Add Device ) button.NOTE: If you are an Insight Pro user, you can either add a single device or you can add multiple Insight managed devices by uploading a device list as a CSV file.7. In the Add New Device pop‑up page, enter the AP’s serial number and MAC address, andthen click Go .8. After Insight verifies that the AP is a valid product, you can optionally change the devicename of the AP , and then click Next .When the AP is successfully added to the portal, a page displays a confirmation that setup is in progress.NOTE: If the AP is online but Insight does not detect the AP , the firewall at the physical location where the AP is located might prevent communication with the Insight cloud. If this happens, add port and DNS entries for outbound access to the firewall. For more information, see /000062467.The AP automatically updates to the latest Insight firmware and Insight location configuration. This might take up to 10 minutes, during which time the AP restarts.The AP is now an Insight managed device that is connected to the Insight cloud‑based management platform. If the Power/Cloud LED was solid green, it lights solid blue.You can use the Insight Cloud portal or Insight app to configure and manage the AP .2. Configure and manage the APInsight remote management offers additional features and add‑on services that are not available in standalone mode. Your new Insight‑manageable device comes with Insight included. You can choose an Insight Premium or Insight Pro account. For more information, visit the following pages:• /business/services/insight/subscription/•/000061848/How‑do‑I‑use‑NETGEAR‑s‑one‑year‑of‑Insight‑included‑subscriptionTo configure and manage the AP , use one of the methods described in the following table.A.Remotely Cloud/remote modeNETGEAR Insight Cloud PortalSee A. Configure the AP with the NETGEAR Insight Cloud Portal B.Remotely Cloud/remote mode NETGEAR Insight appSee B. Configure the AP with the NETGEAR Insight app C.LocallyStandalonemodeWeb browserSee C. Configure the AP as standalone in a web browserIf connected to 2.5 Gbps equipment, the WAX628 LAN 1/PoE+ port supports Ethernet speeds up to 2.5 Gbps within your LAN. The preceding figures show a NETGEAR MS510TXUP switch, which supports speeds of 2.5 Gbps and higher, as well as PoE+. If your Internet connection, modem, router, and switch support a speed of 2.5 Gbps, the AP’s Internet connection also functions at 2.5 Gbps. Otherwise, the Internet connection functions at 1 Gbps, which is a common speed.NOTE: The AP receives an IP address from a DHCP server (or a router that functions as a DHCP server) in your network. If your network does not include a DHCP server, the AP uses its default IP address: 192.168.0.100.Sample connections for a NETGEAR Insight setupSample connections for a standalone setupIf you want to use Insight remote management, your NETGEAR account is also your Insight account. Your NETGEAR account credentials let you log in as an Insight Premium user, or if you upgrade to an Insight Pro account, as an Insight Pro user.If you don’t have an Insight account yet, you can create an account now.For information about creating an Insight Premium account or upgrading to an Insight Pro account, /000044343.Continued on the next page.Visit /support to get your questions answered and access the latest downloads. You can also check out our NETGEAR Community for helpful advice at .Support and CommunitySi ce produit est vendu au Canada, vous pouvez accéder à ce document en français canadien à https:///support/download/.(If this product is sold in Canada, you can access this document in Canadian French at https:///support/download/.)For regulatory compliance information including the EU Declaration of Conformity, visit https:///about/regulatory/.See the regulatory compliance document before connecting the power supply.For NETGEAR’s Privacy Policy, visit https:///about/privacy‑policy.By using this device, you are agreeing to NETGEAR’s Terms and Conditions athttps:///about/terms‑and‑conditions. If you do not agree, return the device to your place of purchase within your return period.Do not use this device outdoors. The PoE source is intended for intra building connection only.For 6 GHz devices: Only use this device indoors. The operation of 6 GHz devices is prohibited on oil platforms, cars, trains, boats, and aircraft, except that operation of this device is permitted in large aircraft while flying above 10,000 feet. Operation of transmitters in the 5.925-7.125 GHz band is prohibited for control of or communications with unmanned aircraft systems.Regulatory and LegalMounting optionsYou can mount the AP to a wall or to a ceiling with a 15/16 in. (24 mm) T‑bar, or you can install the AP freestanding on a flat surface.We recommend that you use a flat Ethernet cable so that the cable fits in the narrow space between the AP and the surface on which it is mounted or placed.Before you mount the AP , first set up and test the AP to verify WiFi network connectivity.Mount the AP on a wallshown in the format NETGEARxxxxxx‑SETUP , where xxxxxx are the last six digits of the AP’s MAC address. The default WiFi passphrase is sharedsecret .2. On your computer, launch a web browser and, in the address bar, enter .Your browser might display a security warning because of the self-signed certificate on the AP , which is expected behavior. You can proceed, or add an exception for the security warning. For more information, see /000062980/.3. Enter the AP user name and default password. The user name is admin . The defaultpassword is password . The user name and password are case‑sensitive.4. Select the Web-browser (Local) radio button.The Day Zero Easy Setup page displays.5. Follow the instructions on the Day Zero Easy Setup page, and then click the Apply button.We recommend that you make a note of the new admin password, SSID (WiFi network name), WiFi passphrase, and IP address to keep in a safe place. A message displays to indicate that your settings are being applied.6. If the WiFi connection of your computer or mobile is terminated, reconnect to the AP usingthe new SSID and WiFi passphrase that you set on the Day Zero Easy Setup page.7. When the login page displays, you can log in to the AP using your new admin password toconfigure the AP .For information about configuring the AP , see the user manual, which you can download by visiting /support/download.We recommend that you register your AP with NETGEAR.8. To register your AP with NETGEAR:a. From a computer or mobile device that is connected to the Internet, visit.b. Log in to your NETGEAR account.If you do not already have a NETGEAR account, you can create an account now.The My Products page displays.c. From the menu on the left, select Register a Product.d. In the Serial Number field, type the serial number of your AP .The serial number is 13 digits long. It is printed on the AP label.e. From the Date of Purchase menu, select the date that you purchased the AP .f.Click the REGISTER button.Your AP is registered to your NETGEAR account.A confirmation email is sent to your NETGEAR account email address.CAUTION: Make sure that the wall is not damaged. 1. Place the mounting plate on the wall.2. Mark the wall where the mounting holes are.3. wall.4. the anchors are flush with the wall.5. wall.NOTE: without anchors.6. Connect any cables.7. Attach the AP to the mounting plate.8. Twist the AP clockwise to lock it onto themounting plate.Next button..。

Analysis of Genetic Diversity and Population Structure

Analysis of Genetic Diversity and Population Structure

Agricultural Sciences in China2010, 9(9): 1251-1262September 2010Received 30 October, 2009 Accepted 16 April, 2010Analysis of Genetic Diversity and Population Structure of Maize Landraces from the South Maize Region of ChinaLIU Zhi-zhai 1, 2, GUO Rong-hua 2, 3, ZHAO Jiu-ran 4, CAI Yi-lin 1, W ANG Feng-ge 4, CAO Mo-ju 3, W ANG Rong-huan 2, 4, SHI Yun-su 2, SONG Yan-chun 2, WANG Tian-yu 2 and LI Y u 21Maize Research Institute, Southwest University, Chongqing 400716, P.R.China2Institue of Crop Sciences/National Key Facility for Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences,Beijing 100081, P.R.China3Maize Research Institute, Sichuan Agricultural University, Ya’an 625014, P.R.China4Maize Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100089, P.R.ChinaAbstractUnderstanding genetic diversity and population structure of landraces is important in utilization of these germplasm in breeding programs. In the present study, a total of 143 core maize landraces from the South Maize Region (SR) of China,which can represent the general profile of the genetic diversity in the landraces germplasm of SR, were genotyped by 54DNA microsatellite markers. Totally, 517 alleles (ranging from 4 to 22) were detected among these landraces, with an average of 9.57 alleles per locus. The total gene diversity of these core landraces was 0.61, suggesting a rather higher level of genetic diversity. Analysis of population structure based on Bayesian method obtained the samilar result as the phylogeny neighbor-joining (NJ) method. The results indicated that the whole set of 143 core landraces could be clustered into two distinct groups. All landraces from Guangdong, Hainan, and 15 landraces from Jiangxi were clustered into group 1, while those from the other regions of SR formed the group 2. The results from the analysis of genetic diversity showed that both of groups possessed a similar gene diversity, but group 1 possessed relatively lower mean alleles per locus (6.63) and distinct alleles (91) than group 2 (7.94 and 110, respectively). The relatively high richness of total alleles and distinct alleles preserved in the core landraces from SR suggested that all these germplasm could be useful resources in germplasm enhancement and maize breeding in China.Key words :maize, core landraces, genetic diversity, population structureINTRODUCTIONMaize has been grown in China for nearly 500 years since its first introduction into this second biggest pro-duction country in the world. Currently, there are six different maize growing regions throughout the coun-try according to the ecological conditions and farming systems, including three major production regions,i.e., the North Spring Maize Region, the Huang-Huai-Hai Summer Maize Region, and the Southwest MaizeRegion, and three minor regions, i.e., the South Maize Region, the Northwest Maize Region, and the Qingzang Plateau Maize Region. The South Maize Region (SR)is specific because of its importance in origin of Chi-nese maize. It is hypothesized that Chinese maize is introduced mainly from two routes. One is called the land way in which maize was first brought to Tibet from India, then to Sichuan Province in southwestern China. The other way is that maize dispersed via the oceans, first shipped to the coastal areas of southeast China by boats, and then spread all round the country1252LIU Zhi-zhai et al.(Xu 2001; Zhou 2000). SR contains all of the coastal provinces and regions lie in southeastern China.In the long-term cultivation history of maize in south-ern China, numerous landraces have been formed, in which a great amount of genetic variation was observed (Li 1998). Similar to the hybrid swapping in Europe (Reif et al. 2005a), the maize landraces have been al-most replaced by hybrids since the 1950s in China (Li 1998). However, some landraces with good adapta-tions and yield performances are still grown in a few mountainous areas of this region (Liu et al.1999). Through a great effort of collection since the 1950s, 13521 accessions of maize landraces have been cur-rently preserved in China National Genebank (CNG), and a core collection of these landraces was established (Li et al. 2004). In this core collection, a total of 143 maize landrace accessions were collected from the South Maize Region (SR) (Table 1).Since simple sequence repeat ( SSR ) markers were firstly used in human genetics (Litt and Luty 1989), it now has become one of the most widely used markers in the related researches in crops (Melchinger et al. 1998; Enoki et al. 2005), especially in the molecular characterization of genetic resources, e.g., soybean [Glycine max (L.) Merr] (Xie et al. 2005), rice (Orya sativa L.) (Garris et al. 2005), and wheat (Triticum aestivum) (Chao et al. 2007). In maize (Zea mays L.), numerous studies focusing on the genetic diversity and population structure of landraces and inbred lines in many countries and regions worldwide have been pub-lished (Liu et al. 2003; Vegouroux et al. 2005; Reif et al. 2006; Wang et al. 2008). These activities of documenting genetic diversity and population structure of maize genetic resources have facilitated the under-standing of genetic bases of maize landraces, the utili-zation of these resources, and the mining of favorable alleles from landraces. Although some studies on ge-netic diversity of Chinese maize inbred lines were con-ducted (Yu et al. 2007; Wang et al. 2008), the general profile of genetic diversity in Chinese maize landraces is scarce. Especially, there are not any reports on ge-netic diversity of the maize landraces collected from SR, a possibly earliest maize growing area in China. In this paper, a total of 143 landraces from SR listed in the core collection of CNG were genotyped by using SSR markers, with the aim of revealing genetic diver-sity of the landraces from SR (Table 2) of China and examining genetic relationships and population struc-ture of these landraces.MATERIALS AND METHODSPlant materials and DNA extractionTotally, 143 landraces from SR which are listed in the core collection of CNG established by sequential strati-fication method (Liu et al. 2004) were used in the present study. Detailed information of all these landrace accessions is listed in Table 1. For each landrace, DNA sample was extracted by a CTAB method (Saghi-Maroof et al. 1984) from a bulk pool constructed by an equal-amount of leaves materials sampled from 15 random-chosen plants of each landrace according to the proce-dure of Reif et al. (2005b).SSR genotypingA total of 54 simple sequence repeat (SSR) markers covering the entire maize genome were screened to fin-gerprint all of the 143 core landrace accessions (Table 3). 5´ end of the left primer of each locus was tailed by an M13 sequence of 5´-CACGACGTTGTAAAACGAC-3´. PCR amplification was performed in a 15 L reac-tion containing 80 ng of template DNA, 7.5 mmol L-1 of each of the four dNTPs, 1×Taq polymerase buffer, 1.5 mmol L-1 MgCl2, 1 U Taq polymerase (Tiangen Biotech Co. Ltd., Beijing, China), 1.2 mol L-1 of forward primer and universal fluorescent labeled M13 primer, and 0.3 mol L-1 of M13 sequence tailed reverse primer (Schuelke 2000). The amplification was carried out in a 96-well DNA thermal cycler (GeneAmp PCR System 9700, Applied Biosystem, USA). PCR products were size-separated on an ABI Prism 3730XL DNA sequencer (HitachiHigh-Technologies Corporation, Tokyo, Japan) via the software packages of GENEMAPPER and GeneMarker ver. 6 (SoftGenetics, USA).Data analysesAverage number of alleles per locus and average num-ber of group-specific alleles per locus were identifiedAnalysis of Genetic Diversity and Population Structure of Maize Landraces from the South Maize Region of China 1253Table 1 The detailed information about the landraces used in the present studyPGS revealed by Structure1) NJ dendragram revealed Group 1 Group 2 by phylogenetic analysis140-150tian 00120005AnH-06Jingde Anhui 0.0060.994Group 2170tian00120006AnH-07Jingde Anhui 0.0050.995Group 2Zixihuangyumi00120007AnH-08Zixi Anhui 0.0020.998Group 2Zixibaihuangzayumi 00120008AnH-09Zixi Anhui 0.0030.997Group 2Baiyulu 00120020AnH-10Yuexi Anhui 0.0060.994Group 2Wuhuazi 00120021AnH-11Yuexi Anhui 0.0030.997Group 2Tongbai 00120035AnH-12Tongling Anhui 0.0060.994Group 2Yangyulu 00120036AnH-13Yuexi Anhui 0.0040.996Group 2Huangli 00120037AnH-14Tunxi Anhui 0.0410.959Group 2Baiyumi 00120038AnH-15Tunxi Anhui 0.0030.997Group 2Dapigu00120039AnH-16Tunxi Anhui 0.0350.965Group 2150tianbaiyumi 00120040AnH-17Xiuning Anhui 0.0020.998Group 2Xiuning60tian 00120042AnH-18Xiuning Anhui 0.0040.996Group 2Wubaogu 00120044AnH-19ShitaiAnhui 0.0020.998Group 2Kuyumi00130001FuJ-01Shanghang Fujian 0.0050.995Group 2Zhongdouyumi 00130003FuJ-02Shanghang Fujian 0.0380.962Group 2Baixinyumi 00130004FuJ-03Liancheng Fujian 0.0040.996Group 2Hongxinyumi 00130005FuJ-04Liancheng Fujian 0.0340.966Group 2Baibaogu 00130008FuJ-05Changding Fujian 0.0030.997Group 2Huangyumi 00130011FuJ-06Jiangyang Fujian 0.0020.998Group 2Huabaomi 00130013FuJ-07Shaowu Fujian 0.0020.998Group 2Huangbaomi 00130014FuJ-08Songxi Fujian 0.0020.998Group 2Huangyumi 00130016FuJ-09Wuyishan Fujian 0.0460.954Group 2Huabaogu 00130019FuJ-10Jian’ou Fujian 0.0060.994Group 2Huangyumi 00130024FuJ-11Guangze Fujian 0.0010.999Group 2Huayumi 00130025FuJ-12Nanping Fujian 0.0040.996Group 2Huangyumi 00130026FuJ-13Nanping Fujian 0.0110.989Group 2Hongbaosu 00130027FuJ-14Longyan Fujian 0.0160.984Group 2Huangfansu 00130029FuJ-15Loangyan Fujian 0.0020.998Group 2Huangbaosu 00130031FuJ-16Zhangping Fujian 0.0060.994Group 2Huangfansu 00130033FuJ-17Zhangping Fujian0.0040.996Group 2Baolieyumi 00190001GuangD-01Guangzhou Guangdong 0.9890.011Group 1Nuomibao (I)00190005GuangD-02Shixing Guangdong 0.9740.026Group 1Nuomibao (II)00190006GuangD-03Shixing Guangdong 0.9790.021Group 1Zasehuabao 00190010GuangD-04Lechang Guangdong 0.9970.003Group 1Zihongmi 00190013GuangD-05Lechang Guangdong 0.9880.012Group 1Jiufengyumi 00190015GuangD-06Lechang Guangdong 0.9950.005Group 1Huangbaosu 00190029GuangD-07MeiGuangdong 0.9970.003Group 1Bailibao 00190032GuangD-08Xingning Guangdong 0.9980.002Group 1Nuobao00190038GuangD-09Xingning Guangdong 0.9980.002Group 1Jinlanghuang 00190048GuangD-10Jiangcheng Guangdong 0.9960.004Group 1Baimizhenzhusu 00190050GuangD-11Yangdong Guangdong 0.9940.006Group 1Huangmizhenzhusu 00190052GuangD-12Yangdong Guangdong 0.9930.007Group 1Baizhenzhu 00190061GuangD-13Yangdong Guangdong 0.9970.003Group 1Baiyumi 00190066GuangD-14Wuchuan Guangdong 0.9880.012Group 1Bendibai 00190067GuangD-15Suixi Guangdong 0.9980.002Group 1Shigubaisu 00190068GuangD-16Gaozhou Guangdong 0.9960.004Group 1Zhenzhusu 00190069GuangD-17Xinyi Guangdong 0.9960.004Group 1Nianyaxixinbai 00190070GuangD-18Huazhou Guangdong 0.9960.004Group 1Huangbaosu 00190074GuangD-19Xinxing Guangdong 0.9950.005Group 1Huangmisu 00190076GuangD-20Luoding Guangdong 0.940.060Group 1Huangmi’ai 00190078GuangD-21Luoding Guangdong 0.9980.002Group 1Bayuemai 00190084GuangD-22Liannan Guangdong 0.9910.009Group 1Baiyumi 00300001HaiN-01Haikou Hainan 0.9960.004Group 1Baiyumi 00300003HaiN-02Sanya Hainan 0.9970.003Group 1Hongyumi 00300004HaiN-03Sanya Hainan 0.9980.002Group 1Baiyumi00300011HaiN-04Tongshi Hainan 0.9990.001Group 1Zhenzhuyumi 00300013HaiN-05Tongshi Hainan 0.9980.002Group 1Zhenzhuyumi 00300015HaiN-06Qiongshan Hainan 0.9960.004Group 1Aiyumi 00300016HaiN-07Qiongshan Hainan 0.9960.004Group 1Huangyumi 00300021HaiN-08Qionghai Hainan 0.9970.003Group 1Y umi 00300025HaiN-09Qionghai Hainan 0.9870.013Group 1Accession name Entry code Analyzing code Origin (county/city)Province/Region1254LIU Zhi-zhai et al .Baiyumi00300032HaiN-10Tunchang Hainan 0.9960.004Group 1Huangyumi 00300051HaiN-11Baisha Hainan 0.9980.002Group 1Baihuangyumi 00300055HaiN-12BaishaHainan 0.9970.003Group 1Machihuangyumi 00300069HaiN-13Changjiang Hainan 0.9900.010Group 1Hongyumi00300073HaiN-14Dongfang Hainan 0.9980.002Group 1Xiaohonghuayumi 00300087HaiN-15Lingshui Hainan 0.9980.002Group 1Baiyumi00300095HaiN-16Qiongzhong Hainan 0.9950.005Group 1Y umi (Baimai)00300101HaiN-17Qiongzhong Hainan 0.9980.002Group 1Y umi (Xuemai)00300103HaiN-18Qiongzhong Hainan 0.9990.001Group 1Huangmaya 00100008JiangS-10Rugao Jiangsu 0.0040.996Group 2Bainian00100012JiangS-11Rugao Jiangsu 0.0080.992Group 2Bayebaiyumi 00100016JiangS-12Rudong Jiangsu 0.0040.996Group 2Chengtuohuang 00100021JiangS-13Qidong Jiangsu 0.0050.995Group 2Xuehuanuo 00100024JiangS-14Qidong Jiangsu 0.0020.998Group 2Laobaiyumi 00100032JiangS-15Qidong Jiangsu 0.0050.995Group 2Laobaiyumi 00100033JiangS-16Qidong Jiangsu 0.0010.999Group 2Huangwuye’er 00100035JiangS-17Hai’an Jiangsu 0.0030.997Group 2Xiangchuanhuang 00100047JiangS-18Nantong Jiangsu 0.0060.994Group 2Huangyingzi 00100094JiangS-19Xinghua Jiangsu 0.0040.996Group 2Xiaojinhuang 00100096JiangS-20Yangzhou Jiangsu 0.0010.999Group 2Liushizi00100106JiangS-21Dongtai Jiangsu 0.0030.997Group 2Kangnandabaizi 00100108JiangS-22Dongtai Jiangsu 0.0020.998Group 2Shanyumi 00140020JiangX-01Dexing Jiangxi 0.9970.003Group 1Y umi00140024JiangX-02Dexing Jiangxi 0.9970.003Group 1Tianhongyumi 00140027JiangX-03Yushan Jiangxi 0.9910.009Group 1Hongganshanyumi 00140028JiangX-04Yushan Jiangxi 0.9980.002Group 1Zaoshuyumi 00140032JiangX-05Qianshan Jiangxi 0.9970.003Group 1Y umi 00140034JiangX-06Wannian Jiangxi 0.9970.003Group 1Y umi 00140038JiangX-07De’an Jiangxi 0.9940.006Group 1Y umi00140045JiangX-08Wuning Jiangxi 0.9740.026Group 1Chihongyumi 00140049JiangX-09Wanzai Jiangxi 0.9920.008Group 1Y umi 00140052JiangX-10Wanzai Jiangxi 0.9930.007Group 1Huayumi 00140060JiangX-11Jing’an Jiangxi 0.9970.003Group 1Baiyumi 00140065JiangX-12Pingxiang Jiangxi 0.9940.006Group 1Huangyumi00140066JiangX-13Pingxiang Jiangxi 0.9680.032Group 1Nuobaosuhuang 00140068JiangX-14Ruijin Jiangxi 0.9950.005Group 1Huangyumi 00140072JiangX-15Xinfeng Jiangxi 0.9960.004Group 1Wuningyumi 00140002JiangX-16Jiujiang Jiangxi 0.0590.941Group 2Tianyumi 00140005JiangX-17Shangrao Jiangxi 0.0020.998Group 2Y umi 00140006JiangX-18Shangrao Jiangxi 0.0310.969Group 2Baiyiumi 00140012JiangX-19Maoyuan Jiangxi 0.0060.994Group 260riyumi 00140016JiangX-20Maoyuan Jiangxi 0.0020.998Group 2Shanyumi 00140019JiangX-21Dexing Jiangxi 0.0050.995Group 2Laorenya 00090002ShangH-01Chongming Shanghai 0.0050.995Group 2Jinmeihuang 00090004ShangH-02Chongming Shanghai 0.0020.998Group 2Zaobaiyumi 00090006ShangH-03Chongming Shanghai 0.0020.998Group 2Chengtuohuang 00090007ShangH-04Chongming Shanghai 0.0780.922Group 2Benyumi (Huang)00090008ShangH-05Shangshi Shanghai 0.0020.998Group 2Bendiyumi 00090010ShangH-06Shangshi Shanghai 0.0040.996Group 2Baigengyumi 00090011ShangH-07Jiading Shanghai 0.0020.998Group 2Huangnuoyumi 00090012ShangH-08Jiading Shanghai 0.0040.996Group 2Huangdubaiyumi 00090013ShangH-09Jiading Shanghai 0.0440.956Group 2Bainuoyumi 00090014ShangH-10Chuansha Shanghai 0.0010.999Group 2Laorenya 00090015ShangH-11Shangshi Shanghai 0.0100.990Group 2Xiaojinhuang 00090016ShangH-12Shangshi Shanghai 0.0050.995Group 2Gengbaidayumi 00090017ShangH-13Shangshi Shanghai 0.0020.998Group 2Nongmeiyihao 00090018ShangH-14Shangshi Shanghai 0.0540.946Group 2Chuanshazinuo 00090020ShangH-15Chuansha Shanghai 0.0550.945Group 2Baoanshanyumi 00110004ZheJ-01Jiangshan Zhejiang 0.0130.987Group 2Changtaixizi 00110005ZheJ-02Jiangshan Zhejiang 0.0020.998Group 2Shanyumibaizi 00110007ZheJ-03Jiangshan Zhejiang 0.0020.998Group 2Kaihuajinyinbao 00110017ZheJ-04Kaihua Zhejiang 0.0100.990Group 2Table 1 (Continued from the preceding page)PGS revealed by Structure 1) NJ dendragram revealed Group1 Group2 by phylogenetic analysisAccession name Entry code Analyzing code Origin (county/city)Province/RegoinAnalysis of Genetic Diversity and Population Structure of Maize Landraces from the South Maize Region of China 1255Liputianzi00110038ZheJ-05Jinhua Zhejiang 0.0020.998Group 2Jinhuaqiuyumi 00110040ZheJ-06Jinhua Zhejiang 0.0050.995Group 2Pujiang80ri 00110069ZheJ-07Pujiang Zhejiang 0.0210.979Group 2Dalihuang 00110076ZheJ-08Yongkang Zhejiang 0.0140.986Group 2Ziyumi00110077ZheJ-09Yongkang Zhejiang 0.0020.998Group 2Baiyanhandipinzhong 00110078ZheJ-10Yongkang Zhejiang 0.0030.997Group 2Duosuiyumi00110081ZheJ-11Wuyi Zhejiang 0.0020.998Group 2Chun’an80huang 00110084ZheJ-12Chun’an Zhejiang 0.0020.998Group 2120ribaiyumi 00110090ZheJ-13Chun’an Zhejiang 0.0020.998Group 2Lin’anliugu 00110111ZheJ-14Lin’an Zhejiang 0.0030.997Group 2Qianhuangyumi00110114ZheJ-15Lin’an Zhejiang 0.0030.997Group 2Fenshuishuitianyumi 00110118ZheJ-16Tonglu Zhejiang 0.0410.959Group 2Kuihualiugu 00110119ZheJ-17Tonglu Zhejiang 0.0030.997Group 2Danbaihuang 00110122ZheJ-18Tonglu Zhejiang 0.0020.998Group 2Hongxinma 00110124ZheJ-19Jiande Zhejiang 0.0030.997Group 2Shanyumi 00110136ZheJ-20Suichang Zhejiang 0.0030.997Group 2Bai60ri 00110143ZheJ-21Lishui Zhejiang 0.0050.995Group 2Zeibutou 00110195ZheJ-22Xianju Zhejiang 0.0020.998Group 2Kelilao00110197ZheJ-23Pan’an Zhejiang 0.0600.940Group 21)The figures refered to the proportion of membership that each landrace possessed.Table 1 (Continued from the preceding page)PGS revealed by Structure 1) NJ dendragram revealed Group 1 Group 2 by phylogenetic analysisAccession name Entry code Analyzing code Origin (county/city)Province/Regoin Table 2 Construction of two phylogenetic groups (SSR-clustered groups) and their correlation with geographical locationsGeographical location SSR-clustered groupChi-square testGroup 1Group 2Total Guangdong 2222 χ2 = 124.89Hainan 1818P < 0.0001Jiangxi 15621Anhui 1414Fujian 1717Jiangsu 1313Shanghai 1515Zhejiang 2323Total5588143by the software of Excel MicroSatellite toolkit (Park 2001). Average number of alleles per locus was calcu-lated by the formula rAA rj j¦1, with the standarddeviation of1)()(12¦ r A AA rj jV , where A j was thenumber of distinct alleles at locus j , and r was the num-ber of loci (Park 2001).Unbiased gene diversity also known as expected heterozygosity, observed heterozygosity for each lo-cus and average gene diversity across the 54 SSR loci,as well as model-based groupings inferred by Struc-ture ver. 2.2, were calculated by the softwarePowerMarker ver.3.25 (Liu et al . 2005). Unbiased gene diversity for each locus was calculated by˅˄¦ 2ˆ1122ˆi x n n h , where 2ˆˆ2ˆ2¦¦z ji ijij i X X x ,and ij X ˆwas the frequency of genotype A i A jin the sample, and n was the number of individuals sampled.The average gene diversity across 54 loci was cal-culated as described by Nei (1987) as follows:rh H rj j ¦1ˆ, with the variance ,whereThe average observed heterozygosity across the en-tire loci was calculated as described by (Hedrick 1983)as follows: r jrj obsobs n h h ¦1, with the standard deviationrn h obs obsobs 1V1256LIU Zhi-zhai et al.Phylogenetic analysis and population genetic structureRelationships among all of the 143 accessions collected from SR were evaluated by using the unweighted pair group method with neighbor-joining (NJ) based on the log transformation of the proportion of shared alleles distance (InSPAD) via PowerMarker ver. 3.25 (FukunagaTable 3 The PIC of each locus and the number of alleles detected by 54 SSRsLocus Bin Repeat motif PIC No. of alleles Description 2)bnlg1007y51) 1.02AG0.7815Probe siteumc1122 1.06GGT0.639Probe siteumc1147y41) 1.07CA0.2615Probe sitephi961001) 2.00ACCT0.298Probe siteumc1185 2.03GC0.7215ole1 (oleosin 1)phi127 2.08AGAC0.577Probe siteumc1736y21) 2.09GCA T0.677Probe sitephi453121 3.01ACC0.7111Probe sitephi374118 3.03ACC0.477Probe sitephi053k21) 3.05A TAC0.7910Probe sitenc004 4.03AG0.4812adh2 (alcohol dehydrogenase 2)bnlg490y41) 4.04T A0.5217Probe sitephi079 4.05AGATG0.495gpc1(glyceraldehyde-3-phosphate dehydrogenase 1) bnlg1784 4.07AG0.6210Probe siteumc1574 4.09GCC0.719sbp2 (SBP-domain protein 2)umc1940y51) 4.09GCA0.4713Probe siteumc1050 4.11AA T0.7810cat3 (catalase 3)nc130 5.00AGC0.5610Probe siteumc2112y31) 5.02GA0.7014Probe sitephi109188 5.03AAAG0.719Probe siteumc1860 5.04A T0.325Probe sitephi085 5.07AACGC0.537gln4 (glutamine synthetase 4)phi331888 5.07AAG0.5811Probe siteumc1153 5.09TCA0.7310Probe sitephi075 6.00CT0.758fdx1 (ferredoxin 1)bnlg249k21) 6.01AG0.7314Probe sitephi389203 6.03AGC0.416Probe sitephi299852y21) 6.07AGC0.7112Probe siteumc1545y21)7.00AAGA0.7610hsp3(heat shock protein 3)phi1127.01AG0.5310o2 (opaque endosperm 2)phi4207018.00CCG0.469Probe siteumc13598.00TC0.7814Probe siteumc11398.01GAC0.479Probe siteumc13048.02TCGA0.335Probe sitephi1158.03A TAC0.465act1(actin1)umc22128.05ACG0.455Probe siteumc11218.05AGAT0.484Probe sitephi0808.08AGGAG0.646gst1 (glutathione-S-transferase 1)phi233376y11)8.09CCG0.598Probe sitebnlg12729.00AG0.8922Probe siteumc20849.01CTAG0.498Probe sitebnlg1520k11)9.01AG0.5913Probe sitephi0659.03CACCT0.519pep1(phosphoenolpyruvate carboxylase 1)umc1492y131)9.04GCT0.2514Probe siteumc1231k41)9.05GA0.2210Probe sitephi1084119.06AGCT0.495Probe sitephi4488809.06AAG0.7610Probe siteumc16759.07CGCC0.677Probe sitephi041y61)10.00AGCC0.417Probe siteumc1432y61)10.02AG0.7512Probe siteumc136710.03CGA0.6410Probe siteumc201610.03ACAT0.517pao1 (polyamine oxidase 1)phi06210.04ACG0.337mgs1 (male-gametophyte specific 1)phi07110.04GGA0.515hsp90 (heat shock protein, 90 kDa)1) These primers were provided by Beijing Academy of Agricultural and Forestry Sciences (Beijing, China).2) Searched from Analysis of Genetic Diversity and Population Structure of Maize Landraces from the South Maize Region of China1257et al. 2005). The unrooted phylogenetic tree was finally schematized with the software MEGA (molecular evolu-tionary genetics analysis) ver. 3.1 (Kumar et al. 2004). Additionally, a chi-square test was used to reveal the correlation between the geographical origins and SSR-clustered groups through FREQ procedure implemented in SAS ver. 9.0 (2002, SAS Institute, Inc.).In order to reveal the population genetic structure (PGS) of 143 landrace accessions, a Bayesian approach was firstly applied to determine the number of groups (K) that these materials should be assigned by the soft-ware BAPS (Bayesian Analysis of Population Structure) ver.5.1. By using BAPS, a fixed-K clustering proce-dure was applied, and with each separate K, the num-ber of runs was set to 100, and the value of log (mL) was averaged to determine the appropriate K value (Corander et al. 2003; Corander and Tang 2007). Since the number of groups were determined, a model-based clustering analysis was used to assign all of the acces-sions into the corresponding groups by an admixture model and a correlated allele frequency via software Structure ver.2.2 (Pritchard et al. 2000; Falush et al. 2007), and for the given K value determined by BAPS, three independent runs were carried out by setting both the burn-in period and replication number 100000. The threshold probability assigned individuals into groupswas set by 0.8 (Liu et al. 2003). The PGS result carried out by Structure was visualized via Distruct program ver. 1.1 (Rosenberg 2004).RESULTSGenetic diversityA total of 517 alleles were detected by the whole set of54 SSRs covering the entire maize genome through all of the 143 maize landraces, with an average of 9.57 alleles per locus and ranged from 4 (umc1121) to 22 (bnlg1272) (Table 3). Among all the alleles detected, the number of distinct alleles accounted for 132 (25.53%), with an av-erage of 2.44 alleles per locus. The distinct alleles dif-fered significantly among the landraces from different provinces/regions, and the landraces from Guangdong, Fujian, Zhejiang, and Shanghai possessed more distinct alleles than those from the other provinces/regions, while those from southern Anhui possessed the lowest distinct alleles, only counting for 3.28% of the total (Table 4).Table 4 The genetic diversity within eight provinces/regions and groups revealed by 54 SSRsProvince/Region Sample size Allele no.1)Distinct allele no.Gene diversity (expected heterozygosity)Observed heterozygosity Anhui14 4.28 (4.19) 69 (72.4)0.51 (0.54)0.58 (0.58)Fujian17 4.93 (4.58 80 (79.3)0.56 (0.60)0.63 (0.62)Guangdong22 5.48 (4.67) 88 (80.4)0.57 (0.59)0.59 (0.58)Hainan18 4.65 (4.26) 79 (75.9)0.53 (0.57)0.55 (0.59)Jiangsu13 4.24 700.500.55Jiangxi21 4.96 (4.35) 72 (68.7)0.56 (0.60)0.68 (0.68)Shanghai15 5.07 (4.89) 90 (91.4)0.55 (0.60)0.55 (0.55)Zhejiang23 5.04 (4.24) 85 (74)0.53 (0.550.60 (0.61)Total/average1439.571320.610.60GroupGroup 155 6.63 (6.40) 91 (89.5)0.57 (0.58)0.62 (0.62)Group 2887.94 (6.72)110 (104.3)0.57 (0.57)0.59 (0.58)Total/Average1439.571320.610.60Provinces/Regions within a groupGroup 1Total55 6.69 (6.40) 910.57 (0.58)0.62 (0.62)Guangdong22 5.48 (4.99) 86 (90.1)0.57 (0.60)0.59 (0.58)Hainan18 4.65 (4.38) 79 (73.9)0.53 (0.56)0.55 (0.59)Jiangxi15 4.30 680.540.69Group 2Total887.97 (6.72)110 (104.3)0.57 (0.57)0.59 (0.58)Anhui14 4.28 (3.22) 69 (63.2)0.51 (0.54)0.58 (0.57)Fujian17 4.93 (3.58) 78 (76.6)0.56 (0.60)0.63 (0.61)Jiangsu13 4.24 (3.22) 71 (64.3)0.50 (0.54)0.55 (0.54)Jiangxi6 3.07 520.460.65Shanghai15 5.07 (3.20) 91 (84.1)0.55 (0.60)0.55 (0.54)Zhejiang23 5.04 (3.20) 83 (61.7)0.53 (0.54)0.60 (0.58)1258LIU Zhi-zhai et al.Among the 54 loci used in the study, 16 (or 29.63%) were dinucleotide repeat SSRs, which were defined as type class I-I, the other 38 loci were SSRs with a longer repeat motifs, and two with unknown repeat motifs, all these 38 loci were defined as the class of I-II. In addition, 15 were located within certain functional genes (defined as class II-I) and the rest were defined as class II-II. The results of comparison indicated that the av-erage number of alleles per locus captured by class I-I and II-II were 12.88 and 10.05, respectively, which were significantly higher than that by type I-II and II-I (8.18 and 8.38, respectively). The gene diversity re-vealed by class I-I (0.63) and II-I (0.63) were some-what higher than by class I-II (0.60) and II-II (0.60) (Table 5).Genetic relationships of the core landraces Overall, 143 landraces were clustered into two groups by using neighbor-joining (NJ) method based on InSPAD. All the landraces from provinces of Guangdong and Hainan and 15 of 21 from Jiangxi were clustered together to form group 1, and the other 88 landraces from the other provinces/regions formed group 2 (Fig.-B). The geographical origins of all these 143 landraces with the clustering results were schematized in Fig.-D. Revealed by the chi-square test, the phylogenetic results (SSR-clustered groups) of all the 143 landraces from provinces/regions showed a significant correlation with their geographical origin (χ2=124.89, P<0.0001, Table 2).Revealed by the phylogenetic analysis based on the InSPAD, the minimum distance was observed as 0.1671 between two landraces, i.e., Tianhongyumi (JiangX-03) and Hongganshanyumi (JiangX-04) collected from Jiangxi Province, and the maximum was between two landraces of Huangbaosu (FuJ-16) and Hongyumi (HaiN-14) collected from provinces of Fujian and Hainan, respectively, with the distance of 1.3863 (data not shown). Two landraces (JiangX-01 and JiangX-21) collected from the same location of Dexing County (Table 1) possessing the same names as Shanyumi were separated to different groups, i.e., JiangX-01 to group1, while JiangX-21 to group 2 (Table 1). Besides, JiangX-01 and JiangX-21 showed a rather distant distance of 0.9808 (data not shown). These results indicated that JiangX-01 and JiangX-21 possibly had different ances-tral origins.Population structureA Bayesian method was used to detect the number of groups (K value) of the whole set of landraces from SR with a fixed-K clustering procedure implemented in BAPS software ver. 5.1. The result showed that all of the 143 landraces could also be assigned into two groups (Fig.-A). Then, a model-based clustering method was applied to carry out the PGS of all the landraces via Structure ver. 2.2 by setting K=2. This method as-signed individuals to groups based on the membership probability, thus the threshold probability 0.80 was set for the individuals’ assignment (Liu et al. 2003). Accordingly, all of the 143 landraces were divided into two distinct model-based groups (Fig.-C). The landraces from Guangdong, Hainan, and 15 landraces from Jiangxi formed one group, while the rest 6 landraces from the marginal countries of northern Jiangxi and those from the other provinces formed an-other group (Table 1, Fig.-D). The PGS revealed by the model-based approach via Structure was perfectly consistent with the relationships resulted from the phy-logenetic analysis via PowerMarker (Table 1).DISCUSSIONThe SR includes eight provinces, i.e., southern Jiangsu and Anhui, Shanghai, Zhejiang, Fujian, Jiangxi, Guangdong, and Hainan (Fig.-C), with the annual maize growing area of about 1 million ha (less than 5% of theTable 5 The genetic diversity detected with different types of SSR markersType of locus No. of alleles Gene diversity Expected heterozygosity PIC Class I-I12.880.630.650.60 Class I-II8.180.600.580.55 Class II-I8.330.630.630.58。

瑞士富巴HUBA传感器系列型号

瑞士富巴HUBA传感器系列型号

压力传感器 TLEE-188-503-15691∙压力传感器– 400系列∙压力传感器– 501系列∙压力传感器– 503系列∙压力传感器– 505系列∙压力传感器– 506系列∙压力传感器– 511系列∙压力传感器– 515系列∙压力传感器– 516系列∙压力传感器– 520系列∙压力传感器– 528系列∙压力传感器– 680系列∙压力传感器– 691系列∙压力传感器– 522系列∙压力传感器– 527系列∙差压式压力传感器– 401系列∙差压式压力传感器– 402系列∙差压式压力传感器– 403系列∙差压式压力传感器– 652系列∙差压式压力传感器– 692系列∙差压式压力传感器– 698系列∙差压式压力传感器– 699系列∙差压式压力传感器∙电子式压力开关o电子式压力开关– 521系列o电子式压力开关– 529系列o电子式压力开关- 540系列o电子式压力开关- 548系列机械式压力开关∙机械式压力开关– 604系列∙机械式压力开关– 605系列∙机械式压力开关– 610系列∙机械式压力开关– 620系列∙机械式压力开关– 625系列∙机械式压力开关– 630系列压力液位计∙压力液位计– 681系列∙压力液位计– 712系列流量传感器∙流量传感器- 200系列∙流量传感器- 210系列∙流量传感器- 230系列∙流量传感器- 235系列∙流量传感器- 236系列∙流量传感器∙压力传感器芯片o压力传感器芯片– 509系列o压力传感器芯片– 513系列o压力传感器芯片– 513 大气压系列力传感器芯片– 410系列数字式显示仪∙数字式显示仪- 800系列∙数字式显示仪- 801系列附件∙散热器。

XX机房监控系统设计方案(模板)

XX机房监控系统设计方案(模板)

XXX机房动力环境监控系统设计建议书深圳市共济科技有限公司2013年XX月XX日目录1.1系统概述 (6)1.2建设目标 (6)1.3需求分析(根据需要删减) (7)1.4系统设计 (9)1.4.1 设计原则 (9)1.4.2 设计依据 (9)1.4.3 系统结构 (10)1.5系统性能 (11)1.5.1 可靠性 (11)1.5.2 稳定性 (11)1.5.3 实时性 (11)1.5.4 安全性 (12)1.5.5 维护性 (12)1.5.6 扩充性 (12)1.6监控子系统的实现(根据需要删减) (13)1.6.1 动力监控 (13)1.6.1.1 UPS监测 (13)1.6.1.2 蓄电池监测 (15)1.6.1.3 市电监测 (16)1.6.1.4 配电开关监测 (18)1.6.1.5 发电机监测 (19)1.6.1.7 直流/交流配电屏监测 (22)1.6.1.8 STS/ATS开关柜监测 (24)1.6.2 环境监控 (25)1.6.2.1 精密空调监控 (25)1.6.2.2 普通空调监控 (27)1.6.2.3 新风机监控 (28)1.6.2.4 温湿度监测 (29)1.6.2.5 漏水监测 (30)1.6.2.6 照明监控 (31)1.6.2.7 防雷监测 (32)1.6.3 安保监控 (33)1.6.3.1 防盗报警监控 (33)1.6.3.2 视频监控 (34)1.6.3.3 门禁监控 (35)1.6.3.4 消防监测 (37)1.7软件平台特色功能 (39)1.7.1 设备/页面/策略组态功能 (39)1.7.2 告警和事件管理功能 (39)1.7.3 操作日志管理功能 (40)1.7.4 报表功能 (41)1.7.5 WEB浏览功能 (42)1.7.7 安全时段功能 (43)1.7.8 看门狗功能 (44)1.7.9 报警管理功能 (44)1.7.10 智能联动功能 (45)1.7.11 IE浏览权限管理功能(预留功能) (45)1.8主要硬件设备介绍(根据需要删减) ............................................. 错误!未定义书签。

AG604中文简介

AG604中文简介

AG604-86
产品特点
DC - 6000兆赫,19.5 dBm的P1dB的900兆赫,在900 MHz33 dBm的OIP3,20.5 dB增益在900 MHz,单电源电压,绿色SOT-86贴片封装,内部匹配到50欧
应用
移动基础设施,CATV/ DBSW-LAN /的ISMRFID国防,国土安全固定无线
产品描述
AG604-86是一种通用的缓冲放大器,可提供一个低成本的表面贴装封装的高动态范围。

在900 MHz,通常提供的AG604-8620.5 dB增益,+33 dBm的OIP3,和+19.5 dBm的的P1dB。

该器件结合依赖新生的垄断中解脱出来的性能一致质量保持MTTF值超过100年在安装温度+85 C&坐落在SOT-86(微-X)行业标准的SMT无铅/绿色/符合RoHS标准包。

AG604-86达林顿对放大器,采用高可靠性的InGaP/ GaAs HBT工艺技术,只需要隔直流电容,一个偏置电阻,和电感的RF抗流操作。

这个宽带MMIC放大器可直接应用于各种当前和下一代无线技术,如GPRS,GSM,CDMA,W-CDMA。

此外,AG604-86将适用于其他各种应用程序,在对DC到6 GHz的频率范围,如CATV和固定无线。

网站大纲3

网站大纲3

网站大纲一、首页二、公司简介三、产品列表1.压力传感器及变送器①TG系列:Ⅰ.TG1000(原网站有)Ⅱ.TG1000平膜式(原网站有)Ⅲ.TG2000(原网站有)②WP系列:Ⅰ.WP401A(原网站有)Ⅱ.WP401B(原网站有)Ⅲ.WP421(原网站有)Ⅳ.WP435(原网站有)Ⅴ.WP201(原网站有)③3051/1151;(原网站有)④美国进口压力传感器Ⅰ.MSP300(原网站有)Ⅱ.MSP400(原网站有)Ⅲ.SSI(原网站有)⑤瑞士HUBA系列:Ⅰ.HUBA501(附资料HUBA-501.PDF)Ⅱ.HUBA511(原网站有)Ⅲ.HUBA692(附资料HUBA-692.PDF)Ⅳ.HUBA694(附资料HUBA-694.PDF)Ⅴ.HUBA604(附资料HUBA-604.PDF)⑥罗斯蒙特:1151/3051; (附资料)Ⅰ. 1151HP型高静压差压变送器(附资料1151HP型高静压差压变送器.DOC)Ⅱ. 3051压力变送器(附资料3051.pdf)Ⅲ.3051C型差压变送器(附资料3051C型差压.DOC)Ⅳ.3051L型液位变送器(附资料3051L型液位变送器.DOC)Ⅴ.3051s压力变送器(附资料3051s.pdf)⑦EJA系列:Ⅰ.EJA110A(附资料EJA110A差压变送器.DOC)Ⅱ.EJA115(附资料EJA115微小流量变送器.DOC)Ⅲ.EJA118(附资料EJA118系列隔膜密封式差压变送器.DOC)Ⅳ.EJA120A(附资料EJA120A微差压变送器.DOC)Ⅴ.EJA130A(附资料EJA130A高静压差压变送器.DOC)Ⅵ.EJA210A(附资料EJA210A.DOC)Ⅶ.EJA310A(附资料EJA310A绝对压力变送器.DOC)Ⅷ.EJA430(附资料EJA430压力变送器.DOC)Ⅸ.EJA440(附资料EJA430高压力变送器.DOC)Ⅹ.EJA510A/EJA530A(附资料EJA510A绝对压力变送器和EJA530A压力变送器.DOC)Ⅺ.EJA智能变送器(附资料)⑧Druck系列:Ⅰ.LP1000 (附资料LP1000.PDF)Ⅱ.PMP317 (附资料PMP317.PDF)Ⅲ.PMP4000(附资料PMP4000.PDF)Ⅳ.PTX600 (附资料PTX600.PDF)Ⅴ.PTX1400(附资料PTX1400.PDF)Ⅵ.PTX7500(附资料PTX7500.PDF)⑨E+H系列:Ⅰ.PMC133(附资料PMC133.DOC)Ⅱ.PMC41/45(附资料PMC41-PMC45-PMP4-1PMP45.PDF)Ⅲ.PMC71(附资料PMC71.PDF)Ⅳ.PMC131(附资料PMC131.PDF)Ⅴ.PMD70 75(附资料PMD70 75.DOC)Ⅵ.压力变送器cerabar M PMP 46 PMP 48(附资料压力变送器cerabar M PMP 46 PMP 48.DOC)⑩IC Sensor;(暂无内容,空着以后自己添加)2.称重传感器①美国进口传感器系列AMCELLS(原网站有)TRANSCELL(原网站有)Ⅰ.DBSL内容图片错误。

ASTMB604-1991

ASTMB604-1991

Designation:B604–91(Reapproved2008)Standard Specification forDecorative Electroplated Coatings of Copper Plus Nickel Plus Chromium on Plastics1This standard is issued under thefixed designation B604;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(´)indicates an editorial change since the last revision or reapproval.1.Scope1.1This specification covers the requirements for several grades and types of electrodeposited copper plus nickel plus chromium coatings on plateable plastic substrates where ap-pearance,durability and resistance to thermal cycling are important to service performance.Five grades of coatings are provided to correlate with the service conditions under which each is expected to provide satisfactory performance.1.2This specification covers the requirements for coatings applied subsequent to the application of metalfilm by auto-catalytic deposition or subsequent to the application of any strike coatings after autocatalytic deposition.1.3The following caveat pertains only to the test method portions of Section6,Annex A1,and Appendix X2,Appendix X3,and Appendix X4of this specification.This standard does not purport to address all of the safety concerns,if any, associated with its use.It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:2B368Test Method for Copper-Accelerated Acetic Acid-Salt Spray(Fog)Testing(CASS Test)B487Test Method for Measurement of Metal and Oxide Coating Thickness by Microscopical Examination of Cross SectionB489Practice for Bend Test for Ductility of Electrodepos-ited and Autocatalytically Deposited Metal Coatings on MetalsB504Test Method for Measurement of Thickness of Me-tallic Coatings by the Coulometric MethodB530Test Method for Measurement of Coating Thick-nesses by the Magnetic Method:Electrodeposited Nickel Coatings on Magnetic and Nonmagnetic SubstratesB532Specification for Appearance of Electroplated Plastic SurfacesB533Test Method for Peel Strength of Metal Electroplated PlasticsB556Guide for Measurement of Thin Chromium Coatings by Spot TestB567Test Method for Measurement of Coating Thickness by the Beta Backscatter MethodB568Test Method for Measurement of Coating Thickness by X-Ray SpectrometryB602Test Method for Attribute Sampling of Metallic and Inorganic CoatingsB659Guide for Measuring Thickness of Metallic and Inorganic CoatingsB727Practice for Preparation of Plastics Materials for ElectroplatingB764Test Method for Simultaneous Thickness and Elec-trode Potential Determination of Individual Layers in Multilayer Nickel Deposit(STEP Test)D1193Specification for Reagent WaterE50Practices for Apparatus,Reagents,and Safety Consid-erations for Chemical Analysis of Metals,Ores,and Related Materials3.Terminology3.1Definitions:3.1.1significant surfaces—those surfaces normally visible (directly or by reflection)that are essential to the appearance or serviceability of the article when assembled in normal position or that can be the source of corrosion products that deface visible surfaces on the assembled article.4.Classification4.1Five grades of coatings designated by service condition numbers and several types of coatings defined by classification numbers are covered by this specification.4.2Service Condition Number:4.2.1The service condition number indicates the severity of exposure for which the grade of coating is intended,in accordance with the following scale:1This specification is under the jurisdiction of ASTM Committee B08onMetallic and Inorganic Coatings and is the direct responsibility of SubcommitteeB08.08.03on Decorative Coatings.Current edition approved Aug.1,2008.Published September2008.Originallyapproved st previous edition approved in2003as B604–91(2003).2For referenced ASTM standards,visit the ASTM website,,orcontact ASTM Customer Service at service@.For Annual Book of ASTMStandards volume information,refer to the standard’s Document Summary page onthe ASTM website.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.--`,,```,,,,````-`-`,,`,,`,`,,`---SC5—extended very severe SC4—very severe SC3—severe SC2—moderate SC1—mild4.2.2Service condition numbers are further defined in Appendix X1where they are related to the severity of exposure encountered by electroplated articles.4.3Coating Classification Number —The coating classifi-cation number is a means of specifying the types and thick-nesses of coatings appropriate for each grade and is comprised of the following:4.3.1The symbol for the substrate (PL)indicating it is plateable plastic,followed by a slash mark,4.3.2The chemical symbol for copper (Cu),4.3.3A number giving the minimum thickness of the copper coating in micrometres,4.3.4A lower-case letter designating the type of copper electrodeposit (see 4.4and 6.3.1),4.3.5The chemical symbol for nickel (Ni),4.3.6A number giving the minimum thickness of the nickel in micrometres,4.3.7A lower-case letter designating the type of nickel electrodeposit (see 4.4and 6.3.2),4.3.8The chemical symbol for chromium (Cr),and4.3.9A lower-case letter or letters designating the type of chromium (see 4.4and 6.3.3).4.4Symbols for Expressing Classification —The following lower-case letters shall be used in coating classification num-bers to describe the types of coatings:a —ductile copper deposited from acid-type bathsb —single-layer nickel deposited in the fully-bright condition d —double-or triple-layer nickel coatings r —regular (that is,conventional)chromium mc —microcracked chromium mp —microporous chromium4.5Example of Complete Classification Number —A coat-ing on plastic comprising 15µm minimum ductile acid copper plus 15µm minimum double-layer nickel plus 0.25µm minimum microporous chromium has the classification num-ber:PL/Cu15a Ni15d Cr mp.5.Ordering Information5.1When ordering articles to be electroplated in accordance with this standard,the purchaser shall state the following:5.1.1ASTM designation number.5.1.2Either the classification number of the specific coat-ing required (see 4.3)or the substrate material and the service condition number denoting the severity of the conditions it is required to withstand (see 4.2).If the service condition number is quoted and not the classification number,the manufacturer is free to supply any of the types of coatings designated by the classification number corresponding to the service condition number,as given in Table 1.3On request,the manufacturer shall inform the purchaser of the classification number of the coating applied.5.1.3The appearance required,for example,bright,dull,or satin.Alternatively,samples showing the required finish or range of finish shall be supplied or approved by the purchaser.5.1.4The significant surfaces,to be indicated on drawings of the parts,or by the provision of suitably marked specimens (see 3.1).5.1.5The positions on significant surfaces for rack or contact marks,where such marks are unavoidable (see6.1.1).5.1.6The extent to which defects shall be tolerated on nonsignificant surfaces.5.1.7The ductility if other than the standard value (see6.4).5.1.8The extent of tolerable surface deterioration after corrosion testing (see 6.6.3).5.1.9Sampling methods and acceptance levels (See Section 7).5.1.10Whether thermal cycle and corrosion testing shall be conducted individually on separate specimens as described in6.6and 6.7,or sequentially using the same specimens as described in 6.8,and whether the specimens shall be un-mounted or mounted in a manner simulating assembly when these tests are conducted.5.2The minimum values of the electrochemical potential differences between individual nickel layers as measured in accordance with Test Method B 764within the limits given in6.10.6.Product Requirements 6.1Visual Defects :6.1.1The significant surfaces of the electroplated articles shall be free of visible defects,such as blisters,pits,roughness,cracks,and uncoated areas,and shall not be stained or discolored.On articles where a visible contact mark is un-avoidable,its position shall be specified by the purchaser.The electroplated article shall be free of damage and clean.6.1.2Defects in the surface of the molded plastic,such as cold shots,ejection marks,flash,gate marks,parting lines,splay and others,may adversely affect the appearance and performance of coatings applied thereto despite the observance3“Performance of Decorative Electrodeposited Copper-Nickel-Chromium Coat-ings on Plastics”is a final report on programs conducted by ASTM and ASEP to evaluate the coating classification numbers.A copy of the report has been filed at ASTM Headquarters as RR B-8-1003.TABLE 1Copper Plus Nickel Plus Chromium Coatings onPlastic AService Condition Number Classification NumberEquivalent Nickel Thicknessµmmils (approx.)SC 5PL/Cu15a Ni30d Cr mc PL/Cu15a Ni30d Cr mp 3030 1.21.2SC 4PL/Cu15a Ni30d Cr r PL/Cu15a Ni25d Cr mc PL/Cu15a Ni25d Cr mp 302525 1.21.01.0SC 3PL/Cu15a Ni25d Cr r PL/Cu15a Ni20d Cr mc PL/Cu15a Ni20d Cr mp 252020 1.00.80.8SC 2PL/Cu15a Ni15b Cr r PL/Cu15a Ni10b Cr mc PL/Cu15a Ni10b Cr mp 1510100.60.40.4SC 1PL/Cu15aNi7b Cr r70.3AThe minimum copper thickness may be greater in some applications to meet thermal cycling and otherrequirements.--`,,```,,,,````-`-`,,`,,`,`,,`---of the best electroplating practice.Accordingly,the electroplat-er’s responsibility for defects in the coating resulting from the plastic-molding operation shall be waived (Note 1).N OTE 1—To minimize problems of this type,the specifications cover-ing the items to be electroplated should contain appropriate limitations on the extent of surface defects.Practice B 532distinguishes between defects that arise primarily in molding and those that arise in electroplating operations.6.2Pretreatments —Proper preparatory procedures are es-sential for satisfactory performance of electrodeposited coat-ings on plastics.Procedures described in Practice B 727may be followed.In the case of patented processes,the instructions provided by the suppliers of those processes shall be followed.6.3Process and Coating Requirements —Following prepa-ratory operations,plastic articles are placed in electroplating solutions as required to produce the composite coating de-scribed by the specific coating classification number or by coating one of the specified classification numbers listed in Table 1appropriate for the specified service condition number.6.3.1Type of Copper —Ductile copper shall be deposited from acid-type baths containing organic additives that promote leveling by the copper deposit.6.3.2Type of Nickel —For double-or triple-layer nickel coatings,the bottom layer shall contain less than 0.005mass %sulfur (Note 2).The top layer shall contain greater than 0.04mass %sulfur (Note 3),and its thickness shall be not less than 10%of the total nickel thickness.In double-layer coatings,the thickness of the bottom layer shall be not less than 60%of the total nickel thickness.In triple-layer coatings,the bottom layer shall be not less than 50%nor more than 70%.If there are three layers,the intermediate layer shall contain not less than 0.15mass %sulfur and shall not exceed 10%of the total nickel thickness.These requirements for multilayer nickel coatings are summarized in Table 2.6.3.3Thickness of Chromium Deposit —The minimum per-missible thickness of the chromium deposit shall be 0.25µm on significant surfaces.The thickness of chromium is designated by the same symbol as the type instead of by numerals as in the case of copper and nickel (see 4.4).N OTE 2—The sulfur content is specified in order to indicate which type of nickel electroplating solution must be used.Although no simple method is yet available for determining the sulfur content of a nickel deposit on a coated article,chemical determinations are possible using speciallyprepared test specimens.See Appendix X2for the determination of sulfur in electrodeposited nickel.N OTE 3—It will usually be possible to identify the type of nickel by microscopical examination of the polished and etched section of an article prepared in accordance with Test Method B 487.The thickness of the individual nickel layers in double-layer and triple-layer coatings,as well as the electrochemical relationships between the individual layers can be measured by the STEP test in accordance with Test Method B 764.6.4Ductility —The minimum value of the ductility shall be 8%for copper and for nickel when tested by the method given in Appendix X3.Greater ductility may be requested but shall be subject to agreement between the purchaser and the manu-facturer.6.5Coating Thickness :6.5.1The minimum coating thickness shall be as designated by the coating classification number.6.5.2It is recognized that requirements may exist for thicker coatings than are covered by this specification.6.5.3The thickness of a coating and its various layers shall be measured at points on the significant surfaces (see 4.2and Note 4.)N OTE 4—When significant surfaces are involved on which the specified thickness of deposit cannot readily be controlled,such as threads,holes,deep recesses,bases of angles,and similar areas,the purchaser and the manufacturer should recognize the necessity for either thicker deposits on the more accessible surfaces or for special racking.Special racks may involve the use of conforming,auxiliary,or bipolar electrodes,or nonconducting shields.6.5.3.1The coulometric method described in Test Method B 504may be used to measure thickness of the chromium,the total thickness of the nickel,and the thickness of the copper.The STEP test,Test Method B 764,which is similar to the coulometric method,may be used to determine the thicknesses of individual layers of nickel in a multilayer coating.6.5.3.2The microscopical method described in Test Method B 487may be used to measure the thickness of each nickel layer and of the copper layer.6.5.3.3The beta backscatter method described in Test Method B 567may be used when the total thickness of a copper/nickel/chromium composite coating is to be measured,without any indication of the thickness of each individual layer.6.5.3.4Other methods may be used if it can be demon-strated that the uncertainty of the measurement is less than 10%,or less than that of any applicable method mentioned in 6.4.3.Other methods are outlined in Test Methods B 530and B 568and Guides B 556and B 659.6.6Corrosion Testing :6.6.1Coated articles shall be subjected to the corrosion test for a period of time that is appropriate for the particular service condition number (or for the service condition number corre-sponding to a specified classification number)as shown in Table 3.The test is described in detail in the referenced ASTM standard.N OTE 5—There is no direct relation between the results of an acceler-ated corrosion test and the resistance to corrosion in other media because several factors,such as the formation of protective films,influence the progress of corrosion and vary greatly with the conditions encountered.The results obtained in the test should,therefore,not be regarded as a direct guide to the corrosion resistance of the tested materials in all environments where these materials may be used.Also,performance ofTABLE 2Summary of the Requirements for Double-and Triple-Layer Nickel CoatingsLayer Type ofNickel SpecificElongation Sulfur ContentThickness Relative to TotalNickel Thickness Double-Layer Triple-Layer Bottom(s)8%less than 0.005%equal to or greater than 50%equal to or greater than 50%Middle (high-sulfur (b))...greater than0.15mass %...10%max Top (b)...greater than 0.04%equal to or greater than40%equal to or greater than 40%Test MethodAppendix X3A ...BA See Note 2in the text of this specification.BSee Note 3in the text of thisspecification.--`,,```,,,,````-`-`,,`,,`,`,,`---different materials in the test cannot always be taken as a direct guide to the relative corrosion resistance of these materials in service.6.6.2After subjecting the article to the treatment described in the relevant test method,it shall be examined for evidence of corrosion penetration to the substrate or the copper layer,and for blistering of the coating.Any evidence of copper corrosion,blistering of the coating,or substrate exposure shall be cause for rejection.It is to be understood that occasional widely scattered corrosion defects may be observed after the testing period.In general,“acceptable resistance”shall mean that such defects are not,when viewed critically,significantly defacing or otherwise deleterious to the function of the electroplated part.6.6.3Surface deterioration of the coating itself is expected to occur during the testing of some types of coatings.The extent to which such surface deterioration will be tolerated shall be specified by the purchaser.6.7Thermal Cycle Testing :6.7.1Coated articles shall be subjected to three cycles of the thermal cycle test as outlined in Annex A1.The specified service condition number of the coating (or the service condition number corresponding to the specified classification number)shall correspond to the service condition number in Annex A1for determining the temperature extremes as out-lined therein.6.7.2After having been subjected to three cycles of the appropriate thermal cycle test,the coated article shall show no visible defects,such as cracking,blistering,peeling,sink marks,and distortions.N OTE 6—There is no direct relation between the results of thermal cycle testing and performance in service,because it is not always possible to predict and control the thermal exposure of the coated article in service or during storage.Therefore,the results of thermal cycling should be used to control the quality of electroplated plastic articles and not as direct guide to performance in service.6.8Combined Thermal Cycle and Corrosion Testing :6.8.1Corrosion testing may be combined with thermal cycle testing for articles electroplated according to the require-ments of SC5,SC4,and SC3by using the same coated articles in each test in sequence as described in this section.The use of combined thermal cycle and corrosion testing obviates the need to conduct the individual tests described in 6.6and 6.7.6.8.2Expose the coated articles to one 16-h cycle according to the procedures outlined in Method B 368(CASS test).6.8.3Parts shall be rinsed with demineralized water only after each CASS test cycle.6.8.4Subject the electroplated articles to the thermal cycle test procedure given in Annex A1.6.8.5Steps 6.8.2through 6.8.4represent one cycle of combined thermal cycle and corrosion testing.For articles electroplated to SC5or SC4,repeat for two additional times.For articles electroplated to SC3,repeat one additional time.6.8.6Coated articles shall be examined for defects after each cycle of combined thermal cycle-corrosion testing as indicated in 6.6.2and 6.7.2.6.9Adhesion —Test Method B 533provides a procedure for measurement of the peel strength (adhesion)of metal-electroplated plastics using standard specimens.Since there is no direct correlation between results obtained on standard specimens and actual molded parts,the method is useful to determine that processing solutions are capable of giving acceptable results.The thermal cycle test described in 6.7and the subsequent examination of the electroplated articles de-scribed in 6.7.2,or alternatively,the combined thermal cycle test described in 6.7.2,or alternatively,the combined thermal cycle and corrosion tests described in 6.8,are recommended instead of other tests.6.10STEP Test Requirement :6.10.1The electrochemical potential differences between individual nickel layers shall be measured for multilayer coatings corresponding to SC5,SC4,and SC3in accordance with Test Method B 764(STEP test).See Note7.N OTE 7—Universally accepted STEP values have not been established but some agreement exists for the required ranges.The STEP values depend on which two nickel layers are being measured:(a )the STEP potential difference between the semi-bright nickel layer and the bright nickel layer is within the range of 100to 200mV .For all combinations of nickel layers,the semi-bright nickel layer is more noble (cathodic)than the bright nickel;(b )the STEP potential difference between the high-activity nickel layer and the bright nickel layer in triple-layer nickel coatings is within the range of 15to 35mV .The high-activity layer is more active (anodic)than the bright nickel layer;and (c )the STEP potential difference between the bright nickel layer and a nickel layer between the bright nickel layer and the chromium layer is within 0to 30mV .The bright nickel layer is more active (anodic)than the nickel layer applied prior to the chromium.6.11Sulfur Content :6.11.1The sulfur content of the nickel deposit shall meet the maximum or minimum values as stated in 6.3.2and Table 2.6.11.2Methods for sulfur determinations are given in Ap-pendix X2.6.12Density and Measurement of Discontinuities in Chro-mium :6.12.1The density of cracks or pores in microcracked or microporous chromium deposits shall meet minimum values.Microcracked chromium shall have more than 30cracks/mm in any direction over the whole of the significant surface.Mi-croporous chromium shall contain a minimum of 100pores/mm 2in any direction over the whole of the significant surface.The cracks and pores shall be invisible to the unaided eye.6.12.2Methods for measuring the discontinuities are given in Appendix X4.See X4.4for a means of determining corrosion sites by corrosion testing.TABLE 3Corrosion Tests Appropriate for Each ServiceCondition NumberService Condition NumberDuration of Corrosion (CASS)Test ASC 5three 16-h cycles B SC 4two 16-h cycles B SC 3one 16-h cycle B SC 28h SC1...A See MethodB 368.BEach 16-h CASS test cycle shall consist of 16h of exposure followed by removal from the test cabinet,rinsing in water,and inspection.The test specimen shall not be out of the test cabinet for more than 8h betweencycles.7.Sampling Requirement7.1A random sample of the size required by Test Method B 602shall be selected from the inspection lot (see 7.2).The articles in the lot shall be inspected for conformance to the requirements of this specification and the lot shall be classified as conforming or not conforming to each requirement accord-ing to the criteria of the sampling plans in Test Method B 602.N OTE 8—Test Method B 602contains three sampling plans for the original inspection of coated articles.Two are to be used where the test methods are nondestructive,that is,the test method does not make the article nonconforming.The third plan is used where the test method is destructive.If it is not clear if the test is destructive or not,the purchaser should identify which test methods are destructive,and which are nondestructive.In some instances,both nondestructive and destructive test methods may exist for the testing of the conformance of a coating to a particular requirement.The purchaser should state which is to be used.7.2An inspection lot shall be defined as a collection of coated articles that are of the same kind,that have been produced to the same specifications,that have been coated by a single supplier at one time,or at approximately the same time,under essentially identical conditions,and that are submitted for acceptance or rejection as a group.7.3If separate test specimens are used to represent the coated articles in a test,the specimens shall be of the nature,size,and number and be processed as required in Annex A1and Appendix X2,Appendix X3,and Appendix X4.Unless a need can be demonstrated,separately prepared specimens shall not be used in place of production items for nondestructive tests and visual examination.For destructive tests including determination of ductility,sulfur content,the number of discontinuities,thermal cycle and corrosion testing,and STEP testing,separately prepared specimens may be used.ANNEX(Mandatory Information)A1.Thermal Cycling of Electroplated PlasticsN OTE A1.1—This test method is used to ensure compliance of electro-plated plastics with the thermal cycle requirements given in 6.7and 6.8.A1.1Apparatus —The apparatus shall consist of a circulat-ing air heating chamber and cooling chamber sufficiently powered,insulated,and controlled to closely maintain the preset temperature.The two chambers may be separate,or may be built so as to constitute a single chamber.The controller and recorder used for chamber control,calibration,and records shall be accurate to 61°C.All points within the working area of the test chamber shall remain within 63°C of the set temperature.The air circulation shall be controlled to permit a consistent rate of heating or cooling of the parts during the test.A1.2Elapsed Time After Electroplating —The elapsed time between completion of the electroplating operation and thermal cycle testing may influence the results.The elapsed time shall be 2462h.A1.3Procedure:A1.3.1Parts may be introduced into the chamber un-mounted,or mounted in a manner simulating assembly as specified by the purchaser.A1.3.2Load the chamber with the desired quantity of parts to be tested.A1.3.3Record the location of parts within the chamber,the loading and the size of the parts being tested.A1.3.4The thermal cycle temperature limits corresponding to the specified service condition number shall be chosen from Table A1.1.A1.3.5Each thermal cycle shall consist of either placing the samples in a room-temperature chamber and heating the chamber to the high limit,or placing the samples directly into a chamber at the high limit,and performing the following:A1.3.5.1Expose the parts for one hour at the high limit.A1.3.5.2Allow the parts to return to 2063°C and maintain at this temperature for 1h.This is frequently accomplished by removing the parts from the chamber.A1.3.5.3Expose the parts for one hour at the low limit.A1.3.5.4Allow the parts to return to 2063°C and maintain at this temperature for 1h.Steps A1.3.5.1through A1.3.5.4constitute one full thermal cycle.A1.3.6When the number of cycles specified in 6.7and 6.8has been completed,inspect the parts for coating defects produced by thermal cycling.See Specification B 532,Table 1,for the limits established for visual defects.A1.4Recording of Test Results —The recording of the test results shall include the following:TABLE A1.1Recommended Thermal Cycling Temperature LimitsService Condition NumberTemperature Limits,°C High Low SC5—Extended very severe 85−40SC4—Very severe 80−40SC3—Severe 80−30SC2—Moderate 75−30SC1—Mild60−30--`,,```,,,,````-`-`,,`,,`,`,,`---A1.4.1A statement that the test was performed according to Specification B604,Annex A1.A1.4.2The service condition number for which the part was tested.A1.4.3The tray construction(if a tray is used)and chamber loading.A1.4.4The last calibration date of the controller and records.A1.4.5The extent,nature,and location of the defects.A1.5Precision and Bias—The precision and bias of this test method have not been established.APPENDIXES(Nonmandatory Information)X1.DEFINITIONS AND EXAMPLES OF SERVICE CONDITIONS FOR WHICH THE V ARIOUS SERVICECONDITION NUMBERS ARE APPROPRIATEX1.1Service Condition No.SC5(Extended Very Severe)—Service conditions that include likely damage from denting, scratching,and abrasive wear in addition to exposure to corrosive environments where long-term protection of the substrate is required;for example,conditions encountered by some exterior components of automobiles.X1.2Service Condition No.SC4(Very Severe)—Service conditions that include likely damage from denting,scratching, and abrasive wear in addition to exposure to corrosive envi-ronments;for example,conditions encountered by exterior components of automobiles and by boatfittings in salt water service.X1.3Service Condition No.SC3(Severe)—Exposure that is likely to include occasional or frequent wetting by rain or dew or possibly strong cleaners and saline solutions;for example,conditions encountered by porch and lawn furniture, bicycle and perambulator parts,hospital furniture andfixtures. X1.4Service Condition No.SC2(Moderate)—Indoor exposure in places where condensation of moisture may occur; for example,in kitchens and bathrooms.X1.5Service Condition No.SC1(Mild)—Indoor exposure in normally warm,dry atmospheres with coating subject to minimum wear or abrasion.X2.DETERMINATION OF SULFUR IN ELECTRODEPOSITED NICKELThe following two methods for the determination of sulfur in electroplated nickel are given as guidelines for use to test compliance of the type of nickel deposit with the appropriate definition given in6.3.2.They represent methods that have been used with success commercially;they are not ASTM standards,nor is it the intent in publishing these methods to preclude the use of other methods or variations in these methods.X2.1Total Sulfur in Electroplated Nickel byCombustion-Iodate TitrationX2.1.1Scope—This method covers the determination of sulfur in concentrations from0.005to0.5mass%.X2.1.2Summary of Method—A major part of the sulfur in the sample is converted to sulfur dioxide(SO2)by combustion in a stream of oxygen using an induction furnace.During the combustion,the SO2is absorbed in an acidified starch-iodide solution and titrated with potassium iodate solution.The latter is standardized against steels of known sulfur content to compensate for characteristics of a given apparatus and for day-to-day variation in the percentage of sulfur recovered as pensation is made for the blank because of accelera-tors and crucibles.N OTE X2.1—Instruments are available for measuring the sulfur dioxide from combustion by infrared detection methods and using built-in computers to integrate and display the sulfur content as a percentage.X2.1.3Interferences—The elements ordinarily present in electroplated nickel do not interfere.X2.1.4Apparatus—Induction heating apparatus for deter-mination of sulfur by direct combustion as described in Practices E50(Apparatus No.13).X2.1.5Reagents:X2.1.5.1Purity of Reagents—Reagent grade chemicals shall be used in all tests.Unless otherwise indicated,it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemi-cal Society,where such specifications are available.4Other grades may be used,provided it isfirst determined that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.X2.1.5.2Purity of Water—Unless otherwise indicated, reference to water shall be understood to mean reagent water conforming to Specification D1193.X2.1.5.3Hydrochloric Acid(3+97)—Mix3volumes of concentrated hydrochloric acid(HCl)(sp gr1.19)with97 volumes of water.X2.1.5.4Iron(Low-Sulfur)Accelerator—Chips.4“Reagent Chemicals,American Chemical Society Specifications,”Am.Chemi-cal Soc.,Washington,DC.For suggestions on the testing of reagents not listed by the American Chemical Society,see“Reagent Chemicals and Standards,”by Joseph Rosin,D.Van Nostrand Co.,New York,NY,and the“United StatesPharmacopeia.”--`,,```,,,,````-`-`,,`,,`,`,,`---。

ABB 8140系列、8140.1系列、8140.2系列商品说明书

ABB 8140系列、8140.1系列、8140.2系列商品说明书

TERMOSTATOS 8140 / 8140.1 / 8140.2Instrucciones de instalación yfuncionamientoABBLea atentamente las siguientes instrucciones antes de utilizar el producto.ÍNDICE PAG. FUNCIONAMIENTO (3)MONTAJE (4)ESQUEMAS DE CONEXIÓN (5)REGULACION Y AJUSTE (10)PUESTA EN SEVICIO (14)DATOS TÉCNICOS (15)GARANTIA (16)Esta gama de termostatos sirve para la regulación de la temperatura en recintos cerrados y secos como pueden ser viviendas, locales públicos, etc.EMPLAZAMIENTO ADECUADOPara un óptimo funcionamiento deben situarse en una pared o tabique según los siguientes puntos:- Situación en una pared enfrente de la fuente de climatización a 1,5 m. sobre el nivel del suelo.- Debe evitarse el montaje en muros exteriores y en lugares expuestos a corrientes de aire.- Debe asegurarse que el aire normal de convención alcance el termostato sin dificultades. Para ello nodebe montarse el aparato en estanterías o detrás de cortinas o recubrimientos similares.- Debe evitarse la incidencia directa de rayos solares, la proximidad de televisores, lámparas, chimeneas, tuberías de calefacción y en general cualquierelemento que genere calor.Para proceder al montaje del aparato debe actuarse conforme a los siguientes pasos:1.Efectuar las conexiones eléctricas conforme se ex-plica en el apartado “Esquemas de conexión”.2.Sujetar el aparato sobre la caja de empotrar uni-versal.3.Montar la tapa utilizando el tornillo que oculta elbotón, de manera que la tapa sujete el marco.4.Poner el botón de selección de temperatura, ha-ciendo coincidir el nervio del eje en la ranura del alojamiento.Observaciones: Una vez montado el aparato reco-mendamos proteger el mismo con la tapa hasta su puesta definitiva en funcionamiento.NOTA: Asegúrese de desconectar la tensión de la instalación cuando manipule el aparato.La conexión eléctrica del aparato debe realizarse conforme se muestra en el esquema eléctrico de las figuras siguientes.Es preciso asegurar que el hilo del Neutro se conecte en la borna «N». Si esto no ocurriera el Termostato no trabajaría correctamente.La sección máxima de los conductores es de 2,5 mm2. No se precisa la conexión del conductor de puesta a tierra ya que el aparato cuenta con aislamiento de protección.TERMOSTATO CALEFACCIÓN(Ref. 8140)L N LN CAL.Fig. 1(OPCIONAL)TERMOSTATO CALEFACCIÓN CON INTERRUPTOR(Ref. 8140.1)L N LN CAL.Fig. 2(OPCIONAL)TERMOSTATO FRÍO-CALOR PARA INSTALACIÓNCON UN SOLO FLUIDO PORTADOR DE CALOR(Ref. 8140.2)L N LNCAL.Fig. 3REF.TERMOSTATO FRÍO-CALORCON CAMBIO CENTRALIZADO(Ref. 8140.2)L N LNVÁLVULAFig. 4Todos los Termostatos salen de fábrica con el margen de ajuste comprendido entre + 5 ºC y 30 ºC.Este margen de temperatura puede variarse a voluntad, actuando sobre los dos tornillos de ajuste existentes en la parte interna del botón selector de temperatura.El procedimiento para fijar un margen diferente al mencionado es el siguiente:1.Elegir los límites de temperatura que se deseen.Ejemplo: Mínimo 10 ºC. Máximo 22 ºC.2.Situar el botón selector de temperaturaaproximadamente en el medio del margen deseado.Siguiendo el ejemplo anterior el medio entre 10 ºC y22 ºC es 16 ºC.3.Sacar de su alojamiento el botón de ajuste.104.Situar el anillo rojo existente en la parte inferior delbotón, a la temperatura máxima deseada: en este caso 22 ºC.El movimiento de este anillo selector debe realizarse en el sentido contrario, al de las agujas de un reloj.Para realizar esta operación debe tomarse en cuenta las cifras de la escala situadas en la parte exterior de la misma. Ver figura 5.5.Ajustar ahora el anillo de ajuste de color azul a latemperatura mÍnima deseada, en este caso 10 ºC.Para el ajuste de este anillo debe moverse el mismo en sentido de las agujas del reloj y tomarse en cuenta las cifras de la escala interior. Ver figura 6. 6.Volver a colocar el botón del selector en el aparato.Al hacer esto el indicador del botón debe marcar de nuevo la temperatura media del punto 2.11FIG. 5BÓTON TERMOSTATOFIG. 6BÓTON TERMOSTATO1Al poner en servicio el Termostato hay que tener en cuenta que el bimetal térmico precisa de algún tiempo para adaptarse a la temperatura ambiente. Inmediatamente después de la puesta en servicio, el punto de conmutación será diferente a la temperatura ambiente; como el aparato está equipado con un sistema de realimentación térmica, la temperatura a la que se ha ajustado tardará un cierto tiempo en alcanzarse. Para poder alcanzar más rápidamente el calentamiento inicial y acortar el tiempo de adaptación se recomienda situar la temperatura de ajuste algo más alta de lo que se desee. Una vez se haya alcanzado la temperatura deseada, puede volverse a efectuar un reajuste de la temperatura situando los puntos máximos y mínimos deseados.Margen de temperatura: +5° a 30° CTensión nominal: 250 V~ 50 HzDiferencial temp. conmutación:Dinámico 1 K ±0,5 KEstático aprox. 2,5 KCargas máx.:En calefacción: 10(4) AEn refrigeración: 5 (2) ACargas mín.:En calefacción: 10 mAEn refrigeración: 10 mATemperatura de funcionamiento: 0° a 55°Grado de protección: IP20Margen de actuación: Regulable de 5° a 30° CTodos los aparatos fabricados o distribuidos por Asea Brown Boveri, S.A. Fábrica NIESSEN están realiza-dos de acuerdo a la más moderna tecnología. La Fá-brica NIESSEN, garantiza sus artículos, dentro de las condiciones generales de suministro, siempre que se trate de un defecto de fabricación. En este caso, le rogamos remita el aparato defectuoso al distribuidor donde lo adquirió, acompañado del presente certifi-cado de garantía.La presente garantía se aplicará a aquellos artículos que presenten un defecto de fabricación. No se aplicará por lo tanto a los artículos que presenten daños como consecuencia de no haber seguido correctamente las instrucciones de montaje, o cuando la instalación haya sido realizada por personal no especializado. Así mismo, quedan excluidos los daños ocasionados por uso indebido del aparato y averías producidas en el transporte.La duración de esta garantía es de 24 meses a partir de la fecha de adquisición del aparato.Importante: Asegúrese de que el presente certificado de garantía esté debidamente cumpli-mentado por el distribuidor.Fecha de adquisición: / /Sello y firma del distribuidor2C L X 81409A 1001 - F Asea Brown Boveri, S.A.Electrification Products Fábrica NIESSEN Polígono Industrial Aranguren, n.º 6 20180 OIARTZUN - España Telf. +34 943 260 101Fax +34 943 260 934e-mail: saic .niessen @ www.abb.es/niessen。

富士胶片 内镜系列 双气囊肠镜 说明书

富士胶片 内镜系列 双气囊肠镜 说明书
FICE
Iris Image storage Power rating Dimensions W×H×D
Weight DICOM
HD-SDIHDTV 1080i 2ch
DVI Digital Visual Interface
1280×1024p Ethernet100 / 10Base RGB1280×1024p SDTV 120V/NTSC,230V/PAL
Less invasiveness
EPX-3500HD
Tube kit
Over-tubes Balloons
Hood
System Configuration
Using silicone rubber accessories
New
Balloon Controller: PB-30/PB-20
Tube Kit: TY-500*
DBE 3.2mm
Close Focus
Double-balloon endoscope suitable for both observation and treatment. The 3.2mm instrument channel diameter enables improved suction performance and supports a wider variety of procedures including hemostasis and balloon dilatation. The new High Resolution Super CCD ensures vivid and high quality images, and the new optical lens enables the observation range of 2-100mm and a wide-angle 140° field of view.

arca 604021 说明书

arca 604021 说明书

Temperatures: Temperature °C (short term): Temperature °C (continuous): Temperature °F (short term): Temperature °F (continuous):
-40 … 120 °C -40 … 80 °C -40 … 250 °F -40 … 175 °F
Enclosing innovations
ARCA 604021
Order symbol: Product nbr: Description: Remarks:
ARCA 604021 8120012 Cabinet, PC 2-point locking
EAN:
6418074079237
El. number:
Accessories: MPS ARCA 6040
Mounting plate (550x350x2 mm)
Accessories: MPP ARCA 6040
MPMP ARCA 6040
MPX ARCA 6040 DRS ARCA 604021 DRS ARCA 604030 IDS ARCA 6040 PMK ARCA 40 RCS ARCA 6040 SBK ARCA 40 SBK ARCA 60 DSP ARCA VLS DSP ARCA VRS
R4,2
400 360
Байду номын сангаас
310
5,2x10
Certificates: SGS Fimko 1G0 ost R 212,5
180
Ø8
155
196 204
604021F size 2
361,5

MZH 604 电子麦克风说明书

MZH 604 电子麦克风说明书

e 604 Manual de instruçõesMaterial fornecido Material fornecido• e 604• suporte para microfone MZH 604• bolsa• instruções resumidas• instruções de segurançaVista geral do produto1. Grelha do microfone2. Tomada XLR-33. Suporte do microfoneInstalaçãoFixar o microfoneFixe o suporte ao microfone com o parafuso.Ligar o microfoneLigue o conector XLR-3 do cabo microfone (acessório opcional) à tomada XLR-3 do microfone.OperaçãoColocar o microfone num tamborFixar o e 604 com o auxílio do respetivo suporte do microfone no aro do tambor.Coloque o microfone no tambor a uma distância de 3 a 5 cm sobre a pele.3 – 5 cm(1.2 – 2")Tenha sempre em consideração as seguintes indicações:Pos.Resultado sonoro ObservaçãoAmuitos tons fundamentais poucos harmónicosPosicionamento no tambor:3 a 5 c m sobre a peleA relação entre tons fundamentais e harmónicos pode ser ajustada através do ângulo. Os resultados mais equilibrados podem ser alcançados com um ângulo entre 30 e 60°.Bpoucos tons fundamentais muitos harmónicosCUtilização de um segundo e 604 para captação da pele ressonante e dos bordões. Se necessário, ativara inversão de fase de um dos microfones.A B CLimpeza e manutenção do e 604Posicionar os monitoresPosicione os monitores no ângulo de maior cancelamento (135°) para evitar feedback e interferên-cias.Limpeza e manutenção do e 604CUIDADOOS LÍQUIDOS PODEM DANIFICAR O SISTEMA ELETRÓNICO DO PRODUTO!Podem penetrar na carcaça do produto e provocar um curto-circuito no sistema eletrónico.Mantenha todo o tipo de líquidos afastado do produto.Nunca utilize produtos de limpeza nem solventes.Desligue os produtos da rede elétrica e remova as baterias e as pilhas antes de iniciar a limpeza.Use apenas um pano seco e macio para limpar todos os produtos.Dados técnicosDados técnicosPrincípio do conversor dinâmico Intervalo de transmissão 40 - 18.000 Hz Característica direcionalcardioide Sensibilidade em campo livre, sem carga 1,8 mV/Pa Impedância nominal (a 1 kHz)350 ΩImpedância terminal mín. 1 kΩConector XLR-3Peso 60 gDimensõesØ 33 x C 59 mmDiagrama polar125 Hz 250 Hz 500 Hz 1,000 Hz 2,000 Hz 4,000 Hz8,000 Hz 16,000 Hz30°0°180°150°120°60°90°0510152025dB30°0°180°150°120°60°90°Resposta em frequênciadBV50100200501,0002,0005,0010,00020,000H z- 50- 60- 70- 80- 90- 400°, 1 m 0°, 5 cmVista geral das aplicaçõesOcupação das fichasUNBALANCEDBALANCEDVista geral das aplicaçõesAplicação principal Aplicação secundária。

XF-6041功能说明

XF-6041功能说明

XF-6041功能说明面板按键功能说明1.将输入音源正确接驳于相应莲花插口,付机正确接驳于相应位置。

将外接天线接于天线插座。

2.开机,ST-BY红灯亮。

3.按动ST-BY键,5.1绿灯亮,系统默认5.1输入状态模式。

同时数码窗口系统默认显示音量“VL40”,按动VOL+与VOL-键,音量可任意调节,数码窗口显示会跟着变化。

4.按动SOURCE键,5.1\CD\AUX\FM输入状态模式可一一切换.切换至某一模式,其相应绿灯亮。

当输入相应音源,则可听到音乐声了。

5.当FM绿灯亮,则可收FM信号。

6.按动CH+或CH-键,显示器上可显示01到40信道。

如果某一信道存有FM信号,则可收听到FM音乐了,且数码窗口会显示对应的FM频率。

如果还没存有FM信号,显示器上则会显示4个“一”。

遥控器按键功能说明1.将2节7号电池放入遥控器的相应位置。

2.开机,面板ST-BY灯亮。

3. 按动遥控器ST-BY键,面板5.1灯亮,系统默认5.1输入状态模式。

同时系统默认数码窗口显示音量“VL40”,按动遥控器VOL+与VOL-键,音量可任意调节,数码窗口显示会跟着变化。

4.按动SOURCE键,5.1\CD\AUX\FM输入状态模式可一一切换,切换至某一模式,其相应绿灯亮。

当输入相应音源,则可听到音乐声了当FM灯亮,则可收听FM信号。

5.按动CH+或CH-键,显示器上可显示01到40信道。

如果某一信道存有FM信号,则可收听到FM音乐了。

如果还没存有FM信号,显示器上则会显示4个“一”。

如果某一信道还没存有FM信号,长按一会遥控器TUNE+键或TUNE-键,则可向上或向下搜索当地电台的FM信号了。

当遇较强信号时,则会暂停一下,如不是自己喜欢的节目,继续搜索。

如是自己喜欢的节目,这时按动MEMORY键,所处信道的数字则闪动几下,表示存储成功。

6.依上可在多个信道上存储相应的FM信号。

这时按动按动CH+或CH-键,则能收听喜欢的FM信号了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档