植物生理学5PPT课件
合集下载
植物生理学ppt课件ppt
![植物生理学ppt课件ppt](https://img.taocdn.com/s3/m/9804598059f5f61fb7360b4c2e3f5727a4e92467.png)
植物的生殖过程
植物的生殖过程包括配子形成、受精和 胚胎发育等阶段。在配子形成阶段,花 药和胚珠分别产生精子和卵细胞;在受 精阶段,精子和卵细胞结合形成受精卵 ;在胚胎发育阶段,受精卵经过一系列 细胞分裂和分化,最终形成成熟的种子 。
VS
植物的发育过程
植物的发育过程包括营养生长期、生殖生 长期和衰老期等阶段。在营养生长期,植 物主要进行细胞分裂和扩大,形成各种组 织和器官;在生殖生长期,植物进行开花 、结实等生殖过程;在衰老期,植物逐渐 失去生理功养的吸收与利用
矿质营养的种类
植物所需的矿质营养包括氮、磷、钾、钙、镁、硫等大量元素和 铁、锰、锌、铜、硼、钼等微量元素。
矿质营养的吸收方式
植物通过根系吸收土壤中的矿质营养,主要通过质流和扩散作用进 入根部细胞。
矿质营养的运输和利用
吸收的矿质营养通过木质部导管向上运输到叶片和其他组织,参与 植物的光合作用、呼吸作用等生理过程。
植物在不同环境条件下,能够通过生理调节来适应水分和 矿质营养的变化,以保证正常的生长和发育。
05
植物的生长与发育
植物生长的概念与特点
植物生长的概念
植物生长是指植物通过吸收和利用环境中的水分、养分和光照等资源,实现细 胞分裂、扩大和组织分化等过程,从而增加其体积和质量的过程。
植物生长的特点
植物生长具有持续性和阶段性,不同生长阶段具有不同的生长特点。例如,在 营养生长期,植物主要进行细胞分裂和扩大,而在生殖生长期,植物则主要进 行开花、结实等生殖过程。
根部吸收的水分通过木质部导管向上运输到叶片,同时水分也在其他组
织间进行横向运输。
02
水分吸收的主要方式
被动吸水和主动吸水。被动吸水是指在蒸腾作用下,水分通过渗透作用
00绪论(植物生理学) ppt课件
![00绪论(植物生理学) ppt课件](https://img.taocdn.com/s3/m/c1090997227916888586d75a.png)
植物生理学
主讲: 白音 石海英
2020/5/11
植物主要生命活动:
一、物质产生和光能利用
水分代谢——水分的吸收和散失; 矿质营养——矿质的吸收、同化和利用; 光合作用——碳水化合物的合成、光能→化学能。
二、物质和能量的转变
呼吸作用——有机物分解、能量释放; 有机物的代谢、运输。
三、生长和发育
细胞信号转导;植物生长物质;光形态建成;植物的生长生理、生殖生理; 植物的成熟和衰老生理、植物的抗性生理
植物激素类物质的研究和应用 使植物的生长发育进入“化控时代 ” 光合与光能利用研究---实现了“ 绿色革命”
培育矮化型植株品种(超高产育种) 优化株型结构(超密型栽培)
2020/5/11
种苗生理和生殖生理及其与环境的 关系研究---促成了作物栽培的“白 色革命”
(设施栽培、反季节栽培等)
组织培养技术研究 促进了名、优、新、稀、特花卉、果 树、林木等新品种无性快速繁殖、脱 毒或其特殊成分的生产
我国植物生理学的发展历程
起步晚、发展缓慢 钱崇澍(1883-1965):《钡、锶及铈对水绵的特殊作用
》论文
我国植物生理学的奠基人:李继侗、罗宗洛、汤佩松
2020/5/11
3 植物生理学的展望
3.1 探究层次越来越宽广
2020/5/11
植物生理学的发展趋势
植物生理学正朝着微观和宏观两个方向发展
微观——把植物整体的各种生理活动,物质、能量、信
与植物分子生物学的渗透 与植物形态解剖学的渗透 与植物化学的渗透 等等、、、、、、
2020/5/11
3 植物生理学的展望
3.3 理论联系实际
虽是基础学科,但其任务是指导生产实践
2020/5/11
主讲: 白音 石海英
2020/5/11
植物主要生命活动:
一、物质产生和光能利用
水分代谢——水分的吸收和散失; 矿质营养——矿质的吸收、同化和利用; 光合作用——碳水化合物的合成、光能→化学能。
二、物质和能量的转变
呼吸作用——有机物分解、能量释放; 有机物的代谢、运输。
三、生长和发育
细胞信号转导;植物生长物质;光形态建成;植物的生长生理、生殖生理; 植物的成熟和衰老生理、植物的抗性生理
植物激素类物质的研究和应用 使植物的生长发育进入“化控时代 ” 光合与光能利用研究---实现了“ 绿色革命”
培育矮化型植株品种(超高产育种) 优化株型结构(超密型栽培)
2020/5/11
种苗生理和生殖生理及其与环境的 关系研究---促成了作物栽培的“白 色革命”
(设施栽培、反季节栽培等)
组织培养技术研究 促进了名、优、新、稀、特花卉、果 树、林木等新品种无性快速繁殖、脱 毒或其特殊成分的生产
我国植物生理学的发展历程
起步晚、发展缓慢 钱崇澍(1883-1965):《钡、锶及铈对水绵的特殊作用
》论文
我国植物生理学的奠基人:李继侗、罗宗洛、汤佩松
2020/5/11
3 植物生理学的展望
3.1 探究层次越来越宽广
2020/5/11
植物生理学的发展趋势
植物生理学正朝着微观和宏观两个方向发展
微观——把植物整体的各种生理活动,物质、能量、信
与植物分子生物学的渗透 与植物形态解剖学的渗透 与植物化学的渗透 等等、、、、、、
2020/5/11
3 植物生理学的展望
3.3 理论联系实际
虽是基础学科,但其任务是指导生产实践
2020/5/11
植物生理学课件-PPT课件
![植物生理学课件-PPT课件](https://img.taocdn.com/s3/m/8ed7560a4b35eefdc8d33333.png)
产生与发展
农政全书
齐民要术
陈旉农书
Hale Waihona Puke 王祯农书农政全书齐民要术
陈旉农书
王祯农书
农政全书
齐民要术
陈旉农书
王祯农书
产生与发展
●植物生理学诞生的三大标志:
▲J.von.Liebig(1840):创立矿质营养学说 ▲J.von.Sachs(1882) :撰写《植物生理学讲义》 ▲W.Pfeffer(1904):出版三卷本《植物生理学》巨著
研究内容
●生长发育生理
▲植物营养生长 ▲植物生殖生长 ▲植物衰老与脱落生理
研究内容
●逆境生理(stress Physiology)
▲抗旱机理 ▲抗涝机理 ▲抗寒机理 ▲抗热机理 ▲抗盐机理 ▲植物与生态环境保护
三、植物生理学的产生和发展
●植物生理学的奠基 ●植物生理学的诞生与成长 ●植物生理学的迅速发展
任务与展望
(二)植物生理学展望
(1)植物分子生理学(从生物大分子到复杂生命活动) (2)信号传递(实现生命整体性的重要环节) (3)代谢及其调节(生命活动的物质与能量基础) (4)植物环境生理(生命的协同进化与适应
五、学习植物生理学的方法
★充分认识本课程的重要性 ★重视基本概念、基本理论学习 ★理论联系实际 ★充分利用网络信息资源
产生与发展
●植物生理学的奠基
▲Van Helmont(1577-1644):柳树生长实验 ▲J.Woodward(1699) :发现植物对矿质营养的需求 ▲Priestley(1776):发现植物可以改善空气 ▲Ingenhousz(1779) :发现植物只有在光下才能净化空气 ▲T.de.Saussure(1767-1845):植物在光下利用CO2进行光合 ▲voisier(18世纪80年代):发现呼吸作用
《植物生理学》课件
![《植物生理学》课件](https://img.taocdn.com/s3/m/4126bc42773231126edb6f1aff00bed5b8f37363.png)
CHAPTER 02
植物的水分生理
植物对水分的吸收与运
根部吸水
植物通过根部吸收水分,主要依赖于 根压和蒸腾拉力。
水分运输
水分在植物体内通过木质部导管进行 长距离运输,受到压力和扩散作用的 影响。
植物的水分平衡与调节
水分平衡
植物通过叶片蒸腾作用释放水分,保持体内水分平衡,调节 温度和盐分平衡。
水分调节机制
发。
细胞分素
促进细胞分裂和组织分 化,延缓植物衰老。
脱落酸
促进叶和果实的脱落, 调节植物休眠和种子成
熟。
植物生长与发育的过程
01
02
03
04
种子萌发
种子在适宜的条件下吸收水分 和氧气,突破种皮发芽。
营养生长
植物通过光合作用合成有机物 ,同时不断扩展根、茎、叶等
器官。
生殖生长
植物在适宜的条件下形成花芽 ,开花、结果,繁殖后代。
光合作用与呼吸作用的相互关系
• 总结词:阐述光合作用与呼吸作用的相互影响和制约关系。
• 详细描述:光合作用和呼吸作用是植物体内两个重要的代谢过程,它们之间存在相互影响和制约的关系。光合作用过程中产生的氧气和还原态的氢是呼吸作用所需的,而呼吸作用过程 中产生的二氧化碳和能量也是光合作用所需的。此外,光合作用和呼吸作用的酶的活性也受到彼此的影响。在光照充足时,光合作用的速率高于呼吸作用的速率,植物积累有机物;在 光照不足时,光合作用的速率降低,呼吸作用的速率相对较高,植物消耗有机物。因此,了解光合作用和呼吸作用的相互关系对于理解植物的生长和发育具有重要意义。
氮
合成蛋白质和其他重要有机物的主要元素,主要通过 根系吸收铵态氮和硝态氮。
磷
参与能量代谢和遗传信息的传递,主要以磷酸根的形 式被吸收。
植物生理ppt课件
![植物生理ppt课件](https://img.taocdn.com/s3/m/101716a3e109581b6bd97f19227916888486b9cb.png)
植物对盐碱环境的适应
植物对温度变化的适应
通过调节细胞膜流动性、增加热休克 蛋白合成等方式适应温度变化。
通过提高渗透压、积累有机酸、合成 抗盐蛋白等方式适应盐碱环境。
2023
PART 04
植物的光合作用与呼吸作 用
REPORTING
光合作用的过程与机理
总结词
光合作用是植物通过叶绿体将光能转化为化学能的过程,它分为光反应和暗反 应两个阶段。
增加细胞内糖分和脂肪含量
在寒冷条件下,一些植物会增加细胞内的糖分和脂肪含量 ,以提高细胞的抗冻能力。
调节膜脂组成
植物通过调节膜脂的组成来适应低温环境,如增加不饱和 脂肪酸含量、降低膜流动性等。
产生抗冻蛋白
一些植物在低温条件下会产生抗冻蛋白,这些蛋白能够与 冰晶结合,防止细胞内冰晶形成,从而保护细胞结构不受 破坏。
2023
PART 05
植物的生长与发育
REPORTING
植物生长的调控机制
激素调节
植物激素如生长素、赤霉素、细 胞分裂素等对植物生长具有重要 调节作用,影响细胞分裂、伸长
和分化。
营养物质
植物通过吸收土壤中的水分、矿物 质等营养物质,调节自身生长和发 育。
环境因素
光照、温度、湿度等环境因素通过 影响植物激素的合成与代谢,进而 调控植物生长。
植物生理学的重要性
植物生理学是农业、林业、园艺等学 科的基础,对于解决粮食、环境、资 源等问题具有重要意义,同时对于人 类健康和生态平衡也有重要影响。
植物生理学的研究内容和方法
研究内容
植物生长发育与调控、光合作用 与呼吸作用、水分和营养吸收与 运输、植物激素与信号转导等。
研究方法
实验研究、数学建模、计算机模 拟、同位素标记等。
植物对温度变化的适应
通过调节细胞膜流动性、增加热休克 蛋白合成等方式适应温度变化。
通过提高渗透压、积累有机酸、合成 抗盐蛋白等方式适应盐碱环境。
2023
PART 04
植物的光合作用与呼吸作 用
REPORTING
光合作用的过程与机理
总结词
光合作用是植物通过叶绿体将光能转化为化学能的过程,它分为光反应和暗反 应两个阶段。
增加细胞内糖分和脂肪含量
在寒冷条件下,一些植物会增加细胞内的糖分和脂肪含量 ,以提高细胞的抗冻能力。
调节膜脂组成
植物通过调节膜脂的组成来适应低温环境,如增加不饱和 脂肪酸含量、降低膜流动性等。
产生抗冻蛋白
一些植物在低温条件下会产生抗冻蛋白,这些蛋白能够与 冰晶结合,防止细胞内冰晶形成,从而保护细胞结构不受 破坏。
2023
PART 05
植物的生长与发育
REPORTING
植物生长的调控机制
激素调节
植物激素如生长素、赤霉素、细 胞分裂素等对植物生长具有重要 调节作用,影响细胞分裂、伸长
和分化。
营养物质
植物通过吸收土壤中的水分、矿物 质等营养物质,调节自身生长和发 育。
环境因素
光照、温度、湿度等环境因素通过 影响植物激素的合成与代谢,进而 调控植物生长。
植物生理学的重要性
植物生理学是农业、林业、园艺等学 科的基础,对于解决粮食、环境、资 源等问题具有重要意义,同时对于人 类健康和生态平衡也有重要影响。
植物生理学的研究内容和方法
研究内容
植物生长发育与调控、光合作用 与呼吸作用、水分和营养吸收与 运输、植物激素与信号转导等。
研究方法
实验研究、数学建模、计算机模 拟、同位素标记等。
中国农业大学植物生理学本科课件 第五章 植物的矿质营养和植物对氮、硫、磷的同化
![中国农业大学植物生理学本科课件 第五章 植物的矿质营养和植物对氮、硫、磷的同化](https://img.taocdn.com/s3/m/b3ea5688453610661fd9f46a.png)
Main micronutrient deficiencies worldwide
• Iron • Zinc • Iodine - not essential for plants • Selenium - not essential for plants • Vitamin A - not essential for plants
Micronutrient deficiency in 190 soils worldwide
Macronutrients can also be deficient in foods
Malformation in children due to insufficient Calcium in diets.
一般认为不可再利
苹
用,但也有研究表明
果
有一定程度的移动性。
黄
缺 Fe 时,幼叶发黄,
叶
如华北地区果树的
病
“黄叶病”。
Iron (Fe) Deficiency Symptoms
1
2
3
4
A
B
1-Piggyback Plant, 2- Petunia, 3-Silver Maple, 4-Rose (A-normal, B-Fe-deficient)
1.01
6
碳
C
CO2
12.01
45
氧
O
O2,H2O
16.00
45
氮
N
NO3-,NH4+
14.01
1.5
钾
K
K+
39.10
1.0
钙 镁 磷 硫 微量元素 氯 铁 硼 锰 锌 铜 镍 钼
Ca
• Iron • Zinc • Iodine - not essential for plants • Selenium - not essential for plants • Vitamin A - not essential for plants
Micronutrient deficiency in 190 soils worldwide
Macronutrients can also be deficient in foods
Malformation in children due to insufficient Calcium in diets.
一般认为不可再利
苹
用,但也有研究表明
果
有一定程度的移动性。
黄
缺 Fe 时,幼叶发黄,
叶
如华北地区果树的
病
“黄叶病”。
Iron (Fe) Deficiency Symptoms
1
2
3
4
A
B
1-Piggyback Plant, 2- Petunia, 3-Silver Maple, 4-Rose (A-normal, B-Fe-deficient)
1.01
6
碳
C
CO2
12.01
45
氧
O
O2,H2O
16.00
45
氮
N
NO3-,NH4+
14.01
1.5
钾
K
K+
39.10
1.0
钙 镁 磷 硫 微量元素 氯 铁 硼 锰 锌 铜 镍 钼
Ca
植物生理学课件第五章 同化物的运输
![植物生理学课件第五章 同化物的运输](https://img.taocdn.com/s3/m/0011b633af1ffc4ffe47ac87.png)
质外体途径 共质体途径
两条途径交替进行,互相转换,相辅相成。
一、质外体途径装载
质外体:指物体中的细胞壁、细胞间隙和木质部导管的连续 系统。
质外体途径:指水分和溶质的运输只经过胞壁而不经过任何 膜的途径。
质外体是一个开放连续空间,没有屏障,运输是物理性被动 运输,速度很快。
甜菜和蚕豆有质外体运输。 甘蔗细胞和自由空间的蔗糖浓度随环境(抑制剂、温度)改
二、共质体途径装载
共质体系统:由胞间连丝将细胞原生质体联系起来的连续系统。 共质体途径:胞间连丝把木质部和韧皮部的汁液从一个细胞运
送到另一个细胞的途径。
南瓜叶鞘薄壁细胞与伴胞之间有大 量胞间连丝,它的运输糖主要是水 苏糖。当水苏糖被14C标记后,自 由空间不出现14C-水苏糖,说明该 组织的装载主要走共质体途径
连丝微管和质膜之间形成胞质套筒或胞质环带, 连丝微管和孔的质膜之间有球形蛋白。
有的组织中球形蛋白之间由它的类轴丝状蛋白 相联系,把套筒分隔成8-10个微通道,也是胞 间连丝内部的输导途径之一。
胞间连丝
裸子植物的筛管是筛胞,也呈细长筒形,长达1 mm, 筛胞中没有P-蛋白。
由于筛胞中没有通道连接,因此裸子植物同化机制与被 子植物可能不同。
将能在共质体移动却不 能跨膜的荧光染料注射 到薄荷叶细胞,染料可 以从叶肉细胞移动到小 叶脉,说明这些植物叶 片具有共质体连续性。
细脉的伴胞和传递细胞质外体只运输蔗糖,而共质体除 此之外还可以运输棉子糖和水苏糖,还要经过居间细胞。
不同位置的筛分子汁液成分不同,说明不同糖分运输有 选择性。
此外,筛分子-伴胞复合体的渗透势大于叶肉细胞。 针对糖分运输选择性和逆浓度梯度积累的现象,出现多
聚体-陷阱模型。
《植物生理学》课件
![《植物生理学》课件](https://img.taocdn.com/s3/m/e3adcf68dc36a32d7375a417866fb84ae45cc30a.png)
要点一
内源调节
植物通过激素等内源调节物质来调控自身的生长和发育。
要点二
外源调节
环境因素如光照、温度、水分、养分等对植物生长具有重 要影响。
植物的生殖生理与发育过程
植物的生殖生理
植物通过生殖过程产生种子,实现繁殖。
植物的发育过程
植物从种子萌发到开花结果的整个过程,包 括营养生长和生殖生长两个阶段。
THANKS FOR WATCHING
氧气释放
在光合作用的光反应阶段,水 分子被分解为氧气和质子,氧 气被释放到大气中。
能量利用
植物通过光合作用将太阳能转 化为化学能,这些能量被用于 植物的生长、发育和繁殖等生
命活动。
04
植物的呼吸作用
呼吸作用的基本概念
01
呼吸作用
指植物在有氧条件下,将稳定的 化学能转化为ATP和NADPH的 过程。
详细描述
植物生理学主要研究植物如何获取养 分、水分,如何进行光合作用、呼吸 作用等生理过程,以及植物如何适应 环境变化等方面的内容。
植物生理学的学科地位与意义
总结词
植物生理学是生物学的重要分支,对于理解植物生长发育、 适应环境等过程具有重要意义,也为农业、林业等实践领域 提供了理论基础。
详细描述
植物生理学是生物学的基础学科之一,对于理解植物生命活 动的本质和机制具有重要作用。同时,植物生理学的研究成 果也为农业、林业等实践领域提供了重要的理论支持和实践 指导。
感谢您的观看
光合细胞
进行光合作用的细胞主要是叶绿体中的叶肉细胞 。
光合色素
叶绿体中的色素,包括叶绿素a、叶绿素b、胡萝 卜素和叶黄素等,主要吸收光能。
光合作用的机理与过程
光能吸收 电子传递
内源调节
植物通过激素等内源调节物质来调控自身的生长和发育。
要点二
外源调节
环境因素如光照、温度、水分、养分等对植物生长具有重 要影响。
植物的生殖生理与发育过程
植物的生殖生理
植物通过生殖过程产生种子,实现繁殖。
植物的发育过程
植物从种子萌发到开花结果的整个过程,包 括营养生长和生殖生长两个阶段。
THANKS FOR WATCHING
氧气释放
在光合作用的光反应阶段,水 分子被分解为氧气和质子,氧 气被释放到大气中。
能量利用
植物通过光合作用将太阳能转 化为化学能,这些能量被用于 植物的生长、发育和繁殖等生
命活动。
04
植物的呼吸作用
呼吸作用的基本概念
01
呼吸作用
指植物在有氧条件下,将稳定的 化学能转化为ATP和NADPH的 过程。
详细描述
植物生理学主要研究植物如何获取养 分、水分,如何进行光合作用、呼吸 作用等生理过程,以及植物如何适应 环境变化等方面的内容。
植物生理学的学科地位与意义
总结词
植物生理学是生物学的重要分支,对于理解植物生长发育、 适应环境等过程具有重要意义,也为农业、林业等实践领域 提供了理论基础。
详细描述
植物生理学是生物学的基础学科之一,对于理解植物生命活 动的本质和机制具有重要作用。同时,植物生理学的研究成 果也为农业、林业等实践领域提供了重要的理论支持和实践 指导。
感谢您的观看
光合细胞
进行光合作用的细胞主要是叶绿体中的叶肉细胞 。
光合色素
叶绿体中的色素,包括叶绿素a、叶绿素b、胡萝 卜素和叶黄素等,主要吸收光能。
光合作用的机理与过程
光能吸收 电子传递
植物生理学ppt课件
![植物生理学ppt课件](https://img.taocdn.com/s3/m/4c1fcef83169a4517623a311.png)
• 6.膨压:细胞吸水膨胀而对细胞壁产生的压力。 • 7.渗透势:又叫溶质势,由于溶质颗粒的存在而使水势
降低的部分(水的自由能降低),一般为负值。
(五)细胞间的水分移动
• 水势差异决定水流方向和速度
渗透势=-1.4Mpa 渗透势=-1.2Mpa 压力势=+0.8Mpa 压力势=+0.4Mpa
水势=-0.6Mpa 水势=-0.8Mpa
二、水分沿导管或管胞上升的动力
• 1.水分沿导管、管胞上升的动力: • (1)根压 • (2)蒸腾拉力:主要动力 • 2.如何保证导管内的水柱不断? • 内聚力学说(cohesion theory): • 3.有关内聚力学说的争论的焦点: • (1)水分上升是否需要活细胞参与; • (2)木质部有气泡,水柱不可能连续,为什么水柱还
三、影响蒸腾作用的内外条件
• 气孔蒸腾水蒸气扩散过程
• 蒸腾速率=扩散力/扩散途径阻力=(气孔下腔蒸腾压-叶外蒸腾压)/(气孔阻力+扩散层阻力
(一)外界条件对蒸腾作用的影响
• 1.光照:最主要条件 • 2.大气的相对湿度 • 3.温度 • 4.外界空气流动速率 • 5.昼夜变化
(二)内部因素对蒸腾作用的影响 1.气孔频度 2.气孔大小 3.气孔开度 4.气孔下腔大小 5.气孔的特殊构造 6.叶片内部面积
(四)近年来植物生理学发展的特点 1.研究层次越来越广 2.学科之间相互渗透 3.理论联系实际 4.研究手段现代化
三、植物生理学发展展望
• 研究重点:能量转变 • 研究焦点:膜的结构和功能 • 我国植生研究的主要任务: • 1.深入基础理论研究(有所为,有所不为) • 2.大力开展应用基础研究和应用研究
植物生理学ppt课件
绪
降低的部分(水的自由能降低),一般为负值。
(五)细胞间的水分移动
• 水势差异决定水流方向和速度
渗透势=-1.4Mpa 渗透势=-1.2Mpa 压力势=+0.8Mpa 压力势=+0.4Mpa
水势=-0.6Mpa 水势=-0.8Mpa
二、水分沿导管或管胞上升的动力
• 1.水分沿导管、管胞上升的动力: • (1)根压 • (2)蒸腾拉力:主要动力 • 2.如何保证导管内的水柱不断? • 内聚力学说(cohesion theory): • 3.有关内聚力学说的争论的焦点: • (1)水分上升是否需要活细胞参与; • (2)木质部有气泡,水柱不可能连续,为什么水柱还
三、影响蒸腾作用的内外条件
• 气孔蒸腾水蒸气扩散过程
• 蒸腾速率=扩散力/扩散途径阻力=(气孔下腔蒸腾压-叶外蒸腾压)/(气孔阻力+扩散层阻力
(一)外界条件对蒸腾作用的影响
• 1.光照:最主要条件 • 2.大气的相对湿度 • 3.温度 • 4.外界空气流动速率 • 5.昼夜变化
(二)内部因素对蒸腾作用的影响 1.气孔频度 2.气孔大小 3.气孔开度 4.气孔下腔大小 5.气孔的特殊构造 6.叶片内部面积
(四)近年来植物生理学发展的特点 1.研究层次越来越广 2.学科之间相互渗透 3.理论联系实际 4.研究手段现代化
三、植物生理学发展展望
• 研究重点:能量转变 • 研究焦点:膜的结构和功能 • 我国植生研究的主要任务: • 1.深入基础理论研究(有所为,有所不为) • 2.大力开展应用基础研究和应用研究
植物生理学ppt课件
绪
《植物生理学绪论》课件
![《植物生理学绪论》课件](https://img.taocdn.com/s3/m/fae46acf82d049649b6648d7c1c708a1294a0a6e.png)
植物的节水灌溉
植物生理学在节水灌溉方面也有广泛应用,通过研究植物的 水分吸收、运输和利用等生理过程,可以制定合理的灌溉制 度,实现节水灌溉。
例如,通过监测土壤湿度和植物水分状况,可以确定最佳的 灌溉时间和水量,避免水分浪费和过度灌溉对植物造成伤害 。
植物的抗逆栽培
植物生理学在抗逆栽培方面也具有重要作用,通过研究植 物的抗旱、抗寒、抗盐等生理过程,可以采取相应的管理 措施,提高植物的抗逆能力。
《植物生理学绪论》 ppt课件
目录
• 植物生理学的定义与重要性 • 植物的基本生理活动 • 植物的生长与发育 • 植物的抗逆性 • 植物生理学在农业生产中的应用
01
植物生理学的定义与重要 性
植物生理学的定义
植物生理学定义
植物生理学是研究植物生命活动规律 的科学,主要探究植物对环境条件的 反应机制以及植物体内物质代谢和能 量转化的过程。
水分代谢
总结词
水分代谢涉及植物对水分的吸收、运输、利用和排泄等过程,对植物的生长和发育具有重要意义。
详细描述
水分代谢是植物对水分的吸收、运输、利用和排泄等过程的总称。水是植物生长和发育所必需的物质 ,它参与植物的光合作用、呼吸作用以及营养物质的吸收与运输等过程。水分代谢的正常进行对于维 持植物正常的生理功能至关重要。
植物生理学的研究内容
植物生理学的研究方法
实验研究、观察法、比较法、模拟法 等。
植物生长发育、物质代谢、能量转化 、信息传递等生命活动过程。
植物生理学的重要性
农业生产的需要
植物生理学为农业生产提供理论 支持,指导作物栽培、育种和施 肥等农业技术措施,提高作物产
量和品质。
生态平衡的维护
植物生理学研究植物与环境之间的 相互作用,有助于理解植物对环境 的适应机制,为生态保护和恢复提 供科学依据。
植物生理学05植物同化物的运输PPT课件
![植物生理学05植物同化物的运输PPT课件](https://img.taocdn.com/s3/m/3a814e33f01dc281e53af0be.png)
★ 矿质元素
蔗糖作为植物体内糖类运输主要形式的优
点:
1)蔗糖有很高的水溶性,有利于在筛管中
运输;
2)具有很高的稳定性适于从源运输到库; 3)蔗糖具有很高的运输速率,可达100
cm/h。
第二节 韧皮部装载
指光合产物从叶肉细胞到筛分子—伴胞复 合体的整个过程。分三个步骤:
1)白天磷酸三糖从叶绿体运到胞质溶胶, 晚上以葡萄糖状态离开
3 代谢源与代谢库
3.1概念及其关系
代谢源:指制造并输送有机物质到其他器官的组 织、器官。如成熟的叶片(功能叶)。 代谢库:指植物接纳有机物质用于生长、消耗或 贮藏的组织、器官。如发育中的种子、果实等。 源与库的相互关系:源是制造同化物的器官,库 是接纳同化物的部位,源与库共存于同一植物体, 相互依赖、相互制约。
加入溶质 韧
木 移去溶质 库端
源端
支持依据: ①筛管接近源库两端存在压力势差。 ②蚜虫吻刺法证明筛管汁液的确存在正压力
不足:
①运输所需的压力势差要比筛管实际的压力 差大 ②很难解释双向运输 ③实际上运输是消耗代谢能量的主动过程
2、细胞质泵动学说(cytoplasmic pumping theory)
两条途径 ①质外体途径,卸出到贮藏器官或生殖器 官时(不存在胞间连丝)
②共质体途径,通过胞间连丝→接受细胞, 卸到营养库(根和嫩叶)
细胞壁(质 外体) 质膜
液泡膜 液泡
韧皮细胞 (筛管分子 和伴胞)
库细胞
图6-8 蔗糖卸出到库组织的可能途径
2.卸出机理
两种观点 ①质外体中蔗糖,同 H+ 协同运转,机制与 装载一样,是一个主动过程。
3)另外运输速率也易受外力的影 响。
❖ 共质体运输
蔗糖作为植物体内糖类运输主要形式的优
点:
1)蔗糖有很高的水溶性,有利于在筛管中
运输;
2)具有很高的稳定性适于从源运输到库; 3)蔗糖具有很高的运输速率,可达100
cm/h。
第二节 韧皮部装载
指光合产物从叶肉细胞到筛分子—伴胞复 合体的整个过程。分三个步骤:
1)白天磷酸三糖从叶绿体运到胞质溶胶, 晚上以葡萄糖状态离开
3 代谢源与代谢库
3.1概念及其关系
代谢源:指制造并输送有机物质到其他器官的组 织、器官。如成熟的叶片(功能叶)。 代谢库:指植物接纳有机物质用于生长、消耗或 贮藏的组织、器官。如发育中的种子、果实等。 源与库的相互关系:源是制造同化物的器官,库 是接纳同化物的部位,源与库共存于同一植物体, 相互依赖、相互制约。
加入溶质 韧
木 移去溶质 库端
源端
支持依据: ①筛管接近源库两端存在压力势差。 ②蚜虫吻刺法证明筛管汁液的确存在正压力
不足:
①运输所需的压力势差要比筛管实际的压力 差大 ②很难解释双向运输 ③实际上运输是消耗代谢能量的主动过程
2、细胞质泵动学说(cytoplasmic pumping theory)
两条途径 ①质外体途径,卸出到贮藏器官或生殖器 官时(不存在胞间连丝)
②共质体途径,通过胞间连丝→接受细胞, 卸到营养库(根和嫩叶)
细胞壁(质 外体) 质膜
液泡膜 液泡
韧皮细胞 (筛管分子 和伴胞)
库细胞
图6-8 蔗糖卸出到库组织的可能途径
2.卸出机理
两种观点 ①质外体中蔗糖,同 H+ 协同运转,机制与 装载一样,是一个主动过程。
3)另外运输速率也易受外力的影 响。
❖ 共质体运输
中国科学院大学植物生理学植物生理学 第五章PPT课件
![中国科学院大学植物生理学植物生理学 第五章PPT课件](https://img.taocdn.com/s3/m/ffde4264b14e852458fb57b9.png)
• 鞣质有毒,食草动物吃后明显抑制生长。鞣质 在口腔中与蛋白质结合,有涩味。一些牲畜不 愿吃鞣质含量高的植物,因为鞣质与肠中的蛋 白质结合会形成不易消化的蛋白质——鞣质复 合物。树干心材的鞣质丰富,能防止真菌和细 菌引起的心材腐败
22
第四节 含氮次生化合物
• 植物次生代谢产物中有许多是含氮的, 大多数含氮次生产物是从普通的氨基酸 合成的
5、橡胶:多萜,3000-4000异 戊二烯单位
6、混合萜:除了萜的结构外, 再加上其它结构的而形成的化合 物。如除虫菊花中的除虫菊脂
7
8
萜类物质生理功能
• 萜类对植物的作用是多方面的 • 某些萜类影响植物的生长发育:赤霉素是调节植
物高度的数、胡萝卜素和叶黄素能吸收光能,参 与光合作用 • 许多植物的萜类有毒,可防止哺乳动物和昆虫吞 食。如菊的叶和花含有的单萜酯拟除虫菊酯,是 极强的杀虫剂;松和冷杉含有的松枝的单萜成分, 如苎烯和桂叶烯对昆虫有毒 • 有些萜类是药用或工业原料,例如短叶红豆杉中 的红豆杉醇(亦称紫杉醇),是强烈的抗癌药物; 多萜化合物之中,橡胶是最有名的高分子化合物, 一般由1500—15000个异戊二烯单位所组成
19
功能
• 不同类黄酮有不同功能 • 1、呈现颜色——花色素:是在色类黄酮,有糖则为花色
素苷。溶解于细胞液中,与植物 花、果实 、叶片的颜色 有关。不同的花色素有不同的颜色,同一花色素的颜色也 会有变化,主要由细胞液的pH决定,酸―红,碱―蓝 • 低温、缺N、缺P等 不良环境也会促进花色素的形成和积 累。一般,花色素是糖苷。 • 花色素种类甚多,但都有相同的、基本的结构、即花色素 的基本结构。差异就是B环上的取代物。
反-桂皮酸,对-香豆酸、咖啡酸,阿魏酸 • (2)苯丙酸内酯(环酯)类化合物,亦称香豆素类,也具
22
第四节 含氮次生化合物
• 植物次生代谢产物中有许多是含氮的, 大多数含氮次生产物是从普通的氨基酸 合成的
5、橡胶:多萜,3000-4000异 戊二烯单位
6、混合萜:除了萜的结构外, 再加上其它结构的而形成的化合 物。如除虫菊花中的除虫菊脂
7
8
萜类物质生理功能
• 萜类对植物的作用是多方面的 • 某些萜类影响植物的生长发育:赤霉素是调节植
物高度的数、胡萝卜素和叶黄素能吸收光能,参 与光合作用 • 许多植物的萜类有毒,可防止哺乳动物和昆虫吞 食。如菊的叶和花含有的单萜酯拟除虫菊酯,是 极强的杀虫剂;松和冷杉含有的松枝的单萜成分, 如苎烯和桂叶烯对昆虫有毒 • 有些萜类是药用或工业原料,例如短叶红豆杉中 的红豆杉醇(亦称紫杉醇),是强烈的抗癌药物; 多萜化合物之中,橡胶是最有名的高分子化合物, 一般由1500—15000个异戊二烯单位所组成
19
功能
• 不同类黄酮有不同功能 • 1、呈现颜色——花色素:是在色类黄酮,有糖则为花色
素苷。溶解于细胞液中,与植物 花、果实 、叶片的颜色 有关。不同的花色素有不同的颜色,同一花色素的颜色也 会有变化,主要由细胞液的pH决定,酸―红,碱―蓝 • 低温、缺N、缺P等 不良环境也会促进花色素的形成和积 累。一般,花色素是糖苷。 • 花色素种类甚多,但都有相同的、基本的结构、即花色素 的基本结构。差异就是B环上的取代物。
反-桂皮酸,对-香豆酸、咖啡酸,阿魏酸 • (2)苯丙酸内酯(环酯)类化合物,亦称香豆素类,也具
中国科学院大学植物生理学植物生理学 PPT课件
![中国科学院大学植物生理学植物生理学 PPT课件](https://img.taocdn.com/s3/m/6d9afb9927284b73f3425092.png)
第12页/共47页
• 光敏色素生色团由排列成直链的四个吡咯环 组成,因此具共轭电子系统,可受光激发。
• 其稳定型结构为红光吸收型(Pr),Pr吸收 红光后则转变为远红光吸收型(Pfr),而 Pfr吸收远红光后又可变为Pr。
第13页/共47页
• 2种吸光型:Pr和Pfr。Pr和Pfr光学特性不同:吸收光高峰Pr=660, Pfr=720。2种类型相互转变,并可逆。Pr ←→Pfr。其中,Pfr为生 理活化型,Pr为生理钝化型。
成;叶绿素的合三成、;休光眠信号受体
芽的萌发;叶脱落等。
第7页/共47页
第一节 光敏素的发现和分布
• 一 光敏素的发现 • 1952年美国马里兰贝尔维次农业研究中心的Borthwick和Hedricks用单色光
处理莴苣种子,发现红光促发芽,远红光逆转。
幼苗用红光处理后,红光 吸收减少,远红光吸收增 多,用远红光处理后,远 红光吸收减少,红光吸收 消失,如轮流照射,吸收 光谱好可逆变化。
光敏色素的光化学转换
• 1、光稳定平衡 • Pr和Pfr对小于700nm的光波都有不同程度的吸收。在活体中,是平衡的,各比例决定于光源光波的成分。
总量=Pr+Pfr • 光稳定平衡:在一定光波长下,具生理活性的[Pfr]和总量[Ptot]的比例,就是光稳定平衡。即:Ф=
Pfr/Ptot。
第19页/共47页
第1页/共47页
光对植物的影响
• 光对植物的影响主要表现在两方面:
• 间接影响:主要通过光合作用 (photosynthesis)是高能反应,它将光能转 变为化学能。
直接影响:主要通过光形态建 成 (photomorphogenesis), 是一个低能反应。光只作为一 个信号去激发受体,推动细胞 内一系列反应,最终表现为形 态结构的变化。
• 光敏色素生色团由排列成直链的四个吡咯环 组成,因此具共轭电子系统,可受光激发。
• 其稳定型结构为红光吸收型(Pr),Pr吸收 红光后则转变为远红光吸收型(Pfr),而 Pfr吸收远红光后又可变为Pr。
第13页/共47页
• 2种吸光型:Pr和Pfr。Pr和Pfr光学特性不同:吸收光高峰Pr=660, Pfr=720。2种类型相互转变,并可逆。Pr ←→Pfr。其中,Pfr为生 理活化型,Pr为生理钝化型。
成;叶绿素的合三成、;休光眠信号受体
芽的萌发;叶脱落等。
第7页/共47页
第一节 光敏素的发现和分布
• 一 光敏素的发现 • 1952年美国马里兰贝尔维次农业研究中心的Borthwick和Hedricks用单色光
处理莴苣种子,发现红光促发芽,远红光逆转。
幼苗用红光处理后,红光 吸收减少,远红光吸收增 多,用远红光处理后,远 红光吸收减少,红光吸收 消失,如轮流照射,吸收 光谱好可逆变化。
光敏色素的光化学转换
• 1、光稳定平衡 • Pr和Pfr对小于700nm的光波都有不同程度的吸收。在活体中,是平衡的,各比例决定于光源光波的成分。
总量=Pr+Pfr • 光稳定平衡:在一定光波长下,具生理活性的[Pfr]和总量[Ptot]的比例,就是光稳定平衡。即:Ф=
Pfr/Ptot。
第19页/共47页
第1页/共47页
光对植物的影响
• 光对植物的影响主要表现在两方面:
• 间接影响:主要通过光合作用 (photosynthesis)是高能反应,它将光能转 变为化学能。
直接影响:主要通过光形态建 成 (photomorphogenesis), 是一个低能反应。光只作为一 个信号去激发受体,推动细胞 内一系列反应,最终表现为形 态结构的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、有机物运输的速率和速度
1.有机物运输的速度 是指单位时间内被运输的物质移动的距离.
常用单位:cm/h,一般为30-150 cm/h (1)不同植物 (表6-2) (2)不同的生育期 (3)不同物质
2.有机物运输的速率
是指单位时间内所运送物质的总质量. 比集转运速率(SMTR)
单位时间内单位韧皮部或筛管横截面积 被运输的干物质量.
韧皮部装载的形式与植物种类、发育阶 段和气候有关。
乔木、灌木或攀缘植物等,它们的韧皮 部装载以共质体方式进行。而豆科、菊 科、十字花科、紫草科、禾本科植物的 韧皮部装载主要以质外体方式进行。
一般而言,韧皮部和周围细胞间有丰富 胞间连丝的植物大多生长在热带和亚热 带地区,而胞间连丝极少的植物大多生 长在温带和气候干旱的区域。当然,也 有中间类型和例外的情况。
(三)共质体途径
共质体装载是指蔗糖从叶肉细胞通过胞间连 丝顺浓度梯度进入韧皮部筛管的过程。
伴胞:中间细胞 运输的糖主要是寡聚糖
有一些植物的光合同化物韧皮部装载是 多途径的,既有质外体途径,也有共质体途 径。例如:西葫芦,它的叶片支脉的伴 胞既有中间细胞,也有普通型的伴胞, 推测前者装载蔗糖是通过共质体途径, 而后者则是通过质外体途径。
(1)普通伴胞 (2)转移细胞 (3)中间细胞
普通伴胞
转移细胞 中间细胞
(二)质外体途径
质外体装载是指叶肉细胞中的蔗糖先运出 到质外体空间,再跨越质膜进入韧皮部 的筛管-伴胞复合体的过程。
伴胞:普通伴胞和转移细胞 蔗糖是主要运输的糖
逆浓度梯度的主动运输,通过蔗糖-H+共运 输体介导
证据:分子生物学的实验结果
用免疫学技术定位H+—ATP酶,发现它存在于伴 胞的质膜(拟南芥)和传递细胞中(蚕豆)。在 传递细胞中,H+—ATP酶主要集中在质膜面向维 管束鞘和韧皮部薄壁细胞的折叠处。
在拟南芥中已经克隆得到一种蔗糖—质子共运输 体SUC2,这个载体在伴胞的定位与H+-ATPase在伴 胞的分布有关.
有时, H+—ATP酶和蔗糖—质子共运输体共同存 在于筛管质膜上。
第五章 植物体内有机出同化物的 部位,如成熟叶片
库(代谢库):利用(消耗)或储藏同 化物的部位,如根、果实、种子
流:光合产物从源到库的运输过程
经济产量不仅与光合强弱有关,还与同 化物分配有关
第一节、植物体内有机物的运输
一、有机物运输的途径 (一).短距离运输——胞内与胞间运输 1、胞内运输:指细胞内、细胞器间的
SMTR(g·cm-2·h-1)=
转移的干物质的量
韧皮部(筛管)的横截面积×时间
﹡△第二节、有机物运输的机理
有机物韧皮部装载 韧皮部筛管中运行 韧皮部卸出
一、韧皮部的装载
韧皮部装载:指光合同化物从源端叶肉细胞运出至 最终进入筛管-伴胞复合体的整个过程
(一)装载区域的结构
源端成熟叶片的小叶脉中伴胞的类型:
物质交换。有分子扩散、原生质环流、 细胞器膜内外物质交换,以及囊泡的形 成与囊泡内含物的释放等
2、胞间运输:包括细胞之间短距离的质外体、 共质体以及质外体与共质体间的交替运输
①质外体运输:扩散作用
②共质体运输:胞间连丝
正常态 开放态
封闭态
③共质体与质外体间的运输:物质进出质膜的 运输
A、顺浓度梯度的被动运输
分析筛管汁液结果
干物质
(10-25%)
碳水化合物(90%以上):蔗糖为主,少 量棉籽糖(C3),水苏糖(C4),毛蕊花糖(C5). 甘露醇,山梨醇 含N有机物:AA, 酰胺,蛋白质,核苷酸 激素,维生素,有机酸 无机离子:阳离子:K+、Ca2+、Mg2+…
阴离子:SO42-、Cl-、HCO3-…
蚜虫吻剌 筛管分子
以质外体途径进行韧皮部装载的植物有 相对更高的生长速率和对环境胁迫更好 的适应能力,而以共质体途径进行韧皮 部装载的植物,生长速率相对较低。
总之,植物中不同装载类型的进化和它 们对环境的适应是将来重要的研究领域。
二、有机物在筛管中 长距离运输的动力
﹡△(一)压力流动学说 1、基本论点: 有机物在筛管当中随着液体的流动而移动,
B、逆浓度梯度的主动运输
C、以小囊泡方式进出质膜
共质体与质外体交替运输:转移细胞
转移细胞的特点
①细胞壁内突生长,形成许多皱折,扩大了 质膜的表面积;
②原生质丰富, ATP酶多,线粒体多,为跨 膜运输提供足够的能量;
③囊泡运动
转移细胞存在于茎叶的维管组织、生殖器官 及特化器官(排水孔、根瘤、蜜腺、盐腺)
﹡2、实验证据:
①筛孔是开放的
②溢泌现象:说明筛管内有 很强的压力
③有机物在不同高度的浓度
烟草韧皮部渗出物浓度从基部到 树冠----升高(渗透势降低)
④计算出维持集流所需的压力差为0.12-0.46MPa. 实际测出的源库间压力差0.41MPa,足以推动筛管 集流的运行.
这种液体流动的动力是由于输导组织两 端的压力势差引起的。压力势差的建立 是源端韧皮部装载和库端韧皮部卸出的 结果。又叫集体流动学说
生产细胞: 成熟叶细胞光合作用 不断产生溶质,维持 低渗透势。
导管(相当于模型中 的D管)上运水分;
筛管(模型中的C管) 下运有机物质。
消耗细胞: 根、果实、分生组织等的 生长、呼吸、贮藏等消耗 溶质,维持高渗透势。
短距离运输:
短 胞内运输 细胞内、细胞器间的物质交换。
距
离
细胞壁、细胞间隙中的物
运
质外体运输 质运输,主要是扩散作用。
输
系 统
胞间运输
共质体运输
物质通过胞间连丝 在细胞间的运输。
进出质膜的运输
转移细胞
(二)长距离运输——输导组织运输
﹡1、研究有机物运输途径的方法
环割法 14C同位素示踪
实验证明有机物的长距离 运输通过韧皮部
2、韧皮部的组成
韧皮部由筛管、伴胞和薄壁 细胞组成。 筛管是有机物运输的主要通 道 筛管-伴胞复合体(SE-CC)
﹡二、有机物运输的方向
纵向运输:向上运输到幼嫩
部位,向下运输到根、地 下储存器官
同时双向运输 少量横向运输
结果见表6-1
三、有机物运输的形式
研究方法:蚜虫吻刺法,同时结合同位素 示踪进行测定