植物水分代谢
植物生理学第1章 水分代谢
3、细胞间的水分移动
土壤水势>植物根水势>茎木质部水势>叶片水势>大气水势
4、水分在植物体内的迁移方式 迁移方式主要有两种:集流和扩散
(1)扩散:是物质分子(包括气体分子、水分子、 溶质分子等)从高浓度区域向低浓度区域转移,直 到分布均匀的现象。水分子可以从高水势区域向低 水势区域扩散,但比较慢。 (2)集流:是在外力的作用下,大量水分子快速运 动的现象。如导管的输水作用。 ( 3)渗透作用(osmosis):是指液体通过半透膜进 行扩散的现象,是扩散作用的一种特殊形式。
渗透作用( osmosis) :是指水分从水势高的系 统通过半透膜向水势低的系统进行扩散的现象, 是扩散作用的一种特殊形式。
图1.2 渗透作用示意图
稀溶液的渗透势可用范特· 霍 夫 ( Vant Hoff)计算渗透压的公式来计算: ψs=ψπ=-iCRT
式中 i为溶质的解离系数; C为溶质的体 积 摩 尔 浓 度 ( mol· L-1 ) ; R 为 气 体 常 数 (0.0083dm3· Mpa· mol-1· K-1) ; T 为绝对温度 (K) 。 对于一个开放系统来说,在常温常压下, 溶液的水势就等于其渗透势。
土壤中的水分是以集流的方式向根部移
动。水分移动的速率与土质有关。
农业的节水灌溉
微灌技术:有微喷灌、滴灌、渗灌及微管灌等。 将灌溉水加压、过滤,经各级管道和灌水器具灌水于 作物根际附近。微灌技术具有以下优点: (1) 微灌技术的节水效益更显著。与地面灌溉相比, 可节水 80%~ 85 % .(2) 同时微灌可以与施肥结合,利 用施肥器将可溶性的肥料随水施入作物根区,及时补 充作物需要的水分和养分,增产效果好。 (3) 微灌可 以使土壤疏松、保持颗粒状。( 4)微灌使地表干燥, 不利于杂草生长。
植物的水分代谢
植物的水分代谢陆生植物是由水生植物进化而来的,因此,水是植物的一个重要的“先天”环境条件。
植物的一切正常生命活动,只有在一定的细胞水分含量的状况下,才能进行,否则,植物的正常生命活动就会受阻,甚至停止。
所以说,没有水,就没有生命。
在农业生产上,水是决定收成有无的重要因素之一,农谚说:“有收无收在于水”,就是这个道理。
植物从环境中不断地吸收水分,以满足正常生命活动的需要。
但是,植物又不可避免地要丢失大量水分到环境中去。
这样就形成了植物水分代谢(water metabolism)的3个过程:水分的吸收、水分在植物体内运输和水分的排出。
植物对水分的需要一、植物的含水量植物体中都含有水分,但是植物体的含水量并不是均一和恒定不变的,因为含水量与植物种类、器官和组织本身的特性和环境条件有关。
不同植物的含水量有很大的不同。
例如,水生植物(水浮莲、满江红、金鱼藻等)的含水量可达鲜重的 90%以上,在干旱环境中生长的低等植物(地衣、藓类)则仅占6%左右。
又如草本植物的含水量为70~85%,木本植物的含水量稍低于草本植物。
同一种植物生长在不同环境中,含水量也有差异。
凡是生长在荫蔽、潮湿环境中的植物,它的含水量比生长在向阳、干燥的环境中的要高一些。
在同一植株中,不同器官和不同组织的含水量的差异也甚大。
例如,根尖、嫩梢、幼苗和绿叶的含水量为60~90%,树干的为40~50%,休眠芽的为40%,风干种子的为10~14%。
由此可见,凡是生命活动较旺盛的部分,水分含量都较多。
二、植物体内水分存在的状态水分在植物体内的作用,不但与其数量有关,也与它的存在状态有关。
水分在植物细胞内通常呈束缚水和自由水两种状态,而这又与原生质有密切联系。
原生质的化学成分,主要是由蛋白质组成的,它占总干重60%以上。
蛋白质的分子很大,其水溶液成为高分子溶液,具有胶体的性质,因此,原生质是一个胶体系统(colloidal system)。
蛋白质分子形成空间结构时,疏水基(如烷烃基、苯基等)包在分子内部,而许多亲水基(如—NH2,—COOH,—OH等)则暴露在分子的表面。
植物的水分代谢
二 水的生理生态作用
1、水是细胞质的主要成分 2、水是代谢过程的反应物质 3、水是物质吸收和运输的良好溶剂 4、水维持细胞的紧张度 5、水的理化性质给植物的生命活动带来了各种有利的 条件 6、水能调节植物周围的小气候
以水调温 以水调肥 以水调气 以水调湿
返回
3
三、水分在植物体内存在状况
1 植物体的含水量:不同种类、器官、年龄不同 2 水分存在形式:自由水、束缚水
2 质壁分离复原—把已发生质壁分离的细胞置于低渗溶液中,
溶液中的水分进入细胞, 液泡变大,整个原生质体慢慢恢复到原来状 态的现象。
返回
22
(四)植物细胞水势的组成:
Ψ w = ψs + ψ p + ψ m
Ψs :渗透势 Ψp :压力势 ψm :衬质势
23
返回
渗透势—在某系统中,由于溶质颗粒的
存在,而使水势降低的值,又叫溶质势。
束缚水—被原生质胶体吸附不易流动的水 特性:*不能自由移动,含量变化小,不易散失
*冰点低,不起溶剂作用 *决定原生质胶体稳定性 *与植物抗逆性有关
4
返回
植物体内的含水量 (content of water in plant)
植物的种类不同含水量不同 同种植物的不同器官、年龄及生活环境,其含水量不同
3、集 流—指液体中成群的原子或分子(如组
成物质的各种组分)在压力梯度下共同的移动 现象。
返回
14
Section 2 Absorption of water by plant cells
主要有3种方式: 一、扩散 diffusion 二、集流 mass flow 三、渗透作用 osmosis
返回
Diffusion (dynamic from density)
植物的水分代谢解读
质壁分离(plasmolysis):植物细胞由于液泡失水而是 原生质体和细胞壁分离的现象 质壁分离的复原(deplasmolysis)
第二节 植物细胞对水分的吸收
4、细胞的水势
水势就是水的化学势。水流动需要能量,水用于做功的能量大小的 量度用水势来表示。一个系统中物质所含的能量可分为束缚能和自 由能两部分。束缚能是在恒温、恒压下不能做功的能量,而自由能 是在恒温恒压下用于做功的能量。只有自由能可用来做功,水只能 延着能量减小的方向移动,即从水势高向水势低的方向移动。
重力势ψ
g
:是水分因重力下移而引起水势降低的
力量,其大小取决于参考状态下水的高度(h)、
水的密度和重力加速度。
植物细胞水势的组分:
一个典型细胞的水势是由溶质势、压力
势、衬质势和重力势所组成。
ψ w =ψ
s
+ψ
p
+ψ
m
+ψ
g
对已形成中央大液泡的成熟植物细胞
来说,由于原生质仅为一薄层,液泡内的
大分子物质又很少,衬质势 ψ 为 ψ w =ψ 质势 ψ
水势的单位:兆帕( MPa )、帕( Pa )、巴
(bar)、大气压(atm)。 1巴=0.1MPa = 0.987 大气压 = 105 帕
cell水势、溶质势、压力势/MPa
1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5
Ψp Ψw
Ψs
0.9 1.0 1.1 1.2 1.3 1.4 1.5 相对体积
水势的应用
水分总是由水势高的部位向水势低的部位运转,故水势 可用于判断水分迁移的方向。如:
1.
相邻细胞的水分转移:水分由水势高的细胞沿水势梯度流向 水势低的细胞。 植物体内的水分转移:植株地上部分的水势低于根系,故根 系水分可向地上部分运转。
植物生理学 2.水分代谢
原因:(F)
①根毛区有许多根毛,增大了吸收面积; ②根毛细胞壁的外部由果胶质组成,粘性强, 亲水性也强,有利于与土壤颗粒粘着和吸水;
③根毛区的输导组织发达,对水分移动的阻 力小。
二 根系吸水的途径
1、质外体途径 2、跨膜途径 3、共质体途径
三 根系吸水的动力
角质蒸腾 叶片蒸腾的方式 气孔蒸腾(主要方式)
(二)气孔蒸腾
一)气孔的形态结构及生理特点
1.气孔数目多、分布广 2.气孔的面积小,蒸腾速率高 3.保卫细胞体积小,膨压变化迅速 4.保卫细胞具有多种细胞器 5.保卫细胞具有不均匀加厚的细胞壁及微 纤丝结构 6.保卫细胞与周围细胞联系紧密
图2-6 气孔蒸腾的过程
(1)气孔的构造:(F)
由两个肾形的保卫细胞组成。
(2)保卫细胞的特点:外壁薄内壁厚;内有叶绿体;
有淀粉磷酸化酶。
(3)气孔运动:
(1)单位:巴(Pa)(帕)
1巴=0.987大气压=106达因/cm2
(10.2米水柱高)
(2)符号:Ψ (3)纯水的水势:0巴 (4)溶液的水势:为负值(小于0)(原因)
(水分的流动是由水势高处流向水势低处。)
小结:
纯水的水势定为零, 溶液的水势就成负值。 溶液越浓,水势 越低 。 水分移动需要能量。
土壤温度过高对根系吸水也不利。
原因:
①高温加速根的老化过程,吸收面积减少, 吸收速率也下降。
②温度过高使酶钝化,影响根系主动吸水。
4土壤溶液浓度
根系要从土壤中吸水,根部细胞的水势必须 低于 土壤溶液的 水势。
➢在一般情况下,土壤溶液浓度较低,水势较 高,根 系吸水;
➢盐碱土则相反
植物生理学第01章 植物的水分代谢
第一章植物的水分代谢本章内容提要水是植物生命的基础。
植物水分代谢包括水的吸收、运输和散失过程。
植物细胞吸水有三种方式:渗透吸水、吸胀吸水和代谢性吸水,以渗透吸水为主。
根系是植物吸水的主要器官,吸水的主要区域为根毛区,吸水的方式有主动吸水和被动吸水,其吸水动力分别为根压和蒸腾拉力。
蒸腾拉力是植物主要的吸水动力。
水分在植物体内连续不断地运输是蒸腾拉力—内聚力克服水柱张力的结果。
植物主要通过叶片蒸腾散失水分,具有重要生理意义。
气孔蒸腾是植物叶片蒸腾的主要形式。
蒸腾速率与气孔的开闭关系很大。
气孔开闭可能是通过保卫细胞内K+的积累学说和苹果酸代谢来调节的。
许多外界因子能调节气孔开闭。
作物需水因作物种类不同而异,一般而论,植物的水分临界期是花粉母细胞四分体形成期,合理灌溉要综合考虑土壤含水量、作物形态指标及生理指标。
灌溉的生理指标能即使反映植物体内的水分状况,是较为科学的。
第一节水分在植物生命活动中的作用一、植物体内的含水量不同植物的含水量不同;同一种植物生长在不同的环境中含水量也有差异;在同一植株中不同器官和不同组织的含水量也不同。
二、水对植物的生理作用1、原生质的主要组分。
原生质一般含水量在70%~90%以上,这样才可使原生质保持溶胶状态,以保证各种生理生化过程的进行。
如果含水量减少,原生质由溶胶变成凝胶状态,细胞生命活动大大减缓(例如休眠种子)。
2、接参与植物体内重要的代谢过程。
在光合作用、呼吸作用、有机物质合成和分解的过程中均有水的参与。
3、多生化反应和物质吸收、运输的良好介质。
植物体内绝大多数生化过程都是在水介质中进行的。
水分子是极性分子,参与生化过程的反应物都溶于水,控制这些反应的酶类也是亲水性的。
各种物质在细胞内的合成、转化和运输分配,以及无机离子的吸收和运输在水介质中完成的。
4、使植物保持固有的姿态。
细胞含有大量的水分,维持细胞的紧张度,因而使植物枝叶挺立、花朵开放等。
3、分裂和延伸生长都需要足够的水。
第八章 植物的水分代谢
第八章植物的水分代谢一、内容提要(一)基本知识体系水是地球上所有生命得以生存的一个必不可少的条件。
水分在植物体内主要以束缚水和自由水两种状态存在。
自由水含量越大,代谢越旺盛。
束缚水含量相对较多,植物抵抗不良环境的能力增强,常以束缚水/自由水的比率作为衡量植物抗性强弱的指标之一。
细胞是植物水分代谢的基本单位,植物细胞吸收水分的方式有三种:有液泡的植物细胞主要靠渗透作用吸水;没有液泡或未形成液泡的细胞,靠吸涨作用吸水;此外,细胞还有代谢性吸水。
在这三种吸水方式中,以渗透性吸水为主。
典型的植物细胞水势由三部分组成,即ψW = ψS + ψP + ψm 。
植物细胞水分得失情况决定于细胞与其环境之间的水势梯度,如果细胞水势高于环境水势,细胞失水;反之则细胞吸收水分。
植物细胞之间和组织之间的水分流动同样遵循这样的规律。
根系是陆生植物吸收水分的主要器官。
根的各部分吸水能力并不相同,其中根毛区吸水能力最大。
根系吸水方式主要有主动吸水和被动吸水。
主动吸水是由根代谢活动而引起的吸水过程,根压是植物主动吸收水分的主要动力。
被动吸水是由于植物地上部蒸腾作用而引起的根部吸水,蒸腾拉力是植物被动吸水的主要动力。
植物根系主动吸水和被动吸水所占比重因植物蒸腾强度而不同。
植物根系吸水除了受内部因素(如根系发达程度和根系代谢作用强弱等)影响外,还受周围环境因素的影响,如蒸腾速率、土壤水分、土壤温度、土壤通气状况、土壤溶液浓度等。
植物吸收的水分中,绝大部分水都会通过蒸腾作用排出体外。
植物主要通过叶片进行蒸腾作用。
蒸腾作用有皮孔蒸腾、角质层蒸腾和气孔蒸腾三种,气孔蒸腾是植物蒸腾作用的主要形式。
气孔是由叶表皮组织上的一对保卫细胞构成的一个特殊小孔结构,其扩散完全符合小孔扩散定律。
有关气孔运动的机理主要有:淀粉与糖转化学说、K+泵学说、苹果酸代谢学说、玉米黄素学说。
影响气孔运动的因素有光照、CO2、温度、水分和植物激素。
蒸腾作用的影响因素有气孔频度和大小、气孔下腔体积及叶片内部面积等内部因素及光照、温度、湿度等外部因素。
第二章植物的水分代谢
第2章植物的水分代谢一、名词解释1. 水分代谢2. 自由水3. 束缚水5. 化学势7. 水势10. 渗透作用11. 半透膜12. 溶质势势降低的数值.溶质势表示溶液中水分潜在的渗透水平的大小,因此, 溶质势乂可称为了渗透势(osmosis potential, 兀).溶质势可用小s=RTlnNw/ V w,m公式计算,也可按范特霍夫公式小s=小TT =-iCRT计算.13. 衬质势14. 压力势15. 重力势.16. 膨压17. 集流18. 质壁别离20. 水通道蛋白22. 吸胀作用23. 根压24 .伤流25. 吐水29水分临界期.30 .蒸腾效率31. 蒸腾系数40、被动吸水41、等渗溶液42、主动吸水二、填空题1 .将一植物细胞放人纯水(体积很大)中,到达平衡时测得其小视-0.26Mpa,那么该细胞的n p为了n必.3. 将一植物细胞放入小w=0.8 MPa的溶液(体权相对细胞来说很大)中,吸水到达平衡时测得细胞的小s=-o.95MPa,那么该细胞内的小p为了,小叫.4. 某种植物形成5g十物质消耗了2.5Kg水,其蒸腾效率为了蒸腾系数为了.5. 植物体内自由水/束缚水比值降低时,植物的代谢活动 ,抗逆性o8 .利用质壁别离现象可以判断细胞、细胞的以及观测物质透过原生质层的难易程度.9 .根系吸水有主动吸水和被动吸水两种方式,前者的动力是 ,后者的动力是010 .和纯水相比,含有溶质的水溶液其冰点, 渗透势.11. 在干旱条件下,植物为了了维持体内的水分平■衡,一方面要一方面要尽量.12. 水分沿着导管或管胞上升的下端动力是,上端动力是.由丁的存在,保证水柱的连续性而使水分不断上升.这一学说在植物生理学上被称为了014. 气孔在叶面所占的面积一般为了 ,但气孔蒸腾失去了植物体内的大量水分,这是由于气孔蒸腾符合原理,这个原理的根本内容17.一般认为了,植物细胞吸水时起到半透膜作用的是:、和三个局部.19. 细胞中的自由水越多,原生质粘性 ,代谢 ,抗性.21. 植物细胞发生初始质壁别离时,其W w =;当细胞吸水到达饱和时,其W w= o22. 一般植物细胞W w= ;当细胞刚发生质壁别离时,其WW= 023. 液泡化的植物细胞,其水势主要由__________ 和成,而以忽略不计.27. 种子萌发时靠 '乍用吸水,其吸水量与关.28. 分生组织主要依靠水,形成液泡的细胞主要靠吸水.30. 以下吸水过程中水势的组分分别是:吸胀吸水W w=;渗透吸水Ww= ___________ _________ w= ;分生组织细胞吸水W w= ; 一个典型细胞水势组分,W w= ;成长植株的细胞吸水W w=31. 当细胞发生质壁别离时,压力势为了,细胞的水势等于 ,当细胞水势等于零时,细胞的和相等,但方向 .32. 当细胞处于质壁别离时,Wp= , Ww= ;当细胞充分吸水完全膨胀时,W p= , Ww= 在细胞初始质壁别离与充分吸水膨胀之间,随着细胞吸水,W s=, W p=, Ww= o35. 一个细胞的W s=-1.9Mpa, W p=0.9Mpa将其放入装有纯水的烧杯中,当到达平衡时细胞体积增加了30%该时细胞的W s为了, Wp为了, WW为了.36. 植物根部吸水水平最强的部位为了,由于.38. 植物从叶尖、叶缘分泌液滴的现象称为了 ,其动力是.40. 在暖湿天气条件下,植物吸水动力主要是 ,在十热天气下,植物吸水动力士适旦TE o41. 一般说来,蒸腾强烈的植物,吸水主要是由‘引起的,蒸腾程度很弱的植物, 吸水主要由■引起.45. _____________________ 根系吸水动力有________ 和两种.前者与有关,后者那么与关.48. 植物失水有_______ 和种方式.49. _________________________ 蒸腾可促进植物体内的和■向上运输,乂可防止叶面受到害.51.水分通过气孔扩散的速度与小孔的正比,不与小孔的正比.58. 提升保卫细胞内?_________________ 和可使气孔关闭.59. 气孔开闭的无机离子吸收(K泵)学说认为了气孔在光照下张开时,保卫细胞内子浓度升高,这是由于保卫细胞内含 ,在光照下可以产生,供应质膜上的 ,引起主动吸收子,降低保卫细胞的水势而使气孔开放.60. 在光下由于进行光合作用,保卫细胞内少,导致pH上升, _____________________ 酶在pH降低时把变为了使水势,气孑L .63.常用的蒸腾作用指标是?___________________ 和.69.植物水分代谢的三个过程为了> _______________ 和o73. ___________________________________ 作物灌水的生理指标有?和o74. 当水势作为了植物灌溉的指标时,以为了可靠.二、判断是非并改正1 .等渗溶液就是摩尔数相等的溶液.()2. 纯水的水势为了零,叶片完全吸水膨胀时水势也为了零,因此此时叶片内水为了纯水. ()3. 蒸腾拉力引起被动吸水,这种吸水与水势梯度无关.()4. 细胞间水分流动的方向取决于它们的水势差. ()5. 植物对水分的吸收、运输和散失过程称为了蒸腾作用. ()6. 将一充分吸水饱和的细胞放入比其细胞液浓度低10倍的溶液中,其体积变小.()7. 溶液的渗透势等于其渗透压的负值,因此可用公式:小s=-icRT来计算.()8. 从植物受伤或折断处溢出液体的现象称为了伤流,通过测定伤流的量分可以了解根系生理活动的强弱.()9. 在正常晴天情况下,植物叶片水势从早晨t中午t黄昏的改变趋势低t高t低.()10. 将一植物细胞放入与其渗透势相等的糖溶液中,该细胞既不吸水也不失水.()11. 在一个含有水分的体系中,水参加化学反响的本领或者转移的方向和限度也可以用系统中水的化学势来反映.()12. 有一充分饱和的细胞,将其放入比细胞液浓度低50倍的溶液中,那么体积不变. ()13.1M蔗糖溶液和1M NaCI溶液的渗透势是相同的.()14、氢键的存在是水的比热和气化热都高的重要因素. ()15、植物被动吸水的动力来自叶片的蒸腾作用所产生的蒸腾拉力, 而与相邻细胞间的水势梯度无关.()16、已液泡化的植物活细胞,因其原生质体被水分所饱和,所以衬质势所占比例很小. ()17、植物的水势低于空气的水势,所以水分才能蒸发到空气中. ()18、植物细胞的水势永远是负值,而植物细胞的压力势却永远是正值. ()19、一个细胞放入某浓度的溶液中时, 假设细胞液浓度与外界溶液的浓度相等, 那么细胞水势不变.()四、I可答题与计算题2. 植物在纯水中培养一段时间后,如果给水中参加一些盐,植物会发生暂时萎焉,为了什么?3. 十旱时不宜给植物施肥,为了什么?4. 为了什么夏季晴天中午不能用井水浇灌作物?6. 一植物细胞的小w =-0.8MPa,在初始质壁别离时小s = -1.6 MPa,设该细胞在初始质壁别离时比原来体积缩小4%,计算其原来的小s和小p.12. 土壤里的水从植物的哪局部进入植物, 乂从哪局部离开植物,其间的通道如何?动力如何?13. 植物受涝后,叶片为了何会萎^或变黄?14. 植物如何维持其体温的相对恒定?15. 低温抑制根系吸水的主要原因是什么?16. 以下观点是否正确,为了什么?(1) 一个细胞放入某一浓度的溶液中时,假设细胞液浓度与外界溶液的浓度相等,那么体积不变.(2) 假设细胞的W p=—W s,将其放入某一溶液中时,那么体积不变.(3) 细胞的Ww=Ws,将其放入纯水中,那么体积不变.(4) 有一充分饱和的细胞,将其放入比细胞液浓度低50倍的溶液中,那么体积不变.17. 简述有关气孔开闭的无机离子(<)吸收学说.18. 设一个细胞的中w = — 8巴,初始质壁别离时的W s=- 16巴,假假设该细胞在初始质壁别离时比原来的体积缩小4%计算其原来的W s和W p各为了多少巴?19. 简述植物叶片水势的日改变20. 植物代谢旺盛的部位为了什么自由水较多?21. 简述气孔开闭的主要机理.22 .什么叫质壁别离现象?钻研质壁别离有什么意义?23. 分析产生以下实验结果的机理生长旺盛的麦苗在适温、高温条件下:(1)加水,有吐水现象;(2)加20%Nacl 无明显吐水;(3)冷冻处理,无明显吐水24. 在农业生产上对农作物进行合理灌溉的依据有哪些?26. M季土壤灌水,最好在早晨或黄昏进行较为了合理,为了什么?28.在正常的和十热的天气条件下,气孔开闭的日改变曲线有何不同,为了什么?31. 何谓根压,怎样证明根压的存在?32. 举例说明植物存在主动吸水和被动吸水?34.化肥施用过多为了什么会产生“烧苗〞现象?38. 为了什么在植物移栽时,要剪掉一局部叶子,根部还要带土?39. 夏季中午植物为了什么经常出现萎^现象?41. 光是怎样引起植物的气孔开放的?42. 试述水分对植物的生理生态作用?第3章植物的矿质与氮素营养一、名词解释溶液培养法砂基培养法被动吸收主动吸收.|膜转运蛋白离子通道载体共转运生理酸性盐生理碱性盐生理中性盐单盐蠹害团.离子拮抗平衡溶液叶面营养诱导酶硝酸复原酶单盐蠹害平衡溶液41、离子拮抗42、养分临界期43、再利用元素45. 外连丝46. 植物营养最大效率期47. 协同效应二、填空题1 .确定某种元素是否为了植物必需元素时,常用法.2. 现已确定,植物必需大量元素有;微量元素有.3. 以下各酶含有什么金届离子:碳酸酎酶,多酚氧化酶 ,细胞色素氧化酶 ,过氧化氢酶 , 固氮酶.5. 华北、西北地区果树小叶病是由于缺乏元素的缘故.6. 油菜花而不实由丁缺引起.7. 豆科植物的共生固氮作用需要三种元素参加,它们是、和08. 离子扩散的方向取决丁和的相对数值大小.10. 一般来说,外界溶液的pbfi对根系吸收盐分的影响是,阳离子的吸收值随pH 的, 而阴离子的吸收随pH的.11. (NH4) 2SO是届丁生理性盐,NaNG是届丁生理性盐.14. 根部吸收的无机离子是通过向上运输的,但也能横向运输到 <喷在叶面的有机和无机物质是通过运输到植株各局部的.衰老器官解体的原生质与高分子颗粒还可通过向新生器官转移.15. 是表皮细胞外壁的通道,它从角质层的内外表延伸到表皮细胞的质膜, 其中充满表皮细胞原生质体的分泌物.16. 在16种植物面必需元素中,只有 ______ 4 ____ 种不存在丁灰分中.17. 这所以被称为了肥料三要素,这是由于.19. 从无机氮所形成的第一个有机氮化合物主要是 .20. 根吸收矿质元素最活泼的区域是.对丁难丁再利用的必需元素,其缺乏病症最先出现在O21. 可再利用的元素从老叶向幼嫩局部的运输通道是.22. 根外追肥时,喷在叶面的物质进入叶细胞后,是通过通道运输到植物多局部的.23. 业硝酸复原成氨是在细胞的中进行的.对丁非光合细胞,是在中进行的;而对丁光合细胞,那么是在中进行的.24. 根对矿质元素的吸收有主动吸收和被动吸收两种,在实际情况下,以吸收为了主.25. 水稻等植物叶片中天冬酰胺的含量可作为了诊断的生理指标.28.硝酸盐复原速度白天比夜间 ,这是由于叶片在光下形成的和能促进硝酸盐的复原.33. 钻研矿质营养常用的方法有 ______ 和.34. 确定必需元素的三条标准是、和39. ________________________________________ 老叶和茎秆出现红色或紫色常是由于缺__________________________________________ 所致,它使基部茎叶片积累大量合成,所以产生红色.41.缺Ca的显著病症是由于Ca是构成的成分之一.43. 缺Mg能影响成,从而引起状.44. 缺Mg会影响成,从而引起脉间状.45. 缺Fe能影响成,从而引起绿.49. 油菜“花而不实〞与缺元素关;豆科植物根瘤发育不好与缺元素有关.50. 在必需元素中,金届元素生长素合成有关,而___________________和那么与光合作用分解水,释放氧气有关.53. 缺乏必需元素? ?> 等,均可引起植物产生缺绿病.55. 缺N和缺Fe都能引起缺绿病,二者区别在丁缺氮病,缺铁病.56. 植物必需元素中,■元素与生长素有关,■等元素参加光合作用中水的分解.58. 当缺乏> ?■等元素时,其病症先在嫩叶或生长点出现.59. 当缺乏? : 元素时,其病症先在老叶出现.62. 植物细胞吸收矿质元素的三种方式为了?和o63. 离子扩散除取决丁化学势梯度外,还取决丁梯度,二者合起来称为了66. 支持载体学说的实验证据是 ______ 和象的存在.67. 长期施用硝态氮肥,可能导致土壤故称这类化肥为了.68. 土壤中施用NHNO3 土壤pH 因此该化肥届于 .73.根外追肥和喷药等,主要是通过_________ 和入植物体的.78. _________________________________________ 根部吸收矿质元素,其向上运输的动力是__________________________________________ 和.79. 栽培叶菜类应多施 ____ 肥,栽培块根、块茎作物在后期应多施巴.81.植物合理施月巴的指标有 , , _______________ 和等.83.水稻叶鞘中的量过高,常是N营养缺乏的指标.85.白菜十心病、苹果疮痂病与缺元素有关;幼叶先期脉间失绿,后呈灰白色与缺元素有关.四、判断是非并改正1. 植物吸收矿质元素最活泼区域是根尖分生区.()2. 植物从土壤溶液中既吸收硝态氮,乂吸收铉态氮.()3. 植物吸收矿质元素和水分间的关系是正相关.()4. NH4NOH于生理酸性盐,(NH4)2SO届于生理碱’性盐.()5. 植物体内的钾一般不形成稳定的结构物质.()6. 缺N时植物的幼叶首先变黄.()7. 温度越高,细胞膜的透性就越高,也就越有利于矿质元素的吸收.()8. 植物根系通过被动吸收到达杜南平衡时, 细胞内阴阳离子的浓度都相等.()9. 氮不是矿质元素,而是灰分元素.()10. 同族的离子问不会发生拮抗作用.()11. 固氮酶具有对多种底物起作用的功能.()12. 用毛笔蘸一些0.5%硫酸业铁溶液,在幼叶上写一个“ Mg'字,五天后在叶片上出现了一个明显的绿色,“Mg'字,说明该植物缺镁而缺铁.()13. 根部吸收各离子的数量不与溶液中的离子成比例. ()14. 把固氮菌(Azoto bacter)培养在含有15NH的培养基中,固氮水平立刻停止.()15. 植物吸收矿质元素最活泼的区域是根尖的分生区. ()16. N、P、K之所以被称为了“肥料三要素〞,是由于它们比其它必需矿质元素更重要. ()17. 所有植物完全只能依靠根吸SO2以提供其生长发育必需的硫元素五、问答题1. 植物必需元素具备哪些条件?2. 根外施肥有哪些优点?3. 试述矿质元素的综合生理作用.4. 植物营养必需的大量元素有哪几种?其中哪些是以阴离子状态被吸收?哪些以阳离子状态被吸收?哪些可以以阴离子或阳离子状态吸收?写出这些离子,并讨论外界溶液pHM阴、阳离子吸收的影响.5. 现配制了4种溶液(表3.1),每种溶液的总浓度都相同.用这些液培养已发育的小麦种子,14d后测得数据如表3.1所示.请分析其结及原因.表3.1 小麦的溶液培养6. 用溶液培养法钻研番茄的氮、磷、钾元素缺乏症时,忘记培养缸上贴标签.培养21d后发现A处理的番茄叶片卷缩.有缺绿斑,叶边枯焦,老叶病症比幼叶的更为了显著.B处理的番班叶干黄脱落,幼叶灰绿,叶柄叶脉呈紫色,根细而长,幼叶较老的缺乏症轻,整株生长缓慢.C处理的番茄叶片紫红色,叶及叶柄上有坏死斑,老叶病症较幼叶病症更明显,根系发育差,整枝生长慢.请你根据这些病症,为了不同处理的培养缸补贴标签.10. 支持矿质元素主动吸收的载体学说有哪些实验证据?并解释之.11. N肥过多时,植物表现出哪些失调病症?为了什么?13. 肥料适当深施有什么好处?14. 为了什么在石灰性土壤上施用NH4 N时,作物的长势较施用N03 N的好?15. 为了什么叶中的天冬酰胺或淀粉含量可作为了某些作物施用N肥的生理指标?22. 在含有Fe、K、P、Ca B、Mg C& S、Mn等营养元素的培养液中培养棉花,当棉苗第四片叶展开时,在第一片叶上出现了缺绿症,问该缺乏症是由丁上述元素中哪种元素含量缺乏而引起的?为了什么?27. 影响植物根部吸收矿质的主要因素有哪些?28. 何为了根外营养?其结构根底是什么?它有何优越性?29. 试述盐分吸收与水分吸收的关系?30. 为了了确切地证实某种元素是植物必需的微量元素,要做哪些实验?32. 试述根部吸收矿质的过程.33. 试述矿物质在植物体内运输的形式与途径,可用什么方法证明?34. 什么是营养临界期及营养最大效率期?它们对作物产量形成有何影响?35. 为了什么说施肥增产的原因是间接的?主要表现在哪些方面?36. 为了使肥效充分发挥,生产上常采取哪些主要举措?37. 必需矿质元素应具备哪几条标准?目前植物必需元素共有多少种?其中大量与微量元素各为了多少种?各是指哪些元素?38. 作物矿质元素是否缺乏,如何诊断?40. 根部吸收离子的数量总与土壤溶液(或培养液)中离子的数量成比例,对吗?为了什么?41. 为了什么在正常情况下植物体内业硝酸盐(NO2 )不会积累?44. 施肥如何才能做到合理?46. 何谓溶液培养?它在管理方面应注意什么?47. 缺氮与缺铁为了什么都能引起缺绿病,二者病症区别在哪里?48. 怎样才能证明某种元素是植物的必需?在进行这一工作时应注意些什么?49. 为了什么说水分和矿质元素的吸收是两个既相对独立,乂有密关系的生理过程.53. 如何理解“麦浇芽〞、“菜浇花〞?54. 浅谈矿质营养在植物体内的运输.56.简述植物NO3与光合作用的关系.61.如何提升植物养分利用效率?。
第二章植物的水分代谢56节
滴灌比传统灌溉方式节水70-80%
调亏灌溉(regulated deficit irrigation, RDI) 一种新型节水技术
作物营养生长旺期 作物需水临界期
适度亏水 充分供水
促控结合提高水利用效率,增加作物产量。
三、合理灌溉增产原因
(一)合理灌溉的生理效应
一、水分运输的途径
土壤水分→根毛→根皮层→根中柱鞘→根导管→ 茎导管→叶柄导管→叶脉导管→叶肉细胞→叶肉细胞 间隙→气孔下腔→气孔→大气。
在这段过程中,一部分要经过活细胞即共质体 进行,另一部分要经过死细胞即质外体进行。
1.经共质体(活细胞)运输: 水分由根毛到根部导管必须要经过内皮层细胞。此外,由叶
蒸腾拉力-内聚力-张力学说
(transpiration-cohesive-tension theory)
十九世纪末期爱尔兰人迪克松(Dixon H. H. )提出。
理论要点:
相同分子之间有相互吸引的力量,称为内聚力。水分子 之间的内聚力很大,与此同时,水柱本身的重量又使水柱 下降。这样上拉下坠使水产生张力(tension)。一般讲, 水分子内聚力要比张力大,故可使水柱保持不断。
蒸腾系数 322 370 520 540 570 640 680 700
2.不同生育期需水量不同
随植物蒸腾面积不断增大,生理特征不断改变,对水分需 求量也有较大变化。
小麦:1)分蘖前期----少; 2)分蘖末期~抽穗期----多; 3)抽穗~灌浆末期---多;4)灌浆末期~完熟期----少
水分临界期(critical period of water):
喷灌(spray irrigation or sprinkling irrigation):
植物生理学习题大全——第1章植物的水分代谢
第一章植物的水分代谢一. 名词解释水分代谢(water metabolism):植物对水分的吸收、运输、利用和散失的过程。
自由水(free water):距离胶粒较远而不被胶粒所束缚,可以自由流动的水分。
束缚水(bound water):靠近胶粒而被胶粒所束缚、不易自由流动的水分。
扩散(diffusion):水分通过磷脂双分子层的运输方式。
集流(mass flow):水分通过膜上的水孔蛋白的运输方式。
水通道蛋白( water channel protein):存在于生物膜上的一类具有选择性、高效转运水分功能的内在蛋白,亦称水孔蛋白。
束缚能(bound energy):不能用于做功的能量。
自由能(free energy):在温度恒定的条件下可用于做功的能量。
化学势( chemical potential):每摩尔物质所具有的自由能。
水势(water potential ):每偏摩尔体积水的化学势差。
临界水势(critical water potential):气孔开始关闭的水势。
渗透势(osmotic potential):由于溶液中溶质颗粒的存在而引起的水势降低值。
压力势(pressure potential):由于细胞壁压力的存在而增大的水势值。
衬质势(matrix potential):由于细胞胶体物质亲水性和毛细管对自由水的束缚而引起的水势降低值。
重力势(gravitational potential):由于重力的存在而使体系水势增加的数值。
水的偏摩尔体积(partial molar volume):在温度、压强及其他组分不变的条件下,在无限大的体系中加入1mol水时,对体系体积的增量。
质壁分离(plasmolysis):植物细胞由于液泡失水,使原生质体收缩与细胞壁分离的现象。
质壁分离复原(deplasmolysis):把正在质壁分离的细胞移到低渗溶液或水中时,质壁分离的原生质体恢复原状的现象。
植物生理学-第一章植物水分代谢
细胞中含有大量溶质,其溶质势为各 溶质势的总和。
(2)压力势(pressure potential)
由于压力的存在而使体系水势改变的 数值,用ψp表示。
原生质吸水膨胀,对细胞壁产生压力, 而细胞壁对原生质会产生一个反作用力, 这就是细胞的压力势。
(3)衬质势(matric potential)
Ψm :衬质势,由于细胞胶体物质亲 水性和毛细管对自由水的束缚而引起的水 势降低值。恒为负值。
未形成液泡的细胞有一定的衬质势(如干燥 种子的可达-100MPa)。
干燥种子的水势:ψw = ψm
已形成液泡的细胞衬质势很大,但绝对值很小 (趋于零),可忽略不计,故具有液泡的成熟细胞:
2.水势单位: 帕(Pa)、巴(bar)、大气压
(atm)。
兆帕(MPa) 1Mpa=106 Pa
1bar (巴)=0.1 MPa
=0.987 atm (大气压)
1标准atm=1.013×105 Pa
=1.013 bar
化学势是能量概念,单位为J/mol [J=N(牛 顿)·m],
偏摩尔体积的单位为m3/mol,
细胞吸水情况决定于细胞水势。 典型细胞水势ψw是由3个势组成的:
ψw = ψs +ψp+ ψm
水 渗 压衬 透 力质
势 势 势势
(1)溶质势(solute potential) 渗透势(osmotic potential)
由于溶质颗粒的存在而引起体系水 势降低的数值。用ψs表示。
ψs =ψπ=-π(渗透压)=-iCRT
两者相除并化简,得N/m2,成为压力单位帕Pa
这样就把以能量为单位的化学势转化为以压力为 单位的水势。
12 植物的水分代谢
• 1 植物吸水的部位 • 根的吸水区域主要在根尖的幼嫩部分,其中根毛区的吸
水能力最强。根毛区的根毛数量很多,极大地增加了根 的吸收面积。 • 实例:移栽时应尽量保持根系完整。 • 容器育苗、带土球移栽
2 植物吸水的途径 质外体途径 共质体途径 跨膜途径
3 根系吸水的动力
根压:由于根系的生理活动而使根吸水并使液流从根部 上升的力量。
比逐渐降温要大得多。 ➢ 实例:午不浇园 ➢ 夏天烈日下用冰冷的水进行土壤灌溉,对根系吸水不利。
2)土壤含水量
一般认为大多数植物在生长期间最适宜的土壤水分约为 田间持水量的 50%~80%。
实例:在水分条件不好的干旱地区植树造林时,采用保 水剂、 固体水、地膜覆盖等技术措施。
3)土壤通气状况
内皮层外部质外体的水分通过内皮层的原生质体渗透进 入内部质外体,并沿导管、管胞上升,形成根压。
由于根压引起的吸水需要代谢提供能量,因此这种吸水 叫主动吸水。
伤流现象
吐水现象
蒸腾拉力
蒸腾拉力是由于植物叶片蒸腾失水而产生的使根吸水并 使水分上升的力量,这种吸水的动力发源于叶的蒸腾作 用,故把这种吸水叫做被动吸水。
低,代谢活性低,生长缓慢,抗逆性较强。
自由水/束缚水比值是衡量植物代谢强弱和抗性的生理指标 之一。
3 水在植物生活中的作用 ➢ 水是原生质的重要成分:溶胶、凝胶 ➢ 水是某些代谢过程的原料 ➢ 水是植物代谢过程的介质 ➢ 水能保持植物的固定姿态 ➢ 水能调节植物的体温
二 植物对水分的吸收和运输
当叶片展开后,蒸腾作用逐渐增强,蒸腾拉力就成为主 要的吸水动力。
4 水分在植物体内的运输
水分从被植物根系吸收到通过叶片蒸腾到体外,经过的 途径是:土壤→根毛→根的皮层→根的中柱鞘→根的导 管或管胞→茎的导管或管胞→叶的导管或管胞→叶肉细 胞→叶肉细胞间隙→气孔下室→气孔→大气
植物生理学第01章 植物的水分代谢
第一章植物的水分代谢本章内容提要水是植物生命的基础。
植物水分代谢包括水的吸收、运输和散失过程。
植物细胞吸水有三种方式:渗透吸水、吸胀吸水和代谢性吸水,以渗透吸水为主。
根系是植物吸水的主要器官,吸水的主要区域为根毛区,吸水的方式有主动吸水和被动吸水,其吸水动力分别为根压和蒸腾拉力。
蒸腾拉力是植物主要的吸水动力。
水分在植物体内连续不断地运输是蒸腾拉力—内聚力克服水柱张力的结果。
植物主要通过叶片蒸腾散失水分,具有重要生理意义。
气孔蒸腾是植物叶片蒸腾的主要形式。
蒸腾速率与气孔的开闭关系很大。
气孔开闭可能是通过保卫细胞内K+的积累学说和苹果酸代谢来调节的。
许多外界因子能调节气孔开闭。
作物需水因作物种类不同而异,一般而论,植物的水分临界期是花粉母细胞四分体形成期,合理灌溉要综合考虑土壤含水量、作物形态指标及生理指标。
灌溉的生理指标能即使反映植物体内的水分状况,是较为科学的。
第一节水分在植物生命活动中的作用一、植物体内的含水量不同植物的含水量不同;同一种植物生长在不同的环境中含水量也有差异;在同一植株中不同器官和不同组织的含水量也不同。
二、水对植物的生理作用1、原生质的主要组分。
原生质一般含水量在70%~90%以上,这样才可使原生质保持溶胶状态,以保证各种生理生化过程的进行。
如果含水量减少,原生质由溶胶变成凝胶状态,细胞生命活动大大减缓(例如休眠种子)。
2、接参与植物体内重要的代谢过程。
在光合作用、呼吸作用、有机物质合成和分解的过程中均有水的参与。
3、多生化反应和物质吸收、运输的良好介质。
植物体内绝大多数生化过程都是在水介质中进行的。
水分子是极性分子,参与生化过程的反应物都溶于水,控制这些反应的酶类也是亲水性的。
各种物质在细胞内的合成、转化和运输分配,以及无机离子的吸收和运输在水介质中完成的。
4、使植物保持固有的姿态。
细胞含有大量的水分,维持细胞的紧张度,因而使植物枝叶挺立、花朵开放等。
3、分裂和延伸生长都需要足够的水。
植物的水分代谢
第5章植物的水分代谢生命离不开水,没有水就没有生命。
植物的一切正常生命活动,只有在细胞含有足够的水分条件下才能进行。
植物的水分代谢,包括植物对水分的吸收、运转、利用和散失的过程。
这一过程能否顺利进行,直接关系到植物生长的好坏,因此,了解植物水分代谢规律,对指导农业生产有着重要意义。
第一节水在植物生活中的重要性一、植物的含水耀植物的含水量因植物种类、器官和生活环境的不同而差异很大。
如水生植物的含水量可达鲜重的90%以上;而干旱地生长的地衣类仅占6%;草本植物的含水量占其重量的70%~80%,木本植物稍低于草本植物;根尖嫩梢、肉果类的含水量可达60%~90%,树干约为40%~50%;而干燥的种子其含水量只有10%~14%。
一般来说,生长旺盛和代谢活跃的器官水分含量较高,随着器官的衰老,代谢减弱,其含水量也逐渐降低(表5-1)。
表5-1 几种植物不同器官的含水量二、植物体内水分存在的状态水分在植物体内通常呈束缚水和自由水两种状态。
由于原生质胶体是由蛋白质等大分子化合物组成,其表面带有很多亲水基团(如NHl、0)c)H等),所以能吸附水分子。
那些与原生质胶粒紧密结合而不能自由移动的水分子称为束缚水;而未与原生质胶粒相结合能自由移动的水则称为自由水。
自由水参与生理生化反应,而束缚水则不能。
所以当自由水/束缚水比值高时,细胞原生质呈溶胶状态,植物代谢旺盛,生长较快;反之,细胞原生质呈凝胶状态,代谢减弱,生长减慢,但抗逆性相应增强。
三、水在植物生活中的重要性1水是原生质的重要组分原生质的含水量约为70%~90%左右。
水使原生质呈溶胶状态.从而保证了代谢活动的正常进行。
水分减少,原生质趋向凝胶状态,生命活动减弱.如休眠种子。
如果植物严重失水,可导致原生质破坏而死亡。
2水是代谢作用的介质水分子具有极性,是自然界中能溶解物质最多的良好溶剂。
植物体内离子和气体的交换,有机物的合成和分解,矿物质和有机物的运输都必须在有水条件下进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
被动吸水(passive absorption of water)
3)影响根系吸水的环境条件
(1)土壤含水量
指标
田间持水量:指在地下水较深和排水良好的土地上充分灌 水或降水后,允许水分充分下渗,并防止蒸发,经过一定 时间,土壤剖面所能维持的较稳定的最高土壤水含量。 被认为是一个常数,常用来作为灌溉上限和计算灌水定额 的指标。
根压
(2)植物蒸腾作用产生水势差
• 内部细胞---表面细胞---蒸腾作用 • 叶肉细胞----叶脉导管----茎导管----根导管---土壤 • 水势差:上低下高 • 被动吸水
蒸腾作用验证
蒸腾拉力>根压
• 根压对于幼小植株、早春树木发芽、蒸腾 作用很弱时的水分转运起到一定作用。
根系吸水的方式
水性强----利于与土壤颗粒粘着和吸水;
移栽作物时应注意?
• 带土移栽以保护根尖。
2)根系吸水原理
2)根系吸水原理
• 根系与土壤溶液形成水势差
• 土中水分通过内皮层扩撒进入根导管----根系吸水。 • 根系自身的代谢活动引起----主动吸水方式。 • 根部的水压到地上部(导管内液体压上地上部)• 土壤中的水不断补充到根部。形成根系吸水过程。 • 根压 • 概念:根系生理活动导致导管内外产生水势差形 成的力量。
• 景天科植物:CO2同化方式很特殊。夜间 气孔开放,吸收的CO2生成苹果酸储存在 液泡中,白天气孔关闭,液泡中的苹果酸 经脱羧作用释放CO2用于光合作用
影响气孔运动的因素
• CO2浓度-影响气孔运动 • 一般:CO2浓度低-气孔开;CO2浓度高-气孔关 闭 • T-影响气孔运动
• 一般30°开度最大
• 产生蒸腾拉力; • 促进矿质元素的吸收、运输和分配; • 降低植物体的温度; • 利于光合作用的进行。
4.3.1 蒸腾作用的意义及方式
• 0.1%
• 5-10% 角质层本身不透水,但角质层在形成过程中夹杂 一些果胶,同时角质层也有孔隙,可使水汽通过。
• 潮湿环境中生长的植物及幼嫩叶子----角质蒸腾 • 中生和旱生植物----气孔蒸腾 • 气孔是植物叶片与外界气体交换的通道,影响 光合、呼吸和蒸腾作用的过程。
任务4.2 植物对水分的吸收
4.2.1 植物细胞对水分的吸收
1)水势 自由能:恒温条件下物质用来做功的那一部分内能。 化学势:每摩尔物质的自由能
纯水水势:每摩尔水所具有的自由能。 1L水+1L蔗糖 < 2L 每偏摩尔体积的水 溶液水势:每偏摩尔体积的水所具有的自由能。
水势的单位
水势组成
• (1)溶质势Ψs:由于溶质存在而降低的水势。 负值。 • (2)压力势Ψp:细胞壁压力产生的。 • 细胞吸水:正值(细胞吸水能力降低) • 蒸腾拉力:负值(细胞吸水能力提高) • (3)衬质势Ψm:因亲水物质衬质(如蛋白质纤 维素等)中存在降低的水势。 • Ψw=Ψs+Ψp+Ψm
4.3.2 植物的气孔蒸腾
• 气孔面积:1% • 但蒸发速率高! • 同面积的大孔或 水面蒸发速度 • 小孔边缘效应!
1)气孔的大小、数目、分布、形态及运动
气孔数目: 40-500个 /mm2(气孔 频度)
• P158 表4.1
1)气孔的大小、数目、分布、形态及运动
• 不同生境气孔分布有明显差异 • 浮游植物气孔主要在上表面 • 禾谷类作物上下表面气孔数目接近 • 双子叶植物气孔下表面多。 • 研究:环境二氧化碳浓度高,气孔密度低。
降低蒸腾作用的途径
• ⑴减少蒸腾面积: • 如移栽植物时,可去掉一些枝叶,减少蒸腾失水。
⑵降低蒸腾速率:
• 如在移栽植物时避开促进蒸腾的高温、强光、低湿、大风 等外界条件,增加植株周围的湿度,或覆盖塑料薄膜等都 能降低蒸腾速率。 ⑶使用抗蒸腾剂,降低蒸腾失水量。
任务4.4 作物的合理灌溉
• 4.4.1 作物体内的水分平衡和合理灌溉 • 植物吸水、用水、失水之间-水分平衡 • 吸水--失水(利用水、蒸腾水、吐水)
• 温度过高也影响根系吸水,原因: • 高温加速根系老化,使根的木质化达到根 尖,根的吸收面积减少; • 酶钝化
(3)土壤通气状况
• 土壤通气良好:呼吸增加,有利于吸水, 根系生长良好。
• 土壤通气不好:根系吸水困难。主要原因: • 呼吸作用受抑制,根压下降。 • 较多时间缺氧,根进行无氧呼吸,产生积 累较多酒精,根系中毒受伤,吸水面积减 少。
质壁分离现象解决如下问题
• 短时间内,原生 质层只允许水分 子通过。 • 表示膜透性的大 小
(2)植物细胞的吸胀作用吸水
• 亲水胶体吸水膨胀的现象。
• 无液泡的细胞。
• 大豆种子=?禾谷类种子
• 什么实验可以证明植物细胞是一渗透系统? • 概念:水势 • 植物吸水的方式有哪几种?一般在什么情 况下产生?
吐水 蒸腾
• 蒸腾作用和水分蒸发相同吗? • 不同。为什么? • 原因:蒸腾作用会受到植物代谢和气孔的调节。
任务4.3 植物体内水分的散失
• 4.3.1 蒸腾作用的生理意义 • 4.3.2 植物的气孔蒸腾 • 4.3.3 蒸腾作用的指标 • 4.3.4 影响蒸腾作用的因素
4.3.1 蒸腾作用的意义及方式
气孔形态
气孔运动
• 特点:气孔白天开张、夜间关闭。 • 原因: • 与保卫细胞的代谢及结构有关。
气孔运动
白天光合作用
细胞液浓度增大 水势降低
气孔开闭机理P159
• a 淀粉与糖转化学说
• b K+累积学说
• c 苹果酸代谢学说
2)气孔蒸腾过程
影响气孔运动的因素
• 光照-主导因素 • 一般:光照-气孔开;无光照-气孔关闭 • 烈日强光:气孔关闭 • 一天中,早晨-中午,气孔开度 • 暂时萎蔫:光照过强,失水过多,气孔开度变小, 蒸腾作用减弱。 • 永久萎蔫:土壤缺水引起
• C4植物有较高的光合固碳效率,一般气孔开张频率
< C3植物,减少了蒸腾失水,提高了水分利用率。
4.4.2 作物的需水规律
• (2)不同生育期需水量不同
• 幼苗期<成熟期 • 营养和生殖生长并进期需水 量最大 • 自受精至乳熟期
控制灌水量调控植物生长发育进程
• 蹲苗 • 小麦拔节水适当晚浇
4.4.2 作物的需水规律
(4)土壤溶液浓度
• 施肥过多或集中
项目4 植物水分代谢
4.2.3 水分在植物体内的运输
水分运输的总路线
水分运输过程
• 连续过程;
• 1-5%被吸收利用;大部分消耗。 • 蒸腾作用,水——水蒸气散失到大气中。
水分运输途径
(至气孔下 腔)
植物体内水分以什么形式散失到外界?
• 液体? • • 气态? •
(2)土壤温度
• 根系生长速率、呼吸速率、流动速率 • 在一定温度范围内随温度升高根系水吸收和运输 加快。 • 低温时吸水下降,原因: • 水的粘度增加,不易透过生活组织; • 原生质粘度增加,对水的阻力增加; • 水的运动减慢,渗透作用降低; • 根系生长受抑制,吸收面积减少; • 根系呼吸速率降低,离子吸收减弱,影响根系吸 水。
(3)土壤通气状况
解释“旱浇田,涝浇园” 的原因 • 旱浇田:是旱天田中缺水,自然要浇田灌溉。 • “涝浇园”:“夏季涝浇园、蔬菜长满园”
• 蔬菜生长喜水怕涝,夏季高温中午下过雷阵雨(俗 称热雨)后,一:及时排涝外,减少了地面板结。
• 如果不及时排涝就会使土壤中氧气不足,根系呼 吸受抑制,影响水分与矿物质的吸收,同时嫌气 性细菌活跃,产生一些有毒的还原物质,使根部 中毒死亡。 二要在雨后用井水再浇一遍,因井水相对较凉,通 过浇井水降低地表热量,赶走水汽,改善土壤空 气状况,从而减轻热阵雨的危害,防止蔬菜死苗, 这就是“涝浇园”。 •
• 2)蒸腾效率 每蒸腾1kg水所形成的干物
质的克数。 常用g/kg表示。 • 一般:1-8g/kg
• 此比率越大,表明水的利用率越高。
4.3.3 蒸腾作用的指标
• 3)蒸腾系数 每制造1g干物质所消耗的水
分的克数。 常用g/g表示,也可不写单位。
• 一般:125-1000g/g
• 此比率越小,表明水的利用率越高。
• 植物不同-蒸腾系数差异大
P160 表4.2
作物 小麦 水稻 716 玉米 368 高粱 322 棉花 646 西瓜 600
需水量 513
缺水少雨区----需水量低植物 野生植物:125-1000 白蜡树:85 松树:40 栽培作物:100-500
• 植物不同生育期-蒸腾系数不同
• 旺盛生长期,干重增加较快-蒸腾系数小;
• 任务4.3 植物体内水分的散失
• 任务4.4 作物的合理灌溉
任务4.1 水在植物体内的重要性
• 4.1.1 植物的水分含量 • 4.1.2 水在植物体内的作用
任务4.1 水在植物体内的重要性
• 4.1.1 植物的水分含量
任务4.1 水在植物体内的重要性
• 4.1.1 植物的水分含量
任务4.1 水在植物体内的重要性
项目4 植物的水分代谢
• 掌握植物吸水动力、运输方式及蒸腾作用 的意义; • 了解水的存在状态、对植物生长代谢的影 响;水势的组成;影响根系吸水的条件; 气孔蒸腾原理; • 熟悉植物的需水规律及合理灌溉的依据; • 能通过合理灌溉保持植物体内水分平衡。 植物对水分的吸收
有液泡的细胞水势
• 成熟细胞的水势:
• 外界溶液水势>细胞水势 • 外界溶液水势=细胞水势 • 外界溶液水势<细胞水势
• Ψp=0
P152