半导体总复习

合集下载

半导体物理复习梳理

半导体物理复习梳理

第一章填空题:1、 写出三种立方单胞的名称:简立方,体心立方,面心立方;这三种单胞中所含的原子数分别是1,2,42、 在四面体结构的共价晶体中,四个共价键是以s 态和p 态波函数的线性组合为基础,构成了所谓的“杂化轨道”。

3、 金刚石型结构的结晶学原胞是立方对称的晶胞。

4、 闪锌矿结构的Ⅲ-Ⅴ族化合物和金刚石型结构一样,都是由两个面心立方晶格套构而成的,称这种晶格为双原子复式格子。

5、 纤锌矿型结构和闪锌型结构相接近,它也是以正四面体结构为基础构成的,但是它具有六方对称性。

6、 内壳层的电子,轨道交叠少,共有化运动弱,可忽略。

外层的价电子,轨道交叠多,共有化运动强,能级分裂大,被视为“准自由电子”。

7、 原来简并的N 个原子的s 能级,结合成晶体后分裂为N 个十分靠近的能级,形成能带(允带),因N 值极大,能带被视为“准连续的”。

8、 Si 、Ge 具有一般晶体的共性,又有其特殊性:其能级分裂成能带时,存在轨道杂化。

9、 如图,当 时,形成稳定晶体,上下两带的状态数(各4N 个)不变,根据能量最小原理,低温下,下带填4N 个价电子是满的,称为满带或价带;而上带4N 个状态无电子是空的,称为导带;中间隔以禁带。

10、 在周期性势场内,电子的平均速度v 可表示为波包的群速度。

在能带极值附近的电子速度为:11、 半导体中电子在外加电场作用下,电子的加速度为:12、 半导体中除了导带上电子导电作用外,价带中还有空穴的导电作用。

对本征半导体,导带中出现多少电子,价带中相应地就出现多少空穴,导带上电子参与导电,价带上空穴也参与导电,这就是本征半导体的导电机构。

13、当磁场不变时,加高频电场Cw 垂直磁场,当电场频率B w =Cw 时,可观察到吸收峰,吸收峰的个数等于有效质量的个数。

14、 为了观察到明显的共振吸收峰, 要求半导体样品比较纯净, 而且一般是在低温下进行。

15、 右图为GaAs 的能带结构。

半导体集成电路复习

半导体集成电路复习

填空,判断,简答,计算一、填空题1.用来做芯片的高纯硅被称为(半导体级硅),英文简称(GSG ),有时也被称为(电子级硅)。

1.晶圆的英文是(wafer ),其常用的材料是(硅)和(锗)。

2.从半导体制造来讲,晶圆中用的最广的晶体平面的密勒符号是(100 )、(110 )和(111 )。

3.根据氧化剂的不同,热氧化可分为(干氧氧化)、(湿氧氧化)和(水汽氧化)。

4.硅片上的氧化物主要通过(热生长)和(淀积)的方法产生,由于硅片表面非常平整,使得产生的氧化物主要为层状结构,所以又称为(薄膜)。

5.目前常用的CVD系统有:(APCVD )、(LPCVD )和(PECVD )。

6.缩略语PECVD、LPCVD、HDPCVD和APCVD的中文名称分别是(等离子体增强化学气相淀积)、(低压化学气相淀积)、高密度等离子体化学气相淀积、和(常压化学气相淀积)。

7.化学气相淀积是通过(气体混合)的化学反应在硅片表面淀积一层(固体膜)的工艺。

硅片表面及其邻近的区域被(加热)来向反应系统提供附加的能量。

8.在半导体制造业中,最早的互连金属是(铝),在硅片制造业中最普通的互连金属是(铝),即将取代它的金属材料是(铜)。

9.写出三种半导体制造业的金属和合金(Al )、(Cu )和(铝铜合金)。

10.硅片平坦化的四种类型分别是(平滑)、部分平坦化、(局部平坦化)和(全局平坦化)。

11.光刻包括两种基本的工艺类型:负性光刻和(正性光刻),两者的主要区别是所用光刻胶的种类不同,前者是(负性光刻胶),后者是(正性光刻胶)。

12.刻蚀是用(化学方法)或(物理方法)有选择地从硅片表面去除不需要材料的工艺过程,其基本目标是(在涂胶的硅片上正确地复制掩膜图形)。

13.集成电路制造中掺杂类工艺有(热扩散掺杂)和(离子注入)两种,其中(离子注入)是最重要的掺杂方法。

14.杂质在硅晶体中的扩散机制主要有两种,分别是(间隙式扩散机制)扩散和(替代式扩散机制)扩散。

(完整版)半导体工艺复习题..

(完整版)半导体工艺复习题..

填空 20’简答20’判断10’综合50’第一单元1.必定温度,杂质在晶体中拥有最大均衡浓度,这一均衡浓度就称为何?固溶度2.按制备时有无使用坩埚分为两类,有坩埚分为?无坩埚分为?(P24)有坩埚:直拉法、磁控直拉法无坩埚:悬浮区熔法3.外延工艺按方法可分为哪些?(P37)气相外延、液相外延、固相外延和分子束外延4.Wafer 的中文含义是什么?当前常用的资料有哪两种?晶圆;硅和锗5.自混杂效应与互扩散效应(P47-48)左图:自混杂效应是指高温外延时,高混杂衬底的杂质反扩散进入气相界限层,又从界限层扩散掺入外延层的现象。

自混杂效应是气相外延的本征效应,不行能完好防止。

自混杂效应的影响:○1改变外延层和衬底杂质浓度及散布○2对p/n或n/p硅外延,改变pn 结地点右图:互(外)扩散效应:指高温外延时,衬底中的杂质与外延层中的杂质相互扩散,惹起衬底与外延层界面邻近的杂质浓度迟缓变化的现象。

不是本征效应,是杂质的固相扩散带来(低温减小、消逝)6.什么是外延层?为何在硅片上使用外延层?1)在某种状况下,需要硅片有特别纯的与衬底有同样晶体构造的硅表面,还要保持对杂质类型和浓度的控制,经过外延技术在硅表面堆积一个新的知足上述要求的晶体膜层,该膜层称为外延层。

2)在硅片上使用外延层的原由是外延层在优化pn 结的击穿电压的同时降低了集电极电阻,在适中的电流强度下提升了器件速度。

外延在 CMOS集成电路中变得重要起来,由于跟着器件尺寸不停减小它将闩锁效应降到最低。

外延层往常是没有玷辱的。

7.常用的半导体资料为何选择硅?1)硅的充裕度。

硅是地球上第二丰富的元素,占地壳成分的25%;经合理加工,硅能够提纯到半导体系造所需的足够高的纯度而耗费更低的成本。

2)更高的融化温度同意更宽的工艺容限。

硅1412 ℃>锗3)更宽的工作温度。

用硅制造的半导体件能够用于比锗937℃。

更宽的温度范围,增添了半导体的应用范围和靠谱性。

半导体物理复习试题及答案复习资料

半导体物理复习试题及答案复习资料

半导体物理复习试题及答案复习资料一、引言半导体物理是现代电子学中至关重要的一门学科,其涉及电子行为、半导体器件工作原理等内容。

为了帮助大家更好地复习半导体物理,本文整理了一些常见的复习试题及答案,以供大家参考和学习。

二、基础知识题1. 请简述半导体材料相对于导体和绝缘体的特点。

答案:半导体材料具有介于导体和绝缘体之间的导电特性。

与导体相比,半导体的电导率较低,并且在无外界作用下几乎不带电荷。

与绝缘体相比,半导体的电导率较高,但不会随温度显著增加。

2. 什么是本征半导体?请举例说明。

答案:本征半导体是指不掺杂任何杂质的半导体材料。

例如,纯净的硅(Si)和锗(Ge)就是本征半导体。

3. 简述P型半导体和N型半导体的形成原理。

答案:P型半导体形成的原理是在纯净的半导体材料中掺入少量三价元素,如硼(B),使其成为施主原子。

施主原子进入晶格后,会失去一个电子,并在晶格中留下一个空位。

这样就使得电子在晶格中存在的空位,形成了称为“空穴”的正电荷载流子,因此形成了P型半导体。

N型半导体形成的原理是在纯净的半导体材料中掺入少量五价元素,如磷(P)或砷(As),使其成为受主原子。

受主原子进入晶格后,会多出一个电子,并在晶格中留下一个可移动的带负电荷的离子。

这样就使得半导体中存在了大量的自由电子,形成了N型半导体。

4. 简述PN结的形成原理及特性。

答案:PN结是由P型半导体和N型半导体的结合所形成。

P型半导体和N型半导体在接触处发生扩散,形成电子从N区流向P区的过程。

PN结具有单向导电性,即在正向偏置时,电流可以顺利通过;而在反向偏置时,电流几乎无法通过。

三、摩尔斯电子学题1. 使用摩尔斯电子学符号,画出“半导体”的符号。

答案:半导体的摩尔斯电子学符号为“--..-.-.-...-.”2. 根据摩尔斯电子学符号“--.-.--.-.-.-.--.--”,翻译为英文是什么?答案:根据翻译表,该符号翻译为“TRANSISTOR”。

半导体物理复习归纳

半导体物理复习归纳

半导体物理复习归纳————————————————————————————————作者: ————————————————————————————————日期:一、半导体的电子状态1、金刚石结构(Si、Ge)Si、Ge原子组成,正四面体结构,由两个面心立方沿空间对角线互相平移1/4个空间对角线长度套构而成。

由相同原子构成的复式格子。

2、闪锌矿结构(GaAs)3-5族化合物分子构成,与金刚石结构类似,由两类原子各自形成的面心立方沿空间对角线相互平移1/4个空间对角线长度套构而成。

由共价键结合,有一定离子键。

由不同原子构成的复式格子。

3、纤锌矿结构(ZnS)与闪锌矿结构类似,以正四面体结构为基础,具有六方对称性,由两类原子各自组成的六方排列的双原子层堆积而成。

是共价化合物,但具有离子性,且离子性占优。

4、氯化钠结构(NaCl)沿棱方向平移1/2,形成的复式格子。

5、原子能级与晶体能带原子组成晶体时,由于原子间距非常小,于是电子可以在整个晶体中做共有化运动,导致能级劈裂形成能带。

6、脱离共价键所需的最低能量就是禁带宽度。

价带上的电子激发为准自由电子,即价带电子激发为导带电子的过程,称为本征激发。

7、有效质量的意义a.有效质量概括了半导体内部势场的作用(有效质量为负说明晶格对粒子做负功)b.有效质量可以直接由实验测定c.有效质量与能量函数对于k的二次微商成反比。

能带越窄,二次微商越小,有效质量越大。

8、测量有效质量的方法回旋共振。

当交变电磁场角频率等于回旋频率时,就可以发生共振吸收。

测出共振吸收时电磁波的角频率和磁感应强度,就可以算出有效质量。

为能观测出明显的共振吸收峰,要求样品纯度较高,且实验要在低温下进行。

9、空穴价带中空着的状态被看成带正电的粒子,称为空穴。

这是一种假想的粒子,其带正电荷+q,而且具有正的有效质量m p*。

10、轻/重空穴重空穴:有效质量较大的空穴轻空穴:有效质量较小的空穴11、间接带隙半导体导带底和价带顶处于不同k值的半导体。

半导体物理复习资料

半导体物理复习资料

第一章 半导体中的电子状态1.导体、半导体、绝缘体的划分:Ⅰ导体内部存在部分充满的能带,在电场作用下形成电流;Ⅱ绝缘体内部不存在部分充满的能带,在电场作用下无电流产生; Ⅲ半导体的价带是完全充满的,但与之上面靠近的能带间的能隙很小,电子易被激发到上面的能带,使这两个能带都变成部分充满,使固体导电。

2.电子的有效质量是*n m ,空穴的有效质量是*p m ;**np m m -=,电量等值反号,波矢k 与电子相同 能带底电子的有效质量是正值,能带顶电子的有效质量是负值。

能带底空穴的有效质量是负值,能带顶空穴的有效质量是正值。

3.半导体中电子所受的外力dtdkh f ⋅=的计算。

4.引进有效质量的意义:概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

第二章 半导体中杂质和缺陷能级1.施主能级:被施主杂质束缚的电子的能量状态称为施主能级E D ;施主能级很接近于导带底;受主能级:被受主杂质束缚的空穴的能量状态称为受主能级E A ;受主能级很接近于价带顶。

施主能级图 受主能级图2.浅能级杂质:杂质的电离能远小于本征半导体禁带宽度的杂质,电离后向相应的能带提供电子或空穴。

深能级杂质:能级位于禁带中央位置附近,距离相应允带差值较大。

深能级杂质起复合中心、陷阱作用;浅能级杂质起施主、受主作用。

3.杂质的补偿作用:半导体中同时含有施主和受主杂质,施主和受主先相互抵消,剩余的杂质发生电离。

在Ⅲ-Ⅴ族半导体中(Ga-As )掺入Ⅳ族杂质原子(Si ),Si 为两性杂质,既可作施主,亦可作受主。

设315100.1-⨯=cm N A ,316101.1-⨯=cm N D ;则316100.1-⨯=-=cm N N n A D 由p n n i ⋅=2,可得p 值;①p n ≈时,近似认为本征半导体,i F E E =;②p n μμ=时,本征电导p n σσ=; p n >>时,杂质能级靠近导带底;第三章 半导体中载流子的统计分布1.费米分布函数(简并半导体)⎪⎪⎭⎫ ⎝⎛⋅-+=Tk E E E f F 0exp 11)((本征);⎪⎪⎭⎫ ⎝⎛⋅-+=T k E E E f F 0exp 2111)((杂质);玻尔兹曼分布函数(非简并半导体) ⎪⎪⎭⎫ ⎝⎛⋅-=T k E A E f B0exp )(;2.费米能级:TF N F E ⎪⎭⎫⎝⎛∂∂==μ;系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。

复习题半导体物理学

复习题半导体物理学

复习题:半导体物理学引言:半导体物理学是研究半导体材料的电学和光学性质的科学学科。

半导体材料由于其特殊的能带结构,介于导体和绝缘体之间。

在半导体物理学中,我们研究电子行为、能带理论、掺杂效应和半导体器件等方面的内容。

本文将通过一系列复习题来回顾半导体物理学的相关知识。

一、电子行为:1. 什么是载流子?在半导体中有哪两种类型的载流子?在半导体中,带有电荷的粒子称为载流子。

一种是带负电荷的电子,另一种是带正电荷的空穴。

2. 什么是能带?能带理论是用来描述什么的?能带是指具有一定能量范围的电子能级分布。

能带理论用于描述电子在半导体中的分布和运动行为。

3. 什么是禁带宽度?它对半导体的导电性质有什么影响?禁带宽度是指能带中能量差最小的范围,该范围内的能级没有允许态。

禁带宽度决定了半导体的导电性能。

能带中存在禁带宽度时,半导体表现出绝缘体的性质;当禁带宽度足够小的时候,允许电子状态穿越禁带,半导体表现出导体的性质。

二、掺杂效应:1. 什么是掺杂?常见的掺杂元素有哪些?掺杂是指向纯净的半导体中引入少量杂质元素,以改变半导体的导电性质。

常见的掺杂元素有磷、锑、硼等。

2. 控制掺杂浓度的方法有哪些?掺杂浓度可以通过掺杂杂质元素的量来控制。

掺杂浓度越高,半导体的导电性越强。

3. P型和N型半导体有什么区别?P型半导体是指通过掺杂三价元素使半导体中存在过剩的空穴,空穴是主要的载流子。

N型半导体是指通过掺杂五价元素使半导体中存在过剩的电子,电子是主要的载流子。

三、半导体器件:1. 什么是PN结?它的主要作用是什么?PN结是由P型半导体和N型半导体组成的结构。

PN结的主要作用是将半导体材料的导电性质从P型区域传导到N型区域,形成电子流和空穴流。

2. 什么是二极管?它的特点是什么?二极管是PN结的一种常见应用。

它具有单向导电性,允许电流从P区域流向N区域,而阻止电流从N区域流向P区域。

3. 什么是晶体管?它的工作原理是怎样的?晶体管是由三个掺杂不同类型的半导体构成的器件。

期末复习 半导体材料知识讲解

期末复习 半导体材料知识讲解
5
半导体材料的分类(按化学组成分类)
• 无机物半导体
– 元素半导体:(Ge, Si) – 化合物半导体
• 三、五族GaAs • 二、六族
• 有机物半导体
6
能带理论(区别三者导电性)
• 金属中,由于组成金属的原子中的价电子占据的 能带是部分占满的,所以金属是良好的导体。
• 半导体由于禁带宽度比较小,在温度升高或有光 照时,价带顶部的电子会得到能量激发到导带中 去,这样在导带中就有自由电子,在价带中就相 应的缺少电子,等效为带有正电子的空穴,电子 和空穴同时参与导电,使得半导体具有一定的导 电性能。
• 一般对于绝缘体,禁带宽度较大,在温度升高或 有光照时,能够得到能量而跃迁到导带的电子很 少,因此绝缘体的导电性能很差。
7
半导体结构类型
• 金刚石结构(Si/Ge):同种元素的两套面心 立方格子沿对角线平移1/4套构而成
• 闪锌矿(三、五族化合物如GaAs):两种元 素的两套面心立方格子沿对角线平移1/4套 构而成
效应
12
作业
• 1.什么是分凝现象?平衡分凝系数?有效分凝系 数?
• 2.写出BPS公式及各个物理量的含义,并讨论影响 分凝系数的因素。
• 3.分别写出正常凝固过程、一次区熔过程锭条中 杂质浓度Cs公式,并说明各个物理量的含义。
• 4.说明为什么实际区熔时,最初几次要选择大熔 区后几次用小熔区的工艺条件。
半导体材料
期末复习
2
考试题型
• 填空30分,每空一分 • 判断题10分,每题一分 • 名词解释20分,每题4分 • 问答题40分,6个题目 • AB卷
3
半导体材料概述
• 从电学性质上讲(主要指电阻率)
– 绝缘体1012—1022 Ω.cm – 半导体10-6—1012 Ω.cm – 良导体≤10-6Ω.cm – 正温度系数(对电导率而言) – 负温度系数(对电阻率而言) – 导体????

半导体复习题(带答案)

半导体复习题(带答案)

半导体物理复习题一、选择题1.硅晶体结构是金刚石结构,每个晶胞中含原子个数为(D)P1A.1B.2C.4D.82.关于本征半导体,下列说法中错误的是(C)P65A.本征半导体的费米能级E F=E i基本位于禁带中线处B.本征半导体不含有任何杂质和缺陷C.本征半导体的费米能级与温度无关,只决定于材料本身D.本征半导体的电中性条件是qn0=qp03.非平衡载流子的复合率定义为单位时间单位体积净复合消失的电子-空穴对数。

下面表达式中不等于复合率的是(D)P130A. B. C. D.4.下面pn结中不属于突变结的是(D)P158、159A.合金结B.高表面浓度的浅扩散p+n结C.高表面浓度的浅扩散n+p结D.低表面浓度的深扩散结5.关于pn结,下列说法中不正确的是(C)P158、160A.pn结是结型半导体器件的心脏。

B.pn结空间电荷区中的内建电场起着阻碍电子和空穴继续扩散的作用。

C.平衡时,pn结空间电荷区中正电荷区和负电荷区的宽度一定相等。

6.对于小注入下的N型半导体材料,下列说法中不正确的是(B)P128A. B. C. D.7.关于空穴,下列说法不正确的是(C)P15A.空穴带正电荷B.空穴具有正的有效质量C.空穴同电子一样都是物质世界中的实物粒子D.半导体中电子空穴共同参与导电8.关于公式,下列说法正确的是(D)P66、67A.此公式仅适用于本征半导体材料B.此公式仅适用于杂质半导体材料C.此公式不仅适用于本征半导体材料,也适用于杂质半导体材料D.对于非简并条件下的所有半导体材料,此公式都适用9.对于突变结中势垒区宽度,下面说法中错误的是(C)P177A.p+n结中B.n+p结中C.与势垒区上总电压成正比D.与势垒区上总电压的平方根成正比10.关于有效质量,下面说法错误的是(D)P13、14A.有效质量概括了半导体内部势场的作用B.原子中内层电子的有效质量大,外层电子的有效质量小C.有效质量可正可负D.电子有效质量就是电子的惯性质量。

半导体工艺复习精华

半导体工艺复习精华

一.名词解释:①.CZ 直拉法:是用包括熔炉,拉晶机械装置(籽晶夹具,旋转机械装置),环境控制装置的拉晶机进行结晶。

多晶硅放入坩埚中,熔炉加热到超过硅的熔点,将一个适当晶向的籽晶放置在籽晶夹具中,悬于坩埚之上,将籽晶夹具插入熔融液中,虽然籽晶将会部分融化,但其未融化的籽晶顶部将会接触熔融液的表面、将籽晶慢慢拉起,熔融液在固体液体的表面逐渐冷却,从而产生很大的晶体即从熔融硅中生长单晶硅的基本技术称为直拉法。

②.硅的区熔(float-zone )法:在单晶生长过程中持续不断的向熔融液中添加高纯度的多晶硅,使得熔融液初始的掺杂浓度维持不变的基本技术称为硅的区熔(float-zone )法。

③.分凝系数:硅中的杂质平衡密度与二氧化硅中的杂质平衡密度的比值定义为分凝系数K 。

④.有效分凝系数:固体界面附近的平衡掺杂浓度Cs 与远离界面处熔融液中掺杂浓度的比值Se l C k C。

⑤.Bridgman 法:用于晶体生长用的材料装在圆柱型的坩埚中,缓慢地下降,并通过一个具有一定温度梯度的加热炉,炉温控制在略高于材料的熔点附近。

根据材料的性质加热器件可 以选用电阻炉或高频炉。

在通过加热区域时,坩埚中的材料被熔融,当坩埚持续下降时,坩埚底部的温度先下降到熔点以下,并开始结晶,晶体随坩埚下降而持续长大。

⑥.光学光刻:光刻就是将掩膜上的几何图形转移到涂在半导体晶片表面的敏光薄层材料上的工艺过程。

⑦.替位式扩散:在高温下晶格原子在格点平衡位置附近震动,基质原子有一定的几率获得足够的能量脱离晶格格点而成为间隙原子因而产生一个空位,这样邻近的杂质原子就可以移到该空位这种扩散机制称为替代式扩散(空位扩散)。

⑧.填隙式扩散:如果间隙杂质原子从一个位置运动到另一个位置而并不占据格点这种机制称为填隙式扩散。

⑨.本征扩散:在杂质原子往半导体中进行热扩散时,如果杂质原子的浓度小于热扩散温度下半导体中的本征载流子浓度,则杂质原子的扩散系数为常数,这种扩散就称为本征扩散。

半导体材料(复习资料)

半导体材料(复习资料)

半导体材料(复习资料)半导体材料复习资料0:绪论1.半导体的主要特征:(1)电阻率在10-3 ~ 109 ??cm 范围(2)电阻率的温度系数是负的(3)通常具有很高的热电势(4)具有整流效应(5)对光具有敏感性,能产生光伏效应或光电导效应2.半导体的历史:第一代:20世纪初元素半导体如硅(Si)锗(Ge);第二代:20世纪50年代化合物半导体如砷化镓(GaAs)铟磷(InP);第三代:20世纪90年代宽禁带化合物半导体氮化镓(GaN)碳化硅(SiC)氧化锌(ZnO)。

第一章:硅和锗的化学制备第一节:硅和锗的物理化学性质1.硅和锗的物理化学性质1)物理性质硅和锗分别具有银白色和灰色金属光泽,其晶体硬而脆。

二者熔体密度比固体密度大,故熔化后会发生体积收缩(锗收缩5.5%,而硅收缩大约为10%)。

硅的禁带宽度比锗大,电阻率也比锗大4个数量级,并且工作温度也比锗高,因此它可以制作高压器件。

但锗的迁移率比硅大,它可做低压大电流和高频器件。

2)化学性质(1)硅和锗在室温下可以与卤素、卤化氢作用生成相应的卤化物。

这些卤化物具有强烈的水解性,在空气中吸水而冒烟,并随着分子中Si(Ge)?H键的增多其稳定性减弱。

(2)高温下,化学活性大,与氧,水,卤族(第七族),卤化氢,碳等很多物质起反应,生成相应的化合物。

注:与酸的反应(对多数酸来说硅比锗更稳定);与碱的反应(硅比锗更容易与碱起反应)。

2.二氧化硅(SiO2)的物理化学性质物理性质:坚硬、脆性、难熔的无色固体,1600℃以上熔化为黏稠液体,冷却后呈玻璃态存在形式:晶体(石英、水晶)、无定形(硅石、石英砂) 。

化学性质:常温下,十分稳定,只与HF、强碱反应3.二氧化锗(GeO2)的物理化学性质物理性质:不溶于水的白色粉末,是以酸性为主的两性氧化物。

两种晶型:正方晶系金红石型,熔点1086℃;六方晶系石英型,熔点为1116℃化学性质:不跟水反应,可溶于浓盐酸生成四氯化锗,也可溶于强碱溶液,生成锗酸盐。

半导体物理总复习

半导体物理总复习

能带论 共有化运动 电子/空穴 有效质量
杂质能级(施主、受主) E EF c k0T
n0 = Nc exp
p0 = Nv exp
E EF
k 0T
v
分本征、杂质半导体两种情况讨论(变化规律的物理图像) 简并半导体及其禁带变窄效应
n0p0 = ni2
Chapter 3
外场作用下载流子的运动规律
11/98
12/98
13/98
18/98
19/98
20/98
21/98
22/98
23/98
2
半导体中载流子的统计分布
本章内容提要
n n n
热平衡状态,状态密度 费米能级与分布函数 电中性方程 载流子浓度 Vs 温度
n
n
简并半导体
24/98
产生载流子(本征激发/杂质电离)
电子由低能态向高能态跃迁
EF p < EF
n = Nc exp
p = Nv exp np = n0p0 exp
空穴准费米能级比平衡费米能级低
Ec EF n k0T
p E F Ev k0T
EF EF = ni exp = n0 exp k0T = p0 exp EF EFp k0T
n p
n
n
EF Ei
陷阱中心的特点
复合中心:
rn 能 rp 够俘获两种不同载流子而复合掉
而陷阱中心对两种载流子的俘获能力必然相差很大
Nt
越大,陷阱作用最强
杂质能级与平衡时的费米能级重合时,陷阱作用最强
61/98
5
p-n结
本章内容提要
n n n n
p-n结的形成及其能带图 p-n结伏安特性 p-n结电容 p-n结击穿 p-n结隧道效应

半导体制造技术复习总结

半导体制造技术复习总结

半导体制造技术复习总结第一章半导体产业介绍1、集成电路制造的不同阶段:硅片制备、硅片制造、硅片测试/拣选、装配与封装、终测;2、硅片制造:清洗、成膜、光刻、刻蚀、掺杂;3、半导体趋势:提高芯片性能、提高芯片可靠性、降低芯片价格;4、摩尔定律:一个芯片上的晶体管数量大约每18个月翻一倍。

5、半导体趋势:①提高芯片性能:a关键尺寸(CD)-等比例缩小(Scale down)b每块芯片上的元件数-更多 c 功耗-更小②提高芯片可靠性: a无颗粒净化间的使用 b控制化学试剂纯度c分析制造工艺 d硅片检测和微芯片测试e芯片制造商成立联盟以提高系统可靠性③降低芯片价格:a.50年下降1亿倍 b减少特征尺寸+增加硅片直径c半导体市场的大幅度增长(规模经济)第二章半导体材料特性6、最常见、最重要半导体材料-硅:a.硅的丰裕度 b.更高的熔化温度允许更宽的工艺容限c.更宽的工作温度范围d.氧化硅的自然生成7、GaAs的优点:a.比硅更高的电子迁移率; b.减少寄生电容和信号损耗; c.集成电路的速度比硅制成的电路更快; d.材料电阻率更大,在GaAs衬底上制造的半导体器件之间很容易实现隔离,不会产生电学性能的损失;e.比硅有更高的抗辐射性能。

GaAs的缺点: a.缺乏天然氧化物;b.材料的脆性; c.由于镓的相对匮乏和提纯工艺中的能量消耗,GaAs的成本相当于硅的10倍; d.砷的剧毒性需要在设备、工艺和废物清除设施中特别控制。

第三章器件技术8、等比例缩小:所有尺寸和电压都必须在通过设计模型应用时统一缩小。

第四章硅和硅片制备9、用来做芯片的高纯硅称为半导体级硅(semiconductor-grade silicon, SGS)或电子级硅西门子工艺:1.用碳加热硅石来制备冶金级硅SiC(s)+SiO2(s) Si(l)+SIO(g)+CO(g)2.将冶金级硅提纯以生成三氯硅烷Si(s)+3HCl(g) SiHCl3(g)+H2(g)3.通过三氯硅烷和氢气反应来生成SGS SiHCl3(g)+H2(g) Si(s)+3HCl(g)10、单晶硅生长:把多晶块转变成一个大单晶,并给予正确的定向和适量的N型或P型掺杂,叫做晶体生长。

半导体复习总结

半导体复习总结

ED
)
k0T
n0为导带中电子浓度
n0
NC
exp(
EC EF k0T
)
所以:N A
NC
exp(
EC EF k0T
)
1
ND exp( EF
ED
)
k0T
在弱电离范围内,上式右端分母中的1可以忽略不计,则
N
A
NC
exp(
EC EF k0T
)
ND
exp(
EF ED k0T
)
在极弱电离
的情况下,激发到导带
第三章
例题 3 1.有一 n 型半导体,除施主杂质浓度 ND 外,还含有少量的受主,其浓度为 NA,求弱电 离情况下电子浓度的表达式
当有受主存在时,从施主激发出来的电子,有一部分要填充受主能级E A, 电中性条件为:
NA
n0
N
D
其中N
为电
D
离施主浓度
N
D
N D [1
f
(ED )
ND 1 exp( EF
求总迁移率。
2 1500 cm2 /Vs
,只存
霍尔效应
T=300K 时,硅霍尔器件的参数如图 2 所示,
d 5103cm W 5102 cm L 0.50cm
测得: I x 0.50mA
试确定:
Vx 1.25V
1. 霍尔电压
2. 导电类型
3. 多数载流子浓度
4. 多数载流子迁移率
Bz 6.510 2T
20(. 1)EC EF 0.026 k0T,发生弱减并
n0
2Nc
F1 (1)
2
2 2.81019 3.14

半导体器件基础总复习

半导体器件基础总复习

双极型晶体管部分晶体管由两个 pn 结: 发射结和集电结将晶体管划分为三个区: 发射区、基区及集电区。

相应的三个电极称为发射极、基极和集电极,并用 E ,B 和 C ( 或 e ,b 和 c ) 表示。

晶体管有两种基本结构: pnp 管和 npn 管。

双极型 NPN 晶体管制造过程: 1、在 N 型衬底中扩散 P 型杂质;2、在 P 型扩散区中再扩散 N 型杂质;3、在磷氧化层上开出基区和发射区接触孔;4、蒸发金属;5、光刻金属,引出及区、发射区引线;6、制备集电极电极7、切片、封装发射效率 nEpEpEnE nEE nE J J J J J J J +=+==11γpepb nb b ne pe L n D W p D 0011+=γ可见提高 N e / N b ,降低 R □e / R □b 可提高发射效率,使γ 接近于 1。

基区输运系数 nE rB nE nC J J J J -==1*β 2*211⎪⎪⎭⎫ ⎝⎛-=nb b L W β集电区倍增因子222*211C pC nC i n q ρμμα+= 两种类型晶体管均可适用npn 晶体管共基电流放大系数 2221peb pe b b e L WL W --=ρρα共射电流放大系数22211peb pe b b e L WL W +=-=ρραβ 基区自建电场 晶体管的反向电流和击穿电压 穿通电压 U PT晶体管的基极电阻 晶体管的截止频率 f α、 f β 特征频率 f T 最高振荡频率 f m 超相移因子 高频优值 M 晶体管的大注入效应 基区电导调制效应 大注入自建电场 有效基区扩展效应 发射极电流集边效应 基区自建电场这一电场称为缓变基区的自建电场,也称内建电场,用 E b 表示。

穿通电压 U PT随着集电结反向电压的增加,集电结势垒区向两边扩展,基区有效宽度 W beff 减小。

若在集电结发生雪崩击穿前 W beff 就减小到零,即发射区与集电区之间已无中性基区,这种现象称为基区穿通,对应的电压称穿通电压。

半导体物理学期末总复习

半导体物理学期末总复习
▪ 共有化运动
Si原子的能级
▪ 电子的能级是量子化的
n=3 四个电子
n=2 8个电子
+14
n=1
H
2个电子
Si
原子的能级的分裂
▪ 孤立原子的能级 4个原子能级的分裂
原子的能级的分裂
▪ 原子能级分裂为能带
半导体的能带结构
导带 Eg
价带
价带:0K条件下被电子填充的能量的能带 导带:0K条件下未被电子填充的能量的能带 带隙:导带底与价带顶之间的能量差
热平衡状态
▪ 在一定温度下,载流子的产生和载流子的复 合建立起一动态平衡,这时的载流子称为热 平衡载流子。
▪ 半导体的热平衡状态受温度影响,某一特定 温度对应某一特定的热平衡状态。
▪ 半导体的导电性受温度影响剧烈。
态密度的概念
▪ 能带中能量 E 附近每单位能量间隔内的量子态
数。 ▪ 能带中能量为 E (E dE)无限小的能量间隔内
半导体物理学
一.半导体中的电子状态 二.半导体中杂质和缺陷能级 三.半导体中载流子的统计分布 四.半导体的导电性 五.非平衡载流子 六.pn结 七.金属和半导体的接触 八.半导体表面与MIS结构 九.半导体的光学性质和光电与发光现象
晶体结构
▪ 半导体的晶格结构和结合性质 ▪ 半导体中的电子状态和能带 ▪ 半导体中的电子运动和有效质量 ▪ 本征半导体的导电机构 ▪ 空穴 ▪ 回旋共振 ▪ 硅和锗的能带结构 ▪ III-V族化合物半导体的能带结构 ▪ II-VI族化合物半导体的能带结构
k0T
k0T
k0T
k0T
玻尔兹曼分布函数
▪ 导带中电子分布可用电子的玻尔兹曼分布函数 描写(绝大多数电子分布在导带底);价带中 的空穴分布可用空穴的玻尔兹曼分布函数描写 (绝大多数空穴分布在价带顶)

半导体复习提纲

半导体复习提纲

第一章半导体中的电子(diànzǐ)状态1半导体的三种(sān zhǒnɡ)结构:金刚石型(硅和锗)闪锌矿型(Ⅲ-Ⅴ族化合物半导体材料(cáiliào)以及部分Ⅱ-Ⅵ族化合物如GaAs, InP, AlAs ,纤矿型(Ⅱ-Ⅵ族二元化合物半导体ZnS、ZnSe、CdS、CdSe).结晶学原胞是立方(lìfāng)对称的晶胞。

2电子(diànzǐ)共有化运动:当原子相互接近形成晶体时,不同原子的内外各电子壳层出现交叠,电子可由一个原子转移到相邻的原子,因此,电子可以在整个晶体中运动,称为电子的共有化运动。

由于内外壳层交叠程度很不相同,所以,只有最外层电子的共有化运动才显著。

3有效质量:将晶体中电子的加速度与外加的作用力联系起来,并且包含了晶体中的内力作用效果。

有效质量的物理意义:把晶体周期性势场的作用概括到电子的有效质量中去,使得在引入有效质量之后,就可把运动复杂的晶体电子看作为简单的自由电子。

有效质量的正负与位置有关。

大小由共有化运动的强弱有关。

引入有效质量的用处:使讨论晶体电子运动时,问题变得很简单,否则几乎不可能。

4回旋共振就是当半导体中的载流子在一定的恒定磁场和高频电场同时作用下会发生抗磁共振的现象。

该方法可直接测量出半导体中载流子的有效质量,并从而可求得能带极值附近的能带结构。

(母的)要样品纯度更高,在低温。

5直接带隙半导体材料:导带最小值(导带底)和满带最大值相应于相同的波矢k0间接带隙半导体材料:导带最小值(导带底)和满带最大值在k空间中不同位置 . 硅、锗与砷化镓的区别:硅锗为间接带隙半导体;砷化镓是直接带隙半导体。

砷化镓的禁带宽度大,E。

-1.43eV,宽于硅,更宽于锗,因此砷化镓半导体器件能在远高于硅半导体器件工作温度、更高于锗半导体器件工作温度的450℃下正常工作;其pn结的反向电压高,反向饱和电流低,适用于制作大功率半导体器件;能够引入深能级的杂质,制成体电阻率比锗和硅高出三个数量级以上的集成电路衬底。

半导体物理总复习

半导体物理总复习

禁带宽度:导带底与价带顶之间的能量差
3.电子的有效质量
(1) 晶体中的电子在外加电场作用下,电子除受外电场
的作用力,还受到内部原子核和其它电子的作用力,但
内部势场的作用力难以精确确定。电子的有效质量将晶 体导带中电子的加速度与外加作用力联系起来,电子有 效质量概括了晶体中内部势场对电子的作用力。这样仍 能用经典力学的方法来描述晶体中电子运动规律。即:
5.不同温区载流子浓度和费米能级的计
强电离区
n型半导体
n0 N D ni2 p0 n0 p0 N A ni2 n0 p0
当N D N A时: n0 N D N A
补偿型半导体
ni2 p0 n0 当N D N A时 p0 N A N D ni2 n0 p0
间接带隙半导体:导带低和价带顶对应的电子波矢不相同
二. 基本公式
有效质量
2 h m* 2 d E dk 2
速度:
1 dE h dk
例1、 一维晶体的电子能带可写为,
7 1 E(k ) ( coska cos2ka) 2 8 ma 8
式中a为晶格常数,试求
1、能带宽度; 2、电子在波矢k状态时的速度; 3、能带底部电子的有效质量; 4、能带顶部空穴的有效质量;
n p 中处于准平衡分布,可以有各自的费米能级 E F 和E F
称为准费米能级,准费米能级分离的程度,即
E E
n F
p F
的大小,反映了与平衡态分离的程度
4. 解释载流子的产生和复合,直接复合,间接复合,复合率 产 生:电子和空穴被形成的过程,如电子从价带跃迁到导 带,或 电子从杂质能级跃迁到导带的过程或空穴从
2
1、由
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本概念:
1.本征半导体:没有杂质原子并且没有晶格缺陷的纯净半导体材料
2.非本征半导体:定量掺杂使电子或空穴浓度偏离本征载流子浓度的半导体材料
3.N 型半导体:电子为多数载流子的半导体
4.P 型半导体:空穴为多数载流子的半导体
5.杂质补偿型半导体:同一半导体区域内,既含有施主杂质又含有受主杂质的半导体
6.N 型补偿半导体:施主杂质浓度大于受主杂质浓度的补偿半导体
7.P 型补偿半导体:施主杂质浓度小于受主杂质浓度的补偿半导体
8.完全补偿半导体:施主杂质浓度等于受主杂质浓度的补偿半导体
9.施主杂质:提供导带电子,但不增加价带空穴的一类杂质
10.受主杂质:提供价带空穴,但不增加导带电子的一类杂质
11.双性杂质:既可以作为施主杂质,又可以作为受主杂质的这种杂质称为双性杂质(期中)
12.直接带隙半导体:导带底和价带顶对应同一个K 值的半导体(期中一.5会判断)
13.间接带隙半导体:导带底和价带顶对应不同的K 值的半导体(期中一.5会判断)
14.异质结:两种不同的半导体材料接触形成的结
15.二维电子气:电子堆积在异质结表面的势阱中,但是可沿其它两个方向自由运动
16.直接复合:电子在导带和价带之间的直接跃迁,引起电子和空穴的复合
17.间接复合:电子和空穴通过位于禁带中的复合中心进行的复合
18.欧姆接触:金属和半导体结接触电阻很低,且在结两边都形成电流的接触
19.肖特基势垒:金属—半导体结中,从金属到半导体的势垒高度
20.PN 结(P 型半导体和N 型半导体结合的物质,是同质结)
PN 结反向击穿的物理机制:①齐纳击穿(效应):重掺杂PN 结由于遂穿机制而发生的击穿 ②雪崩击穿:穿越空间电荷区时,电子碰撞产生新的电子空穴对时发生的击穿
21.PN 结电容:①扩散电容:PN 结正偏时,在电中性区扩散形成的电容
②结电容/势垒电容:在反偏电压时,在结区形成的电容
22.迁移率μ:影响迁移率的两个因素:①晶格(热振动)散射;②电离杂质散射
23.能级位置,关于费米能级图;PN 结图 24.有效质量: 电子的有效质量:
(E~k 关系)
空穴的有效质量: 25.霍尔效应:载流子在相互垂直的电磁场中运动,产生横向电压的效应
26.霍尔电压V H 用途:①判断半导体的导电类型;②测量迁移率μ;③测量电子空穴浓度 2
*22
2*221111n p d E m dk d E m dk ==。

相关文档
最新文档