磁敏传感器

合集下载

磁敏传感器

磁敏传感器

2.磁敏电阻分类 是一种基于磁阻效应而制作的电阻体。它在外施磁场的 作用下(包括磁场强度及方向变化)能够改变自身的阻值。
5
6.3.1磁敏电阻
3.磁敏电阻结构与特性
LO GO
6
LO GO
6.3.1 6.3.2 6.3.3
磁敏电阻
磁敏二极管
磁敏晶体管
7
6.3.2 磁敏二极管
结构与原理
• 磁敏二极管的结构如左下图所 示。它是平面P+-i-N+型结构 的二极管。在高纯度半导体锗 的两端用合金法做成高掺杂P型 区和N型区。i区是高纯空间电 荷区,该区的长度远远大于载 流子扩散的长度。在i区的一个 侧面上,用扩散、研磨或扩散 杂质等方法制成高复合区r,在r 区域内载流子的复合速率较大。
9
6.3.2 磁敏二极管
主要技术特性及参数
磁敏二极管输出特性曲线
LO GO
磁敏二极管的伏安特性曲线
磁敏二极管的伏安特性曲线如图所示。当磁 感应强度B不同时,有着不同的伏安特性曲 线,线段AB为负载线。通过磁敏二极管的电 流越大,则在同一磁场作用下,输出电压越 大,灵敏度越高。在负向磁场作用下,磁敏 二极管的电阻小,电流大。在正向磁场作用 下,磁敏二极管的电阻大,电流小。
0.5 0.4 0.3 0.2 0.1 -3 -2 -1 ΔIc/mA
一条直线。
B/0.1T 1 2 3 4 5
3BCM 磁敏三极管的磁电特性
17


c HI H+ P+
c
N+
N+ e
b
b e
12
r
(a)结构
( b)符号
6.3.3 磁敏晶体管
工作原理:

磁敏传感器定义与分类

磁敏传感器定义与分类
Байду номын сангаас
工作原理 霍尔效应
工作范围 10-7〜10T
磁敏电阻效应 10-3〜1T
复合电流的磁 场调制
集电极电流或 漏极电流的磁 场调制
磁敏电阻的各 向异性
巨磁阻抗或巨 磁感应效应
威根德效应
法拉第电磁感 应效应
约瑟夫逊效应
10-6〜10T
10-6〜10T
10-3〜 10-2T 10-10〜 10-4T 10-4T 10-3〜100T 10-14〜10-8T
第二节 磁敏传感器定义与分类
三、国外磁敏传感器的现状
1.国外磁传感器的常见种类 就市场占有情况来看,国外磁敏传感器主要品种
依然是霍尔元件、磁阻元件。近期的巨磁阻元件也有 良好的发展空间。
2.外磁传感器的代表厂商: 霍尔元件:日本旭化成;日本东芝;美国 Honeywell公司;美国Allogro公司。 磁阻器件:日本SONY公司;荷兰PHILIPS公司。
第二节 磁敏传感器定义与分类
四、国内磁敏传感器的现状
1.国内磁传感器的常见种类及其特点 目前国内磁敏传感器经过三十余年的发展,就基 础器件的研究与开发情况,除巨磁电阻存有差距以外, 常用其他磁敏传感器如霍尔元件,磁阻元件等已经与 国外同类产品的水平相当。市场上应用的国产磁敏传 感器件的种类也与国外产品相当,依然是霍尔元件、 磁阻元件。
第二节 磁敏传感器定义与分类
四、国内磁敏传感器的现状
2.国内磁传感器件代表厂商 霍尔元件:中科院半导体所,沈阳仪表科学研究 院,南京中旭微电子公司。 磁阻器件:沈阳仪表科学研究院(汇博思宾尼斯 公司)
第二节 磁敏传感器定义与分类
名称 霍尔器件
半导体 磁敏电阻 磁敏二极管 磁敏晶体管 金属膜磁敏电阻器 巨磁阻抗传感器 威根德器件 磁电感应传感器 超导量子干涉器件

磁敏式传感器的原理及应用

磁敏式传感器的原理及应用

磁敏式传感器的原理及应用1. 磁敏式传感器的原理磁敏式传感器是一种能够检测和测量磁场变化的装置。

它利用材料的磁敏特性,在磁场的作用下产生相应的电信号,从而实现对磁场的检测和测量。

1.1 磁敏效应磁敏效应是指材料在外加磁场作用下,呈现出磁介质性质的变化。

常见的磁敏效应包括磁电效应、霍尔效应和磁致伸缩效应等。

其中,磁电效应是磁敏式传感器工作的基础。

1.2 磁敏材料磁敏式传感器所使用的磁敏材料具有以下几个主要特点: - 高磁导率:磁敏材料能够有效地传导磁场,在外加磁场作用下形成较大的感应电流。

- 高磁阻率:磁敏材料对磁场的变化非常敏感,能够产生较大的电信号响应。

- 稳定性:磁敏材料的特性稳定,能够在较宽的温度范围内工作。

1.3 工作原理磁敏式传感器的工作原理基于磁电效应,即磁场变化引起材料电阻的变化。

当外加磁场发生变化时,磁敏材料内部的自由电荷受到磁力作用,导致电荷运动方向发生变化,从而改变了材料内部的电流分布和电阻。

2. 磁敏式传感器的应用磁敏式传感器的应用非常广泛,在许多领域中发挥着重要的作用。

2.1 位移检测磁敏式传感器可以用于测量物体的位移。

通过将磁敏材料与运动物体相连,并放置在磁场中,当物体发生位移时,磁敏材料的电阻发生变化,从而可以测量位移的大小。

2.2 速度检测磁敏式传感器还可以用于监测物体的速度。

通过将磁敏材料与运动物体相连,并放置在磁场中,当物体以一定速度运动时,磁敏材料的电阻发生变化,从而可以测得物体的速度。

2.3 磁场检测磁敏式传感器能够检测磁场的变化。

当磁场发生变化时,磁敏材料的电阻也会发生变化,从而可以检测磁场的强度和方向。

2.4 电流检测磁敏式传感器还可以用于检测电流。

通过将磁敏材料与电流回路相连,当电流通过时,磁场的变化会引起磁敏材料的电阻变化,从而可以测量电流的大小。

2.5 磁导航磁敏式传感器可以应用于磁导航领域。

通过检测磁场的变化,磁敏式传感器可以确定物体的方向和位置,从而实现导航功能。

磁敏传感器工作原理

磁敏传感器工作原理

磁敏传感器工作原理磁敏传感器工作原理:磁敏传感器,顾名思义就是感知磁性物体的存在或者磁性强度(在有效范围内)这些磁性材料除永磁体外,还包括顺磁材料(铁、钴、镍及其它们的合金)当然也可包括感知通电(直、交)线包或导线周围的磁场。

一,传统的磁检测中首先被采用的是电感线圈为敏感元件。

特点正是无须在线圈中通电,一般仅对运动中的永磁体或电流载体起敏感作用。

后来发展为用线圈组成振荡槽路的。

如探雷器,金属异物探测器,测磁通的磁通计等. (磁通门,振动样品磁强计)。

二,霍尔传感器霍尔传感器是依据霍尔效应制成的器件。

霍尔效应:通电的载体在受到垂直于载体平面的外磁场作用时,则载流子受到洛伦兹力的作用,并有向两边聚集的倾向,由于自由电子的聚集(一边多一边必然少)从而形成电势差,在经过特殊工艺制备的半导体材料这种效应更为显著。

从而形成了霍尔元件。

早期的霍尔效应的材料Insb(锑化铟)。

为增强对磁场的敏感度,在材料方面半导体IIIV 元素族都有所应用。

近年来,除Insb之外,有硅衬底的,也有砷化镓的。

霍尔器件由于其工作机理的原因都制成全桥路器件,其内阻大约都在 150Ω~500Ω之间。

对线性传感器工作电流大约在2~10mA左右,一般采用恒流供电法。

Insb与硅衬底霍尔器件典型工作电流为10mA。

而砷化镓典型工作电流为2 mA。

作为低弱磁场测量,我们希望传感器自身所需的工作电流越低越好。

(因为电源周围即有磁场,就不同程度引进误差。

另外,目前的传感器对温度很敏感,通的电流大了,有一个自身加热问题。

(温升)就造成传感器的零漂。

这些方面除外附补偿电路外,在材料方面也在不断的进行改进。

霍尔传感器主要有两大类,一类为开关型器件,一类为线性霍尔器件,从结构形式(品种)及用量、产量前者大于后者。

霍尔器件的响应速度大约在1us 量级。

三,磁阻传感器磁阻传感器,磁敏二极管等是继霍尔传感器后派生出的另一种磁敏传感器。

采用的半导体材料于霍尔大体相同。

磁敏传感器介绍说明

磁敏传感器介绍说明

长和日臻完善的这几十年中,质量、品种、产量都急速地上升,居于包括各
种半导体磁场传感器在内的各种磁场传感器使用数量的首位,全世界对它的
需求量达10亿只/年以上。但是,许多高精度应用对它们提出了越来越高的
要求,如更高的灵敏度,更低的失调电压(Offset Voltage)
磁敏二极管的灵敏度,可比霍尔器件高上1000倍,但它的输入和输出是
4、磁敏场效应管
将MOS场效应管的漏极做成对
称分离的Dl和D2(当然也可多于两
个漏极)。未加磁场时,漏极电流
ID1=ID2=ID/2,加上垂直于芯
片表面的磁场后,由于洛仑兹力的
偏转作用,使ID1≠ID2,ID1增大
多少,ID2就减小多少,ID1-ID和
外加磁场成比例,可作为磁场的量
度。
5、磁敏晶体管
个电场力,这个电场力会拒斥继续偏转过来的载流子,直到电场力和洛仑兹力相等,
建立一种动态平衡。这时,在半导体片两侧会产生电位差,这便是霍尔效应。
霍尔器件即是根据霍尔效应原理设计的磁场敏感元件,其中CCl和CC2为电流电极,
Sl和S2叫敏感电极,在CCl和CC2间通入工作电流I,在与芯片表面垂直的方向加上磁
一:引言
磁场传感器是可以将各种磁场
及其变化的量转变成电信号输出的
装置。
自然界和人类社会生活的许多
地方都存在磁场或与磁场相关的信
息。利用人工设置的永久磁体产生
的磁场,可作为许多种信息的载体。
因此,探测、采集、存储、转换、
复现和监控各种磁场和磁场中承载
的各种信息的任务,自然就落在磁
场传感器身上。在当今的信息社会
VH=mn GBV
(2)
式中:mn—在磁场作用下的载流子迁移率,又称霍尔迁移率。在n型材料中, mn

磁敏传感器PPT课件

磁敏传感器PPT课件
通常采用预极化方法或辅助磁场方法来建立质子宏观 磁矩,以增强信号幅度。
具体作法是:用圆柱形玻璃容器装满水样品或含氢质子液 体,作为灵敏元件,在容器周围绕上极化线圈和测量线 圈或共用一个线圈,使线圈轴向垂直于外磁场T方向。
在垂直于外磁场方向加一极化场H(该场强约为外磁场 的200倍)。在极化场作用下,容器内水中质子磁矩沿 极化场方向排列,形成宏观磁矩,如下图所示。
磁敏传感器的种类
▪质子旋进式磁敏传感器 ▪光泵式磁敏传感器 ▪SQUID(超导量子干涉器)磁敏传感器 ▪磁通门式磁敏传感器 ▪感应式磁敏传感器 ▪半导体磁敏传感器
霍尔器件、磁敏二极管、磁敏三极管、磁敏电阻
▪机械式磁敏传感器 ▪光纤式磁敏传感器
第一节 质子旋进式磁敏传感器
质子旋进式磁敏传感器是利用质子在外磁场 中的旋进现象,根据磁共振原理研制成功的。
二、磁场的测量与旋进信号
在核磁共振中,共振信号的幅度与被测磁场T3/2成正比。
当被测磁场很弱时,信号幅度大大衰减。对微弱的被测 磁场,用一般的核磁共振检测方法是接收不到旋进信号 的。为了测得质子磁矩M绕外磁场的旋进频率 f 信号, 必须采取特殊方法: 使沿外磁场方向排列的质子磁矩,在极化场的激励下,建立 质子宏观磁矩,并使其方向于外磁场方向垂直或接近垂直
在自由旋进的过程中,磁矩M的横向分量以t2(横向弛 豫时间)为时间常数并随时间逐渐趋近于零;在测量 线圈中所接收的感应信号,也是以t2为时间常数按指数 规律衰减的。
y
υ
感应信号衰减示意图
M衰减示意图
t2
M
x
t ω=γ T
质子旋进式磁敏传感器的组成
核心:500cc左右有机玻璃容器,在容器外面绕以数百匝
dM y dt

磁敏传感器原理

磁敏传感器原理

磁敏传感器是一种利用磁场变化来检测和测量物理量的器件。

其原理基于霍尔效应,即当电流垂直于外磁场通过导体时,在导体垂直于磁场和电流的方向上会产生电势差,这个电势差被称为霍尔电势差。

由于磁敏传感器内部装有霍尔元件,当有磁场及其方向变化时,霍尔元件能够检测到磁场强度和方向的变化,并将其转换为电信号输出。

磁敏传感器具有高灵敏度、高分辨率和高可靠性的特点,因此在许多领域都有广泛的应用。

例如,在无刷直流电机中,磁敏传感器可以用来检测转子位置和转速,从而实现电机的无接触控制。

此外,磁敏传感器还被广泛应用于测量电流、磁场、位置、速度和角度等物理量,并且在自动化控制、汽车电子、智能家居等领域也有着广泛的应用。

随着科技的不断发展,磁敏传感器的性能和可靠性也在不断提高。

目前,磁敏传感器已经从实验室走向了市场,成为一种重要的传感器类型。

未来,随着新材料、新工艺和新技术的应用,磁敏传感器的性能将会得到进一步提升,应用领域也将进一步扩大。

磁敏传感器工作原理

磁敏传感器工作原理

磁敏传感器工作原理
磁敏传感器是一种能够感知磁场变化并将其转化为电信号的设备。

其基本工作原理可以分为以下几个步骤:
1. 磁敏元件:磁敏传感器通常由一种磁性材料制成,如硅钢片、铁氧体等。

这些材料具有较低的饱和磁感应强度,即在磁场作用下,材料的磁化程度能够随磁场强度的变化而改变。

2. 磁场作用:当磁敏传感器周围有磁场存在时,磁场会对磁敏元件产生作用,使其磁化程度发生变化。

3. 磁化程度变化引起的电信号:磁敏元件磁化程度的变化会导致其磁导率的改变,进而影响到通过其的磁通量。

当磁敏元件中的磁通量变化时,根据法拉第电磁感应定律,会在磁敏元件上产生涡旋电动势。

4. 电信号放大与处理:通过将磁敏传感器输出的微弱电信号进行放大、滤波等处理,将其转化为可以被电子设备读取和识别的信号。

总的来说,磁敏传感器通过感知周围磁场的变化,并将其转化为电信号,从而实现磁场的检测和测量。

应用领域广泛,包括磁力计、地磁测量、磁条读写、磁存储等。

常见磁传感器及原理和应用

常见磁传感器及原理和应用
磁电效应 将磁场加在半导体、磁性体等固体上,固体的电性质就会发生变化,这种现象称为电(流)磁效应。基于这种物性变化制成的固体磁传感器,可以精确地检测从静磁场到交变磁场的强度,并转换成电信号输出。 固体磁传感器(或称物性磁传感器)具有体积小、功耗低、便于集成化等许多优点 。 霍尔效应 磁电阻效应 磁阻抗效应
基本补偿电路 霍尔元件的不等位电势补偿电路有很多形式。 图a是在造成电桥不平衡的电阻值较大的一个桥臂上并联RP,通过调节 RP 使电桥达到平衡状态,称为不对称补偿电路 图b相当于在两个电桥臂上并联调用电阻,称为对称补偿电路。
(a) 不对称补偿 (b) 对称电路
霍尔器件要点: 1、额定激励电流:霍尔元件温升10度时所施加的电流为额定激励电流IH; 2、零位电势:在额定控制电流下,无外加磁场时,霍尔器件电极之间的存在电势,或称为零位电位,主要原因霍尔电极的位置不在同一个等位面上,以及制作过程中引入应力, 3、温度特性:霍尔器件的电阻率和载流子的迁移率都是温度的函数。AlGaAs/InGaAs/GaAs和InAlAs/InGaAs/GaAs异质结构,灵敏度高温度系数低零位电势和温度变化一般通过电阻补偿方法解决
霍尔效应 霍尔效应最早是霍尔(Edvin Hall)于1879年发现的,但直到20世纪50年代,随着微电子技术的发展,霍尔效应才被重视和使用,并开发出多种霍尔效应器件。
洛仑兹力FM :
霍尔电场EH :
注:对无限长霍尔元件
对于实际有限长霍尔元件,需增加一个形状效应系数
基本概念
磁学量的单位
CGSE,又称静电单位制(electrostatic units)简称ESU 基本量为长度、质量和时间。基本单位为cm、g和s。 通过库仑定律,并令k=1确定电荷单位,库仑。电场强度E、极化强度P和电位移D量纲都相同。 安培环路定律和法拉第电磁感应定律分别确定磁感应强度B和磁场强度H,量纲不同,真空中也不相等,真空磁导率μ0=1/c2。 CGSM,又称电磁单位制(electromagnetic units)简称EMU ,CGSM 制的基本量和基本单位与CGSM制的一样,但是确定电磁量单位的物理公式不同。它是通过安培-毕奥-萨伐尔定律 并令K=1确定电流单位, D和E具有不同的量纲,真空介电常数ε0=1/c2。 但B和H的单位相同,但通常B的单位称为高斯,H的单位称为奥斯特。磁导率μ是无量纲的。

磁敏传感器应用举例及原理

磁敏传感器应用举例及原理

磁敏传感器应用举例及原理磁敏传感器,简称磁传感器,是一种常用的磁性测量设备。

它可以测量磁场、磁铁、电机转速、位置、方位、温度等一系列参数,具有响应速度快、精度高、稳定性好等优点。

本文将从磁传感器的应用举例及原理两个方面进行详细介绍。

一、磁传感器的应用举例1. 磁传感器在汽车领域的应用磁传感器在汽车领域中有着广泛的应用。

例如,在发动机控制系统中,磁传感器能够感知发动机传动轴的旋转速度,并将这一信息反馈给电控单元,从而实现发动机控制、点火、燃烧等功能;在刹车系统中,磁传感器能够感知刹车踏板的行程,并将这一信息传输给ABS系统,实现刹车压力的控制和调节等多个功能。

2. 磁传感器在工业领域的应用在工业领域中,磁传感器同样有着广泛的应用。

例如,在机器人的调节和控制中,磁传感器能够感知各个机械部件的位置、速度和方向等信息,从而实现机器人的动作调节、定位和导航等功能;在电机控制领域中,磁传感器能够感知电机的转速和位置等信息,并将这些信息反馈给电控单元,实现电机运转的控制和调整。

3. 磁传感器在安防领域的应用磁传感器在安防领域中同样有着广泛的应用。

例如,在门禁系统中,磁传感器能够检测门体是否关闭,从而实现门禁的控制和管理;在反盗系统中,磁传感器能够感知物品是否被移动或者被拆下,从而实现对物品的监控和保护。

二、磁传感器的原理磁传感器的本质原理是利用霍尔效应或者安培效应检测磁场的强度和方向等参数。

下面我们分别介绍这两种检测方法的原理。

1. 霍尔效应检测磁场霍尔效应是指在材料内注入电流时,当该材料与磁场相交时,磁场会使材料内的自由电子沿磁力线运动,并在材料内产生电压差。

这种电压差称为霍尔电压,具有与磁场强度和方向等相关的特性。

因此,通过测量材料内的霍尔电压,可以确定磁场的强度和方向。

2. 安培效应检测磁场安培效应是指在传导物质中流过电流时,当该物质与磁场相交时,磁场会使该物质内的电荷载流子发生偏转或者旋转,产生感应电势。

霍尔传感器参数

霍尔传感器参数

霍尔传感器参数摘要:1.霍尔传感器的概述2.霍尔传感器的工作原理3.霍尔传感器的主要参数4.霍尔传感器的应用领域正文:一、霍尔传感器的概述霍尔传感器,又称霍尔效应传感器,是一种基于霍尔效应的磁敏传感器。

它可以将磁场变化转换为电压信号,进而实现对磁场强度、磁场方向等磁性参数的检测。

霍尔传感器具有响应速度快、精度高、结构简单等优点,因此在工业、汽车电子、航空航天等领域有着广泛的应用。

二、霍尔传感器的工作原理霍尔传感器的工作原理主要基于霍尔效应。

霍尔效应是指,在磁场中,当电子流经某种半导体材料时,电子受到磁场力作用而产生横向电场,从而引起横向电流。

这个现象最早由美国物理学家爱德华·霍尔在1879 年发现,并以其名字命名。

霍尔传感器的结构包括四个部分:磁感应区域、霍尔元件、信号处理电路和输出端。

在磁感应区域,磁场会对霍尔元件产生霍尔电压,该电压经过信号处理电路放大、滤波等处理后,输出到端口,从而实现对磁场参数的检测。

三、霍尔传感器的主要参数霍尔传感器的主要参数包括:1.霍尔常数:表示霍尔元件在磁场中产生的霍尔电压与磁感应强度的比值。

不同材料的霍尔常数不同,同一种材料的霍尔常数也会受到温度、材料纯度等因素的影响。

2.工作温度:霍尔传感器的工作温度范围。

一般而言,霍尔传感器的工作温度范围较宽,但在高温环境下,霍尔传感器的性能可能会受到影响。

3.灵敏度:表示霍尔传感器对磁场变化的敏感程度。

灵敏度越高,传感器对磁场变化的检测能力越强。

4.响应速度:表示霍尔传感器从磁场变化到产生响应的时间。

响应速度越快,传感器对磁场变化的检测能力越强。

四、霍尔传感器的应用领域霍尔传感器在多个领域都有广泛应用,主要包括:1.汽车电子:霍尔传感器常用于汽车点火系统、发动机转速检测、汽车制动系统等。

2.工业自动化:霍尔传感器可以用于检测电机转速、工件位置、磁性材料的分类等。

3.航空航天:在航空航天领域,霍尔传感器可以用于飞行控制系统、卫星姿态控制等。

测速传感器的工作原理

测速传感器的工作原理

测速传感器的工作原理
测速传感器是一种用于测量物体速度的装置,它的工作原理基于不同的物理原理。

以下是几种常见的测速传感器工作原理:
1. 光电传感器:光电传感器使用光束来测量物体的速度。

它通常包括一个光源和一个光敏元件,当物体经过传感器时,光源发射光束,光敏元件接收反射回来的光。

通过测量光束的时间延迟或光强的变化,可以计算出物体的速度。

2. 磁敏传感器:磁敏传感器利用物体的磁性来测量其速度。

它通常包括一个磁铁和一个磁敏元件,当物体经过传感器时,磁铁会产生磁场,磁敏元件检测磁场的变化。

通过测量磁场的强度或变化,可以计算出物体的速度。

3. 声波传感器:声波传感器使用声波来测量物体的速度。

它通常包括一个发射器和一个接收器,发射器发出声波信号,接收器接收反射回来的声波信号。

通过测量声波的时间延迟或频率的变化,可以计算出物体的速度。

4. 压力传感器:压力传感器利用物体施加在传感器表面的压力来测量其速度。

它通常包括一个感应元件,当物体施加压力时,感应元件会产生相应的电信号。

通过测量电信号的变化,可以计算出物体的速度。

这些是一些常见的测速传感器的工作原理,不同的应用可能会
采用不同的工作原理,具体的工作原理需要根据传感器的类型和设计进行确认。

磁敏传感器的工作原理

磁敏传感器的工作原理

磁敏传感器的工作原理
磁敏传感器的工作原理
磁敏传感器是一种特殊的传感器,它可以通过受外界磁场影响而发出信号,从而判断并处理外界物理信息。

它因其具有稳定、无损耗、可靠性高及抗干扰能力强而广泛应用于各种机电设备中。

磁敏传感器的工作原理主要分为三种:
一、磁复用原理:当外界磁场发生变化时,传感器内固定的磁体原子会出现相应的微小运动,这一运动由传感器转换器转换为电讯号,最终表现为改变的输出信号。

二、磁桥原理:此类传感器具有极高的精度,它利用磁场引起抵消力对横桥相对应的角度变化,探测磁场的变化,然后通过放大器放大此变化,最后将变化转换成电流。

三、液体磁力数字原理:磁感应式旋转编码器利用光电头和聚合物液体磁力计角度拆分可以达到高精度,因为液体在外界磁场的影响下会出现微小变化,可以将其转换为电讯号,从而实现方位角度的精确检测。

- 1 -。

磁敏传感器的工作原理

磁敏传感器的工作原理

磁敏传感器的工作原理
磁敏传感器(Magnetic Sensors)是物理传感器中最为重要的一种,用来检测某一事物的磁场强度。

它可以测量磁场相对于一个特定标准的强度,以及磁场的方向。

磁敏传感器可以用来检测永久磁体、自发磁体、非永久磁体以及其它磁性物质的磁场。

磁敏传感器的工作原理是:当检测到的磁场变化时,传感器的电容变化,或者变化传感器内部的负载电阻,从而改变传感器电路的输出电流,从而获得磁场的数据。

磁敏传感器可以分为三类:磁敏电阻传感器、磁敏半导体传感器和磁敏磁芯传感器。

它们的工作原理都大体相同,只是在实现技术上有所不同。

磁敏电阻传感器是由一个特殊的磁敏半导体电阻片和一个可变
电阻器构成的电路。

当检测到的磁场变化时,电路中的磁敏电阻片会产生变化,而可变电阻器则会做出准确的调节,从而提供准确的测量数据。

磁敏半导体传感器是由磁敏半导体构成的一个电路。

当检测到的磁场变化时,磁敏半导体会产生变化,从而改变电路的输出电压,从而获得磁场的准确数据。

磁敏磁芯传感器是由一个特殊的磁芯和一个电阻构成的电路。

当检测到的磁场变化时,磁芯会对电阻产生感应,通过测量电阻对外界磁场的反应来获得磁场的数据。

磁敏传感器的应用非常广泛,目前已经应用在工业自动化、家用
电器、航空、航天等方面。

未来,磁敏传感器在更多领域得到应用,并可以为社会带来更多的好处。

常用的传感器磁敏

常用的传感器磁敏
第34页/共54页
第35页/共54页
电阻 — 温度特性
第36页/共54页
3. 磁敏电阻的结构和特性
第37页/共54页
4. 磁敏电阻的应用
上图是一种测量位移的磁阻效应传感器。将磁阻元件置于磁场中,当它相对于磁场发生位移时,元件内阻R1、R2发生变化,如果将它们接于电桥,则其输出电压比例于电阻的变化。
4.信号的运算和测量。通常利用霍尔电势与控制电流、被测磁场成正比,并与被测磁场同霍尔元件表面的夹角成正弦关系的特性,制造函数发生器。利用霍尔元件输出与控制电流和被测磁场乘积成正比的特性。制造功率表、电度表等。
5.拉力和压力测量。选用霍尔件制成的传感器较其它材料制成的传感器灵敏度和线性度更佳。
第51页/共54页
4 磁敏二极管和磁敏三极管的应用
由于磁敏管有较高的磁灵敏度,体积和功耗都很小,且能识别磁极性等优点,是一种新型半导体磁敏元件,它有着广泛的应用前景。
利用磁敏管可以作成磁场探测仪器—如高斯计、漏磁测量仪、地磁测量仪等。用磁敏管作成的磁场探测仪,可测量10-7T左右的弱磁场。
第25页/共54页
霍尔传感器的应用
第26页/共54页
铁磁材料受到磁场激励时,因其导磁率高,磁阻小,磁力线都集中在材料内部。若材料均匀,磁力线分布也均匀。如果材料中有缺陷,如小孔、裂纹等,在缺陷处,磁力线会发生弯曲,使局部磁场发生畸变。用霍尔探头检出这种畸变,经过数据处理,可辨别出缺陷的位置,性质(孔或裂纹)和大小(如深度、宽度 )
当流过霍尔片的控制电流保持不变时,霍尔片在磁场一定范围内沿x方向移动时,磁感应强度的变化呈线性关系,即: 为常数
可见霍尔电势与位移量x呈线性关系。
基于霍尔效应制成的位移传感器一般可用来测量小位移。

磁敏式传感器的工作原理

磁敏式传感器的工作原理

磁敏式传感器的工作原理嗨,朋友们!今天咱们来聊一聊特别神奇的磁敏式传感器。

这东西啊,就像是一个超级敏锐的小侦探,对磁场的变化那可是明察秋毫呢。

先来说说磁敏式传感器到底是个啥吧。

你可以把它想象成一个有特殊能力的小玩意儿,它的主要任务就是感知周围磁场的各种变化。

那它为啥能有这个本事呢?这就和它内部的构造以及物理原理分不开啦。

我有个朋友小李,他是个电子设备迷。

有一次我们俩聊到磁敏式传感器的时候,他眼睛都放光了。

他跟我说:“你知道吗?磁敏式传感器就像是磁场世界里的耳朵,能听到磁场发出的那些‘悄悄话’。

”我当时就被他这个比喻给逗乐了,不过仔细想想,还真是这么回事呢。

磁敏式传感器有好几种类型,像霍尔传感器就是比较常见的一种。

这霍尔传感器的工作原理就像是一场巧妙的电荷舞会。

在一块半导体薄片的两端通上电流,这时候如果在垂直于电流的方向加上磁场,嘿,神奇的事情就发生了。

那些电荷就像是一群听话的小士兵,在磁场这个指挥官的影响下,它们开始往一边偏移了。

这样一来,在半导体薄片的另外两边就会产生一个电压差。

这个电压差可不得了,它就像是一个信号旗,告诉我们周围磁场的情况呢。

我当时就问小李:“这电荷怎么就这么听话,说偏移就偏移啊?”小李笑着说:“这就是物理的魅力呀,就好像风一吹,树叶就跟着动一样自然。

”还有磁阻传感器,这东西的工作原理也很有趣。

你可以把磁阻传感器里面的电阻材料想象成一条布满了小障碍的道路。

正常情况下,电流在这个材料里流动就像汽车在路上行驶,还算顺畅。

可是一旦有磁场靠近,就好像突然在路上设置了一些无形的路障,电流流动就变得困难起来了,电阻就增大了。

反过来,如果磁场的方向或者强度改变了,这些“路障”的布局也会跟着改变,电阻也就跟着变了。

这多神奇啊!我跟小李讨论这个的时候,我们都感叹大自然的规律真是妙不可言。

咱们再说说这些磁敏式传感器在实际生活中的应用吧。

就拿汽车来说,现在很多汽车里都安装了磁敏式传感器。

比如说在汽车的速度检测系统里,通过磁敏式传感器来检测车轮转动时磁场的变化,从而准确地算出汽车的速度。

冰箱磁敏传感器作用是什么

冰箱磁敏传感器作用是什么

冰箱磁敏传感器作用是什么随着科技的不断发展,家用电器也在不断更新换代,冰箱作为家庭中不可或缺的电器之一,也在不断进行技术升级。

其中,磁敏传感器作为冰箱的重要组成部分之一,起着至关重要的作用。

本文将从磁敏传感器的定义、原理、作用和应用范围等方面进行详细介绍。

一、磁敏传感器的定义。

磁敏传感器是一种能够感知磁场变化并将其转化为电信号输出的传感器。

它通常由磁敏元件和信号处理电路组成,能够对磁场进行快速、准确的检测和测量。

在冰箱中,磁敏传感器主要用于检测冰箱门的开关状态,以及监测冰箱内部的温度和湿度等参数。

二、磁敏传感器的原理。

磁敏传感器的工作原理主要是基于磁阻效应或霍尔效应。

磁阻效应是指在外加磁场的作用下,磁敏元件的电阻发生变化,从而产生输出信号。

而霍尔效应是指当磁敏元件受到外加磁场的影响时,电荷载流子的运动方向发生改变,从而产生霍尔电压。

通过对这些输出信号的处理和分析,可以实现对磁场变化的感知和测量。

三、磁敏传感器的作用。

在冰箱中,磁敏传感器主要有以下几个作用:1. 检测冰箱门的开关状态。

冰箱门通常配备有磁性的密封条,当门关闭时密封条与磁敏传感器之间的磁场发生变化,传感器能够及时感知到门的状态,并将信号传输给控制系统,从而实现对冰箱门的开关状态进行监测和控制。

2. 监测冰箱内部的温度和湿度。

磁敏传感器可以通过感知磁场的变化来监测冰箱内部的温度和湿度等参数,从而帮助用户实时了解冰箱内部的环境情况,并调节冰箱的工作状态,以确保食物的新鲜和保存。

3. 实现智能控制和节能。

通过磁敏传感器对冰箱门的开关状态和环境参数的监测,可以实现智能控制和节能管理。

比如,当冰箱门长时间处于打开状态时,系统可以通过传感器的监测及时发出警报或自动关闭门,以防止能源的浪费和食物的损坏。

四、磁敏传感器的应用范围。

除了在冰箱中的应用外,磁敏传感器还广泛应用于工业自动化、汽车电子、医疗设备、通信设备等领域。

在工业自动化中,磁敏传感器可以用于检测物体的位置、速度和方向等信息,实现自动化生产和控制。

磁敏式转速传感器原理

磁敏式转速传感器原理

磁敏式转速传感器原理
磁敏式转速传感器是一种常见的用于测量机械设备转速的传感器,其工作原理基于磁敏效应和磁感应定律。

它的主要组成部分包括磁铁、线圈、磁敏材料以及信号处理电路等。

该传感器的工作原理可以分为以下几个步骤:
1. 磁铁产生磁场:传感器中通常会用到一个磁铁,它的作用是产生一个恒定的磁场,这个磁场的方向一般与传感器的轴线垂直。

2. 磁场感应:当机械设备旋转时,磁场会随之旋转。

如果在磁铁周围放置一个磁敏材料,如镍钢、铁氧体等,它的特性就会被改变。

3. 磁阻变化:磁敏材料的电阻、电感或电容等参数会随着磁场的变化而发生变化。

这是因为磁敏材料会因为外界磁场的作用而发生磁阻变化,从而引起电感和电容的改变。

4. 感应电流的产生:当机械设备旋转时,磁敏材料中的电荷载流子会发生移动,从而产生感应电流。

这个感应电流的大小和方向与旋转的速度和方向有关。

5. 线圈感应电压的产生:感应电流在磁敏材料的影响下,通过线圈产生感应电压。

这个感应电压的幅值和频率与机械设备的转速成正比。

6. 信号处理:产生的感应电压经过适当的信号处理电路后,可以转换为对应的频率或脉冲信号,以便进一步处理或显示。

总结起来,磁敏式转速传感器的工作原理就是利用机械设备旋转产生的磁场变化来感应电流和电压的变化,并通过信号处理电路将这些变化转换为对应的转速信号。

通过测量和分析这个转速信号,就可以获取到机械设备的转速信息。

这种传感器具有结构简单、工作可靠、精度高等优点,因此在各种现代化机械设备中得到了广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习:常用传感器的种类和原理
新授:
第10章其他传感器及其应用
10.1湿敏传感器
1. 湿度的概念
湿度是指物质中所含水蒸气的量,目前的湿度传感器多数是测量气体中的水蒸气含量。

通常用绝对湿度、相对湿度和露点(或露点湿
度)来表示。

(1)绝对湿度
(2)相对湿度
(3)露点
2. 湿度传感器的应用
(1)湿度传感器的分类
湿度传感器分为电阻式和电容式两种,是由湿敏元件配以相应的检测、控制电路构成。

(2)湿敏传感器的特性
①精度和长期稳定性。

②温度系数。

③供电。

④互换性。

⑤湿度校正。

(3)对湿度传感器性能作初步判断的几种方法
①一致性判定。

同一类型、同一厂家的湿度传感器产品最好一次购买两支以上,越多越能说明问题。

将几支湿度传感器放在一起通电比较检测输出值,在相对稳定的条件下,观察测试的一致性。

若要进一步检测,可在24小时内间隔一段时间记录,通过观察一天内高、中、低三种湿度和温度情况变化,可以较全面地了解产品的一致性、稳定性和温度补偿特性。

②用嘴呵气,或利用其他加湿手段对传感器加湿,观察其灵敏度、重复性、升湿脱湿性能、分辨率,产品的最高量程等。

③对产品作开盒和关盒两种情况的测试,比较是否一致,观察其热效应情况。

④对产品在高温状态和低温状态(根据说明书标准)性能进行测试,然后恢复到正常状态下检测与实验前的记录做比较,考查产品的温度适应性,并观察产品的一致性情况。

(4)湿度传感器典型测量电路
电桥电路
欧姆定律电路
带温度补偿的湿度测量电路
小结:1、湿敏传感器的原理
2、湿敏传感器的应用作业;1、2。

相关文档
最新文档