北师大版初二数学上册教案全册1
北师大版八上数学教案模板5篇
北师大版八上数学教案模板5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告大全、培训计划、策划方案、合同协议、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as report summaries, training plans, planning plans, contract agreements, rules and regulations, emergency plans, reflections, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample essay formats and writing methods, please stay tuned!北师大版八上数学教案模板5篇教案写的好可以帮助教师提高教学的个性化和差异化,满足学生的不同需求,编写良好的教案可以帮助教师更好地组织教学资源,本店铺今天就为您带来了北师大版八上数学教案模板5篇,相信一定会对你有所帮助。
2018-2019学年北师大版数学八年级上册全册教案(含教学反思)
第一章勾股定理1. 探索勾股定理(第1课时)一、学生起点分析八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时. 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.为此本节课的教学目标是:1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.三、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育.效果:激发起学生的求知欲和爱国热情.第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论 1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:A 的面积 (单位面积)B 的面积 (单位面积)C 的面积 (单位面积)左图 右图(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1 图2 图3 学生的方法可能有: 方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形,13132214=+⨯⨯⨯=C S .方法二:如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,.方法三:如图3,正方形C 中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,.(4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论 2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议内容:(1)你能用直角三角形的边长,b ,c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用内容:例题 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?(教师板演解题过程) 练习:1.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):弦股勾225100x172.生活中的应用:小明妈妈买了一部29 in (74 cm )的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm 长和46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容: 教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c分别表示直角三角形的两直角边和斜边,那么222c b a =+.2.方法:(1) 观察—探索—猜想—验证—归纳—应用; (2)“割、补、拼、接”法.3.思想:(1) 特殊—一般—特殊; (2) 数形结合思想.意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.第五环节:布置作业内容:布置作业:1.教科书习题1.1.2.观察下图,探究图中三角形的三边长是否满足意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.五、教学设计反思(一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.第一章勾股定理1. 探索勾股定理(第2课时)一、学生起点分析学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.二、教学任务分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.为此本节课的教学目标是:1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点.三、教学过程本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)延伸拓展,能力提升(四)例题讲解,初步应用;(五)追溯历史,激发情感;;(六)回顾反思,提炼升华;(七)布置作业,课堂延伸.第一环节:复习设疑,激趣引入内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:小组活动,拼图验证.内容: 活动1: 教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到)从而利用图1验证了勾股定理. 活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二) 意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重图1点内容之一,并突破了本节课的难点.第三环节延伸拓展,能力提升1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c22.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长。
新北师大版八年级上册数学教案
新北师大版八年级上册数学教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、活动方案、合同协议、条据文书、讲话致辞、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, activity plans, contract agreements, documents, speeches, experiences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!新北师大版八年级上册数学教案新北师大版八年级上册数学教案范文5篇如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
北师大版八年级数学上册全册教案教学设计
北师大版八年级数学上册全册教案教学设计一、教学内容1. 数据分析基础2. 一元二次方程3. 几何图形的运动与变换4. 位置的确定二、教学目标1. 理解并掌握数据分析的基本方法,能够运用统计图、表进行数据分析。
2. 掌握一元二次方程的求解方法,并能应用于解决实际问题。
3. 理解几何图形的运动与变换,培养空间想象能力。
4. 学会使用坐标系确定物体的位置。
三、教学难点与重点1. 教学难点:一元二次方程的求解方法,几何图形的运动与变换。
2. 教学重点:数据分析的方法,一元二次方程的应用,坐标系的使用。
四、教具与学具准备1. 教具:多媒体教学设备,PPT课件,几何模型。
2. 学具:直尺、圆规、量角器,计算器,坐标系图纸。
五、教学过程1. 实践情景引入:通过展示生活中的一元二次方程问题,引导学生思考。
2. 例题讲解:(1)讲解数据分析的基本方法,结合实例进行演示。
(2)讲解一元二次方程的求解方法,以实际例题进行讲解。
(3)介绍几何图形的运动与变换,通过动态演示和实际操作使学生理解。
(4)讲解坐标系的使用,结合实际情境进行讲解。
3. 随堂练习:(1)让学生分组进行数据分析,绘制统计图、表,并进行讨论。
(2)给定一元二次方程题目,让学生独立求解,并进行讲解。
(3)让学生动手操作几何模型,体验图形的运动与变换。
(4)让学生在坐标系图纸上标出给定位置,并进行互相检查。
六、板书设计1. 数据分析基本方法板书2. 一元二次方程求解步骤板书3. 几何图形运动与变换板书4. 坐标系使用方法板书七、作业设计1. 作业题目:(1)数据分析题目:收集班级同学的身高、体重数据,绘制统计图、表,并进行分析。
2. 答案:(1)身高、体重统计图、表及分析报告。
(2)x^2 5x + 6 = 0 的解为 x = 2 或 x = 3。
(3)正方形、等腰三角形的图形及变换结果。
(4)坐标系图纸上的位置标记。
八、课后反思及拓展延伸1. 教学反思:关注学生对数据分析、一元二次方程求解、几何图形运动与变换、坐标系使用等方面的掌握情况,及时进行针对性辅导。
八年级数学上册全册教案(2022新北师大版)
八年级数学上册全册教案(2022新北师大版)一、教学目标1.掌握八年级数学上册的基本知识和概念。
2.提高学生的数学思维能力和解决问题的能力。
3.培养学生的数学兴趣,激发他们学习数学的动机。
二、教学内容1. 整数与有理数•整数的概念和性质•整数的加法与减法•整数的乘法与除法•有理数的概念和性质•有理数的加法与减法•有理数的乘法与除法2. 分式与有理数•分式的概念和性质•分式的加法与减法•分式的乘法与除法•有理数的比较与排序3. 线性方程与不等式•一元一次方程的概念和性质•一元一次方程的解法:平移法、相消法、代入法•一元一次方程的应用:问题解决•一元一次不等式的概念和性质•一元一次不等式的解法:解集表示、图形表示•一元一次不等式的应用:问题解决4. 数据与图形•数据的搜集与整理•数据的表示与分析•统计图表的绘制与解读•平面图形的认识与性质•平面图形的面积计算5. 几何变换•平移、旋转、对称的概念•平移、旋转、对称的性质•平移、旋转、对称的操作与应用•等腰三角形的性质与判定•等腰三角形的性质应用于解决问题三、教学方法1.探究式教学:通过引导学生进行实践操作,主动探究知识与规律。
2.合作学习:通过小组合作学习,促进学生之间的互动和合作,提高解决问题的能力。
3.演示教学:通过具体例子演示,帮助学生理解概念和解题方法。
4.实践应用:结合实际问题,让学生将所学知识应用于实际生活中。
四、教学评价1.教师通过观察学生的学习情况,评价他们的参与和表现,及时调整教学策略。
2.针对学生的学习情况进行个别化评价,给予针对性的反馈和指导。
3.设计一些小组合作的评价活动,倡导学生之间互相评价和学习。
五、教学资源1.电子版教材:八年级数学上册(2022新北师大版)2.多媒体设备:电脑、投影仪等3.教学PPT、教学视频等辅助教学材料六、教学计划第一课时:整数与有理数•教学目标:了解整数的概念和性质,掌握整数的加法与减法。
•教学内容:整数的定义和性质,整数的加法与减法。
北师大版八年级数学上册全册教案教学设计(1)
北师大版八年级数学上册全册教案教学设计一、教学内容1. 第十一章:整式的乘法与因式分解11.1 单项式乘以单项式11.2 单项式乘以多项式11.3 多项式乘以多项式11.4 乘法公式11.5 因式分解2. 第十二章:分式12.1 分式的概念与性质12.2 分式的乘除法12.3 分式的加减法12.4 分式方程3. 第十三章:数据的收集与整理13.1 数据的收集13.2 数据的整理与表示二、教学目标1. 理解并掌握整式的乘法与因式分解的方法,能够熟练运用乘法公式。
2. 理解分式的概念与性质,掌握分式的四则运算,能够解决实际问题中的分式方程。
3. 能够进行数据的收集与整理,运用图表表示数据,提高数据分析能力。
三、教学难点与重点1. 教学难点:整式的因式分解,分式的四则运算,数据的整理与表示。
2. 教学重点:整式的乘法法则,分式的性质,数据的收集方法。
四、教具与学具准备1. 教具:多媒体教学设备,PPT课件,黑板,粉笔。
2. 学具:练习本,文具,计算器。
五、教学过程1. 实践情景引入以实际生活中的问题为例,如购物打折、数据处理等,让学生了解数学在实际生活中的应用,激发学生的学习兴趣。
2. 例题讲解(1)整式的乘法与因式分解:举例讲解单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的方法,并引导学生发现乘法公式。
(2)分式的四则运算:通过例题讲解分式的概念与性质,以及分式的乘除法和加减法。
(3)数据的收集与整理:以调查问卷的形式,让学生参与数据的收集,然后对数据进行分析和整理。
3. 随堂练习设计与例题相似的练习题,让学生巩固所学知识。
4. 课堂小结六、板书设计1. 整式的乘法与因式分解:单项式乘以单项式、单项式乘以多项式、多项式乘以多项式乘法公式因式分解2. 分式:分式的概念与性质分式的乘除法分式的加减法分式方程3. 数据的收集与整理:数据的收集数据的整理与表示七、作业设计1. 作业题目:(1)整式的乘法与因式分解:填空题:将整式分解为乘积的形式。
北师大版八年级数学上册全册教案
北师大版八年级数学上册全册教案教案一:整数教学目标- 理解整数的概念及其表示方法。
- 掌握整数的加减运算法则。
- 能够运用整数进行简单的计算和解决实际问题。
教学内容1. 整数的引入:从实际生活中引入负数的概念。
2. 整数的比较与排序:通过数轴和大小关系进行比较与排序。
3. 整数的加法:掌握同号数相加、异号数相加的规律。
4. 整数的减法:了解减法与加法的关系,并能运用到实际问题中。
5. 实际问题的解决:运用整数的加减法解决实际生活中的问题。
教学步骤1. 导入:通过引入负数的概念和实际例子,吸引学生的兴趣。
2. 概念解释:简明扼要地讲解整数的概念及其表示方法。
3. 比较与排序:通过数轴绘制和比较大小的练,帮助学生理解整数之间的大小关系。
4. 加法运算:以同号数和异号数相加为例,讲解加法规律和口诀。
5. 减法运算:通过减法与加法的关系讲解减法运算的方法。
6. 实际问题训练:提供一些实际问题,并引导学生运用整数的加减法进行求解。
教学资源- 教材:《北师大版八年级数学上册》- 数轴绘制工具- 实际问题解决案例教学评估- 口头提问:随堂进行简单的口头提问,检查学生对整数概念和运算规律的理解。
- 练册完成情况:检查学生对加减法运算的掌握情况和应用能力。
- 实际问题解决情况:观察学生在解决实际问题时的思考和运算过程。
教案二:代数的引入教学目标- 了解代数的基本概念和符号表示方法。
- 能够进行代数表达式的简化和计算。
- 进一步培养学生的逻辑推理和问题解决能力。
教学内容1. 代数的引入:通过实际问题引入代数的概念。
2. 代数表达式:认识代数表达式的构成和基本形式。
3. 代数表达式的简化:掌握合并同类项和因式提取的方法。
4. 代数表达式的计算:能够进行代数表达式的加减乘除运算。
5. 实际问题的解决:应用代数表达式解决实际问题。
教学步骤1. 导入:通过实际问题引入代数的概念,激发学生的思维。
2. 概念解释:明确代数的基本概念和符号表示方法。
新北师大八年级数学上导学案教案(全套)
弦股勾1.1《探索勾股定理》(1)导学案主备:外国语学校【学习目标】在方格纸上计算面积的方法探索勾股定理,掌握勾股定理,并能运用勾股定理解决一些实际问题。
【重点】掌握勾股定理,并能运用勾股定理解决一些实际问题。
【难点】探索勾股定理。
【新课学习和探究】1、导入新课:P 22、探索发现图1图2观察图形完成下列问题: 如果正方形 A 边长为,则其面积为______;正方形 B 边长为b , 则其面积为________;正方形 C 边长为c ,则其面积为_______;你能发现正方形A 、B 、C 围住的直角三角形的两直角边长a 、b ,斜边c 之间有怎样的关系。
(小组讨论) 结论:_____________________3、画一画:在草稿纸上,以cm 3、cm 4为直角边画一个直角三角形,并测量斜边的长度,前面的结论对这个三角形还成立吗?4、归纳:勾股定理:直角三角形两直角边的平方和等于斜边的平方。
222a b c +=或 222AC BC AB +=注:① 作用:知道直角三角形的任意两边可以求出第三边。
②我国古代把直角三角形中较短的直角边称为勾., 较长的直角边称为股.,斜边称为弦..【巩固练习】1、【新课学习和探究】中“导入新课”中的答案为_______米。
2、正方形A 的面积为______,正方形B 的面积为______。
【例题精讲】如图,强台风使得一根旗杆在离地面9m 处折断倒下,旗杆顶部落在离旗杆底部12m 处.旗杆折断之前有多高?【巩固练习】求出下列直角三角形中未知边的长度。
(要求写出简单过程)(1) (2)【课堂小结】本节课有哪些收获? 【课后作业】1、在△ABC 中,∠C =90°,(l )若 a =5,b =12,则 c = ; (2)若c =15,a =9,则b = .2、直角三角形的斜边长为17cm ,一条直角边长为15cm ,则直角三角形的面积为_________cm 23、如图,求等腰△ABC 的面积。
北师大版八年级上册数学教案【优秀3篇】
北师大版八年级上册数学教案【优秀3篇】篇一:北师大版八年级上册数学教案篇一一。
教学目标:1.了解方差的定义和计算公式。
2.理解方差概念的产生和形成的过程。
3.会用方差计算公式来比较两组数据的波动大小。
二。
重点、难点和难点的突破方法:1.重点:方差产生的必要性和应用方差公式解决实际问题。
2.难点:理解方差公式3.难点的突破方法:方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。
(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。
教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。
学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。
(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。
可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。
(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。
所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
三。
例习题的意图分析:1.教材P125的讨论问题的意图:(1).创设问题情境,引起学生的学习兴趣和好奇心。
(2).为引入方差概念和方差计算公式作铺垫。
(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。
新北师大版八年级数学上册全册教案
新北师大版八年级数学上册全册教案一、内容概述数与代数:包括有理数的概念与运算、代数式的初步认识与化简、一元一次方程的解法与应用等,旨在培养学生的数感和代数思维能力。
几何图形:主要学习图形的性质与分类、图形的变换(平移、旋转、对称等)、三角形和全等图形的概念与性质等,旨在提高学生的空间观念和几何证明能力。
函数与图象:通过实例引入函数的概念,学习函数的图象与性质,为后续的数学学习打下基础。
统计与概率:学习数据的收集与整理、概率的初步认识与应用等,培养学生的数据分析能力和概率思维。
教材中还融入了数学文化、数学史话等内容,旨在拓宽学生的视野,增强对数学的兴趣和热爱。
每个章节都设计了丰富的例题、习题和探究活动,以帮助学生巩固知识、提高能力。
教案在设计和实施过程中,注重知识的连贯性和系统性,同时也注重培养学生的创新思维和实践能力。
1. 介绍教材版本及适用年级本教案将针对《新北师大版八年级数学上册》展开详细解读与教学设计。
此教材版本属于北京师范大学出版社,是八年级数学上册全册的新修订版本。
本教材旨在满足八年级学生的认知水平和学习需求,涵盖了初中数学的核心知识点,包括代数、几何、概率与统计等多个领域。
其设计思路清晰,内容深入浅出,适合八年级学生使用。
通过学习本册教材,学生将掌握初中数学的基础知识,为将来的数学学习奠定坚实的基础。
2. 简述八年级数学在基础教育阶段的重要性八年级数学在基础教育阶段占有极其重要的地位。
学生所接触的数学知识深度和广度都在逐渐提升,涉及到的数学概念和原理更为复杂,为后续的数学学习和实际应用打下坚实的基础。
八年级数学是连接初中数学与高中数学的重要桥梁。
学生在这个阶段开始接触到更为高级的数学知识,如代数、几何、概率等,这些知识的掌握程度将直接影响其后续的高中数学学习。
数学作为一门基础学科,其教育价值不仅仅在于知识的灌输,更在于培养学生的逻辑思维能力和问题解决能力。
八年级的数学课程通过一系列的问题解决和推理训练,有助于培养学生的抽象思维、逻辑推理和创新能力。
北师大版八年级数学(上)全部电子教案
八(1)数学教学计划学期教学进度八年级数学自学导读课时安排靖边五中八年级数学组备课组教学设计第 1 课时 8月 20 日星期一学习指导(接着提出图1一1中A、B、C的关系呢?)4、图1一3中,A 、B、C之间有什么关系?5、图1 一4中,A 、B 、C 之间有什么关系?6、从图1一l 、1一2 、1一3 、l一4中你发现了什么?老师总结:以直角三角形两直角边为边的正方形面积和,等于以斜边为边的正方形面积。
7、图1一1、1一2、1一3、1一4中,你能用三角边的边长表示正方形的面积吗?8、你能发现直角三角形三边长度之间的关系吗?学生讨论、交流形成共识议课补充内容勾股定理的应用是本节教学的难点,一定要让学生熟练地掌握在直角三角形中已知两边求第三边的方法,为此,可设计下列三组具有梯度性的练习。
三、自学检测1、分别以5厘米和12厘米为直角边作出一个直角三角形,并测量斜边的长度上面的规律对这个三角形仍然成立吗?2、已知在Rt△ABC中,∠C=90°。
①若a=3,b=4,则c=________;②若a=40,b=9,则c=________;③若a=6,c=10,则b=_______;④若c=25,b=15,则a=________。
3、已知在Rt△ABC中,∠C=90°,AB=10。
①若∠A=30°,则BC=______,AC=_______;②若∠A=45°,则BC=______,AC=_______。
4、已知等边三角形ABC的边长是6cm。
求:(1)高AD的长(2)△ABC的面积ABCS议课补充内容1、先计算,再测量2、画草图明确C是斜边4、回顾等腰三角形“三线合一”的性质蹲组领导签字:——————靖边五中八年级数学组备课组教学设计第2课时8 月21日星期二自学指导3、展示投影2(书中图1—9)观察上图应用数格子方法判断图中的三角形的三边长是否满足222cba=+同学在议论交流形成共识后,老师总结。
新北师大版八年级上册数学全册教案
这里的 29 英寸(74 厘米)的电视机,指的是屏幕的长吗?只的 是屏幕的款吗?那他指什么呢?
五、巩固练习 1、错例辨析: △ABC 的两边为 3 和 4,求第三边 解:由于三角形的两边为 3、4 所以它的第三边的 c 应满足 =25 即:c=5 辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必 不可少的条件,可本题 △ABC 并未说明它是否是直角三角形,所以用勾股定理就没有依 据。 (2)若告诉△ABC 是直角三角形,第三边 C 也不一定是满足 , 题目中并为交待 C 是斜边 综上所述这个题目条件不足,第三边无法求得。 2、练习 P7 §1.1 1 六、作业 课本 P7 §1.1 2、3、4 §1.1 探索勾股定理(二) 教学目标: 1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活 动中发展学生的探究意识和合作交流的习惯。 2.掌握勾股定理和他的简单应用 重点难点: 重点: 能熟练运用拼图的方法证明勾股定理
和能力,初步形成积极参与数学活动的意识. 教学重点 运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一
难点:用面积证勾股定理
教学过程
一、创设问题的情境,激发学生的学习热情,导入课题
我们已经通过数格子的方法发现了直角三角形三边的关系,究竟
是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所
要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,
用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜
法说明勾股定理。
二、讲例
1、飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶
正上方 4000 多米处,过 20 秒,飞机距离这个男孩头顶 5000 米,飞
机每时飞行多少千米?
分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC
北师大版八年级上册数学全册教案教学设计版完整版
北师大版八年级上册数学全册教案教学设计版 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】北师大版八年级上册教学案同庆初中教学设计(导学模式)学科:;任课班级:;任课教师:;年月日第一章勾股定理§1.1 探索勾股定理(一)教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。
难点:勾股定理的发现教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示投影2 (书中的P2 图1—2)并回答:1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即A的面积为______个单位。
正方形C中有_______个小方格,即A的面积为______个单位。
2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:3、图1—2中,A,B,C 之间的面积之间有什么关系?4、学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢?二、做一做出示投影3(书中P3图1—4)提问:1、图1—3中,A,B,C 之间有什么关系?2、图1—4中,A,B,C 之间有什么关系?3、从图1—1,1—2,1—3,1|—4中你发现什么?4、学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
北师大版八年级上册数学教案5篇
北师大版八年级上册数学教案5篇作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。
我们应该怎么写教案呢?下面是小编整理的北师大版八年级上册数学教案,欢迎大家分享。
北师大版八年级上册数学教案1第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。
意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫。
效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望。
2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:A的面积(单位面积) B的面积(单位面积) C的面积(单位面积)左图右图(3)你是怎样得到正方形C的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)。
学生的方法可能有:方法一:如图1,将正方形C分割为四个全等的直角三角形和一个小正方形。
方法二:如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积。
方法三:如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法。
(4)分析填表的数据,你发现了什么?学生通过分析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.3.议一议内容:(1)你能用直角三角形的边长,,来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,分别表示直角三角形的两直角边和斜边,那么。
北师大版八年级数学上册全册精品教案教学设计
北师大版八年级数学上册全册精品教案教学设计一、教学内容1. 函数及其表示方法2. 一次函数性质与图像3. 二次函数性质与图像4. 概率初步5. 平行四边形与菱形6. 解直角三角形二、教学目标1. 理解函数概念,掌握函数表示方法。
2. 掌握一次函数和二次函数性质、图像及应用。
3. 理解概率意义,掌握概率基本计算方法。
4. 掌握平行四边形和菱形性质、判定及应用。
5. 学会解直角三角形,掌握三角函数定义及计算。
三、教学难点与重点1. 教学难点:函数性质与图像、概率计算、解直角三角形。
2. 教学重点:函数概念、一次函数和二次函数图像与性质、平行四边形与菱形性质、概率计算。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 实践情景引入:通过生活中实例,引导学生解函数在现实中应用。
2. 例题讲解:(1)讲解函数概念,举例说明函数表示方法。
(2)讲解一次函数图像和性质,通过例题使学生掌握一次函数图像绘制和性质分析。
(3)讲解二次函数图像和性质,通过例题使学生掌握二次函数图像绘制和性质分析。
(4)讲解概率基本计算方法,结合实际例子进行讲解。
(5)讲解平行四边形和菱形性质,通过例题使学生掌握性质应用。
(6)讲解解直角三角形方法,结合实际例子进行讲解。
3. 随堂练习:针对每个知识点设计练习题,巩固所学内容。
六、板书设计1. 函数及其表示方法2. 一次函数性质与图像3. 二次函数性质与图像4. 概率初步5. 平行四边形与菱形6. 解直角三角形七、作业设计1. 作业题目:(1)绘制一次函数图像,并分析其性质。
(2)绘制二次函数图像,并分析其性质。
(3)计算给定事件概率。
(4)证明平行四边形和菱形性质。
(5)解直角三角形,求各角度三角函数值。
2. 答案:根据学生完成作业情况,给出详细答案。
八、课后反思及拓展延伸1. 反思:针对本节课教学内容,反思教学方法是否得当,学生掌握情况如何,及时调整教学策略。
北师大版八年级数学上册第一章1.1探索勾股定理(教案)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,两条直角边的平方和等于斜边的平方。它是解决直角三角形相关问题的重要工具,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个实际直角三角形的边长,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
5.激发学生的创新意识,鼓励学生在探索勾股定理的过程中,提出不同的观点和证明方法,培养创新思维。
这些核心素养目标旨在帮助学生全面发展,将所学知识内化为自身能力,为新教材要求下的数学学习奠定坚实基础。
三、教学难点与重点
1.教学重点
(1)掌握勾股定理的表达式:直角三角形两条直角边的平方和等于斜边的平方。
北师大版八年级数学上册第一章1.1探索勾股定理(教案)
一、教学内容
本节内容选自北师大版八年级数学上册第一章1.1节,主要探索勾股定理。内容包括:
1.了解勾股定理的起源,通过探究活动引导学生发现直角三角形三边的关系。
2.掌握勾股定理的表达式:直角三角形两条直角边的平方和等于斜边的平方。
3.学会运用勾股定理解决实际问题,如计算直角三角形中未知边的长度。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
(1)理解勾股定理背后的数学原理,如平方概念、直角三角形的性质等。
北师大版初二数学上册教案(全册)
第一章丰富的图形世界(1)§1.1 生活中的立体图形(1)一、教学目标1.结合具体例子,体会数学与我们的成长密切相关。
2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。
3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。
4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。
现代课堂教学手段教学准备教师准备录音机、投影仪、剪刀、长方形纸片。
学生准备预习、剪刀、长方形纸片四、教学方法启发式教学五、教学过程设计§1.1 生活中的立体图形(2)二、教学目标1、通过观察生活中的大量物体,认识基本的几何体。
2、经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。
现代课堂教学手段教学准备教师准备录音机、投影仪、剪刀、长方形纸片。
学生准备预习、剪刀、长方形纸片五、教学方法启发式教学六、教学过程设计1、引入:(1)幻灯投影P2的彩图,利用现实生活的背景让学生说出熟悉的几何体(如球体、长方体、正方体等)(2)展出圆柱、圆锥、正方体、棱柱、球的模型,让学生分别说出这几种几何体的名称。
2、过程:(1)组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。
(2)组织学生分组讨论棱柱、圆锥的共同点与异同点,老师巡场指导。
(3)学生回答问题。
老师鼓励学生大胆说出自己的答案,并对每一种答案再交由学生共同讨论它的正确性。
(4)幻灯演示,棱柱的两种类型:直棱柱与斜棱柱,一般棱柱仅指直棱柱。
(5)组织学生讨论如何对以上几何体进行分类:a、按底面b、按侧面学生上台动手将这几种几何体进行分类,老师让学生试着说明归类的理由是什么?无论学生说什么老师都应用鼓励的目光让学生说出自己的答案。
3、议一议:投影P3的图片让学生感知这是现实生活中的一角,可能是书房的一角可能是教室的一角,让学生分组讨论:(1)、上图中哪些物体的形状与长方体、正方体类似?(学生在回答桌面时老师应指出桌面是指整个层面)(2)上图中哪些物体的形状与圆柱、圆锥类似?挂篮球的网袋是否类似于圆锥?为什么?(3)请找出上图中与笔筒形状类似的物体?(4)请找出上图中与地球形状类似的物体?4、想一想:生活中还有哪些物体的形状类似于棱柱、圆柱、圆锥与球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(此文档为word格式,下载后您可任意编辑修改!)第一章丰富的图形世界(1)§1.1 生活中的立体图形(1)一、教学目标1.结合具体例子,体会数学与我们的成长密切相关。
2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。
3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。
4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。
二、教学重点和难点三、教学手段现代课堂教学手段教学准备教师准备录音机、投影仪、剪刀、长方形纸片。
学生准备预习、剪刀、长方形纸片四、教学方法启发式教学五、教学过程设计一、导入、§1.1 生活中的立体图形(2)二、教学目标1、通过观察生活中的大量物体,认识基本的几何体。
2、经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。
三、教学重点和难点四、教学手段现代课堂教学手段教学准备教师准备录音机、投影仪、剪刀、长方形纸片。
学生准备预习、剪刀、长方形纸片五、教学方法启发式教学六、教学过程设计1、引入:(1)幻灯投影P2的彩图,利用现实生活的背景让学生说出熟悉的几何体(如球体、长方体、正方体等)(2)展出圆柱、圆锥、正方体、棱柱、球的模型,让学生分别说出这几种几何体的名称。
2、过程:(1)组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。
(2)组织学生分组讨论棱柱、圆锥的共同点与异同点,老师巡场指导。
(3)学生回答问题。
老师鼓励学生大胆说出自己的答案,并对每一种答案再交由学生共同讨论它的正确性。
(4)幻灯演示,棱柱的两种类型:直棱柱与斜棱柱,一般棱柱仅指直棱柱。
(5)组织学生讨论如何对以上几何体进行分类:a、按底面b、按侧面学生上台动手将这几种几何体进行分类,老师让学生试着说明归类的理由是什么?无论学生说什么老师都应用鼓励的目光让学生说出自己的答案。
3、议一议:投影P3的图片让学生感知这是现实生活中的一角,可能是书房的一角可能是教室的一角,让学生分组讨论:(1)、上图中哪些物体的形状与长方体、正方体类似?(学生在回答桌面时老师应指出桌面是指整个层面)(2)上图中哪些物体的形状与圆柱、圆锥类似?挂篮球的网袋是否类似于圆锥?为什么?(3)请找出上图中与笔筒形状类似的物体?(4)请找出上图中与地球形状类似的物体?4、想一想:生活中还有哪些物体的形状类似于棱柱、圆柱、圆锥与球。
5、小结:与学生总结本节课所学的内容,通过感知不同的物体体验现实生活中原来有如此多的几何体,几何体在我们的生活中无处不在。
我们也学会简单地区别不同的物体。
七、练习设计P4习题八、板书设计九、教学后记第四课时一、课题§1.1 生活中的立体图形(3)二、教学目标1.从现实生活中抽象出点、线、面等图形,培养学生的观察能力。
2.掌握点、线、面、体之间的关系。
三、教学重点和难点重点是点、线、面、体之间的关系。
难点是对“面动成体”的理解。
四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程设计(一)、引入上节课我们观察和讨论了生活中的一些几何体,今天再一起来寻找构成图形更基本的元素面、线、点。
1.展示投影(建筑、生活实物等)让学生找出其中的平面、曲面、直线、曲线、点等。
2.你能举出更多生活中包含平面、曲面、直线、曲线、点等图形的例子吗?(二)、新授1.由观察总结出:面与面相交得到线,线与线相交得到点。
2.投影展示正方体和圆柱体议一议:1)正方体是由几个面围成的?圆柱体是由几个面围成的?它们都是平的吗?2)圆柱的侧面与底面相交成几条线?它们是直的还是曲的?3)正方体有几个顶点?经过每个顶点有几条边?和学生共同总结得到:体由面组成,面由线组成,线由点组成。
3.投影展示课本P6想一想图形(动态)与学生共同填写:点动成,线动成,动成体。
4.你能举出更多反映“点动成线,线动成面,面动成体”的例子吗?5.课堂练习:投影展示长方形(矩形),想一想将长方形绕其中一边旋转一周,得到什么几何体?教师用投影动态演示旋转情况,加深学生印象,从而化解难度。
(三)、小结1.生活中图形丰富多彩,点、线、面都是构成图形的基本元素。
2.掌握点、线、面、体之间的关系。
七、练习设计P7习题1.2.自己动手用一张白纸经过裁剪围一个三棱柱(不必粘贴),再围一个四棱柱及一个五棱柱。
(注意:可先找一些实物研究)八、板书设计九、教学后记第五课时一、课题§1.2展开和折叠二、教学目标1、体会从古至今数学始终伴随着人类的进步与发展,增进学习数学的兴趣。
2、通过具体实例体会数学的存在及数学的美,发展应用意识。
三、教学重点和难点四、教学手段现代课堂教学手段教学准备教师准备录音机、投影仪、剪刀、长方形纸片。
学生准备预习、剪刀、长方形纸片五、教学方法启发式教学六、教学过程设计一、导入二、导学1.自然界中的数学——数学的存在2.人们身边的数学——数学的应用3.群芳斗妍曲径幽——数学的美(本节属增加内容,可根据时间自行调节)七、练习设计课堂基础练习1、计算:1–2+3–4+5–6+…–100+101= .答案:–502、计算:1+2+3+…+2003+2004+2003+…+3+2+1= .答案:3、如图1-1-7:这块拼花由哪些图组成?答案:正三角形、正方形、正六边形课后延伸练习1、今有一块正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请你设计三种不同的修筑方案.(只需画简图)答案:2、下面有一张某地区的公路分布图,请你找出从A至D的一条最短路线(图中所标最短路线为里程)答案:A→B1→C2→D能力提高训练1.已知等式(1)a+a+b=23,(2)b+a+b=25。
如果a和b分别代表一个数,那么a +b是()(A)2 (B)16 (C)18 (D)142、用如图所示,大小完全相同的两个直角三角形纸片,若将它们的某条边重合,能拼成几种不同形状的平面图形?请你画出拼成的图形.答案:如图:八、板书设计九、教学后记第六课时一、课题§1.3截一个几何体二、教学目标1.使学生对数学产生一定的兴趣,提高学好数学的自信心。
2.使学生初步认识到数学与现实世界的密切联系,初步形成应用数学的意识。
三、教学重点和难点四、教学手段现代课堂教学手段教学准备教师准备1.仿课本制作华罗庚的画面,并配音:“聪明在于学习,天才在于积累”。
2.制作多媒体课件:教科书第7页的例题:一座漂亮的楼房的楼梯,高1米,水平距离是2.8米。
学生准备五、教学方法启发式教学六、教学过程设计(一)、创设情境,导入主题(二)、提供交流、讨论机会,激活“主角”意识(三)、探索数学初步应用,进一步激发兴趣(四)、赋予总结评价权利,丰富“主角”意识七、练习设计课堂基础练习1、从A地到B地有两条路,第一条从A地直接到B地,第二条从A地经过C,D到B地,两条路相比( )A.第一条比第二条短B.第一条比第二条长C.同样长答案:A2、A、B两数的平均数是16,B、C两数的平均数是21,那么C–A= .答案:103、小明从1写到100,他一共写了个数字“1”.答案:21课后延伸练习1、数一数,图中一共有多少个正方形?答案:192、定义运算※= (+),计算2※3的值.答案:103、设定期储蓄1年期,2年期,3年期,5年期的年利率分别为2.25%,2.43%和2.88%.试计算1000元本金分别参加这四种储蓄,到期所得的利息各为多少(国家规定:个人储蓄从1999年11月1日起开始征收利息税,征收的税率为利息的20%).分析结果,你能发现什么?(提示:利息=本金³年利率³储存年数)答案:1年期利息18元,2年期利息38.88元,3年期利息64.8元,5年期利息115.2元.发现:参加定期储蓄,存期越长,得到利息越大.4、在第十届“哈药六杯”全国青年歌手电视大奖赛,8位评委给某选手所评分数如下表,计分方法是:去掉一个最高分,去掉一个最低分,其余分数的平均分作为该选手的最后得分,请你算一算该选手的最后得分.答案:9.72能力提高训练1、(1)在太阳光照射下,如图所示的图形中,哪些可以作为正方体的影子?(2)请你尝试一下,如果用手电筒照射正方体,可以得到哪些形状的影子?请把各种影子的形状画出来,并比较两种情形的异同?简要说明理由.答案:(1)①②③;(2)可以得到长方形、正方形、正六边形、梯形形状的影子;在太阳光照射与手电筒照射下,都能得到长方形、正方形、正六边形,但在太阳光照射下,得不到梯形,而在手电筒照射下,可得到梯形.理由:太阳光是平行光线;手电筒的光是点光源.八、板书设计九、教学后记第七课时一、课题§1.5生活中的平面图形二、教学目标运用所学数学知识和数学方法解决实际问题。
三、教学重点和难点四、教学手段现代课堂教学手段教学准备教师准备1.仿课本制作华罗庚的画面,并配音:“聪明在于学习,天才在于积累”。
2.制作多媒体课件:教科书第7页的例题:一座漂亮的楼房的楼梯,高1米,水平距离是2.8米。
学生准备五、教学方法启发式教学六、教学过程设计导学七、练习设计课堂基础练习1、若“*”是一个对于1和0的新运算符号,且运算规则如下:1*1=0,1*0=0,0*1=1,0*0=0.则下列四个运算结果中是正确的是()A.(1*1)*0=1; B.(1*0)*1=0; C.(0*1)*1=0; D.(1*1)*1=0答案:C2、将0,1,2,3,4,5,6分别填入圆圈和方格内,每个数字只出现一次,组成只有一位数和两位数的整数算式(圆圈内填一位数,方格内填两位数)答案:3³4=12=60÷53、三个连续偶数的和是12,它们的积是.答案:36课后延伸练习1、下面图形中哪些可以一笔画成,哪些不能一笔画成的?答案:②与③能一笔画出;①与④不能一笔画出.2、已知有两个大小相等的正方形内紧排着九个等圆和十六个等圆,你认为这两个正方形内空隙哪个大?答案:一样大3、某服装店售出甲、乙两件衣服,各得款120元,其中甲种衣服盈利20%,乙种衣服亏损20%,问这两次买卖盈亏情况.答案:亏10元8、一商店把某种彩电按标价的八折出售,仍可获利20%,(进价的20%),已知该品牌彩电每台进价为1998元,求该品牌彩电每台的标价为多少元?答案:2997元能力提高训练1、春节,爷爷有人民币若干,分别给小明,小红,小刚压岁钱.爷爷打算给小明,小红,小刚压岁钱为爷爷钱总数的二分之一,三分之一,四分之一,结果爷爷的钱少了50元,爷爷总共有多少钱?答案:600元2、如果今天是星期一,再过7天还是星期一,可用式子“1+7=1”表示,则(1)如果现在是3月,再过11个月是2月,可怎么表示?(2)如果现在是北京时间15时,再过10小时就是北京时间1时,可怎么表示?(3)你还可以想出其他类似的问题吗?答案:3+11=2,15+10=1,如:一个运动员在400米的环行跑道上跑了400米又回到原地,则有400+0=0.八、板书设计九、教学后记第八课时一、课题 §1.5生活中的平面图形(2) 二、教学目标1、通过做数学,让学生进一步感受到数学中观察、实验、归纳、类比和猜测的方法.2、培养学生善于发现、探求规律的能力. 三、教学重点和难点四、教学手段现代课堂教学手段 教学准备教师准备录音机、投影仪、剪刀、长方形纸片。