打折销售一元一次方程应用题
北师大版七年级上册数学应用一元一次方程——打折销售同步练习题
5.4 应用一元一次方程——打折销售一、选择题(每小题4分,共12分)1.某商品降价20%后出售,一段时间后欲恢复原价,则应在售价的基础上提高的百分数是( )A.20%B.30%C.35%D.25%2.某商店将一件商品的进价提价20%后,又降价20%以96元出售,则该商店卖出这件商品的盈亏情况是( )A.不亏不赚B.亏4元C.赚6元D.亏24元3.某厂投入200 000元购置生产某新型工艺品的专用设备和模具,共生产这种工艺品x件,又知生产每件工艺品还需投入350元,每件工艺品以销售价550元全部售出,生产这x件工艺品的销售利润=销售总收入-总投入,则下列说法错误的是( )A.若产量x<1 000,则销售利润为负值B.若产量x=1 000,则销售利润为零C.若产量x=1 000,则销售利润为200 000元D.若产量x>1 000,则销售利润随着产量x的增大而增加二、填空题(每小题4分,共12分)4.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分的电量每度电价比基本用电量的毎度电价增加20%,某用户在5月份用电100度,共交电费56元,则a= .5.为迎接“五一”劳动节,拉萨某商场举行优惠酬宾活动.某件商品的标价为630元,为吸引顾客,按标价的90%出售,这时仍可盈利67元,则这件商品的进价是元.6.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为元.答案解析1.【解析】选D.设在售价的基础上提高x,原价为a,由题意得:a(1-20%)(1+x)=a,解得:x=25%.2.【解析】选 B.设该件商品进价为x元,根据题意得:x(1+20%)(1-20%)=96,解得:x=100,以96元出售,可见亏了4元.3.【解析】选 C.根据题意,生产这x件工艺品的销售利润=(550-350)x-200 000=200x-200 000,则当x=1 000时,原式=0,即x<1 000,原式<0,销售利润为负值,x=1 000,原式=0,销售利润为零,x>1 000,原式>0,销售利润随着产量x的增大而增加,所以C错误.4.【解析】因为100×0.5=50<56,故由题意,得0.5a+(100-a)×0.5×(1+20%)=56,解得a=40.答案:405.【解析】设这件商品的进价是x 元,由题意得:630×90%=x+67,解得:x=500.答案:5006.【解析】设售货员应标在标签上的价格为x 元,依据题意70%x=80×(1+5%),解得:x=120.答案:120北师大版九年级数学上册期中测试题 一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分A.1B.2C.3D.44.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是 A.23 B.12 C.13 D.49 8.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.5B.4C.342D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个 二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________. 12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..则菱形ABCD的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P,再随机摸出一张卡片,其数字记为q,则关于的方程x2+px+q=0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为________.(精确到0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________.16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元? (2)商场平均每天可能盈利1700元吗?请说明理由. 20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..。
北师大版七年级数学上册第五章一元一次方程 之应用:销售打折类专项训练(含答案)
北师大版七年级数学上册第五章一元一次方程之应用:销售打折类专项训练1.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?2.在“元旦”期间,某超市推出如下购物优惠方案:①一次性购物在100元(不含100元)以内时不享受优惠;②一次性购物在100元(含100元)以上,300元(不含300元)时,一律享受9折优惠;③一次性购物在300元(含300元)以上时,一律享受8折优惠.小杨在本超市购物分别付款80元,261元,如果小杨改在本超市一次性购买与上两次相同的商品,应付款多少元?3.某体育用品商场用32000元购进了一批运动服,上市后很快销售一空.商场又用68000元紧急购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)若两批运动服每套的售价相同,第二批售完后获利比第一批售完后获利多12000元,则每套运动服的售价是元.4.学校准备购买一些足球,原计划订购50个,每个80元,店方表示:如果多购,可以优惠,结果校方实际订购了60个,每个减价5元,但商店获得了同样多的利润,求每个足球的成本价.5.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.6.已知A、B两件服装的成本共1000元,某服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利260元,问A、B两件服装的成本各是多少元?7.一件商品按进价提高40%后标价,然后打八折卖出,结果仍能获利18元,问这件商品的进价是多少元?8.2019年某商场于元旦之际开展优惠促销活动回馈新老客户,由顾客抽奖决定折扣.某顾客购买甲、乙两种商品,分别抽到六折(按原价的60%支付)和八折(按原价的80%支付),共支付408元,其中甲种商品原价400元.(1)请问乙种商品原价是多少元?(2)在本次买卖中,甲种商品最终亏损m%,乙种商品最终盈利2m%,但商场不盈不亏,请问甲种商品的成本是多少元?亏损多少元?9.某商店将某种皮鞋按成本加价40元作为标价,又以标价的8折优惠卖出,结果每双皮鞋仍可获利24元,问这种皮鞋的成本价为多少元?10.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.11.某社区惠民水果店第一次用615元从龙泉水果批发市场购进甲、乙两种不同品种的苹果,其中甲品种苹果重量比乙品种苹果重量的2倍多15千克,甲、乙两种苹果的进价和售价如下表:(注:获利=售价﹣进价)(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果.其中甲苹果的重量不变,乙苹果的重量是第一次的3倍;甲苹果按原价销售,乙苹果打折销售.第二次甲、乙两种苹果都销售完以后获得的总利润为735元,求第二次乙苹果按原价打几折销售?(3)惠民水果店发现乙苹果特别好卖,准备再购买一定量乙苹果.并发现相同品质的乙苹果,驷马桥水果批发市场的价格比龙泉水果批发市场的价格便宜,就决定去驷马桥水果批发市场购买,乙苹果价格如下表:惠民水果店分两次从驷马桥水果批发市场共购买乙苹果80千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出352元,请问惠民水果店第一次,第二次分别从驷马桥水果批发市场购买乙苹果多少千克?12.若甲、乙两种商品的单价之和为500元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原单价之和提高2%,求甲、乙两种商品的原来单价?13.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8.5折”.小明测算了一下,如果买100支,比按原价购买可以便宜27元,求每支铅笔的原价是多少?14.乐清市某服装店在国庆期间对顾客实行优惠,规定如下:(1)王老师一次性购物标价总和为600元,他实际付款元(直接写出答案).(2)若顾客在该超市一次性购物实际付款360元,问此顾客一次性购物标价总和为多少元?15.某商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?参考答案1.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.2.解:设小杨改在本超市一次性购买与上两次相同的商品,应付款x元.根据题意,得①∵80+261/90%=370,370>300,∴x=(80+290)×80%=296②∵80+261÷0.8=406.25∴x=(80+362.25)×0.8=325答:小杨改在本超市一次性购买与上两次相同的商品,应付款296元或325元.3.解:(1)设商场第一次购进x套运动服,由题意得:.解这个方程,得x=200.经检验,x=200是所列方程的根.2x+x=2×200+200=600.答:商场两次共购进这种运动服600套.(2)第一批运动服的进价为=160(元),第二批运动服的进价为=170(元),设每套运动服的售价是x元,由题意得:400(x﹣170)﹣200(x﹣160)=12000,解得:x=240故答案为:240.4.解:设每个足球的成本价是x元,根据题意得50(80﹣x)=60(80﹣5﹣x)解得x=50答:每个足球成本为50元.5.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)6.解:设A服装成本为x元/件,B服装成本(1000﹣x)元/件,由题意,得30%x+20%(1000﹣x)=260解得x=600则1000﹣x=1000﹣600=400(元)答:A服装成本为600元/件,B服装成本400元/件.7.解:设这件商品的进价是x元,由题意得:(1+40%)x×80%=x+18,解得:x=150,答:这件商品的进价是150元.8.解:(1)设乙商品原价为x元,由题意,得400×0.6+0.8x=408解得:x=210答:原价为210元;(2)设甲商品的成本是y元,则乙商品的成本是(408﹣y)元.由题意,得m%y=2m%(408﹣y)解得:y=272272﹣240=32(元)答:甲商品的成本是272元,亏损32元.9.解:设这种皮鞋的成本价为x元.根据题意得:0.8×(x+40)=x+24,解得:x=40.原方程的解是x=40.答:这种皮鞋的成本价为40元.10.解:(1)由题意可知,一次性购物总额是400元时:甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元故甲、乙两家超市实付款分别352元和360元.(2)设购物总额是x元,由题意知x>500,列方程得:0.88x=500×(1﹣0.1)+0.8(x﹣500)解得x=625故当购物总额是625元时,甲、乙两家超市实付款相同.(3)∵500×0.9=450<482,∴该顾客购物实际金额多于500.设该顾客购物金额为y,由题意得:500×(1﹣0.1)+0.8(y﹣500)=482解得y=540若顾客在甲超市购物,则实际付款金额为:540×0.88=475.2元475.2元<482元故该顾客的选择不划算.11.解:(1)设第一次购进乙种苹果x千克,则甲的件数为(2x+15)千克,根据题意得:8x+5×(2x+15)=615.解得:x=30∴2x+15=75答:第一次购进乙种苹果30千克,甲种苹果75千克.(2)设第二次乙苹果售价为每千克15y元,根据题意得:(10﹣5)×75+(15y﹣8)×30×3=735解得:y=0.8答:第二次乙种苹果是按原价打8折销售.(3)设第一次购买a千克苹果,第二次购买(80﹣a)千克苹果.分三种情况考虑:①当第一次购买苹果不超过20千克,第二次苹果超过20千克以上但不超过40千克的时候,显然不够80千克,不成立.②当第一次购买苹果不超过20千克,第二次购买苹果超过40千克,得:6a+4(80﹣a)=352解得:a=16∴80﹣a=80﹣16=64③第一次苹果20千克以上但不超过40千克,第二次购买的苹果超过40千克,得:5a+4(80﹣a)=352解得:a=32∴80﹣a=80﹣32=48答:第一次购买16千克苹果,第二次购买64千克苹果;或者第一次购买32千克苹果,第二次购买48千克苹果.12.解:设甲商品的原单价为x元,则乙商品的原单价为(500﹣x)元,依题意,得:(1﹣10%)x+(1+5%)(500﹣x)=500×(1+2%),解得:x=100,∴500﹣x=400.答:甲商品的原单价为100元,乙商品的原单价为400元.13.解:设每支铅笔的原价是x元,根据题意得:100x﹣100×0.85x=27,解得:x=1.8.答:每支铅笔的原价是1.8元.14.解:(1)600×0.8=480(元).故答案为:480.(2)设此顾客一次性购物标价总和为x元,∵500×0.8=400>360∴200<x<500.依题意,得:0.9x=360,解得:x=400.答:顾客一次性购物标价总和为400元.15.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:120﹣x=20%x,120﹣y=﹣20%y,解得:x=100,y=150,∴120+120﹣x﹣y=﹣10(元).答:卖这两件衣服总的是亏损,亏损了10元钱.。
打折销售一元一次方程应用题讲解
一、打折销售一元一次方程应用题的相关概念1.1 打折销售的概念在日常生活中,我们经常会遇到各种各样的打折销售活动。
打折销售是商家为了促进产品的销售而采取的一种促销手段,通过给予用户一定比例的折抠,来吸引用户购物商品。
1.2 一元一次方程的概念一元一次方程是指一个未知数的一次方程,通常可以用类似“ax+b=c”的形式来表示,其中a、b、c分别代表已知的系数或常数,x代表未知数。
解一元一次方程就是求出这个未知数的值,使得方程等号成立。
1.3 打折销售一元一次方程的应用在打折销售中,经常会涉及到一元一次方程的应用。
用户在购物商品时,商家通常会给出原价和折抠率,用户需要根据这些信息来计算最终的价格。
而这个过程就可以用一元一次方程来进行建模和求解。
二、打折销售一元一次方程应用题的解题步骤2.1 理清题意,假设原价为x在遇到打折销售一元一次方程应用题时,首先要理清题意,明确原价和折抠率等信息。
然后假设原价为x,根据折抠率可以得到折抠后的价格为x*(1-折抠率),这就是我们需要求解的最终价格。
2.2 起一个未知数,建立方程接下来,我们可以起一个未知数,通常用y来表示折抠后的价格。
然后根据题目给出的信息,建立一元一次方程。
如果题目给出了原价为x,折抠率为p,折抠后的价格为d,那么我们就可以建立方程x-p*x=d,然后求解方程得到最终的价格。
2.3 检验解答是否合理我们要对求解出的结果进行检验,看看是否符合实际情况。
通常可以将求解出的y值代入原方程中,再用折抠率计算实际的折抠后价格,看两者是否相符。
如果相符,则说明求解无误。
三、打折销售一元一次方程应用题的实例3.1 实例一某商场举行打折促销活动,一件原价为200元的商品打八五折,求打折后的价格是多少?3.1.1 确定未知数和建立方程我们可以假设折抠后的价格为y,原价为200元,折抠率为85。
根据折抠率公式,可以得到打折后的价格的方程为200*0.85=y。
3.1.2 求解方程带入原方程计算可得y=170,所以打折后的价格为170元。
一元一次方程的实际应用----打折销售问题(1)
算一算: 一家服装店出售某种服装,成本价为每件1X00元元
1.将每件服装提高50%标价,则标价为(11+5500%)x元 标价(原价)=成本×(1+提高率)
2.又以8折优惠出售,则售价为1.51x2×0 80%元 实际售价=标价×折扣
3.打折后每件服装的利润是1.52x0×80%-x元 利润 =实际售价-成本 1.5x •80% x
27+(-45)= -18 产品按进价提高35%,然后打 出“九折酬宾,外送50元打的费”的广告,结果 每台DVD仍获利208元,则每台DVD的进价是 多少元?
2. 某商场的电视机原价为 2500 元,现以 8 折销售,
如果想使降价前后的销售额都为 10 万元,那么
用一元一次方程解 应用题的一般步骤
审题
找等量关系 设未知数
用x表示等量关 系中的各个量
解的合理性
解方程
列方程
一件夹克按成本价提高50%后标价,后因季 节关系按标价的8折出售,每件以60元卖出,这种 夹克每件的成本价是多少元?
解:设这种夹克的成本价为x元,依题意,得: (1+50%)x× 80%=60
4.打折后每件服装的利润率为__2_0_%__x
利润率 =
老板,这样卖能赚钱吗?
我是按成本价提高40%后标 的价,你按8折销售,我已算 过了,每件可赚15元。 这种服装每件的成本价是多少呢?
思考:15元利润是怎样产生的? 利润=售价-进价 分析:如果设每件服装的成本价为x元,那么
每件服装的标价为:(1+40%)x元 ; 每件服装的实际售价为: 1.4x× 80%元 ; 每件服装的利润为:(1.4x× 80% -x)元 ; 由此,列出方程: 1.4x× 80% -x=15 ;
北师大版七年级上数学第五章《一元一次方程》——打折销售练习题
应用一元一次方程——打折销售
1、某品牌自行车1月份的销售量为100辆,每辆车售价相同。
2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元。
2月份与1月份的销售总额相同,则1月份每辆车的售价为多少?
2、某商场把一台电脑按标价的9折出售,仍可获利20%,若该电脑的标价是3200元,则该电脑的进价为多少元?
3、“十一”期间,中百商场优惠促销,由顾客抽签决定打折数。
某顾客买甲、乙两种商品,分别抽到7折和9折,共付款386元,这两种商品原价之和为500元。
问:这两种商品的原价分别为多少元?
4、某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律按9折优惠,超过200元的,其中200元按9折优惠,超过200元的部分按8折优惠。
某学生第一次去购书付款72元,第二次又去购书享受到了8折优惠,他查看了所买书的定价,发现两次购书共节省了34元,则该学生第二次购书实际付款为多少元。
一元一次方程打折销售应用题
一元一次方程打折销售应用题1.某商店新开张,为了吸引顾客,所有商品都按八折优惠出售。
已知一种皮鞋进价为60元一双,商家按八折出售后获利润率为40%。
问这种皮鞋的标价和优惠价分别是多少元?解:设这种皮鞋标价为x元,根据题意得到方程8/10x=60×(1+40%),解得x=105.因此,这种皮鞋的标价是105元,优惠价是84元。
2.一家商店将某种服装按进价提高40%后标价,然后以八折优惠卖出,结果每件仍获利15元。
问这种服装每件的进价是多少元?解:设进价为X元,根据题意得到方程80%X(1+40%)—X=15,解得X=125.因此,这种服装每件的进价是125元。
3.一家商店将一种自行车按进价提高45%后标价,然后以八折优惠卖出,结果每辆仍获利50元。
问这种自行车每辆的进价是多少元?解:设这种自行车每辆的进价是x元,根据题意得到方程80%×(1+45%)x - x = 50.解得x=200.因此,这种自行车每辆的进价是200元。
4.某商品的进价为800元,出售时标价为1200元。
由于该商品积压,商店准备打折出售,但要保持利润率不低于5%。
则至多打几折?解:设最多打折为x折,则有(1-x)×1200=800×(1+5%)。
解得x≤20%。
因此,至多打2折。
5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。
经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。
求每台彩电的原售价。
解:设每台彩电的原价格是x元,根据题意得到方程(1+40%)x×0.8-x=270.解得x=2250.因此,每台彩电的原售价是2250元。
北师大版七年级数学上第五章一元一次方程 之应用:销售打折类专项训练(含解析答案)
一元一次方程之应用:销售打折类专项训练1.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?2.在“元旦”期间,某超市推出如下购物优惠方案:①一次性购物在100元(不含100元)以内时不享受优惠;②一次性购物在100元(含100元)以上,300元(不含300元)时,一律享受9折优惠;③一次性购物在300元(含300元)以上时,一律享受8折优惠.小杨在本超市购物分别付款80元,261元,如果小杨改在本超市一次性购买与上两次相同的商品,应付款多少元?3.某体育用品商场用32000元购进了一批运动服,上市后很快销售一空.商场又用68000元紧急购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)若两批运动服每套的售价相同,第二批售完后获利比第一批售完后获利多12000元,则每套运动服的售价是元.4.学校准备购买一些足球,原计划订购50个,每个80元,店方表示:如果多购,可以优惠,结果校方实际订购了60个,每个减价5元,但商店获得了同样多的利润,求每个足球的成本价.5.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.6.已知A、B两件服装的成本共1000元,某服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利260元,问A、B两件服装的成本各是多少元?7.一件商品按进价提高40%后标价,然后打八折卖出,结果仍能获利18元,问这件商品的进价是多少元?8.2019年某商场于元旦之际开展优惠促销活动回馈新老客户,由顾客抽奖决定折扣.某顾客购买甲、乙两种商品,分别抽到六折(按原价的60%支付)和八折(按原价的80%支付),共支付408元,其中甲种商品原价400元.(1)请问乙种商品原价是多少元?(2)在本次买卖中,甲种商品最终亏损m%,乙种商品最终盈利2m%,但商场不盈不亏,请问甲种商品的成本是多少元?亏损多少元?9.某商店将某种皮鞋按成本加价40元作为标价,又以标价的8折优惠卖出,结果每双皮鞋仍可获利24元,问这种皮鞋的成本价为多少元?10.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.11.某社区惠民水果店第一次用615元从龙泉水果批发市场购进甲、乙两种不同品种的苹果,其中甲品种苹果重量比乙品种苹果重量的2倍多15千克,甲、乙两种苹果的进价和售价如下表:(注:获利=售价﹣进价)(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果.其中甲苹果的重量不变,乙苹果的重量是第一次的3倍;甲苹果按原价销售,乙苹果打折销售.第二次甲、乙两种苹果都销售完以后获得的总利润为735元,求第二次乙苹果按原价打几折销售?(3)惠民水果店发现乙苹果特别好卖,准备再购买一定量乙苹果.并发现相同品质的乙苹果,驷马桥水果批发市场的价格比龙泉水果批发市场的价格便宜,就决定去驷马桥水果批发市场购买,乙苹果价格如下表:惠民水果店分两次从驷马桥水果批发市场共购买乙苹果80千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出352元,请问惠民水果店第一次,第二次分别从驷马桥水果批发市场购买乙苹果多少千克?12.若甲、乙两种商品的单价之和为500元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原单价之和提高2%,求甲、乙两种商品的原来单价?13.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8.5折”.小明测算了一下,如果买100支,比按原价购买可以便宜27元,求每支铅笔的原价是多少?14.乐清市某服装店在国庆期间对顾客实行优惠,规定如下:(1)王老师一次性购物标价总和为600元,他实际付款元(直接写出答案).(2)若顾客在该超市一次性购物实际付款360元,问此顾客一次性购物标价总和为多少元?15.某商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?参考答案1.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.2.解:设小杨改在本超市一次性购买与上两次相同的商品,应付款x元.根据题意,得①∵80+261/90%=370,370>300,∴x=(80+290)×80%=296②∵80+261÷0.8=406.25∴x=(80+362.25)×0.8=325答:小杨改在本超市一次性购买与上两次相同的商品,应付款296元或325元.3.解:(1)设商场第一次购进x套运动服,由题意得:.解这个方程,得x=200.经检验,x=200是所列方程的根.2x+x=2×200+200=600.答:商场两次共购进这种运动服600套.(2)第一批运动服的进价为=160(元),第二批运动服的进价为=170(元),设每套运动服的售价是x元,由题意得:400(x﹣170)﹣200(x﹣160)=12000,解得:x=240故答案为:240.4.解:设每个足球的成本价是x元,根据题意得50(80﹣x)=60(80﹣5﹣x)解得x=50答:每个足球成本为50元.5.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)6.解:设A服装成本为x元/件,B服装成本(1000﹣x)元/件,由题意,得30%x+20%(1000﹣x)=260解得x=600则1000﹣x=1000﹣600=400(元)答:A服装成本为600元/件,B服装成本400元/件.7.解:设这件商品的进价是x元,由题意得:(1+40%)x×80%=x+18,解得:x=150,答:这件商品的进价是150元.8.解:(1)设乙商品原价为x元,由题意,得400×0.6+0.8x=408解得:x=210答:原价为210元;(2)设甲商品的成本是y元,则乙商品的成本是(408﹣y)元.由题意,得m%y=2m%(408﹣y)解得:y=272272﹣240=32(元)答:甲商品的成本是272元,亏损32元.9.解:设这种皮鞋的成本价为x元.根据题意得:0.8×(x+40)=x+24,解得:x=40.原方程的解是x=40.答:这种皮鞋的成本价为40元.10.解:(1)由题意可知,一次性购物总额是400元时:甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元故甲、乙两家超市实付款分别352元和360元.(2)设购物总额是x元,由题意知x>500,列方程得:0.88x=500×(1﹣0.1)+0.8(x﹣500)解得x=625故当购物总额是625元时,甲、乙两家超市实付款相同.(3)∵500×0.9=450<482,∴该顾客购物实际金额多于500.设该顾客购物金额为y,由题意得:500×(1﹣0.1)+0.8(y﹣500)=482解得y=540若顾客在甲超市购物,则实际付款金额为:540×0.88=475.2元475.2元<482元故该顾客的选择不划算.11.解:(1)设第一次购进乙种苹果x千克,则甲的件数为(2x+15)千克,根据题意得:8x+5×(2x+15)=615.解得:x=30∴2x+15=75答:第一次购进乙种苹果30千克,甲种苹果75千克.(2)设第二次乙苹果售价为每千克15y元,根据题意得:(10﹣5)×75+(15y﹣8)×30×3=735解得:y=0.8答:第二次乙种苹果是按原价打8折销售.(3)设第一次购买a千克苹果,第二次购买(80﹣a)千克苹果.分三种情况考虑:①当第一次购买苹果不超过20千克,第二次苹果超过20千克以上但不超过40千克的时候,显然不够80千克,不成立.②当第一次购买苹果不超过20千克,第二次购买苹果超过40千克,得:6a+4(80﹣a)=352解得:a=16∴80﹣a=80﹣16=64③第一次苹果20千克以上但不超过40千克,第二次购买的苹果超过40千克,得:5a+4(80﹣a)=352解得:a=32∴80﹣a=80﹣32=48答:第一次购买16千克苹果,第二次购买64千克苹果;或者第一次购买32千克苹果,第二次购买48千克苹果.12.解:设甲商品的原单价为x元,则乙商品的原单价为(500﹣x)元,依题意,得:(1﹣10%)x+(1+5%)(500﹣x)=500×(1+2%),解得:x=100,∴500﹣x=400.答:甲商品的原单价为100元,乙商品的原单价为400元.13.解:设每支铅笔的原价是x元,根据题意得:100x﹣100×0.85x=27,解得:x=1.8.答:每支铅笔的原价是1.8元.14.解:(1)600×0.8=480(元).故答案为:480.(2)设此顾客一次性购物标价总和为x元,∵500×0.8=400>360∴200<x<500.依题意,得:0.9x=360,解得:x=400.答:顾客一次性购物标价总和为400元.15.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:120﹣x=20%x,120﹣y=﹣20%y,解得:x=100,y=150,∴120+120﹣x﹣y=﹣10(元).答:卖这两件衣服总的是亏损,亏损了10元钱.。
一元一次方程经典应用题(有答案)
应用题专题训练知能点1:市场经济、打折销售问题 (1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?解:设标价是x 元,80%604060100x -=解之:x =105 (元)优惠价为),(8410510080%80元=⨯=x2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?解:设进价为x 元,80%x (1+40%)— x =15x =125(元) 答:进价是125元。
3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?解:设进价是x 元,50)45.01(108=-+⨯x x解之:x =312.5 (元) 答:进价是312.5元。
4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.解:设至多打x 折,根据题意有1200800800x -×100%=5%解得x =0.7=70%答:至多打7折出售.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.解:设每台彩电的原售价为x 元,根据题意,有 10[x (1+40%)×80%-x ]=2700 解得 x =2250答:每台彩电的原售价为2250元.知能点2:工程问题工作量=工作效率×工作时间6. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?解:甲独作10天完成,说明的他的工作效率是,101乙的工作效率是,81等量关系是:甲乙合作的效率×合作的时间=1 解:设合作x 天完成, 依题意得方程 9401)81101(==+x x 解得 答:两人合作940天完成7. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?[分析]设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
初中数学一元一次方程常考的应用题
初一数学一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品进价(2)商品利润率=(售价--进价)/进价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%。
例题1:商店对某商品调价,按原售价的6折出售,此时商品的利润率是20%,若此商品的原售价是300元,问商品的售价是多少?解:设此商品的进价是X元,根据题意,得300×60%-X=X×20%得出X=150元例题2:服装商城同时卖出两套服装,每套卖168元,以成本计算,其中一套赢利20%,另一套亏本20%,则这次出售中商贩()A 不赚不赔 B赚37.2元 C赚14元 D赔14元解析:设甲服装原价X元,则X×(1+20)%=168 得出X=140 设乙服装原价Y元,则Y×(1-20)%=168得出Y=210甲赚28,乙亏42,总共赔14元,答案D练习题1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.(北京海淀区)白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,•把每件的销售价降低x%出售,•但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x应等于().A.1 B.1.8 C.2 D.105.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,执法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行细加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?8.小刚为书房买灯。
一元一次方程解打折销售类应用题
一元一次方程解打折销售类应用题1.一家商店将某种服装的成本价设为x元,然后提高20%后标价,再以9折销售,售价为270元。
根据题意可列方程:0.9(1.2x)=270,解得x=200元,因此该服装的成本价为200元。
2.一家服装店将某种服装的成本价设为x元,然后提高40%后标价,再以八折优惠售出,每件仍获利15元。
根据题意可列方程:0.8(1.4x)=x+15,解得x=100元,因此该服装每件的成本为100元。
3.若某件商品9折降价销售后每件商品售价为a元,则该商品每件原价为10a/9元。
4.设涨价前的价格为x元,则根据题意可列方程:1.25x=50,解得x=40元,因此涨价前的价格为40元。
5.设该上衣的进价为x元,则根据题意可列方程:0.9m=270,0.6m=1.1x,解得x=150元,因此该上衣的进价为150元。
6.设该商品的进价为x元,则根据题意可列方程:0.9(900-40)+40=1.1x,解得x=700元,因此该商品的进价为700元。
7.设该商品原来的利润率为p%,则根据题意可列方程:1.05(1+p%)=(1+p%+15%),解得p=40%,因此该商品原来的利润率为40%。
8.设该文具的进价为x元,则根据题意可列方程:0.7x+0.2=2,解得x=2.6元,因此该文具的进价为2.6元。
9.设该打火机每只的成本为x元,则根据题意可列方程:0.25x=2,0.4x=1.15(1.25x),解得x=2.5元,因此这种打火机每只的成本为2.5元。
10.设该商品打折后的售价为y元,则根据题意可列方程:0.8(1.4×150)=y,0.2y=0.2×150,解得y=252元,因此该商品按7.2折销售。
11.第一件衣服的售价为x元,则根据题意可列方程:1.25x+0.75(60-x)=60,解得x=45元。
第二件衣服的售价为y 元,则根据题意可列方程:0.75y+1.25(60-y)=60,解得y=75元。
初中数学七年级上册 一元一次方程应用一元一次方程——打折销售学案——成都七中——胡军
:
例1.某商店将某种服装按成本价提高40%后记为标价,又以打八折后的价格为售价卖出,结果每件获得利润15元,这种服装每件的成本是多少元?
:
.如果你是老板,想获得更多利润,该怎样进货?
例2.某商场某种商品按标价的8折出售,此时商品的利润率是10%.已知这种商品的成本为1800元,那么这种商品的标价是多少?
例3.某种商品的成本是400元,标价是600元,商店要求以利润率不低于5%打折销售,那么售货员最低可以打几折出售此商品?
随堂练习:
1.一件商品按成本价提高20%后标价,又以9折销售,售价为270元.这种商品的成本是多少?
2.某商品原先的利润率为20%,为了促销,现降价15元销售,此时利润率下降为10%.这种商品的成本是多少?
视野拓展:
1.某商场在国庆期间开展促销活动,打出“1元换元购物券”的促销活动,请问这次促销活动相等于打几折?
2.某商场店庆采取如下方式促销:购物累计满200元少60元、满400元少120元,以此类推,多买多送,余额不累计.
(1)若某人恰好购买了660元售价的商品,那么他实际付款多少元?
(2)若某人购物的实际付款是840元,那么他购买的商品售价是多少元?
作业:根据你的学习收获自己设计一个与打折销售有关的一元一次方程问题,并应用所学知识加以解决.。
人教版七年级上册数学3.4 实际问题与一元一次方程--销售问题(word、含答案)
人教版七年级上册数学第三章一元一次方程应用题--销售问题1.某种自创品牌的服装打折销售.如果每件服装按标价的6折出售,可盈利80元;若每件服装按标价的5折出售,则亏损80元.(1)每件服装的标价为多少元?(2)若这种服装一共库存80件.按着标价7.5折出售一部分后,将余下服装按标价的5折全部出售,结算时发现共获利5600元,求按7.5折出售的服装有多少件?2.天誉百货商场经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装每件售价1200元,可盈利50%.(1)每件甲种服装利润率为______,乙种服装每件进价为______元;(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?3.某商场销售的一款空调每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(2)在这次促销活动中,商场销售了这款空调共100台,问盈利多少元?4.某服装店,打折销售服装,若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)每件服装的标价多少元?每件服装的成本价多少元?(2)为了尽快减少库仔,又要保证不亏本,商家最多能打几折?5.某年级一位老师带部分学生去旅游,甲旅行社说:“如果这位老师买全票,则其余学生可享受五价优惠.”乙旅行社说:“包括这位老师在内全部按全票价的六折优惠.”(1)学生多少人时,甲、乙两家旅行社收费一样多?(2)根据学生人数讨论哪一旅行社更合算.6.某商店投入4600元资金购进甲、乙两种节能灯共500只,成本价和销售价如表所示:(1)该商店购进甲、乙两种节能灯各多少只?(2)全部售完500只节能灯,该商场共获得利润多少元?7.某店卖出甲、乙两套服装,每套均售得a元,其中甲服装亏本10%,乙服装盈利10%.(1)用代数式表示甲、乙服装的成本价;(2)设此店在这两笔交易中的总盈亏为p元,请求出用a表示p的代数式,并说明a 时的盈亏情况.1988.某商场销售的一款空调机每台的标价是1375元,在一次促销活动中,按标价的八折销可盈利10%.(1)求这款空调每台的进价;(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?9.目前节能灯已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下图所示:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?10.某超市用6800元购进A、B两种型号计算器共120台,进价、标价如表:(1)这两种计算器各购进多少台?(2)如果A型计算器每台按标价的九折出售,B型计算器每台按能获利20%的价格出售,那么这批计算器全部售出后,超市共获利多少元?11.某商店用41000元购买甲、乙两种服装共500件,服装的成本价与销售单价如下表所示.(1)该商店购买甲、乙两种服装各多少件?(2)若将这500件衣服全部售完,可获利多少元?12.互联网“微商”经营已成为沾化冬枣销售的一种重要途径,某微信平台上一盒“二代”冬枣的标价为200元,按标价的五折销售仍可获利20元.(1)一盒“二代”冬枣的成本价是多少钱?(2)一盒“二代”冬枣几折销售可获得利润80元?13.有一旅客携带了25千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李托运票,现该旅客购买的飞机票和行李托运票共645元.(1)该旅客需要购买 千克的行李托运票;(2)该旅客购买的飞机票是多少元?14.某服装城共购入了两批A 、B 两款袜子.第一批购入A 、B 两款袜子共2500双,A 款袜子售价为每双16元,B 款袜子售价为每双24元,全部售出后的销售总额为52000元.服装城把2500双袜子全部售出后马上购入第二批袜子已知第二批袜子中,A 款袜子的进货量比第一批减少了2m 双,售价不变;B 款袜子的进货量比第一批减少了%3m ,售价比原售价降低了16,两批袜子全部售出后的销售总额为94040元. (1)服装城第一批购入的A 、B 两款袜子各多少双?(2)该服装城第二批购进A 款袜子多少双?15.某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售40台,第二季度甲种冰箱的销量比第一季度增加10%,乙种冰箱的销量比第一季度增加20%,且第二季度两种冰箱的总销量达到554台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为250元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?16.为了拉动内需,促进国内经济大循环,某超市在“元旦”期间搞促销活动,购物不的,其中500元按9折优惠,超过部分按8折优惠.小明两次购物分别用了156元和478元.(1)若超市不搞促销活动,利用方程求出小明两次购物共值多少钱?(2)若小明将这两次购物合为一次购买是否更节省?节省多少钱?17.某市百货商场元旦搞促销活动,购物不超过200元不给优惠;超过200元不足500元的优惠10%;超过500元的,其中500元的部分按九折优惠,超过500元部分按八折优惠;某人两次购物分别用了134元和466元,问:(1)此人两次购物其物品如果不打折,一共需付多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将两次购物合为一次购物是否更省钱?为什么?18.某电器店为了抓住市民的心理,在冬季购进甲、乙两种电暖气,已知购进乙种电暖气的数量是甲种电暖气数量的2倍,若两种电暖气全部按标价售出后共可获利1600元.这两种电暖气的进价、标价如下表所示:(1)求这两种电暖气各购进了多少个;(2)如果甲种电暖气按标价的8折出售,乙种电暖气按标价的7折出售,那么这批电暖气全部售完后,该电器店利润比按标价出售少收入多少元?19.目前节能灯在各地区基本普及使用,某市一商场为响应号召,推广销售,该商场(1)求甲、乙两种型号节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?20.某校学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了香蕉和苹果共80千克,了解到这些水果的种植成本共720元,还了解到如下信息(1)求采摘的香蕉和苹果各多少千克?(2)若把这80kg的水果按照上表给的售价全部销售完毕,那么总共可赚多少元?参考答案:1.(1)1600元(2)30件2.(1)60%,800;(2)14500元.3.(1)这款空调每台的进价为2400元;(2)盈利21600元4.(1)每套服装的标价为200元,成本价为120元;(2)服装最多打6折.5.(1)4人;6.(1)300只,200只;(2)2200元7.(1)甲服装的成本为109a元,乙服装的成本为1011a元;(2)299p a=-,亏4元8.(1)1000元;(2)10000元.9.(1)购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)商场购进甲型节能灯450只,购进乙型节能灯750只时利润为13500元10.(1)A型号计算器购进40台,则B型号计算器购进80台;(2)这批计算器全部售出后,超市共获利1720元.11.(1)甲种服装200件,乙种服装300件;(2)12000元12.(1)80,(2)八.13.(1)5;(2)600元14.(1)第一批购入的A款袜子1000双、B款袜子1500双;(2)该服装城第二批购进A 款袜子940双.15.(1)220台;(2)154100元.16.(1)共值691元;(2)是,节省了31.2元17.(1)此人两次购物不打折一共需付654元;(2)在这次活动中他节省了54元;(3)此人将两次购物合为一次购物更省钱18.(1)甲种电暖气购进10个,乙种电暖气购进20个;(2)电器店利润比按标价出售少收入1160元.19.(1)甲种型号节能灯进了80只,乙种型号的节能灯进了40只;(2)该商场获利1000元.20.(1)香蕉60kg,苹果20kg(2)176元。
人教版七年级上册 3.4 一元一次方程应用 打折销售问题 练习(含答案)
【解析】
【分析】
设该品牌不同种类的文具均按x折销售.则利用“原价300元的文具,打折后售价为240元”求得x的值,然后由75×0.1x可以求得打折后的售价.
【详解】
解:设该品牌不同种类的文具均按x折销售.
依题意得300×0.1x=240,
解得x=8,
即打8折销售,
所以75×0.8=60(元).
2019-2020一元一次方程应用打折销售问题(含答案)
一、单选题
1.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?设定价为x,则下列方程中正确的是( )
A. B.
C. D.
2.一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则设销售员出售此商品最低可打x折,由题意列方程,得( )
解得
所以最多可打7折.
8.C
【解析】设这种商品的原价是x元,根据题意得:75%x+10=90%x-38,
解得x=320,
故选C.
【点睛】本题考查了一元一次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
9.D
【解析】
【分析】
设每件服装标价为x元,再根据无论亏本或盈利,其成本价相同,列出方程,求出x的解,最后根据成本价=服装标价×折扣即可得出答案.
【详解】
设售货员可以打x折出售此商品,
根据题意得:750× ﹣500=500×5%,
解得:x=7,即售货员可以打7折出售此商品.
故选C.
【点睛】
本题考查了一元一次方程的应用,知道:商品的实际售价=商品标价× ,找准等量关系,正确列出一元一次方程是解题的关键.
专题十六 一元一次方程的应用——打折销售问题
4.(阿凡题:1070851)(2016·泰州)某校七年级社会实践小组去商场 调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌 衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销 措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降 价多少元时,销售完这批衬衫正好达到盈利45%的预期目标? 解:设每件降价x元,120×400+100(120-x)=80×500×(1+45%), 解得x=20.答:每件降价20元
2.(阿凡题:1070849)某种商品的零售价为每件900元,为了适应市场 竞争,商店按零售价的九折降价并让利40元销售,仍可获利10%,则 进价为每件多少元? 解:设进价为每件x元,则(1+10%)x=900×90%-40,解得x=700, 答:进价售时标价为1200元, 后来由于该商品积压,商店准备打折出售,但要保持利润率是5%,则 最多打几折出售?
七年级上册(北师版)数学
第五章 一元一次方程
专题十六 一元一次方程的应用——打折销售问题
1.(阿凡题:1070848)某商店有一种运动服,按标价的8折出售仍可 获利20元,已知这套运动服的成本价为100元,问这套运动服的标 价为多少元? 解:设这套运动服的标价为x元,则0.8x-100=20,解得x=150, 答:这套运动服标价为150元
刘冬冬一元一次方程-打折销售问题
某商人一次卖出两件衣服,一 件赚15﹪,另一件赔15﹪,卖价都 为 1955 元,在这次生意中商人 ( ) D A、不赔不赚 C、赚100元 B、赚90元 D、赔90元
某商场把进价为800元的商品按标价的
八折出售,仍获利10%, 则该商品的标价为
多少元?
进价×(1+利润率)=售价=标价×
那么商店最多可打几折出售此商品? 折扣数 商品售价= 标价× 10
商品售价= 商品进价 ×(1+利润率)
解:设商店最多可以打x折出售此商品, 由题意得:
x 1500× 10 =1000(1+5%)
x=7 答:商店最多可以打7折出售此商品。
讲解
商店对某种商品作调价,按原价的8折出
售,此时商品的利润率是10%,此商品的进 价为1600元。问商品的原价是多少?
生活广场“全场8折”,请问:小军在哪
里购买会更便宜呢?
分析:作为消费者,购买同样一件商品 花的钱越少越便宜 。 在鸿宝需要花费100-25=75(元)
在生活广场需要花费100×80%=80(元)
所以在鸿宝百货购买更便宜。
某商品的进价是1000元,售价是
1500元,由于销售情况不好,商店决定
降价出售,但又要保证利润率不低于5%,
x+0.2x = 960
x = 800
设亏损20%的那台钢琴进价为y元, 它的利润是 0.2y元,由题意得: y-0.2y=960 y=1200 所以两台钢琴进价为2000元,而售价1920元,
进价大于售价,因此两台钢琴总的盈利情况为亏本80元。
感谢指导!
80 % x 1600 1600
解:设此商品的原价为x元,由题意得
最新一元一次方程打折销售问题专项练习
一元一次方程打折销售问题专项练习
1.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本
价是___元.
2.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价
为.
3. 一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是元.
5.某商品的进价是160元,标价是240元,打折销售时利润率为5%,此商品时按照几折销售的?
6.某商品进价为65元,按标价打八折售出后仍盈利15元,则该商品标价
为 .
7. 一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价
是 .
8. 某商品因换季准备打折出售,如果按定价的7.5折将赔25元;而按定价的9折出售将赚20元,则这种商品原价为 .
9. 文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板()
A、赚了5元
B、亏了25元
C、赚了25元
D、亏了5元
10.将一件商品按进价提高20%标价,然后又以九折出售,则该商品的利润率为?
11. 甲商品进价1400元,按标价1700元的九折出售;乙商品进价400元,按标价520元的8折出售,两种商品那种利润更高?
12.小华以8折的优惠价卖了一件上衣,比不打折时节省了20元,那么这件上衣的原价是多少元?
13. 某电器按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价是()元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首都师范大学附属中学课件
这两套服装的成本价为:x+y=350(元) 350-2×168=14(元) 答:这次出售亏本了 14 元。
7、随堂练习 2:233 页:12、13 题。 8、议一议:用一元一次方程解决问题的一般步骤是什么?
抽象 求出
实际问题
数学问题
已知量、未知量、等量关系 列出
5、课堂练习: (1)完成课文 168 页填空 (2)课文 169 页习题 5.8.T2。 6、课堂小结: (1)在打折销售中常会遇到成本价、标价、售价、利润等,其中利润=售价-成本价; (2)用一元一次方程解决实际问题的一般步骤(详见 4) 7、作业: (1)课文 169 页习题 5.8.T1 (2)补充练习(另定) 教学反思:这堂课在学生进行商场调查,有一定感性认识的基础上,从最简单的问题着手,让学生理解打 折销售中常见的名称及相互关系,为后续的学习打下坚实的基础。通过适当改变实际背景让学生从多方面 体会打折销售中的各种数量关系,逐步领悟运用一元一次方程解决实际问题的一般步骤,教学效果较好。
第 1 页 共 5 页 作者:侯
首都师范大学附属中学课件
X(1+50%)×80%-X=60 X=300 因此,这批夹克每件的成本价为 300 元。 (4)议一议:如果将例题改为:一件夹克按成本价提高 20%后标价,后因季节关系按标价的 8 折出售, 每件夹克仍有可能获利 60 元吗?为什么? (若设每件夹克的成本价为 X 元,则得方程: X(1+20%)×80%-X=60,解得 X=-1500 成本价为负数, 不合实际意义,因此不可能获利 60 元) (事实上将亏损 4%) 4、归纳总结用一元一次方程解决实际问题的一般步骤: (1)议一议:用一元一次方程解决实际问题的一般步骤。学生讨论后,师归纳: ①将实际问题抽象成数学问题,分析其已知量、未知量及其相互间的等量关系; ②根据等量关系列出方程,并求出方程的解; ③验证方程的解的合理性,并在实际问题与数学问题中得到解释: (2)展现框架图: 实际问题 抽 象 分 析 数学问题 不合理 合理 解 释 解的合理性 求出 方程的解 方 程 已知量、未知量、 等量关系 列出 验证
50
解得:x=75 答:这种服装的标价为 75 元
5、随堂练习 1:
(1) 、一批夹克按成本价提高 50%后标价,后因季节关系按标价 的 8 折出售,每件以 60 元卖出。这批夹克每件的成本价 是多少元? (2) 、231 页:1、2 题。
6、应用拓展:
例:一服装商贩同时卖出两套服装,每套均卖 168 元,以成本 计算,其中一套盈利 20%,另一套亏本 20%,则这次出售 能否赚钱,数量是多少?让学生讨论、交流,探求解决问 题的方法。 解:设第一套服装的成本价是 x 元,根据题意,得: (1+20%)x=168 解得:x=140 设第二套服装的成本价为 y 元,根据题意,得: (1-20%)x=168 解得:x=210
不合理
解释
合理 解的合理性
验证 方程的解
求出 方程
9、小结:
(1) 、掌握售价(卖价) 、成本价(进价) 、利润、利润率之间的 数量关系。 (2) 、正确找出实际问题中的一个相等关系,把这个相等关系表 示成方程。 (3) 、用一元一次方程解决实际问题的一般步骤。
10、作业:
思考题: (1) 、据了解,个体服装销售只要高出进价的 20%便 可盈利,但老板常以高出进价的 50%—100%标价。假如你准 备买一件标价为 200 元的服装,应在什么范围内还价? (2) 、233 页:11
首都师范大学附属中学课件 课题 教学目标
打折销售
再探实际问题与一元一次方程通生学习潜能,促使他们在自主探索与合作交流的过程中真正理解和掌握基本 数学知识、技能、数学思想方法,获得广泛的数学行动经验,提高解决问题的能力,学会学习知识目标:
了解用一元一次方程解决实际问题的一般步骤, 学会用一元一次方程解决打折销售中的简单问 题。情感目标:体会方程是刻画现实世界的一个有效的数学模型。能力目标:初步树立用方程 去解决实际问题的思想,提高分析问题、解决问题和适应社会的能力
第 2 页 共 5 页 作者:侯
首都师范大学附属中学课件
由等量关系列出方程: (1+40%)x×80%-x=15 要求学生利用这个知识解决上面提出的问题。 例 1:某商店积压了 100 件某种商品,为使这批货物尽快脱手,该商店采取了如下销售 方案,将价格提高到原来的 2.5 倍,再作三次降价处理:第一次降价 30%,标出“亏本价” ;第二 次降价 30%,标出“破产价” ;第三次降价 30%,标出“跳楼价” 。三次降价处理销售结果如下表: 价次数 售价数 0 0 一抢而光 (1)跳楼价占原价的百分比是多少? (2)该商品按新销售方案销售,相比原价全部售完,哪一种方案赢利多?
教学重点 理解和掌握基本的数学知识、技能、数学思想方法,会用一元一次方程解决实际问题。学会用一元一次方
程解简单的打折销售问题,经历用方程解决现实问题的一般步骤
教学难点 教学方法 教学用具 将实际总是转化为数学问题正确分析打折销售问题的数量关系列出方程
【教材分析】 教材以现实生活中经常遇到的打折销售为实际背景,让学生体会了解一元一次方程去解 决实际问题的一般步骤,初步经历数学建模的过程。
教学小结
定义及注意事项
一双皮鞋,按成本加五成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降 低后的新售价是每双 63 元。 问这批皮鞋每双的成本是多少元, 按降低后的新售价每双还可赚几元? 对这个问题,就需要学习这方面的相关知识,那么通过这节课的学习我们就可以很熟练的来 解决这个问题。 如下题:一家商店将某种服装按成本价提高 40%后标价,又以 8 折(即按标价的 80%)优惠 卖出,结果每件仍获利 15 元,那么这种服装每件的成本是多少元? 思考这15元的利润是怎么来的?商品利润=商品售价—商品进价 若设这种服装每件的成本是 x 元,那么:每件服装的标价为: (1+40%)x 每件服装的实际售价为: (1+40%)x×80% 每件服装的利润为(1+40%)x×80%-x
(三) 、配套练习:
1)某商品的进价是 200 元,售价是 260 元。求 商品的利润、利润率。 2)一商店把彩电按标价的九折出售仍可获利润率 20﹪,若该彩电的进价是 2400 元,则彩电的标 价是多少? 3)某储户将 12000 元人民币存入银行一年,取出时共得到人民币 12240 元,求该储户所存储种的 年利率。 4)一件皮茄克服装,按成本加四成作为售价,后因季节性原因,按原售价的八折优惠出售,优惠 售价是 1344 元。 问这件皮茄克服装的成本是多少?5) 商店对某种商品作调价, 按原价的八折出售, 此时商品的利润率是 10%,此商品的进价为 1600 元。求商品的原价。 6)某商品的进价为 200 元,标价为 300 元,折价销售时的利润率为 5%,此商品是按几折销售的? 7)为了准备小郭 6 后上大学的学费 5000 元,他的父母现在就参加了教育储蓄,下面有两种储蓄方 式:①直接存一个 6 年期,年利率是 2.88%②先存一个 3 年期的,3 年后将本利和自动转存一个 3 年期。3 年期的年利率是 2.7%。你认为哪种储蓄方式开始存入的本金比较少?
1、创设问题情景:
一家商店里某种服装每件的成本价是 50 元,按标价的 8 折(即 按标价的 80%)优惠卖出。 (1) 、如果每件仍获利 14 元,这种服装的标价是多少元? (2) 、如果利润率为 20%,这种服装的标价是多少元?
2、提出问题:
(1) 、这 、商品成本价(进价)有何种关系?
环保教育 教学过程: 一:创设情境,提出问题,引入新课⑴回顾记忆,以练为主,注重学生的参与。
⑵引导学生归纳总结,充分调动全体学生的参与意识,发挥学生在课堂上的主体作用。
二:引入: , 三:新课:
1、引入新课: 想一想,算一算,商家有没有赚钱? 商场将一件成本价为 100 元的夹克,按成本价提高 50%后,标价 150 元,后按标价的 8 折出售给某顾客, 请算一算,在这笔交易中商家有没有赚? 学生计算,同桌之间交流后,教师提问检查: 150×80%-100=20(元)每件夹克商家赚了 20 元。 师:在现实生活中,我们会经常遇到打折销售的情况,今天我们将一起研究打折销售中所包含的数学。 提出课题:打折销售 2、了解打折销售中常见的概念: 师:在打折销售问题中我们会经常碰到一些名称,如:成本价、标价、售价、利润等,你能指出上面这个 问题中的成本价、标价、售价和利润各是多少吗? (成本价 100 元,标价 150 元,售价 120 元,利润 20 元。利润=售价-成本价) 3、例题教学: 一件夹克按成本价提高 50%后标价,后因季节关系按标价的 8 折出售,每件以 60 元卖出,这批夹克每件 的成本价是多少元? (1)提问:①这里 60 元的售价是如何得到的? ②如果设这批夹克每件的成本价为 X 元,那么如何 用 X 的代数式表示每件夹克的标价与实际的售价? (2)完成解答过程: 设这批夹克每件的成本价为 X 元,那么每件夹克的标价为 (1+50%)X 元,每件夹克的实际售价为 X(1+50%)×80%元,根据题意得 X(1+50%)×80%=60 解方程得:X=50 因此每件夹克的成本价为 50 元。 (3)如果把例题中的“每件以 60 元卖出”改为“每件仍获利 60 元” ,其余不变,则这批夹克每件的成本 价是多少元? 提问:若设成本价为 X 元,如何用 X 的代数式表示每件夹克所获得的利润? 讨论后,学生口述,师板演解答过程。 解:设过批夹克每件的成本价为 X 元,根据题意,得
第 5 页 共 5 页
作者:侯
80%x ; :利润=售价(卖价)—成本价(进价) 通过学生讨论,得出
引导学生类比:每一个期数内利息与本金的比是利润率, 讨论得出: