线代公式必考大全最公式很全记住就OK

合集下载

(完整版)精心整理线性代数公式大全,推荐文档

(完整版)精心整理线性代数公式大全,推荐文档

3
结论);
Ⅱ、 r(A) r(B) n
⑨、若 A 、 B 均为 n 阶方阵,则 r(AB) r(A) r(B) n ;
6. 三种特殊矩阵的方幂:
①、秩为 1 的矩阵:一定可以分解为列矩阵(向量) 行矩阵
(向量)的形式,再采用结合律;
1 a c
②、型如
0
1
b
的矩阵:利用二项展开式;
0 0 1
二项展开式:
; n
(a
b)n
C
0 n
a
n
Cn1 an1b1
Cnm anm bm
C
a b n1 1 n1
n
Cnnbn
C
m n
a
m
b
3. 初等行变换的应用:(初等列变换类似,或转置后采用初等
行变换)
①、

(
A,
E
r
):(
E,
X
)
,则
A
可逆,且
X
; A1
②、对矩阵 (A, B) 做初等行变化,当 A 变为 E 时, B 就变成 A1B ,
即: ; c ( A, B)(E, A1B)
③、求解线形方程组:对于 n个未知数 n个方程 Ax b ,如果
⑥、范德蒙行列式:大指标减小指标的连乘积;
⑦、特征值;
6.
对于 n阶行列式
A
,恒有:
E
A
n
n
(1)k
Sk nk
,其中
Sk
为k
阶主
k 1
子式;
0
7. 证明 A 0 的方法: ①、 A A ;
②、反证法;
③、构造齐次方程组 Ax 0 ,证明其有非零解;

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版线性代数是数学的一个重要分支,研究向量空间及其上的线性映射的理论和方法。

在学习线性代数的过程中,掌握一些重要的公式是非常重要的。

下面是线性代数中一些常见且重要的公式,希望能够帮助到你。

1.向量的加法和数乘:(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 +b2, ..., an + bn)k(a1, a2, ..., an) = (ka1, ka2, ..., kan)这是线性代数的基本操作,向量的加法是对应元素分别相加,向量的数乘是将向量中的每个元素与常数相乘。

2.内积:向量a = (a1, a2, ..., an) 和向量b = (b1, b2, ..., bn) 的内积定义为:a ·b = a1b1 + a2b2 + ... + anbn内积有许多重要的性质:a·b=b·a-->内积的交换律(ka) · b = a · (kb) --> 内积的数乘关系a·(b+c)=a·b+a·c-->内积的分配律内积可以用来计算向量的夹角和向量的长度,是线性代数中的一个重要概念。

3.范数:向量a的范数定义为:a, = sqrt(a1^2 + a2^2 + ... + an^2向量的范数满足以下性质:a,>=0,且当且仅当a=0时取等ka, = ,k,,a,对于任意的实数a+b,<=,a,+,b,三角不等范数是一个度量向量长度的函数,也是线性代数中常用的概念。

4.矩阵的乘法:对于矩阵A(m×n)和矩阵B(n×p),它们的乘积C=A×B是一个m×p的矩阵,其中C的第i行第j列的元素可以表示为:C(i,j)=a(i,1)*b(1,j)+a(i,2)*b(2,j)+...+a(i,n)*b(n,j)矩阵乘法是线性代数中的核心概念,它在很多应用中都有重要的作用。

《线性代数》公式大全

《线性代数》公式大全

《线性代数》公式大全1.向量1.1向量的加法和减法v1=(x1,y1,z1)v2=(x2,y2,z2)v1+v2=(x1+x2,y1+y2,z1+z2)v1-v2=(x1-x2,y1-y2,z1-z2)1.2向量的数量乘法v=(x,y,z),k是一个实数kv = (kx, ky, kz)1.3向量的点积v1·v2=x1x2+y1y2+z1z21.4向量的模长v,=√(x^2+y^2+z^2)2.矩阵2.1矩阵的加法和减法A = (aij),B = (bij)是两个m x n矩阵A +B = (aij + bij)A -B = (aij - bij)2.2矩阵的数量乘法A = (aij)是一个m x n矩阵,k是一个实数kA = (kaij)2.3矩阵的乘法A = (aij)是一个m x n矩阵,B = (bij)是一个n x p矩阵AB = (cij)是一个m x p矩阵,其中cij = a1j*b1i + a2j*b2i+ ... + anj*bni2.4矩阵的转置A = (aij)是一个m x n矩阵A的转置为A^T = (aij)^T = (aji)2.5矩阵的逆A为可逆矩阵,A^-1为其逆矩阵,满足AA^-1=A^-1A=I,其中I为单位矩阵3.行列式3.1二阶行列式D=,abc d, = ad - b3.2三阶行列式D=,abcdeg h i, = aeI + bfG + cdH - ceG - afH - bd3.3n阶行列式D=,a11a12 (1)a21a22...a2...........an1 an2 ... ann, = (-1)^(i+j)*Mij,其中Mij为aij的代数余子4.线性方程组4.1齐次线性方程组Ax=0,其中A为一个mxn矩阵4.2非齐次线性方程组Ax=b,其中A为一个mxn矩阵,x为一个n维列向量,b为一个m维列向量4.3线性方程组的解法4.3.1矩阵消元法通过矩阵的初等行变换将线性方程组转化为行阶梯形或最简形4.3.2克拉默法则Ax = b的解可以表示为x = (Dx1/D, Dx2/D, ..., Dxn/D),其中D 为系数矩阵A的行列式,Di为将第i列的系数替换为b后的行列式4.3.3矩阵求逆法若A为可逆矩阵,则Ax=b的解可以表示为x=A^(-1)b以上是线性代数的一些重要公式,通过理解和掌握这些公式,可以帮助我们解决线性代数相关的问题和应用。

考研数学线代定理公式汇总

考研数学线代定理公式汇总

考研数学线代定理公式汇总1.行列式定理:(1) 行列式的值不变性: 对于可逆矩阵A,有det(AB) =det(A)det(B)。

(2)若存在行(列)线性相关,则行列式为0。

(3)拉普拉斯定理:对于n阶行列式,可以通过余子式展开得到。

2.线性方程组定理:(1)线性方程组存在唯一解的充要条件是系数矩阵的秩等于方程组的未知数个数,并且扩展矩阵的秩等于系数矩阵的秩。

(2)齐次线性方程组存在非零解的充要条件是系数矩阵的秩小于方程组的未知数个数。

(3)利用矩阵的逆可以求解非齐次线性方程组。

3.矩阵定理:(1)矩阵的秩等于其非零特征值的个数。

(2)若矩阵A可对角化,则A与其相似矩阵具有相同的特征值。

(3)奇异值分解定理:对于任意矩阵A,都可以分解成奇异值分解形式:A=UΣV^T,其中U和V是正交矩阵,Σ是对角矩阵。

4.向量空间定理:(1)向量组的线性相关性可以通过列向量组的秩判断,如果秩小于向量个数,则线性相关。

(2)向量组的秩等于向量组的极大线性无关组的向量个数。

(3) rank(A^T) = rank(A),其中A是矩阵。

(4)若A和B是可逆矩阵,则(A^T)^-1=(A^-1)^T。

5.特征值与特征向量定理:(1)特征值方程的根为矩阵的特征值。

(2)若特征值λ是矩阵A的特征值,对应的特征向量组成的集合是由矩阵A-λI的零空间生成的。

(3)矩阵A相似于对角矩阵的充要条件是A有n个线性无关的特征向量。

以上是一些常见的数学线性代数定理和公式的汇总,希望对您的学习有所帮助。

当然,线性代数的内容还是比较广泛的,还有很多其他的定理和公式,如矩阵行列式的性质、特征值与特征向量的性质、矩阵的幂等性等。

如果您对这个话题有更深入的了解需求,可以提出具体的问题,我将尽力回答。

线性代数公式必记

线性代数公式必记

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nn n n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m nn n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nm n mm m m rnr r n n n n nnn n r C C C C C CrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)——商学院学生学习部。

考研数学公式大全--高数--线代--必背公式

考研数学公式大全--高数--线代--必背公式

数学知识点背诵高数部分1. 导数公式22(tan )sec (cot )csc (sec )sec tan (csc )csc cot x xx xx x x x x x'='=-'=⋅'=-⋅22(arcsin )(arccos )1(arctan )11(cot )1x x x x arc x x '='='=+'=-+2. 积分公式2222tan ln cos cot ln sin sec ln sec tan csc ln csc cot sec tan cos csc cot sin sec tan sec csc cot csc xdx x C xdx x Cxdx x x C xdx x x Cdx xdx x C x dx xdx x Cx x xdx x Cx xdx x C=-+=+=++=-+==+==-+⋅=+⋅=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222221arctan 1ln 21ln 2ln(arcsin dx xC a x a a dx x aC x a a x a dx a xC a x a a x x CxC a=++-=+-++=+--=+=+⎰⎰⎰222ln(2ln 2arcsin 2a x Ca x C a x Ca=+=-++=++22201sin cos nn n n n I xdx xdx I nππ--===⎰⎰3. 和差化积sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-4. 积化和差[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+-- 5. 万能公式22tan2sin 1tan 2ααα=+ 221t a n2c o s 1t a n 2ααα-=+ 22t a n2t a n 1t a n2ααα=- 6. 半角公式221cos sin 221cos cos 22αααα-=+= 21c o s t a n 21c o s s i n 1c o s t a n 21c o s s i nαααααααα-=+-==+7. 三倍角公式3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=- 8. 三角函数关系图sin costan 1cot sec csc↔↔↔⊗↔↔↔↔↔↔⊗⊗↔↔↔..1.a b c ⊗说明:六边形每个顶点等于两相邻顶点乘积三条对角线上,两端点相乘等于标记的三角形,上面的平方和等于下面的平方9. 等价无穷小33333333222201sin ()61arcsin ()61tan ()31arctan ()31ln(1)()21cos 1()2x x x x o x x x x o x x x x o x x x x o x x x x o x x x o x →=-+=++=++=-++=-+=-+时2011ln 11cos 2(1)1x x x e x a x a x xx x αα→---+-时10. 华里士公式等华里士公式:2200131,222sin cos 132,123n nn n n n n xdx xdx n n n n n πππ--⎧⋅⋅⎪⎪-==⎨--⎪⋅⎪-⎩⎰⎰为正的偶数为大于的奇数20sin 2sin nn xdx xdx ππ=⎰⎰2002c o s ,c o s 0,n nxdx n xdx n ππ⎧⎪=⎨⎪⎩⎰⎰为偶数为奇数2220004sin ,sin =cos 0,n n nxdx n xdx xdx n πππ⎧⎪=⎨⎪⎩⎰⎰⎰为偶数为奇数()()220sin cos f x dx f x dx ππ=⎰⎰ ()()00sin cos f x dx f x dx ππ≠⎰⎰()()()20sin sin sin 2xf x dx f x dx f x dx πππππ==⎰⎰⎰11. 函数展开为幂级数20201+()!2!1(1)1(1)(11)1n nxn n n n nn x x x e x x n n x x x x x x ∞=∞===++++-∞<<+∞=-=-+-+-+-<<+∑∑!20234111213572122011(11)1ln(1)(1)(1)(11)234sin (1)(1)()(21)!3!5!7!(21)!cos (1)1(2)!2!n n n n nn n n n n nnn n nn x x x x x x x x x x x x x x n nx x x x x x x x n n x x x n ∞=∞--=++∞=∞===+++++-<<-+=-=-+-++-+-<≤=-=-+-++-+-∞<<+∞++=-=-+∑∑∑∑()(][]4622(1)()4!6!(2)!(1)(1)(1)(1)12!!(1-1,1;10-1,1;0-1,1)nn nx x x x n n x x x x n αααααααααα-++-+-∞<<+∞---++=+++++≤--<<>时,收敛域为时,收敛域为时,收敛域为12. 幂级数的和函数1211121121212112220(1)11(1)1(1)(1)(1)(1)(1)1(1)1k nn k n n n n n n n n n n n n n n n n n n cx cx x x x nx x x x x x nx x nx x x x nx x nx x x n n x x x x ∞=∞∞-==∞∞-==∞∞+-==∞∞∞-====<-''⎛⎫⎛⎫===< ⎪ ⎪--⎝⎭⎝⎭==<-==<-''''''⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑3110001112(1)(1)1ln(1)(11)1n x x x n n n n n x x x t dt t dt dt x x n t ∞∞∞--====<-⎛⎫====---≤< ⎪-⎝⎭∑∑∑⎰⎰⎰13. 狄利克雷收敛定理设()f x 是以2l 为周期的可积函数,如果在[],l l -上()f x 满足: 1)连续或只有有限个第一类间断点; 2)只有有限个极值点;则()f x 的傅里叶级数处处收敛,记其和函数为()S x ,则()01cos sin 2n n n a n x n x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,且()()()()()(),00,200,2f x x f x f x S x x f l f l x ⎧⎪⎪-++⎪=⎨⎪⎪-++-⎪⎩为连续点为第一类间断点为端点 14. 周期为2l 的周期函数的傅里叶级数设周期为2l 的周期函数()f x 满足狄利克雷收敛定理的条件,则它的傅里叶级数为()()01cos sin 2n n n a n x n x f x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑其中系数n a 和n b 分别为:()()1cos (0,1,2,)1sin (1,2,3,)l n l l n l n x a f x dx n l l n x b f x dx n l l ππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (1)将普通周期函数()f x 在[],l l -上展开为傅里叶级数: 展开系数为()()()01,1cos ,(1,2,3,)1sin ,(1,2,3,)l l l n l l n la f x dx l n x a f x dx n l l n xb f x dx n l l ππ---⎧=⎪⎪⎪==⎨⎪⎪==⎪⎩⎰⎰⎰ (2)将奇偶周期函数()f x 在[],l l -上展开为傅里叶级数:当()f x 为奇函数时,展开为正弦级数()000,0,(1,2,3,)2sin ,(1,2,3,)n l n a a n n x b f x dx n l l π⎧⎪=⎪==⎨⎪⎪==⎩⎰当()f x 为偶函数时,展开为余弦级数()()0002,2cos ,(1,2,3,)0,(1,2,3,)l l nn a f x dx l n x a f x dx n l l b n π⎧=⎪⎪⎪==⎨⎪==⎪⎪⎩⎰⎰ (3)将非对称区间[]0,l 上的函数()f x 展开为正弦级数或余弦级数:将[]0,l 上的函数()f x ,根据要求作奇延拓(若要求展开为正弦级数)或偶延拓(若要求展开为余弦函数),得到[],l l -上的奇函数或偶函数,再根据(2)中的方式展开。

《线性代数》公式大全

《线性代数》公式大全

《线性代数》公式大全线性代数是数学中的一个分支,研究向量、矩阵和线性方程组等相关概念和性质。

它是现代数学和应用科学的基础,广泛应用于物理学、工程学、计算机科学等领域。

本文将介绍线性代数中的基本概念和相关公式。

1.向量的定义和运算:向量是有方向和大小的量,可以用有序数对或者列矩阵来表示。

设有向量a=(a1, a2, ..., an),b=(b1, b2, ..., bn),则向量的运算包括:- 向量的加法:a + b = (a1 + b1, a2 + b2, ..., an + bn)- 向量的减法:a - b = (a1 - b1, a2 - b2, ..., an - bn)- 数乘:k * a = (k * a1, k * a2, ..., k * an)2.向量的模和单位向量:向量的模表示向量的长度,记作,a,计算公式为:,a, =sqrt(a1² + a2² + ... + an²)。

单位向量表示模为1的向量,计算公式为:u=a/,a。

3.内积和外积:内积也叫点积或数量积,计算公式为:a·b = a1 * b1 + a2 * b2+ ... + an * bn。

外积也叫向量积或叉积,计算公式为:a×b=(a2*b3-a3*b2,a3*b1-a1*b3,a1*b2-a2*b1)。

4.矩阵的定义和运算:矩阵是按照行列排列的矩形阵列,可以用方括号表示。

设有矩阵A和B,则矩阵的运算包括:-矩阵的加法:A+B=[a11+b11,a12+b12,...,a1m+b1m;a21+b21,a22+b22,...,a2m+b2m;...] -矩阵的减法:A-B=[a11-b11,a12-b12,...,a1m-b1m;a21-b21,a22-b22,...,a2m-b2m;...]-数乘:k*A=[k*a11,k*a12,...,k*a1m;k*a21,k*a22,...,k*a2m;...] -矩阵的乘法:A*B=[c11,c12,...,c1n;c21,c22,...,c2n;...]其中,cij = a(i1) * b(1j) + a(i2) * b(2j) + ... + a(im) *b(mj),a(ij)为矩阵A的第i行第j列元素。

(完整版)精心整理线性代数公式大全,推荐文档

(完整版)精心整理线性代数公式大全,推荐文档

1.行列式共有个元素,展开后有项,可分解为行列式;n 2n !n 2n2.代数余子式的性质:①、和的大小无关;ij A ija ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;A3.代数余子式和余子式的关系:(1)(1)i ji jijijijijM A A M ++=-=-4.设行列式:n D 将上、下翻转或左右翻转,所得行列式为,则;D 1D (1)21(1)n n D D -=-将顺时针或逆时针旋转,所得行列式为,则;D 902D (1)22(1)n n DD-=-将主对角线翻转后(转置),所得行列式为,则;D 3D 3DD=将主副角线翻转后,所得行列式为,则;D 4D 4DD=5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;(1)2(1)n n -⨯ -③、上、下三角行列式():主对角元素的乘积; = ◥◣④、和:副对角元素的乘积;◤ ◢(1)2(1)n n -⨯ -⑤、拉普拉斯展开式:、A O A CA B C B O B==(1)m n C A O AA B B O B C==-:⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主n A 1(1)nnkn k kk E A S λλλ-=-=+-∑kS k 子式;7.证明的方法:0A =①、;A A =-②、反证法;③、构造齐次方程组,证明其有非零解;0Ax =④、利用秩,证明;()r A n<⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:An (是非奇异矩阵);⇔0A ≠(是满秩矩阵)⇔()r A n =的行(列)向量组线性无关;⇔A 齐次方程组有非零解;⇔0Ax =,总有唯一解;⇔n b R ∀∈Ax b =与等价;⇔A E 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0;⇔A是正定矩阵;⇔T A A 的行(列)向量组是的一组基;⇔A nR 是中某两组基的过渡矩阵;⇔AnR 2.对于阶矩阵: 无条件恒成立;n A **AA A A A E ==3.1**111**()()()()()()TT TT A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均、可逆:A B 若,则:12s A AA A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭Ⅰ、;12sA A A A = Ⅱ、;111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭②、;(主对角分块)111A O A O O B O B ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭③、;(副对角分块)111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭④、;(拉普拉斯)11111A C A A CB O B OB -----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑤、;(拉普拉斯)11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是m n ⨯A 唯一确定的:;rm nE OF O O⨯⎛⎫= ⎪⎝⎭等价类:所有与等价的矩阵组成的一个集合,称为一个等A 价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;A B ()()r A r B A B = ⇔ :2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;(,)(,)rA E E X :A 1X A -=②、对矩阵做初等行变化,当变为时,就变成,(,)A B A E B 1A B -即:;1(,)(,)cA B E AB - ~ ③、求解线形方程组:对于个未知数个方程,如果n n Ax b =,则可逆,且;(,)(,)rA b E x :A 1x A b -=4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭λλλAiλA乘的各列元素;iλA ③、对调两行或两列,符号,且,例如:(,)E i j 1(,)(,)E i j E i j -=;1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭④、倍乘某行或某列,符号,且,例如:(())E i k 11(())(())E i k E i k-=;1111(0)11k k k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤、倍加某行或某列,符号,且,如:(())E ij k 1(())(())E ij k E ij k -=-;11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭5.矩阵秩的基本性质:①、;0()min(,)m nr A m n ⨯≤≤②、;()()Tr A r A =③、若,则;A B :()()r A r B =④、若、可逆,则;(可逆矩阵不影响P Q ()()()()r A r PA r AQ r PAQ ===矩阵的秩)⑤、;(※)max((),())(,)()()r A r B r A B r A r B ≤≤+⑥、;(※)()()()r A B r A r B +≤+⑦、;(※)()min((),())r AB r A r B ≤⑧、如果是矩阵,是矩阵,且,则:(※)A m n ⨯B n s ⨯0AB =Ⅰ、的列向量全部是齐次方程组解(转置运算后的B 0AX =结论);Ⅱ、()()r A r B n+≤⑨、若、均为阶方阵,则;A B n ()()()r AB r A r B n ≥+-6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵⨯(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;101001a c b ⎛⎫ ⎪ ⎪ ⎪⎝⎭二项展开式:;1111110()nnnn m n mmn n n nm m n mnnnnnnm a b C a C ab C ab Ca b C b Ca b -----=+=++++++=∑ 注:Ⅰ、展开后有项;()na b +1n +Ⅱ、0(1)(1)!1123!()!--+====- ::: :m n nn n n n n m n CC C m m n m Ⅲ、组合的性质:;11112---+-===+==∑nmn mm m m r nr r nnn n nnn n r CCCC CCrC nC ③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩②、伴随矩阵的特征值:;*1*(,)AAAX X AA A A X X λλλ- == ⇒ =③、、*1AA A -=1*n AA-=8.关于矩阵秩的描述:A ①、,中有阶子式不为0,阶子式全部为0;(两()r A n =A n 1n +句话)②、,中有阶子式全部为0;()r A n <A n ③、,中有阶子式不为0;()r A n ≥A n 9.线性方程组:,其中为矩阵,则:Ax b =A m n ⨯①、与方程的个数相同,即方程组有个方程;m Ax b =m②、与方程组得未知数个数相同,方程组为元方程;n Ax b =n 10.线性方程组的求解:Ax b =①、对增广矩阵进行初等行变换(只能使用初等行变换);B ②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:n m n ①、;11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ②、(向量方程,为矩阵,个111211*********2n n m m mn m m a a a x b a a a x b Ax ba a a xb ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A m n ⨯m 方程,个未知数)n ③、(全部按列分块,其中);()1212n n x xaa a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭④、(线性表出)1122n n a x a xa x β+++= ⑤、有解的充要条件:(为未知数的个数或维数)()(,)r A r A n β=≤n 4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵mn A 12,,,mααα n m ⨯;12(,,,)mA = ααα个维行向量所组成的向量组:构成矩阵;mn B 12,,,T T T mβββ m n ⨯12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次0Ax ⇔=线性方程组)②、向量的线性表出是否有解;(线性方程组)Ax b ⇔=③、向量组的相互线性表示是否有解;(矩阵方程)AX B ⇔=3.矩阵与行向量组等价的充分必要条件是:齐次方程组m nA ⨯l nB ⨯和同解;(例14)0Ax =0Bx =101P 4.;(例15)()()Tr A A r A =101P 5.维向量线性相关的几何意义:n ①、线性相关;α⇔0α=②、线性相关坐标成比例或共线(平行);,αβ⇔,αβ③、线性相关共面;,,αβγ⇔,,αβγ6.线性相关与无关的两套定理:若线性相关,则必线性相关;12,,,sααα 121,,,,ss αααα+ 若线性无关,则必线性无关;(向量的个数加12,,,sααα 121,,,s ααα- 加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:r A n r -n B 若线性无关,则也线性无关;反之若线性相关,则也线A B B A 性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且A r B s 线性无关,则(二版定理7);A r s ≤74P 向量组能由向量组线性表示,则;(定理3)A B ()()r A r B ≤86P 向量组能由向量组线性表示A B 有解;AX B ⇔=(定理2)()(,)r A r A B ⇔=85P 向量组能由向量组等价(定理2推论)A B ()()(,)r A r B r A B ⇔ ==85P 8.方阵可逆存在有限个初等矩阵,使;A ⇔12,,,lP P P 12lA P P P = ①、矩阵行等价:(左乘,可逆)与同~rA B PA B ⇔=P 0Ax ⇔=0Bx =解②、矩阵列等价:(右乘,可逆);~cA B AQ B ⇔=Q ③、矩阵等价:(、可逆);~A B PAQ B ⇔=P Q 9.对于矩阵与:m nA ⨯l nB ⨯①、若与行等价,则与的行秩相等;A B A B ②、若与行等价,则与同解,且与的任何对应A B 0Ax =0Bx =A B 的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;A 10.若,则:m s s n m nA B C ⨯⨯⨯=①、的列向量组能由的列向量组线性表示,为系数矩阵;C A B ②、的行向量组能由的行向量组线性表示,为系数矩阵;C B TA (转置)11.齐次方程组的解一定是的解,考试中可以直接作0Bx =0ABx =为定理使用,而无需证明;①、只有零解只有零解;0ABx =0Bx ⇒ =②、有非零解一定存在非零解;0Bx =0ABx ⇒ =12.设向量组可由向量组线性表示为:12:,,,n rrB b b b ⨯ 12:,,,n ssA a a a ⨯ (题19结论)110P ()1212(,,,)(,,,)r sb b b a a a K = B AK =其中为,且线性无关,则组线性无关;(与K s r ⨯A B ()r K r ⇔=B 的列向量组具有相同线性相关性)K (必要性:;充分性:反证法)()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= 注:当时,为方阵,可当作定理使用;r s =K 13.①、对矩阵,存在,、的列向量线性m nA ⨯n mQ ⨯mAQ E =()r A m ⇔=Q 无关;()87P ②、对矩阵,存在,、的行向量线性无关;m n A ⨯n m P ⨯nPA E =()r A n ⇔=P 14.线性相关12,,,sααα 存在一组不全为0的数,使得成立;⇔12,,,sk k k 11220ssk k k ααα+++= (定义)有非零解,即有非零解;⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭0Ax =,系数矩阵的秩小于未知数的个数;⇔12(,,,)s r sααα< 15.设的矩阵的秩为,则元齐次线性方程组的解集m n ⨯A r n 0Ax =的秩为:;S ()r S n r =-16.若为的一个解,为的一个基础解系,则*ηAx b =12,,,n rξξξ- 0Ax =线性无关;(题33结论)*12,,,,n rηξξξ- 111P 5、相似矩阵和二次型1.正交矩阵或(定义),性质:TA A E ⇔=1TA A -=①、的列向量都是单位向量,且两两正交,即A ;1(,1,2,)0T iji j a a i j n i j=⎧==⎨≠⎩②、若为正交矩阵,则也为正交阵,且;A 1TA A -=1A =±③、若、正交阵,则也是正交阵;A B AB 注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:12(,,,)ra a a ;11b a =1222111[,][,]b a b a b b b =-: ;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----: 3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;A B ⇔A B ,、可逆;⇔=PAQ B P Q ,、同型;()()⇔=r A r B A B ②、与合同,其中可逆;A B ⇔=TC AC B 与有相同的正、负惯性指数;⇔Tx Ax T x Bx ③、与相似;A B 1-⇔=P AP B 5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件C TC AC B =⇒A B :不同,相似的更严格);6.为对称阵,则为二次型矩阵;A A7.元二次型为正定:n Tx Ax 的正惯性指数为;A ⇔n 与合同,即存在可逆矩阵,使;A ⇔E C TC AC E=的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;A ⇔;(必要条件)0,0iia A ⇒>>。

线性代数公式大全

线性代数公式大全

线性代数公式大全1、行列式1. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 2. 代数余子式和余子式的关系:(1)(1)i j i jij ij ij ijM A A M ++=-=-3. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -; ⑤、拉普拉斯展开式:A O A C AB CB OB==、(1)m nC A O A A BBO BC ==-⑥、范德蒙行列式:大指标减小指标的连乘积;; 4. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax=,证明其有非零解;④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax=有非零解;⇔nb R ∀∈,Axb=总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A的特征值全不为0;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()TT TT A A A A A A ----===***111()()()TTTAB B A AB B A AB BA---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则:Ⅰ、12s A A A A = ;3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m nE OF OO ⨯⎛⎫=⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1XA-=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ; ③、求解线形方程组:对于n 个未知数n 个方程Ax b=,如果(,)(,)rA b E x ,则A 可逆,且1xA b-=;4. 伴随矩阵:(2)*1A A A -=、1*n A A-=5. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;6. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Axb=为n 元方程;7. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;8. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b+++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n nm m m n m m a a a x b aa a xb A x b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇔= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b bb β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性9. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx=同解;(101P 例14)10.()()Tr A A r A =;(101P 例15)向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示A XB ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 11. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA BP A B⇔=(左乘,P 可逆)0Ax ⇔=与0Bx=同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B P A Q B ⇔=(P 、Q 可逆); 12. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;13. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;14. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;5、相似矩阵和二次型1. 正交矩阵TA A E⇔=或1TA A-=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)T i j i j a a i j n i j=⎧==⎨≠⎩ ;②、若A 为正交矩阵,则1TA A-=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =; 1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;。

线性代数公式大全——最新修订

线性代数公式大全——最新修订

线性代数公式大全1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n行列式; 2. 代数余子式的性质: ①、ij A 与ija 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式与余子式的关系:(1)(1)i ji j ijijij ij M A A M ++=-=-4. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式(=◥◣):主对角元素的乘积;④、 ◤与 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:AO A C A BCB O B==、(1)m n CA OA A BB OB C==-g⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;5. 对于n 阶行列式A ,恒有:1(1)nnkn kk k E A S λλλ-=-=+-∑,其中kS 为k 阶主子式;6. 证明0A =的方法: ①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0就是其特征值;2、矩阵1.A 就是n 阶可逆矩阵: ⇔0A ≠(就是非奇异矩阵); ⇔()r A n =(就是满秩矩阵)⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解;⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 就是正定矩阵;⇔A 的行(列)向量组就是n R 的一组基; ⇔A 就是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立; 3. 1**111**()()()()()()TT TT A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵就是表格,推导符号为波浪号或箭头;行列式就是数值,可求代数与;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12sA A A A =L ;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭O; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A OB B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形就是唯一确定的:rm nE OF O O ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :; 2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其她元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、 若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E AB - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=;4. 初等矩阵与对角矩阵的概念:①、初等矩阵就是行变换还就是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i λ乘A 的各列元素; ③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -⎛⎫⎛⎫ ⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 5. 矩阵秩的基本性质: ①、0()min(,)m nr A m n ⨯≤≤;②、()()Tr Ar A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※)⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 就是m n ⨯矩阵,B 就是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部就是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C ab C ab Ca bC b C a b -----=+=++++++=∑L L ;注:Ⅰ、()na b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m n nn n n n n m n CC C m m n mⅢ、组合的性质:111102---+-===+==∑nmn mm m m r nr r nnn n nnn n r CCCC CCrC nC ;③、利用特征值与相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1AA A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话) ②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换); ②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x xaa a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭M ); ④、1122n n a xa x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数) 4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫ ⎪ ⎪= ⎪⎪ ⎪⎝⎭M ; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组) ②、向量的线性表出 Ax b ⇔=就是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=就是否有解;(矩阵方程)3. 矩阵m nA ⨯与l nB ⨯行向量组等价的充分必要条件就是:齐次方程组0Ax =与0Bx =同解;(101P 例14)4. ()()Tr A A r A =;(101P 例15)5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,sαααL 线性相关,则121,,,,ss αααα+L 必线性相关;若12,,,sαααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,lP P P L ,使12lA P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l nB ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m nA B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定就是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s sA a a a ⨯L 线性表示为:(110P 题19结论)1212(,,,)(,,,)r sb b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m nA ⨯,存在n mQ ⨯,mAQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m nA ⨯,存在n mP ⨯,nPA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,sαααL 线性相关⇔存在一组不全为0的数12,,,sk k k L ,使得11220ssk k k ααα+++=L 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭L M 有非零解,即0Ax =有非零解; ⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n rηξξξ-L 线性无关;(111P 题33结论)5、相似矩阵与二次型1. 正交矩阵TA A E ⇔=或1TA A -=(定义),性质:①、A 的列向量都就是单位向量,且两两正交,即1(,1,2,)0T ij i j aa i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1TA A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也就是正交阵;注意:求解正交阵,千万不要忘记施密特正交化与单位化; 2. 施密特正交化:12(,,,)ra a a L11b a =;1222111[,][,]b a b a b b b =-gL L L121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关; 对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=TC AC B ,其中可逆;⇔Tx Ax 与Tx Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则TC AC B =⇒A B :,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型Tx Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC AC E=;A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0iia A ⇒>>;(必要条件)。

线性代数重要公式、定理大全

线性代数重要公式、定理大全

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;(1)22(1)n n D D -=-将D 顺时针或逆时针旋转90,所得行列式为2D ,则; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C A BCB O B==、(1)m n CA OA A BB OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解;⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C CCC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 是否有AX B ⇔=解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆;()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线代公式必考大全,最新的公式很全,记住就OK

线代公式必考大全,最新的公式很全,记住就OK

线代公式大全。

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i jij ij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D-=-;将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D-=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -; ⑤、拉普拉斯展开式:A O A C AB CB OB==、(1)m nC A O A A BBO BC ==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnkn kk k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax=,证明其有非零解;④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax=有非零解;⇔nb R ∀∈,Axb=总有唯一解;⇔A 与E 等价;⇔A可表示成若干个初等矩阵的乘积;⇔A的特征值全不为0;⇔T A A 是正定矩阵; ⇔A 的行(列)向量组是n R 的一组基; ⇔A是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()TT TT A A A A A A ----===***111()()()TTTAB B A AB B A AB BA---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则:Ⅰ、12s A A A A = ;Ⅱ、111121s A A AA ----⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;②、111AO A O O B O B ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O BB O A O ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A C BO B OB-----⎛⎫-⎛⎫= ⎪⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O CB BC AB -----⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m nE OF OO ⨯⎛⎫=⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1XA-=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Axb=,如果(,)(,)rA b E x ,则A 可逆,且1xA b-=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i λ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11kk k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠⎪ ⎪⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫⎪ ⎪=≠⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※)Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:0111111()nnnn m n mmn n n nm m n mnnnnnnm a b C a C ab C abCa bC b Ca b-----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- mnn n n n n n m n C C C mm n mⅢ、组合的性质:11112---+-===+==∑nm n m m m m r nr r nnn nnnn n r CCCCCCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAA X X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Axb=为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b+++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n nm m m n m m a a a x b aa a xb A x b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇔= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b bb β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T mB βββ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示A XB ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()Tr A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则rs≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示A XB ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B P A B⇔=(左乘,P 可逆)0Ax ⇔=与0Bx=同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B P A Q B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:(110P 题19结论) 1212(,,,)(,,,)r s b b b a a a K= (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n⇔=、P 的行向量线性无关;14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x x x ααα⎛⎫⎪⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Axb=的一个解,12,,,n r ξξξ- 为0Ax=的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵TA A E⇔=或1TA A-=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)T i j i j a a i j n i j=⎧==⎨≠⎩ ;②、若A 为正交矩阵,则1TA A-=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =; 1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=P A Q B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C A C B ,其中可逆;⇔T x A x 与Tx B x 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P A P B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C A C B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x A x 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC A C E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数公式必背_完整归纳清晰版

线性代数公式必背_完整归纳清晰版

线性代数必背公式(完全整理版)2010.41、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质: ①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

精选线性代数公式必背完整归纳清晰版(完整版)

精选线性代数公式必背完整归纳清晰版(完整版)

线性代数必背公式( 完全整理版 )2010.41 、 行 列 式2n行列式;1.n 行列式共有 n 个元素,展开后有 n ! 项 ,可分解为 2 代数余子式的性质:2.①、 和 a ij 的大小无关;A ij ②、某行(列)的元素乘以其它行(列)元素的代数余子式为 ③、某行(列)的元素乘以该行(列)元素的代数余子式为0;;A i ( 1)jA i j代数余子式和余子式的关系: 3. 4.M A ( 1) M ij ijijij设 n 行列式 :D n (n 1)将 上、下翻转或左右翻转,所得行列式为D 2D 1 ,则 D 1 D ; ( 1) n (n 1)将 D 顺时针或逆时针旋转 ,所得行列式为 90 D 2 ,则 D 2 2D ;( 1)将 将 主对角线翻转后(转置),所得行列式为 D D 3 ,则 D 3D ;D 主副角线翻转后,所得行列式为 D 4 ,则 D ;D 4行列式的重要公式:①、主对角行列式:主对角元素的乘积;5.n ( n 1)2②、副对角行列式:副对角元素的乘积 ;( 1)③、上、下三角行列式():主对角元素的乘积;◥◣ n (n 1)④、 ◤ 和 ◢ :副对角元素的乘积 2;( 1)A CO BA O C BCB AO OB AC⑤、拉普拉斯展开式:m n、A B ( 1)A B⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; nnk n k,其中 对于 n 阶行列式 A ,恒有: E A( 1) S kS k 为 k 阶主子式;6. k 1证明 ①、 0 的方法: 7.A A;A ②、反证法;③、构造齐次方程组 ④、利用秩,证明 0 ,证明其有非零解; n ; Ax r ( A ) ⑤、证明 0 是其特征值;2 、 矩 阵A 是 n 阶可逆矩阵:1.A0 (是非奇异矩阵);r ( A ) n (是满秩矩阵)A 的行(列)向量组线性无关;齐次方程组 Ax 0 有非零解; nR , b 总有唯一解;b AxA 与 E 等价;A 可表示成若干个初等矩阵的乘积; A 的特征值全不为 A A 是正定矩阵;0;T n A 的行(列)向量组是 的一组基;R nA 是 R 中某两组基的过渡矩阵;**对于 n 阶矩阵 A : A E 无条件恒 成立; ( A )( AB ) 2. 3.AAA A ( A ) ( AB )1 * * 1 1 T T1* TT *( A ) ( AB )( A )( A ) ( A )TTT*** 111B A B AB A矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 4.5. 关于分块矩阵的重要结论,其中均 A 1A 、B 可逆:A 2若 ,则:AA sⅠ、 ;AA 1 A 2 A s 1A 11A 2Ⅱ、 1;A 1As11A O OB AOO B ②、;(主对角分块)111O B A O O ABO ③、;(副对角分块)111A 1CB 1A O CB AO④、;(拉普拉斯)1B11A CO BAO B⑤、;(拉普拉斯)B 1CA113 、 矩 阵 的 初 等 变 换 与 线 性 方 程 组E r OO ;一个 n 矩阵 A ,总可经过初等变换化为标准形,其标准形是唯一确定的:1.m FOm n等价类:所有与 A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵 A 、 B ,若 B ;r ( A ) r (B ) A 行最简形矩阵:①、只能通过初等行变换获得; 2.②、每行首个非 ③、每行首个非 0 元素必须为 1;0 元素所在列的其他元素必须为 0;初等行变换的应用: (初等列变换类似,或转置后采用初等行变换) r3.①、若 , X ) ,则 A 可逆,且 1 ;(A , E )( E XA c1B ,即: r( A , b ) (E , x ) ,则 1( E , A B ) ;②、对矩阵 ( A , B ) 做初等行变化,当 A 变为 E 时, B 就变成 A ( A , B ) ③、求解线形方程组:对于 n 个未知数 n 个方程 b ,如果 1b ;A 可逆,且 Ax xA 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;4.12②、,左乘矩阵 A , i 乘 的各行元素;右乘,i乘 的各列元素;A A n111 1③、对调两行或两列,符号E (i , j ) ,且 ;j ) ,例如: E (i , j )E (i , 1111111 E ( i ( 1)) ,例如:k1 ④、倍乘某行或某列,符号E (i (k )) ,且 10) ;E (i (k ))k(k k1111k 1 k 1⑤、倍加某行或某列,符号,且 ;E (ij ( k )) E ( i j ( k )) ,如:11(k0) E ( i j (k ))11 矩阵秩的基本性质:5.①、 0 r (A m n ) min( m ,n ) ; T②、 r ( ③、若 ) r ( A ) ;A AB ,则 r ( B ) ;r (A ) ④、若 P 、 Q 可逆,则 r (PAQ ) ;( 可逆矩阵不影响矩阵的秩 ) r (A ) r (PA ) r ( A ) r (AQ ) ⑤、 r (B ) ;( ※ ) max(r ( A ), r (B )) r ( A , B ) ⑥、 ⑦、 ;( ※ ) r ( A B ) r ( A ) r ( B ) r ( AB ) min( r ( A ), r (B )) ;( ※)⑧、如果 Ⅰ、 Ⅱ、 A 是 m n 矩阵, B 是 n s 矩阵,且 0 ,则:( ※)AB B 的 列 向量全部是齐次方程组 AX 0 解(转置运算后的结论);r (A ) r (B ) n⑨、若 A 、 B 均为 n 阶方阵,则 r ( AB ) r (B ) n ;r ( A ) 三种特殊矩阵的方幂:6.①、秩为 1 的矩阵:一定可以分解为 列矩阵(向量)行矩阵(向量) 的形式,再采用结合律;1 0 0 a 1 0 cb 1②、型如 的矩阵:利用二项展开式;nn(a b )0 n 1 n 1 1bm n m mb n 1 1 n a b1 n n m m n m;二项展开式: C aC a C aC C bC a bnn nnnnm 0n注:Ⅰ、 展开后有 1 项;n ( a b ) n(n 1)1 2 3(n m 1) n! m!( n m0 n Ⅱ、 C nCnCn1m m)! nⅢ、组合的性质: mn mnm mnm n1 r n2rnr 11 ;C CCCCCrC nC nn 1nn r 0③、利用特征值和相似对角化: 伴随矩阵:7.n1 0r ( A ) r ( A ) r ( A ) n n n *①、伴随矩阵的秩: 1 ; 1r ( A )AA*X , A1*A X②、伴随矩阵的特征值:(AX A AX ) ;n 1*A 1 *、 ③、 AAA A 关于 ①、 A 矩阵秩的描述:8.n , n , n , A 中有 A 中有 A 中有 n 阶子式不为 0, n 1 阶子式全部为 0;(两句话) r ( A ) ②、 ③、 n 阶子式全部为 0; r ( A ) r ( A ) n 阶子式不为 0;n 矩阵,则:线性方程组: b ,其中 A 为 m 9.Ax ①、 m 与方程的个数相同,即方程组 b 有 m 个方程; Ax ②、 n 与方程组得未知数个数相同,方程组b 为 n 元方程;Ax 线性方程组 Ax b 的求解:B 进行初等行变换( 10. ①、对增广矩阵 只能使用初等行变换 );②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;由 n 个未知数 m 个方程的方程组构成 n 元线性方程:11. a 11 x 1 a 12 x 2 a 22 x 2 a 1 n x n a 2 n x n b 1a 21 x 1b 2 ①、;a m 1 x 1 a 11a m 2 x 2 a 12 a 22a nm x nx 1 x 2 b n b 1 a 1n a 2n a 21b 2 ②、b (向量方程, A 为 n 矩阵, m 个方程, n 个未知数) m Ax a m 1 a m 2a mnx 1x mb mb 1 x 2 b 2 ③、 (全部按列分块,其中);a 1 a 2a nx na n x nb n④、 (线性表出)a 1 x 1 a 2 x 2⑤、有解的充要条件: ) n ( n 为未知数的个数或维数)r ( A ) r (A , 4 、 向 量 组 的 线 性 相 关 性m 个 n 维列向量所组成的向量组A : 构成 矩阵 m) ;1.1 ,2 , ,n m A ( 1 , 2 , T1 T ,mT 1T2 T2;m 个 n 维行向量所组成的向量组B :m构成 m n 矩阵 ,,, BT m含有有限个向量的有序向量组与矩阵一一对应; ①、向量组的线性相关、无关 ②、向量的线性表出 ③、向量组的相互线性表示 Ax Ax AX 0 有、无非零解; (齐次线性方程组) b 是否有解;(线性方程组) B 是否有解;(矩阵方程) 2.与 n 行向量组等价的充分必要条件是:齐次方程组 n 0 和 0 同解; ( P 101 例 矩阵 Ax Bx 3. 4. 5.A mB l 14)TP 101 例 A )r ( A ) ; ( 15)r ( A n 维向量线性相关的几何意义:①、 ②、 线性相关 线性相关 0 ;坐标成比例或共线(平行); , , , , ③、 , 线性相关 共面;, 线性相关与无关的两套定理: 6.若 必线性相关;, , , 线性相关,则, , , ,1 2 s 12 s s 1若 必线性无关;(向量的个数加加减减,二者为对偶), s 线性无关,则1 ,2 , 1, 2 , ,s 1若 若 维向量组 A 的每个向量上添上 个分量,构成 n 维向量组 :r n r B A 线性无关,则 B 也线性无关;反之若 B 线性相关,则 A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定; r s (二版 P 74 定理 7);向量组 向量组 向量组 A (个数为 )能由向量组 B (个数为 s )线性表示,且 A 线性无关,则 7.r A 能由向量组 A 能由向量组 B 线性表示,则 r (B ) ;( P 86 定理 3) r ( A ) 线性表示B AXB 有解;r (A ) r ( A , B ) ( P 85 定理 2)r (A , B ) ( P 85 定理 , P l ,使 A P 1 P 2向量组 A 能由向量组 等价 2 推论) P l ;B r ( A ) r ( B ) P 1, P 2 , 方阵 A 可逆存在有限个初等矩阵 r8.①、矩阵行等价: ②、矩阵列等价: ③、矩阵等价: A ~ BcA ~B A ~ B PA B (左乘, P 可逆)Ax 0 与 Bx 0 同解B (右乘, Q 可逆);AQ PAQ B ( 、 Q 可逆); P 与 n:对于矩阵 A m 9.B l n ①、若 A 与 ②、若 A 与 B 行等价,则 B 行等价,则 A 与 B 的行秩相等;0 与 0 同解,且 A 与 B 的任何对应的列向量组具有相同的线性相关性; Ax Bx ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵 A 的行秩等于列秩; 若 A m C m ,则:10. s B s nn ①、 ②、 C 的列向量组能由 A 的列向量组线性表示, B 的行向量组线性表示, 为系数矩阵;B T的行向量组能由 C A 为系数矩阵; (转置)齐次方程组 Bx 0 的解一定是 ABx 0 的解,考试中可以直接作为定理使用,而无需证明 0 只有零解; ;11. ①、 ②、 0 只有零解 有非零解 ABx Bx 0 Bx 0 一定存在非零解; ABx 可由向量组 ,a s 线性表示为: ( P 110 题 设向量组 B n 19 结论 ) 12. : b 1,b 2 , , b r A n : a 1, a 2 , r s ( b 1,b 2 , ,b r ) (a 1 , a 2 , ,a s ) K ( B AK )其中 为 r ,且 A 线性无关,则 组线性无关 r (K ) r ;( 与 的列向量组具有相同线性相关性 )K s B B K (必要性: r ;充分性:反证法)r r ( B ) r ( AK ) r ( K ), r ( K ) r , r ( K ) 注:当 s时, 为方阵,可当作定理使用;rK ,存在 n , m m 、 Q 的列向量线性无关; ( P 87 ) ①、对矩阵 ②、对矩阵 A m A m Q n P n AQ PA E m E n r (A ) r (A ) 13. ,存在 , n 、 的行向量线性无关;P n m 14.,s线性相关1, 2 , 存在一组不全为 0 的数 k 1 , k 2 , , k s ,使得 0 成立;(定义)k 1k 2k s12sx 1x 2 0 有非零解,即 0 有非零解;Ax ( 1 , 2 , , s )x ss ,系数矩阵的秩小于未知数的个数;r ( 1, 2 , , s ) 设 若 m n 的矩阵 A 的秩为 r ,则 n 元齐次线性方程组 Ax 0 的解集 S 的秩为: r ( S ) n r ; 15. 16. * 为 为 0 的一个基础解系,则 *, 线性无关;( Ax b 的一个解,Ax P 题 33 结, , , , , ,111 12 n r 1 2 n r论)5 、 相 似 矩 阵 和 二 次 型(定义),性质:TA 1TA 正交矩阵E 或 A1.A 1 0 1 i ij (i , jT①、 A 的列向量都是单位向量,且两两正交,即 n ) ;a a j 1,2,ij1T②、若 A 为正交矩阵,则 A 也为正交阵,且 ;AA③、若 A 、 B 正交阵,则 AB 也是正交阵;注意:求解正交阵,千万不要忘记 施密特正交化 和单位化 ; 施密特正交化: (a 1 ,a 2 , , a r ) 2.a 1 ;b 1 [ b 1 ,a 2 ] [b 1 ,b 1 ]b a b 221[ b 1 ,a r ] [b 1 , b 1] [ b 2, a r ][b 2 ,b 2 ] [ b r 1,a r ][ b r 1 ,b r 1 ]b a b b b ;rr12 r 1 对于普通方阵,不同特征值对应的特征向量线性无关; 对于 实对称阵 ,不同特征值对应的特征向量正交; 3. ①、 A 与 B 等价A 经过初等变换得到B ;4.B , 、 Q 可逆; PAQ r ( A ) P r (B ) , A 、 B 同型;TC ②、 A 与 B 合同 B ,其中可逆;AC T Tx Ax 与 x Bx 有相同的正、负惯性指数;1 P AP ③、 A 与 B 相似 B ;相似一定合同、合同未必相似;5. 若 C 为正交矩阵,则 TC AC B ,(合同、相似的约束条件不同,相似的更严格) ;B A 6. A 为对称阵,则 A 为二次型矩阵;T7.n 元二次型 x Ax 为正定:A 的正惯性指数为 n ;TC A 与 合同,即存在可逆矩阵 ,使 E ;E C AC A 的所有特征值均为正数;A 的各阶顺序主子式均大于 0;0 ;(必要条件 ) a ii0, A。

最新线性代数公式大全——最新修订突击必备

最新线性代数公式大全——最新修订突击必备

线性代数公式大全最新修订i.1、行列式n (n _D将D上、下翻转或左右翻转,所得行列式为D1,则D’ =(_1)2D ;n (n丄将D顺时针或逆时针旋转90:,所得行列式为D2,则D2=(一1)^ D ; 将D主对角线翻转后(转置),所得行列式为将D主副角线翻转后,所得行列式为行列式的重要公式:主对角行列式:主对角元素的乘积;6.7. ④、副对角行列式:副对角元素的乘积上、下三角行列式(、=i )匚和丄:副对角元素的乘积A O拉普拉斯展开式: A OC Bn (n 1)(_1)F ;:主对角元素的乘积;n (n _!)(-1L ;=(-1严AllB 范德蒙行列式:大指标减小指标的连乘积; 特征值;对于n阶行列式A,恒有:,E-A=,n,' •(-1)k Sj l k ±丄,其中Sk为k阶主子式; 证明A =0的方法:①、A-A ;反证法;构造齐次方程组Ax =0,证明其有非零解; 利用秩,证明r(A) : n ;证明0是其特征值;2、矩阵A是n阶可逆矩阵:A -0 (是非奇异矩阵);r (A)二n (是满秩矩阵)A的行(列)向量组线性无关;齐次方程组Ax二0有非零解;R n, Ax =b总有唯一解;A与E等价;1.2. n行列式共有n2个元素,展开后有n!项,可分解为2n行列式; 代数余子式的性质:①、A j和a ij的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为③、某行(列)的元素乘以该行(列)元素的代数余子式为3.4. 代数余子式和余子式的关系:M j =(-1)j A ij设n行列式D :0;A ;A j =(-1),j M ijD3,则D3 = D ;D 4,则D 4 二D ;5.=A 的特征值全不为 0;=A T A 是正定矩阵;:=A 的行(列)向量组是 R n 的一组基;=A 是R n 中某两组基的过渡矩阵; 2. 对于n 阶矩阵A : AA 二A A = AE 无条件恒成立;3.(A=( A *)-(A 丄)T =( A T )丄(A *)T =( A T )*TT T***111(AB )二 B A (AB )二 B A (AB ) B_A 一4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均 A 、B 可逆:若A = A . ,则: A s 丿A =A AJI| A| ;n 、3、矩阵的初等变换与线性方程组i'%r O1. 一个m n 矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:F ° 。

线性代数公式大全——最新修订(突击必备)

线性代数公式大全——最新修订(突击必备)

线性代数公式大全——最新修订1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3.代数余子式和余子式的关系:4.设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主子式;7.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2.对于阶矩阵:无条件恒成立;3.4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5.矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8.关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;9.线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10.线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3.矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4.;(例15)5.维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6.线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)8.方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9.对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10.若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12.设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13.①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关;14.线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16.若为的一个解,为的一个基础解系,则线性无关;(题33结论)5、相似矩阵和二次型1.正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:;;3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6.为对称阵,则为二次型矩阵;7.元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。

线性代数公式大全——最新修订(突击必备)

线性代数公式大全——最新修订(突击必备)

线性代数公式大全——最新修订1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式;2. 代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3. 代数余子式和余子式的关系:4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于阶行列式,恒有:,其中为阶主子式;7. 证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1. 是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2. 对于阶矩阵:无条件恒成立;3.4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8. 关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;9. 线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10. 线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出 是否有解;(线性方程组)③、向量组的相互线性表示 是否有解;(矩阵方程)3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4. ;(例15)5. 维向量线性相关的几何意义:①、线性相关 ;②、线性相关 坐标成比例或共线(平行);③、线性相关 共面;6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)8. 方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9. 对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10. 若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11. 齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12. 设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13. ①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关;14. 线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15. 设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16. 若为的一个解,为的一个基础解系,则线性无关;(题33结论)5、相似矩阵和二次型1. 正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:;;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5. 相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6. 为对称阵,则为二次型矩阵;7. 元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 代数余子式和余子式的关系: Mij (1)i j Aij
Aij (1)i j Mij
4. 设 n 行列式 D :
n ( n 1)
将 D 上、下翻转或左右翻转,所得行列式为 D1 ,则 D1 (1) 2 D ;
n ( n 1)
将 D 顺时针或逆时针旋转 90 ,所得行列式为 D2 ,则 D2 (1) 2 D ;
( A* )T ( AT )* ( AB)1 B1 A1
4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均 A 、 B 可逆:
A1

A
A2
,则: As
Ⅰ、 A A1 A2 As ;
A11
Ⅱ、
A1
A21
; As1
r
③、求解线形方程组:对于 n 个未知数 n 个方程 Ax b ,如果 (A, b) (E, x) ,则 A 可逆,且 x A1b ;
4. 初等矩阵和对角矩阵的概念: ①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;
1
②、
2
,左乘矩阵
A

i

A
的各行元素;右乘,
n ( n 1)
④、 ◤ 和 ◢ :副对角元素的乘积 (1) 2 ;
⑤、拉普拉斯展开式: A
OA
C A B 、C
AO
A (1)m n A B
CB OB
BO BC
⑥、范德蒙行列式:大指标减小指标的连乘积;
⑦、特征值;
n
6. 对于 n 阶行列式 A ,恒有: E A n (1)k Sknk ,其中 Sk 为 k 阶主子式; k 1
A 的特征值全不为 0;
AT A是正定矩阵; A 的行(列)向量组是 Rn 的一组基; A 是 Rn 中某两组基的过渡矩阵; 2. 对于 n 阶矩阵 A : AA* A* A A E 无条件恒成立;
3. ( A1)* ( A* )1 ( AB)T BT AT
( A1)T ( AT )1 ( AB)* B* A*
1.
一个
mn
矩阵
A
,总可经过初等变换化为标准形,其标准形是唯一确定的:
F
Er O
O O
mn

等价类:所有与 A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;
对于同型矩阵 A 、 B ,若 r(A) r(B)A B ;
2. 行最简形矩阵: ①、只能通过初等行变换获得;
②、
A O
O
1
A1
B
O
O B 1
;(主对角分块)
③、
O B
A 1 O
O
A1
B
1
;(副对角分块)
O
④、
A O
C 1 A1
B
O
A1CB B 1
1
;(拉普拉斯)
⑤、
A C
O
1
A1
B
B 1CA1
O B 1
;(拉普拉斯)
3、 矩 阵 的 初 等 变 换 与 线 性 方 程 组
⑥、 r(A B) r(A) r(B) ;(※)
⑦、 r(AB) min(r(A), r(B)) ;(※)
⑧、如果 A 是 m n 矩阵, B 是 n s 矩阵,且 AB 0 ,则:(※) Ⅰ、 B 的列向量全部是齐次方程组 AX 0 解(转置运算后的结论); Ⅱ、 r(A) r(B) n
E(ij(k))
,且
E(ij(1
1
1
(k
0)

1
5. 矩阵秩的基本性质: ①、 0 r(Amn ) min(m, n) ;
②、 r(AT ) r(A) ;
③、若 A B ,则 r(A) r(B) ;
④、若 P 、 Q 可逆,则 r(A) r(PA) r(AQ) r(PAQ) ;(可逆矩阵不影响矩阵的秩) ⑤、 max(r(A), r(B)) r(A, B) r(A) r(B) ;(※)
将 D 主对角线翻转后(转置),所得行列式为 D3 ,则 D3 D ;
将 D 主副角线翻转后,所得行列式为 D4 ,则 D4 D ;
5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积;
n ( n 1)
②、副对角行列式:副对角元素的乘积 (1) 2 ;
③、上、下三角行列式( ◥ ◣ ):主对角元素的乘积;
线 代 公 式 大 全 。。。。。。。。
1、行列式
1. n 行列式共有 n2 个元素,展开后有 n!项,可分解为 2n 行列式; 2. 代数余子式的性质:
①、 Aij 和 aij 的大小无关;
②、某行(列)的元素乘以其它行(列)元素的代数余子式为 0;
③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ;
⑨、若 A 、 B 均为 n 阶方阵,则 r(AB) r(A) r(B) n ;
6. 三种特殊矩阵的方幂: ①、秩为 1 的矩阵:一定可以分解为列矩阵(向量) 行矩阵(向量)的形式,再采用结合律;
1 a c
②、型如
0
1
b
的矩阵:利用二项展开式;
0 0 1
7. 证明 A 0 的方法:
①、 A A ;
②、反证法; ③、构造齐次方程组 Ax 0 ,证明其有非零解; ④、利用秩,证明 r(A) n ; ⑤、证明 0 是其特征值;
2、矩阵
1. A 是 n 阶可逆矩阵: A 0 (是非奇异矩阵);
r(A) n (是满秩矩阵) A 的行(列)向量组线性无关; 齐次方程组 Ax 0 有非零解; b Rn , Ax b 总有唯一解; A 与 E 等价; A 可表示成若干个初等矩阵的乘积;
i

A
的各列元素;
n
1
1
1
③、对调两行或两列,符号
E(i,
j)
,且
E(i,
j)1
E(i,
j) ,例如:
1
1

1
1
1
④、倍乘某行或某列,符号
E(i(k))
,且
E(i(k))1
E(i( 1 k
))
,例如:
k
1
1
1
1 k
(k 0) ;
1
1
k 1 1
k
⑤、倍加某行或某列,符号
②、每行首个非 0 元素必须为 1;
③、每行首个非 0 元素所在列的其他元素必须为 0;
3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)
r
①、若 (A,E) (E,X ) ,则 A 可逆,且 X A1 ;
c
②、对矩阵 (A, B) 做初等行变化,当 A 变为 E 时, B 就变成 A1B ,即: (A, B)(E, A1B) ;
相关文档
最新文档