高考数学试题分项版—数列解析版

合集下载

高考求数列真题及答案解析

高考求数列真题及答案解析

高考求数列真题及答案解析数列是高中数学中的重要概念,也是高考数学中的必考内容之一。

在高考数学试卷中,数列题目通常包括数列的概念、性质、递推公式、通项公式等方面的考查。

为了帮助广大考生更好地备考数列题目,在本文中,我们将对一些高考数列题目进行解析,希望对考生们有所帮助。

第一题:已知数列{an}的通项公式为an = 2^n + 3^n,求数列{an}的前n项和Sn。

解析:要求数列的前n项和Sn,我们需要先确定数列的通项公式。

题目中给出的通项公式为an = 2^n + 3^n,因此可以得到数列的前n项和Sn的表达式为:Sn = a1 + a2 + ... + an。

将通项公式代入到Sn的表达式中,我们可以得到:Sn = (2^1 + 3^1) + (2^2 + 3^2) + ... + (2^n + 3^n)。

这是一个等差数列求和的问题,由等差数列的求和公式Sn = (a1 + an) * n / 2,我们可以将Sn重新整理为:Sn = [(2^1 + 2^n) + (3^1 + 3^n)] * n / 2。

进一步化简,我们可以得到:Sn = [(2 + 2^n) + (3 + 3^n)] * n / 2。

至此,我们得到了数列{an}的前n项和Sn的表达式。

第二题:已知数列{an}满足an+1 = an + 2n + 3,a1 = 4,求数列{an}的通项公式。

解析:题目给出了数列的递推公式an+1 = an + 2n + 3,我们可以尝试寻找数列的递推关系。

观察递推公式可以得知,数字2n + 3可能是数列的公差。

我们可以将递推公式进行一下变换:an+1 - an = 2n + 3。

再次变形,我们可以得到:an+1 - an - (n + 3) = n。

将等式两边同时累加,可以得到:a2 - a1 - n - 3 = 1 + 2 + ... + (n - 1) + n。

根据等差数列的求和公式,1 + 2 + ... + (n - 1) + n 的等于n(n + 1)/2。

2019年高考数学试题分项版—数列(解析版)

2019年高考数学试题分项版—数列(解析版)

2019年高考数学试题分项版——数列(解析版)一、选择题1.(2019·全国Ⅲ文,6)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4.2.(2019·浙江,10)设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n ∈N *,则( )A .当b =12时,a 10>10 B .当b =14时,a 10>10 C .当b =-2时,a 10>10 D .当b =-4时,a 10>10 答案 A解析 当b =12时,因为a n +1=a n 2+12,所以a 2≥12,又a n +1=a n 2+12≥√2a n ,故a 9≥a 2×(√2)7≥12×(√2)7=4√2,a 10>a 92≥32>10.当b =14时,a n +1-a n =(a n −12)2,故当a 1=a =12时,a 10=12,所以a 10>10不成立.同理b =-2和b =-4时,均存在小于10的数x 0,只需a 1=a =x 0,则a 10=x 0<10,故a 10>10不成立.3.(2019·全国Ⅰ理,9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n答案 A解析 设等差数列{a n }的公差为d ,∵{S 4=0,a 5=5,∴{4a 1+4×32d =0,a 1+4d =5,解得{a 1=−3,d =2, ∴a n =a 1+(n -1)d =-3+2(n -1)=2n -5, S n =na 1+n (n−1)2d =n 2-4n .故选A.4.(2019·全国Ⅲ理,5)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4. 二、填空题1.(2019·全国Ⅰ文,14)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.答案 58解析 设等比数列的公比为q , 则a n =a 1q n -1=q n -1. ∵a 1=1,S 3=34,∴a 1+a 2+a 3=1+q +q 2=34, 即4q 2+4q +1=0,∴q =-12,∴S 4=1×[1−(−12)4]1−(−12)=58.2.(2019·全国Ⅲ文,14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________. 答案 100解析 ∵{a n }为等差数列,a 3=5,a 7=13, ∴公差d =a 7−a 37−3=13−54=2,首项a 1=a 3-2d =5-2×2=1, ∴S 10=10a 1+10×92d =100.3.(2019·江苏,8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________. 答案 16解析 方法一 设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )(a 1+4d )+a 1+7d =a 12+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.方法二 ∵S 9=a 1+a 92×9=27,∴a 1+a 9=6, ∴a 2+a 8=2a 5=6, ∴a 5=3,则a 2a 5+a 8=3a 2+a 8=0, 即2a 2+6=0, ∴a 2=-3,则a 8=9,∴其公差d =a 8−a 58−5=2,∴a 1=-5,∴S 8=8×a 1+a82=16.4.(2019·全国Ⅰ理,14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.答案1213解析 设等比数列{a n }的公比为q ,因为a 42=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1−q 5)1−q=13×(1−35)1−3=1213.5.(2019·全国Ⅲ理,14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则s 10s 5=________.答案 4解析 设等差数列{a n }的公差为d ,由a 2=3a 1, 即a 1+d =3a 1,得d =2a 1,所以s 10s 5=10a1+10×92d 5a1+5×42d=10a1+10×92×2a15a1+5×42×2a1=10025=4.6.(2019·北京理,10)设等差数列{}n a 的前n 项和为n S ,若23a =-,510S =-,则5a = ,n S 的最小值为 .【思路分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,能求出14a =-,1d =,由此能求出5a 的n S 的最小值.【解析】:设等差数列{}n a 的前n 项和为n S ,23a =-,510S =-,∴113545102a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得14a =-,1d =,5144410a a d ∴=+=-+⨯=, 21(1)(1)19814()22228n n n n n S na d n n --=+=-+=--, 4n ∴=或5n =时,n S 取最小值为4510S S ==-.故答案为:0,10-.【归纳与总结】本题考查等差数列的第5项的求法,考查等差数列的前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查推理能力与计算能力,属于基础题. 三、解答题1.(2019·全国Ⅰ文,18)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d . 由S 9=-a 5,即9a 5=-a 5,所以a5=0,得a1+4d=0.由a3=4得a1+2d=4.于是a1=8,d=-2.因此{a n}的通项公式为a n=10-2n,n∈N*.(2)由(1)得a1=-4d,故a n=(n-5)d,.S n=n(n−9)d2由a1>0知d<0,≥(n-5)d,化简得故S n≥a n等价于n(n−9)d2n2-11n+10≤0,解得1≤n≤10,所以n的取值范围是{n|1≤n≤10,n∈N*}.2.(2019·全国Ⅱ文,18)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.3.(2019·北京文,16)设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.解(1)设{a n}的公差为d.因为a1=-10,所以a2=-10+d,a3=-10+2d,a4=-10+3d.因为a2+10,a3+8,a4+6成等比数列,所以(a3+8)2=(a2+10)(a4+6).即(-2+2d)2=d(-4+3d).解得d=2.所以a n=a1+(n-1)d=2n-12.(2)由(1)知,a n=2n-12.则当n≥7时,a n>0;当n≤6时,a n≤0.所以S n 的最小值为S 5=S 6=-30.4.(2019·天津文,18)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,q >0. 依题意,得{3q =3+2d ,3q 2=15+4d ,解得{d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n . (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =[n ×3+n(n−1)2×6]+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ). 记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,② ②-①得,2T n =-3-32-33-…-3n +n ×3n +1 =-3(1−3n )1−3+n ×3n +1=(2n−1)3n+1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n−1)3n+1+32=3(n−1)3n+2+6n 2+92(n ∈N *).5.(2019·浙江,20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.(1)解 设数列{a n }的公差为d ,由题意得 a 1+2d =4,a 1+3d =3a 1+3d , 解得a 1=0,d =2. 从而a n =2n -2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n +1+b n ,S n +2+b n 成等比数列得(S n +1+b n )2=(S n +b n )(S n +2+b n ).解得b n =1a (S n+12-S n S n +2).所以b n =n 2+n ,n ∈N *.(2)证明 c n =√a n 2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N *.我们用数学归纳法证明.①当n =1时,c 1=0<2,不等式成立; ②假设n =k (k ∈N *,k ≥1)时不等式成立,即 c 1+c 2+…+c k <2√k . 那么,当n =k +1时,c 1+c 2+…+c k +c k +1<2√k +√k(k+1)(k+2)<2√k +√1k+1<2√k +√k+1+√k=2√k +2(√k +1-√k )=2√k +1.即当n =k +1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2√n 对任意n ∈N *成立.6.(2019·江苏,20)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”; (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n -2b n+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M -数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k+1成立,求m 的最大值.(1)证明 设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由{a 2a 4=a 5,a 3−4a 2+4a 1=0,得{a 12q 4=a 1q 4,a 1q 2−4a 1q +4a 1=0,解得{a 1=1,q =2.因此数列{a n }为“M -数列”. (2)解 ①因为1S n=2b n-2bn+1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由2S n=2b n-2bn+1,得S n =b nb n+12(b n+1−b n ),当n ≥2时,由b n =S n -S n -1, 得b n =b nb n+12(b n+1−b n)-b n−1bn2(b n−b n−1), 整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n (n ∈N *). ②由①知,b k =k ,k ∈N *.因为数列{c n }为“M -数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以q k -1≤k ≤q k ,其中k =1,2,3,…,m . 当k =1时,有q ≥1; 当k =2,3,…,m 时,有lnk k≤ln q ≤lnkk−1.设f (x )=lnx x(x >1),则f ′(x )=1−lnx x 2(x >1).令f ′(x )=0,得x =e ,列表如下:因为ln22=ln86<ln96=ln33,所以f (k )max =f (3)=ln33.取q =√33,当k =1,2,3,4,5时,lnk k≤ln q ,即k ≤q k ,经检验知q k -1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.7.(2019·全国Ⅱ理,19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.(1)证明 由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n−1,,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12, b n =12[(a n +b n )-(a n -b n )]=12n -n +12.8.(2019·北京理,20)(13分)已知数列{}n a ,从中选取第1i 项、第2i 项、⋯、第m i 项12()m i i i <<⋯<,若12m i i i a a a <<⋯<,则称新数列1i a ,2i a ,⋯,m i a 为{}n a 的长度为m 的递增子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列. (Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p q <,求证:00m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等.若{}n a 的长度为s 的递增子列末项的最小值为21s -,且长度为s 末项为21s -的递增子列恰有12s -个(1s =,2,)⋯,求数列{}n a 的通项公式.【思路分析】()1I ,3,5,6.答案不唯一.()II 考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,可得0n a >该数列的第p 项0m a ,即可证明结论.()III 考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列,这与长度为s 的递增子列末项的最小值为21s -矛盾,可得2s 必在21s -之前.继续考虑末项为21s +的长度为1s +的递增子列.因此对于数列21n -,2n ,由于2n 在21n -之前,可得研究递增子列时,不可同时取2n 与21n -,即可得出:递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.可得2,1,4,3,6,5,⋯⋯,是唯一构造. 【解析】:()1I ,3,5,6.()II 证明:考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,∴0n a >该数列的第p 项0m a , ∴00m n a a <.()III 解:考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列, 这与长度为s 的递增子列末项的最小值为21s -矛盾,2s ∴必在21s -之前. 继续考虑末项为21s +的长度为1s +的递增子列.对于数列21n -,2n ,由于2n 在21n -之前,∴研究递增子列时,不可同时取2n 与21n -, 对于1至2s 的所有整数,研究长度为1s +的递增子列时,第1项是1与2二选1,第2项是3与4二选1,⋯⋯,第s 项是21s -与2s 二选1,故递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.2∴,1,4,3,6,5,⋯⋯,是唯一构造. 即221k a k =-,212k a k -=,*k N ∈.【归纳与总结】本题考查了数列递推关系、数列的单调性,考查了逻辑推理能力、分析问题与解决问题的能力,属于难题.9.(2019·天津理,19)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. (ⅰ)求数列{a 2n (c 2n -1)}的通项公式;(ⅱ)求(n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 依题意得{6q =6+2d ,6q 2=12+4d ,解得{d =3,q =2,所以a n =a 1+(n -1)d =4+(n -1)×3=3n +1, b n =b 1·q n -1=6×2n -1=3×2n .所以{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n . (2)(ⅰ)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ⅱ)a i c i =[a i +a i (c i -1)] =a i +a 2i (c 2i -1)=[2n ×4+2n (2n −1)2×3]+(9×4i -1) =(3×22n -1+5×2n -1)+9×4(1−4n )1−4-n=27×22n -1+5×2n -1-n -12(n ∈N *).。

(天津版)高考数学分项版解析 专题06 数列 理-天津版高三全册数学试题

(天津版)高考数学分项版解析 专题06 数列 理-天津版高三全册数学试题

第六章 数列一.基础题组1.【2005某某,理13】在数列{}n a 中,11a =,22a =且()()*211nn n a a n N +-=+-∈则100S =__________。

【答案】2600【解析】当n 为奇数时,20n n a a +-=;当n 为偶数时,22n n a a +-= 因此,数列{}n a 的奇数各项都是1,偶数项成公差为2的等差数列()()()210010011505021005050260022a a S a a ++=+=+=本题答案填写:26002.【2006某某,理7】已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于( )A .55B .70C .85D .100 【答案】C3.【2006某某,理16】设函数()11+=x x f ,点0A 表示坐标原点,点()()()*,N n n f n A n ∈,若向量01121n n n a A A A A A A -=+++,n θ是n a 与i 的夹角,(其中()0,1=i),设n n S θθθtan tan tan 21+++= ,则n n S ∞→lim =.【答案】1【解析】设函数()11+=x x f ,点0A 表示坐标原点,点()()()*,N n n f n A n ∈,若向量01121n n n a A A A A A A -=+++=0n A A ,n θ是n a 与i 的夹角,111tan (1)n n n n n θ+==+(其中()0,1=i ),设n n S θθθtan tan tan 21+++= 111111223(1)1n n n +++=-⋅⋅++,则nn S ∞→lim =1.4.【2007某某,理8】设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k = ( )A.2B.4C.6D.8【答案】B 【解析】k a 是1a 与2k a 的等比中项可得12k k a a a =⨯(*),由{}n a 为等差数列可得121(1),(21)k k a a k d a a k d =+-=+-及19a d =代入(*)式可得4k =.故选B5.【2007某某,理13】设等差数列{}n a 的公差d 是2,前n 项的和为,n S 则22lim n n na n S →∞-=__________. 【答案】3 【解析】根据题意知11(1)222n a a n n a =+-⨯=+-21,(1)n S n n a =+-代入极限式得22112134(2)(2)lim 3(1)n n a n a n n a →∞+-+-=+- 6.【2008某某,理15】已知数列{}n a 中,()*31,1111N n a a a n n n ∈=-=++,则=∞→nn a lim .【答案】767.【2009某某,理6】设a >0,b >0.若3是3a与3b的等比中项,则ba 11+的最小值为( ) A.8 B.4 C.1 D.41【答案】B【解析】3是3a 与3b 的等比中项⇒3a·3b=3⇒3a+b =3⇒a+b =1,∵a>0,b >0,∴41212≤⇒=+≤ab b a ab .∴4411111=≥=+=+ab ab b a b a . 8.【2010某某,理6】已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( )A.158或5 B.3116或5 C.3116 D.158【答案】C法二:∵S6=S3+a4+a5+a6=S3+S3·q3, ∴9S3=S3+S3·q3得q3=8,解得q =2. ∴{1n a }是首项为1,公比为12的等比数列. ∴其前5项和为511[1()]31211612-=-9.【2011某某,理4】已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .110 【答案】D.【解析】∵2,9327-=•=d a a a ,∴)16)(4()12(1121--=-a a a ,解之得201=a ,∴110)2(2910201010=-⨯+⨯=s . 10.【2014某某,理11】设n a 是首项为1a ,公差为1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.【答案】12-. 【解析】试题分析:依题意得2214S S S ,∴21112146a a a ,解得112a . 考点:1.等差数列、等比数列的通项公式;2.等比数列的前n 项和公式.二.能力题组1.【2005某某,理18】已知:()1221*,0,0n n n n n n u a a b a b ab b n N a b ---=+++++∈>>。

【2023高考必备】2013-2022十年全国高考数学真题分类(全国通用版):数列解答题(解析版)

【2023高考必备】2013-2022十年全国高考数学真题分类(全国通用版):数列解答题(解析版)
2013-2022 十年全国高考数学真题分类汇编
专题 06 数列解答题
1.(2022
年全国甲卷理科·第
17
题)记
Sn
为数列 an 的前
n
项和.已知
2Sn n
n
2an
1.
(1)证明: an 是等差数列;
(2)若 a4, a7 , a9 成等比数列,求 Sn 的最小值.
【答案】(1)证明见解析:; (2) 78 .
解析:(1)设数列an 的公差为d
,所以,
aa11dd22bb118ab11
2d
a1
4b1 3d
,即可解得,
b1
a1
d 2

所以原命题得证.
(2)由(1)知, b1
a1
d 2
,所以 bk
am
a1
b1 2k1
a1
m 1 d
a1 ,即 2k1
2m ,亦即
m 2k2 1,500 ,解得 2 k 10 ,所以满足等式的解 k 2,3, 4,,10 ,故集合
解析:(1)解:因为
2Sn n
n
2an
1,即 2Sn
n2
2nan
n
①,
当 n 2 时, 2Sn1 n 12 2 n 1 an1 n 1 ②,
① ②得, 2Sn n2 2Sn1 n 12 2nan n 2n 1 an1 n 1 ,
即 2an 2n 1 2nan 2n 1 an1 1 ,
k | bk am a1,1 m 500 中的元素个数为10 2 1 9 .
【题目栏目】数列\数列的综合应用\数列的综合问题 【题目来源】2022 新高考全国 II 卷·第 17 题

十年(2014-2023)高考数学真题分项汇编文科专题5 数列小题(文科)(解析版)

十年(2014-2023)高考数学真题分项汇编文科专题5  数列小题(文科)(解析版)

n 项和
Sn,公差
d≠0, a1 d
1 .记
b1=S2,
bn+1=Sn+2–S2n, n N ,下列等式不可能成立的是
( )
A.2a4=a2+a6
B.2b4=b2+b6
C. a42 a2a8
D. b42 b2b8
【答案】D
解析:对于 A,因为数列an 为等差数列,所以根据等差数列的下标和性质,由 4 4 2 6 可得,
由 an
a1
n
1 d
0
可得 n
1
a1 d
,取
N0
1
a1 d
1 ,则当 n
N0
时, an
0,
所以,“an 是递增数列” “存在正整数 N0 ,当 n N0 时, an 0 ”;
若存在正整数 N0 ,当 n N0 时, an 0 ,取 k N 且 k N0 , ak 0 ,
假设 d
0 ,令 an
Sn =
1 2
An An+1 ×tan q Bn Bn+1 ,都为定值,所以 Sn+1 - Sn 为定值.故选 A.
3.(2022 高考北京卷·第 15 题)己知数列an 各项均为正数,其前 n 项和 Sn 满足 an Sn 9(n 1, 2,) .给
出下列四个结论:
①an 的第 2 项小于 3; ②an 为等比数列;
2a4 a2 a6 ,A 正确;
对于 B,由题意可知, bn1 S2n2 S2n a2n1 a2n2 , b1 S2 a1 a2 ,
∴ b2 a3 a4 , b4 a7 a8 , b6 a11 a12 , b8 a15 a16 .
∴ 2b4 2 a7 a8 , b2 b6 a3 a4 a11 a12 .

高考十(理科)分项版 专题06 数列(浙江专版)(解析版)

高考十(理科)分项版 专题06 数列(浙江专版)(解析版)

一.基础题组1. 【2012年.浙江卷.理7】设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0 D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列 【答案】C【解析】 若{S n }为递增数列,则当n ≥2时,S n -S n -1=a n >0,即n ≥2时,a n 均为正数,而a 1是正数、负数或是零均有可能,故对任意n ∈N *,不一定S n 始终大于0.2. 【2012年.浙江卷.理13】设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =__________.3. 【2010年.浙江卷.理3】设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =( ) (A )11 (B )5 (C )8- (D )11- 【答案】D【解析】通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题4. 【2010年.浙江卷.理15】设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是__________________ . 【答案】(),2222,⎡-∞-+∞⎣【解析】:5. 【2009年.浙江卷.理11】设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = . 答案:15【解析】对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--6. 【2008年.浙江卷.理6】已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =( )(A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n--21)7. 【2006年.浙江卷.理11】设S n 为等差数列{}n a 的前n 项和,若51010,5S S ==-,则公差为 (用数字作答). 【答案】-1【解析】设首项为1a ,公差为d ,由题意得11115101022110455291a d a d d a d a d +=+=⎧⎧⇒⇒=-⎨⎨+=-+=-⎩⎩ 所以答案应填:-18. 【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D.140,0a d dS <>9. 【2016高考浙江理数】如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合).若1n n n n n n n d A B S A B B +=,为△的面积,则( )A .{}n S 是等差数列B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列【答案】A 【解析】试题分析:n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan )2n n n n S h A A B B θ+=+⋅,111111(tan )2n n n n S h A A B B θ+++=+⋅,作差后:1111(tan )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A .考点:等差数列的定义.【思路点睛】先求出1n n n +∆A B B 的高,再求出1n n n +∆A B B 和112n n n +++∆A B B 的面积n S 和1n S +,进而根据等差数列的定义可得1n n S S +-为定值,即可得{}n S 是等差数列.10.【2016高考浙江理数】设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .二.能力题组1. 【2013年.浙江卷.理18】(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.【答案】【解析】:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0, 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11. 则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =212122n n -+. 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=212122n n -+110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=22121,11,22121110,12.22n n n n n n ⎧-+≤⎪⎪⎨⎪-+≥⎪⎩ 三.拔高题组1. 【2014年.浙江卷.理19】(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 .若{}na 为等比数列,且.6,2231b ba +==(1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。

高考数学试题分项版—数列解析版

高考数学试题分项版—数列解析版
2 所以 an= 2n-1(n≥ 2.)
又由题设可得 a1= 2,满足上式,
6 / 15
所以 { an} 的通项公式为
2 an= 2n-1.
an (2) 记 2n+ 1 的前 n 项和为 Sn.
an
2
1
1
由(1) 知2n+ 1= 2n+ 1 2n-1 = 2n- 1- 2n+ 1,

Sn=
11-
13+
2017 年高考数学试题分项版—数列(解析版)
一、选择题
1. (2017 ·浙江, 6)已知等差数列 { an} 的公差为 d,前 n 项和为 Sn,则 “d> 0”是 “S4+ S6> 2S5” 的( )
A .充分不必要条件
B.必要不充分条件
C.充分必要条件
D .既不充分也不必要条件
1.【答案】 C 【解析】方法一 ∵数列 { an} 是公差为 d 的等差数列, ∴S4= 4a1+ 6d, S5 =5a1+ 10d, S6= 6a1+ 15d, ∴S4+ S6= 10a1+ 21d,2S5= 10a1+ 20d. 若 d> 0,则 21d> 20d,10a1+ 21d> 10a1+ 20d,
3.【答案】- 8 【解析】设等比数列 { an} 的公比为 q. ∵a1+ a2=- 1, a1 -a3 =- 3, ∴a1(1+q)=- 1,① a1(1- q2)=- 3.② ②÷①,得 1- q=3,∴ q=- 2.
∴a1= 1,
4 / 15
∴a4= a1q3= 1×(- 2)3=- 8.
A .- 24
B.- 3
C. 3
D .8
5.【答案】 A 【解析】由已知条件可得 a1= 1,d≠0, ቤተ መጻሕፍቲ ባይዱ a23= a2a6,可得 (1+ 2d) 2= (1+ d)(1 +5d), 解得 d=- 2.

2024年高考真题汇总 数列(解析版)

2024年高考真题汇总 数列(解析版)

专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。

高考求数列真题及解析答案

高考求数列真题及解析答案

高考求数列真题及解析答案数学作为高考中最为重要的科目之一,对于考生来说是一道必考题。

而在数学中,数列是一个相对较难的章节,常常考察学生对数列的理解和应用能力。

本文将为大家提供一些高考中常见的数列真题及解析答案,希望对广大考生有所帮助。

一、等差数列等差数列是指一个数列中的每个数与它前面的数之差都相等的数列。

它是数学中最常见的数列形式之一。

下面是一个关于等差数列的高考题:【例题】已知一个等差数列的首项为 3,公差为 2,前 n 项和为 S_n。

若 S_7 = 84,求 n。

解析:我们首先利用等差数列的通项公式 a_n = a_1 + (n - 1)d,其中 a_n 表示第 n 项,a_1 表示首项,d 表示公差。

根据题目中给出的信息,我们可以得到等差数列的第 7 项为 3 + (7 - 1) × 2 = 17。

根据等差数列的前 n 项和公式 S_n = (n/2)(a_1 + a_n),我们可以得到 S_7 = (7/2)(3 + 17) = 84。

解这个方程可以得到 n = 12。

因此,答案为 n = 12。

二、等比数列等比数列是指一个数列中的每一项与它前面的一项的比值都相等的数列。

等比数列在高考中常常被用来考察考生对等比数列的性质和应用的理解。

下面是一个关于等比数列的高考题:【例题】已知一个等比数列的首项为 2,公比为 3/4,前 n 项和为 S_n。

若 S_4 = 56/3,求 n。

解析:我们首先利用等比数列的通项公式a_n = a_1 × r^(n - 1),其中 a_n 表示第 n 项,a_1 表示首项,r 表示公比。

根据题目中给出的信息,我们可以得到等比数列的第 4 项为2 × (3/4)^(4 - 1) = 27/16。

根据等比数列的前 n 项和公式S_n = a_1 × (1 - r^n) / (1 - r),我们可以得到S_4 = 2 × (1 - (3/4)^4) / (1 - 3/4)= 56/3。

2021-2022年高考数学分项汇编 专题06 数列(含解析)理

2021-2022年高考数学分项汇编 专题06 数列(含解析)理

2021年高考数学分项汇编专题06 数列(含解析)理一.基础题组1. 【xx课标全国Ⅱ,理3】等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( ).A. B. C. D.【答案】:C2. 【xx全国,理5】已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列{}的前100项和为( )A. B. C. D.【答案】 A=.3. 【xx全国2,理4】如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7等于( )A.14 B.21 C.28 D.35【答案】:C4. 【xx全国2,理14】已知△ABC的三个内角A,B,C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为 .【答案】:5. 【xx新课标,理17】(本小题满分12分)已知数列满足=1,.(Ⅰ)证明是等比数列,并求的通项公式;(Ⅱ)证明:.【解析】:(Ⅰ)证明:由得,所以,所以是等比数列,首项为,公比为3,所以,解得.(Ⅱ)由(Ⅰ)知:,所以,因为当时,,所以,于是=,所以.6. 【2011新课标,理17】等比数列{a n}的各项均为正数,且2a1+3a2=1,.(1)求数列{a n}的通项公式;(2)设b n=log3a1+log3a2+…+log3a n,求数列的前n项和.7. 【xx高考新课标2,理16】设是数列的前n项和,且,,则________.【答案】【解析】由已知得,两边同时除以,得,故数列是以为首项,为公差的等差数列,则,所以.【考点定位】等差数列和递推关系.8.二.能力题组1. 【xx课标全国Ⅱ,理16】等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为__________.【答案】:-492. 【xx全国2,理18】已知数列{a n}的前n项和S n=(n2+n)·3n.(1)求;(2)证明>3n.【解析】: (1)解:===1-,==,所以=.3. 【xx全国3,理20】(本小题满分12分)在等差数列中,公差的等差中项.已知数列成等比数列,求数列的通项4. 【xx全国2,理18】(本小题满分12分)已知是各项为不同的正数的等差数列,、、成等差数列.又,.(Ⅰ) 证明为等比数列;(Ⅱ) 如果无穷等比数列各项的和,求数列的首项和公差.(注:无穷数列各项的和即当时数列前项和的极限)三.拔高题组1. 【xx全国2,理11】设S n是等差数列{a n}的前n项和,若=,则等于()A. B. C. D.【答案】:A【解析】:由已知设a1+a2+a3=T,a4+a5+a6=2T,a7+a8+a9=3T,a10+a11+a12=4T.∴=.∴选A.2. 【xx全国2,理11】如果为各项都大于零的等差数列,公差,则()(A) (B) (C) (D) 【答案】B3. 【xx 全国,理22】函数f (x )=x 2-2x -3,定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3;(2)求数列{x n }的通项公式.由归纳假设知121134554432223k k k k x x x x +++++==-<-=+++; x k +2-x k +1=,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由①②知对任意的正整数n,2≤x n <x n +1<3.4. 【xx全国2,理22】设数列{a n}的前n项和为S n,且方程x2-a n x-a n=0有一根为S n-1,n= 1,2,3,….(1)求a1,a2;(2)求{a n}的通项公式.由①可得S3=.由此猜想S n=,n=1,2,3,….下面用数学归纳法证明这个结论.(ⅰ)n=1时已知结论成立.(ⅱ)假设n=k时结论成立,即S k=,当n=k+1时,由①得S k+1=,即S k+1=,故n=k+1时结论也成立.综上,由(ⅰ)(ⅱ)可知S n=对所有正整数n都成立.于是当n≥2时,a n=S n-S n-1=-=,又n=1时,a1==,所以{a n}的通项公式为a n=,n=1,2,3,….。

2023年高考数学真题题源解密(新高考全国卷)专题07 数列(解析版)

2023年高考数学真题题源解密(新高考全国卷)专题07  数列(解析版)

专题07数列目录一览考向一等差数列1.(2023•新高考Ⅰ•第7题)记S n为数列{a n}的前n项和,设甲:{a n}为等差数列;乙:{���}为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C解:若{a n}是等差数列,设数列{a n}的首项为a1,公差为d,则S n=na1+�(�−1)2d,即���=a1+�−12d=�2n+a1−�2,故{���}为等差数列,即甲是乙的充分条件.��+1�+1−���=D,反之,若{���}为等差数列,则可设则���=S1+(n﹣1)D,即S n=nS1+n(n﹣1)D,当n≥2时,有S n1=(n﹣1)S1+(n﹣1)(n﹣2)D,﹣上两式相减得:a n=S n﹣S n﹣1=S1+2(n﹣1)D,当n=1时,上式成立,所以a n=a1+2(n﹣1)D,则a n+1﹣a n=a1+2nD﹣[a1+2(n﹣1)D]=2D(常数),所以数列{a n}为等差数列.即甲是乙的必要条件.综上所述,甲是乙的充要条件.考向二等比数列2.(2023•新高考Ⅱ•第8题)记S n为等比数列{a n}的前n项和,若S4=﹣5,S6=21S2,则S8=()A.120B.85C.﹣85D.﹣120【答案】C解:等比数列{a n}中,S4=5,S6=21S2,显然公比q≠1,设首项为a1,则�1(1−�4)1−�=−5①,�1(1−�6)1−�=21�1(1−�2)1−�②,化简②得q4+q2﹣20=0,解得q2=4或q2=﹣5(不合题意,舍去),代入①得�11−�=13,所以S8=�1(1−�8)1−�=�11−�(1﹣q4)(1+q4)=13×(﹣15)×(1+16)=﹣85.考向三数列综合3.(2023•新高考Ⅰ•第20题)设等差数列{a n}的公差为d,且d>1.令b n=�2+���,记S n,T n分别为数列{a n},{b n}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{a n}的通项公式;(2)若{b n}为等差数列,且S99﹣T99=99,求d.解:(1)∵3a2=3a1+a3,S3+T3=21,∴根据题意可得3(�1+�)=3�1+�1+2�3�1+3�+(2�1+6�1+�+12�1+2�)=21,∴�1=�6�+9�=21,∴2d 2﹣7d +3=0,又d >1,∴解得d =3,∴a 1=d =3,∴a n =a 1+(n ﹣1)d =3n ,n ∈N *;(2)∵{a n }为等差数列,{b n }为等差数列,且b n =�2+���,∴根据等差数列的通项公式的特点,可设a n =tn ,则��=�+1�,且d =t >1;或设a n =k (n +1),则��=��,且d =k >1,①当a n =tn ,��=�+1�,d =t >1时,则S 99﹣T 99=(�+99�)×992−(2�+100�)×992=99,∴50�−51�=1,∴50t 2﹣t ﹣51=0,又d =t >1,∴解得d =t =5150;②当a n =k (n +1),��=��,d =k >1时,则S 99﹣T 99=(2�+100�)×992−(1�99�)×992=99,∴51�−50�=1,∴51k 2﹣k ﹣50=0,又d =k >1,∴此时k 无解,∴综合可得d =5150.4.(2023•新高考Ⅱ•第18题)已知{a n }为等差数列,b n =��−6,�为奇数2��,�为偶数,记S n ,T n 为{a n },{b n }的前n项和,S 4=32,T 3=16.(1)求{a n }的通项公式;(2)证明:当n >5时,T n >S n .解:(1)设等差数列{a n }的公差为d ,S n ,T n 为{a n }{b n }的前n 项和,S 4=32,T 3=16,则�1+�2+�3+�4=32�1−6+2�2+�3−6=16,即4�1+4(4−1)2�=32�2=7,解得�1=5�=2,故a n=5+2(n﹣1)=2n+3;(2)证明:由(1)可知,��=2�−3,�为奇数4�+6,�为偶数,��=(5+2�+3)�2=(�+4)�,当n为偶数时,n>5,T n=﹣1+3+•••+2(n﹣1)﹣3+14+22+•••+4n+6=�2[−1+2(�−1)−3]2+�2(14+4�+6)2=�2(14+6�)2=�(3�+7)2,��−��=�2−�2>0,当n为奇数时,n>5,T n=T n﹣1+b n=(�−1)(3�+4)2+2�−3=3�2+5�−102,T n﹣S n=�2−3�−102>25−15−102=0,故原式得证.【命题意图】考查等差、等比数列的通项公式和前n项和公式,考查等差、等比数列的性质;考查数列的求和方法,考查根据数列的递推公式求通项公式,考查数列和其他知识结合等综合知识.【考查要点】数列是高考考查热点之一,其中等差、等比数列的通项公式、求和公式,以及与等差、等比数列有关的错位相消求和及裂项相消求和,是考查的重点.作为数列综合题,常和充要条件、方程、不等式、函数等结合,涉及到恒成立,存在,最值,解不等式或者证明不等式等,对于基础能力和基础运算要求较高.【得分要点】1.解决等差、等比数列有关问题的几点注意1 等差数列、等比数列公式和性质的灵活应用;2 对于计算解答题注意基本量及方程思想的运用;3 注重问题的转化,由非等差数列、非等比数列构造出新的等差数列或等比数列,以便利用相关公式和性质解题;4 当题目中出现多个数列时,既要纵向考察单一数列的项与项之间的关系,又要横向考察各数列之间的内在联系.2.数列求和问题一般转化为等差数列或等比数列的前n项和问题或已知公式的数列求和,不能转化的再根据数列通项公式的特点选择恰当的方法求解.,一般常见的求和方法有:(一)公式法②等比数列的前n 项和公式:③数列前n 项和重要公式:(2)1(21)n k k 13521n 2n(5)等差数列中,m n m n S S S mnd ;(6)等比数列中,n m m n n m m nS S q S S q S.二 分组求和法:把一个数列分成几个可以直接求和的数列.三 裂项 相消 法:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(1)适用条件:若{a n }是公差为d (d ≠0)的等差数列,{b n }是公比为q (q ≠1)的等比数列,求数列{a n b n }的前n 项和S n ;(2)基本步骤(3)注意事项:①在写出S n 与qS n 的表达式时,应特别注意将两式“错位对齐”,以便下一步准确写出S n -qS n ;②作差后,等式右边有第一项、中间n -1项的和式、最后一项三部分组成;③运算时,经常把b 2+b 3+…+b n 这n -1项和看成n 项和,把-a n b n +1写成+a n b n +1导致错误.五 倒序相加法如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法,等差数列前n项和公式的推导便使用了此法.用倒序相加法解题的关键,就是要能够找出首项和末项之间的关系,因为有时这种关系比较隐蔽.考向一等差数列5.(2022•新高考Ⅱ)图1是中国古代建筑中的举架结构,AA′,BB′,CC′,DD′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为=0.5,=k1,=k2,=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=()A.0.75B.0.8C.0.85D.0.9【解答】解:设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,由题意得:k1=k3﹣0.2,k2=k3﹣0.1,且,解得k3=0.9,故选:D.考向二数列递推公式6.(多选)(2021•新高考Ⅱ)设正整数n=a0•20+a1•21+…+a k1•2k﹣1+a k•2k,其中a i∈{0,1},记ω(n)=﹣a0+a1+…+a k,则()A.ω(2n)=ω(n)B.ω(2n+3)=ω(n)+1C.ω(8n+5)=ω(4n+3)D.ω(2n﹣1)=n【解答】解:∵2n=a0•21+a1•22+…+a k﹣1•2k+a k•2k+1,∴ω(2n)=ω(n)=a0+a1+…+a k,∴A对;当n=2时,2n+3=7=1•20+1•21+1•22,∴ω(7)=3.∵2=0•20+1•21,∴ω(2)=0+1=1,∴ω(7)≠ω(2)+1,∴B错;∵8n+5=a0•23+a1•24+•••+a k•2k+3+5=1•20+1•22+a0•23+a1•24+•••+a k•2k+3,∴ω(8n+5)=a0+a1+•••+a k+2.∵4n+3=a0•22+a1•23+•••+a k•2k+2+3=1•20+1•21+a0•22+a1•23+•••+a k•2k+2,∴ω(4n+3)=a0+a1+•••+a k+2=ω(8n+5).∴C对;∵2n﹣1=1•20+1•21+•••+1•2n﹣1,∴ω(2n﹣1)=n,∴D对.故选:ACD.考向三数列的求和7.(2021•新高考Ⅰ)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为;如果对折n次,那么S k=dm2.【解答】解:易知有,,共5种规格;由题可知,对折k次共有k+1种规格,且面积为,故,则,记,则,∴T n=﹣=1+(﹣)﹣=,∴,∴.故答案为:5;.考向四数列综合8.(2021•新高考Ⅱ)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)求使S n>a n成立的n的最小值.【解答】解:(Ⅰ)数列S n是公差d不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.根据等差数列的性质,a3=S5=5a3,故a3=0,根据a2a4=S4可得(a3﹣d)(a3+d)=(a3﹣2d)+(a3﹣d)+a3+(a3+d),整理得﹣d2=﹣2d,可得d=2(d=0不合题意),故a n=a3+(n﹣3)d=2n﹣6.(Ⅱ)a n=2n﹣6,a1=﹣4,S n=﹣4n+×2=n2﹣5n,S n>a n,即n2﹣5n>2n﹣6,整理可得n2﹣7n+6>0,当n>6或n<1时,S n>a n成立,由于n为正整数,故n的最小正值为7.9.(2021•新高考Ⅰ)已知数列{a n}满足a1=1,a n+1=(1)记b n=a2n,写出b1,b2,并求数列{b n}的通项公式;(2)求{a n}的前20项和.【解答】解:(1)因为a1=1,a n+1=,所以a2=a1+1=2,a3=a2+2=4,a4=a3+1=5,所以b1=a2=2,b2=a4=5,b n﹣b n1=a2n﹣a2n﹣2=a2n﹣a2n﹣1+a2n﹣1﹣a2n﹣2=1+2=3,n≥2,﹣所以数列{b n}是以b1=2为首项,以3为公差的等差数列,所以b n=2+3(n﹣1)=3n﹣1.另解:由题意可得a2n+1=a2n﹣1+3,a2n+2=a2n+3,其中a1=1,a2=a1+1=2,于是b n=a2n=3(n﹣1)+2=3n﹣1,n∈N*.(2)由(1)可得a2n=3n﹣1,n∈N*,则a2n1=a2n﹣2+2=3(n﹣1)﹣1+2=3n﹣2,n≥2,﹣当n=1时,a1=1也适合上式,所以a2n1=3n﹣2,n∈N*,﹣所以数列{a n}的奇数项和偶数项分别为等差数列,则{a n}的前20项和为a1+a2+...+a20=(a1+a3+…+a19)+(a2+a4+…+a20)=10+×3+10×2+×3=300.10.(2022•新高考Ⅰ)记S n为数列{a n}的前n项和,已知a1=1,{}是公差为的等差数列.(1)求{a n}的通项公式;(2)证明:++…+<2.【解答】解:(1)已知a1=1,{}是公差为的等差数列,所以,整理得,①,故当n≥2时,,②,①﹣②得:,故(n﹣1)a n=(n+1)a n﹣1,化简得:,,........,,;所以,故(首项符合通项).所以.证明:(2)由于,所以,所以=.11.(2022•新高考Ⅱ)已知{a n}是等差数列,{b n}是公比为2的等比数列,且a2﹣b2=a3﹣b3=b4﹣a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素的个数.【解答】解:(1)证明:设等差数列{a n}的公差为d,由a2﹣b2=a3﹣b3,得a1+d﹣2b1=a1+2d﹣4b1,则d=2b1,由a2﹣b2=b4﹣a4,得a1+d﹣2b1=8b1﹣(a1+3d),即a1+d﹣2b1=4d﹣(a1+3d),∴a1=b1.(2)由(1)知,d=2b1=2a1,由b k=a m+a1知,,∴,即2k﹣1=2m,又1≤m≤500,故2≤2k﹣1≤1000,则2≤k≤10,故集合{k|b k=a m+a1,1≤m≤500}中元素个数为9个.重点考查等差、等比数列的概念、性质、通项公式和前n项和,考查错位相减、裂项相消等求和方法。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考数学试题分项版—数列(解析版)一、选择题1.(2017·浙江,6)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件1.【答案】C【解析】方法一∵数列{a n}是公差为d的等差数列,∴S4=4a1+6d,S5=5a1+10d,S6=6a1+15d,∴S4+S6=10a1+21d,2S5=10a1+20d.若d>0,则21d>20d,10a1+21d>10a1+20d,即S4+S6>2S5.若S4+S6>2S5,则10a1+21d>10a1+20d,即21d>20d,∴d>0.∴“d>0”是“S4+S6>2S5”的充分必要条件.故选C.方法二∵S4+S6>2S5⇔S4+S4+a5+a6>2(S4+a5)⇔a6>a5⇔a5+d>a5⇔d>0.∴“d>0”是“S4+S6>2S5”的充分必要条件.故选C.2.(2017·全国Ⅰ理,4)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.82.【答案】C【解析】设{a n }的公差为d ,由⎩⎪⎨⎪⎧ a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧ (a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,解得d =4.故选C.3.(2017·全国Ⅰ理,12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .1103.【答案】A【解析】设首项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推.则第n 组的项数为n ,前n 组的项数和为n (1+n )2. 由题意知,N >100,令n (1+n )2>100⇒n ≥14且n ∈N *,即N 出现在第13组之后. 第n 组的各项和为1-2n 1-2=2n -1,前n 组所有项的和为2(1-2n )1-2-n =2n +1-2-n . 设N 是第n +1组的第k 项,若要使前N 项和为2的整数幂,则N -n (1+n )2项的和即第n +1组的前k 项的和2k -1应与-2-n 互为相反数,即2k -1=2+n (k ∈N *,n ≥14),k =log 2(n+3)⇒n 最小为29,此时k =5,则N =29×(1+29)2+5=440.故选A. 4.(2017·全国Ⅱ理,3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.【答案】B 【解析】设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q , 则由题意知S 7=381,q =2,∴S 7=a 1(1-q 7)1-q =a 1(1-27)1-2=381,解得a 1=3.故选B. 5.(2017·全国Ⅲ理,9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }的前6项和为( )A .-24B .-3C .3D .85.【答案】A【解析】由已知条件可得a 1=1,d ≠0,由a 23=a 2a 6,可得(1+2d )2=(1+d )(1+5d ), 解得d =-2.所以S 6=6×1+6×5×(-2)2=-24. 故选A.二、填空题1.(2017·江苏,9)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.1.【答案】32【解析】设{a n }的首项为a 1,公比为q ,则⎩⎪⎨⎪⎧ a 1(1-q 3)1-q=74,a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2,所以a 8=14×27=25=32 2.(2017·全国Ⅱ理,15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则11nk k S ==∑________. 2.【答案】2n n +1【解析】 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧ a 3=a 1+2d =3,S 4=4a 1+4×32d =10,得⎩⎪⎨⎪⎧a 1=1,d =1. ∴S n =n ×1+n (n -1)2×1=n (n +1)2, 1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1. ∴11nk k S ==∑1S 1+1S 2+1S 3+…+1S n =2⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1n +1 =2⎝⎛⎭⎫1-1n +1=2n n +1.3.(2017·全国Ⅲ理,14)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.3.【答案】-8【解析】设等比数列{a n }的公比为q .∵a 1+a 2=-1,a 1-a 3=-3,∴a 1(1+q )=-1,①a 1(1-q 2)=-3.②②÷①,得1-q =3,∴q =-2.∴a 1=1,∴a 4=a 1q 3=1×(-2)3=-8.4.(2017·北京理,10)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.4.【解析】设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则由a 4=a 1+3d ,得d =a 4-a 13=8-(-1)3=3, 由b 4=b 1q 3,得q 3=b 4b 1=8-1=-8, ∴q =-2.∴a 2b 2=a 1+d b 1q =-1+3-1×(-2)=1. 三、解答题1.(2017·全国Ⅰ文,17)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.1.解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6, 解得q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎡⎦⎤-23+(-1)n 2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.2.(2017·全国Ⅱ文,17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.2.解 设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)·d ,b n =q n -1.由a 2+b 2=2得d +q =3.①(1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧ d =3q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2. 因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0.解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21.当q =4时,由①得d =-1,则S 3=-6.3.(2017·全国Ⅲ文,17)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和. 3.解 (1)因为a 1+3a 2+…+(2n -1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1), 两式相减,得(2n -1)a n =2,所以a n =22n -1(n ≥2). 又由题设可得a 1=2,满足上式,所以{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n . 由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1, 则S n =11-13+13-15+…+12n -1-12n +1=2n 2n +1. 4.(2017·北京文,15)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;(2)求和:b 1+b 3+b 5+…+b 2n -1.4.解 (1)设等差数列{a n }的公差为d .因为a 2+a 4=10,所以2a 1+4d =10,解得d =2,所以a n =2n -1.(2)设等比数列{b n }的公比为q ,因为b 2b 4=a 5,所以b 1qb 1q 3=9,解得q 2=3, 所以b 2n -1=b 1q 2n -2=3n -1.从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12. 5.(2017·天津文,18)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b n }的前n 项和(n ∈N *).5.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12.而b 1=2,所以q 2+q -6=0,解得q =-3或q =2. 又因为q >0,所以q =2.所以b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8.①由S 11=11b 4,可得a 1+5d =16.②联立①②,解得a 1=1,d =3,由此可得a n =3n -2. 所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n .(2)设数列{a 2n b n }的前n 项和为T n .由a 2n =6n -2,得T n =4×2+10×22+16×23+…+(6n -2)×2n , 2T n =4×22+10×23+16×24+…+(6n -8)×2n +(6n -2)×2n +1. 上述两式相减,得-T n =4×2+6×22+6×23+…+6×2n -(6n -2)×2n +1 =12×(1-2n )1-2-4-(6n -2)×2n +1 =-(3n -4)2n +2-16,所以T n =(3n -4)2n +2+16.所以数列{a 2n b n }的前n 项和为(3n -4)2n +2+16.6.(2017·山东文,19)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .6.解 (1)设{a n }的公比为q ,由题意知a 1(1+q )=6,a 21q =a 1q 2,又a n >0,由以上两式联立方程组解得a 1=2,q =2, 所以a n =2n .(2)由题意知S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b n a n ,则c n =2n +12n , 因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1, 所以T n =5-2n +52n . 7.(2017·浙江,22)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *). 证明:当n ∈N *时,(1)0<x n +1<x n ;(2)2x n +1-x n ≤x n x n +12; (3)12n -1≤x n ≤12n -2. 7.证明 (1)用数学归纳法证明x n >0.当n =1时,x 1=1>0.假设n =k 时,x k >0,那么n =k +1时,若x k +1≤0,则0<x k =x k +1+ln(1+x k +1)≤0,与假设矛盾, 故x k +1>0,因此x n >0(n ∈N *).所以x n =x n +1+ln(1+x n +1)>x n +1,因此0<x n +1<x n (x ∈N *).(2)由x n =x n +1+ln(1+x n +1)得,x n x n +1-4x n +1+2x n =x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1). 记函数f (x )=x 2-2x +(x +2)ln(1+x )(x ≥0).f ′(x )=2x 2+x x +1+ln ()1+x >0(x >0), 函数f (x )在[0,+∞)上单调递增,所以f (x )≥f (0)=0, 因此x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1)=f (x n +1)≥0,故2x n +1-x n ≤x n x n +12(n ∈N *). (3)因为x n =x n +1+ln(1+x n +1)≤x n +1+x n +1=2x n +1,所以x n ≥12n -1. 由x n x n +12≥2x n +1-x n 得1x n +1-12≥2⎝⎛⎭⎫1x n -12>0, 所以1x n -12≥2⎝⎛⎭⎫1x n -1-12≥…≥2n -1⎝⎛⎭⎫1x 1-12=2n -2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N *). 8.(2017·江苏,19)对于给定的正整数k ,若数列{a n }满足a n -k +a n -k +1+…+a n -1+a n +1+…+a n +k -1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.8.证明 (1)因为{a n }是等差数列,设其公差为d ,则a n =a 1+(n -1)d ,从而,当n ≥4时,a n -k +a n +k =a 1+(n -k -1)d +a 1+(n +k -1)d=2a 1+2(n -1)d =2a n ,k =1,2,3,所以a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n ,因此等差数列{a n }是“P (3)数列”.(2)数列{a n }既是“P (2)数列”,又是“P (3)数列”,因此,当n ≥3时,a n -2+a n -1+a n +1+a n +2=4a n ,①当n ≥4时,a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n .②由①知,a n -3+a n -2=4a n -1-(a n +a n +1),③a n +2+a n +3=4a n +1-(a n -1+a n ).④将③④代入②,得a n -1+a n +1=2a n ,其中n ≥4,所以a 3,a 4,a 5,…是等差数列,设其公差为d ′.在①中,取n =4,则a 2+a 3+a 5+a 6=4a 4,所以a 2=a 3-d ′,在①中,取n =3,则a 1+a 2+a 4+a 5=4a 3,所以a 1=a 3-2d ′,所以数列{a n }是等差数列.9.(2017·北京理,20)设{a n }和{b n }是两个等差数列,记c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }(n =1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n -1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,c n n>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.9.(1)解:c 1=b 1-a 1=1-1=0,c 2=max{b 1-2a 1,b 2-2a 2}=max{1-2×1,3-2×2}=-1,c 3=max{b 1-3a 1,b 2-3a 2,b 3-3a 3}=max{1-3×1,3-3×2,5-3×3}=-2.当n ≥3时,(b k +1-na k +1)-(b k -na k )=(b k +1-b k )-n (a k +1-a k )=2-n <0,所以b k -na k 关于k ∈N *单调递减.所以c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }=b 1-a 1n =1-n .所以对任意n ≥1,c n =1-n ,于是c n +1-c n =-1,所以{c n }是等差数列.(2)证明:设数列{a n }和{b n }的公差分别为d 1,d 2,则b k -na k =b 1+(k -1)d 2-[a 1+(k -1)d 1]n =b 1-a 1n +(d 2-nd 1)(k -1).所以c n =⎩⎪⎨⎪⎧b 1-a 1n +(n -1)(d 2-nd 1),d 2>nd 1,b 1-a 1n ,d 2≤nd 1. ①当d 1>0时,取正整数m >d 2d 1,则当n ≥m 时,nd 1>d 2, 因此,c n =b 1-a 1n ,此时,c m ,c m +1,c m +2,…是等差数列.②当d 1=0时,对任意n ≥1,c n =b 1-a 1n +(n -1)max{d 2,0}=b 1-a 1+(n -1)(max{d 2,0}-a 1). 此时,c 1,c 2,c 3,…,c n ,…是等差数列.③当d 1<0时,当n >d 2d 1时,有nd 1<d 2, 所以c n n =b 1-a 1n +(n -1)(d 2-nd 1)n=n (-d 1)+d 1-a 1+d 2+b 1-d 2n≥n (-d 1)+d 1-a 1+d 2-|b 1-d 2|.对任意正数M ,取正整数m >max ⎩⎨⎧⎭⎬⎫M +|b 1-d 2|+a 1-d 1-d 2-d 1,d 2d 1, 故当n ≥m 时,c n n>M . 10.(2017·天津理,18)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).10.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12,而b 1=2,所以q 2+q -6=0.又因为q >0,解得q =2,所以b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8①由S 11=11b 4,可得a 1+5d =16②联立①②,解得a 1=1,d =3,由此可得a n =3n -2. 所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n .(2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n ,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,③4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,④ ③-④,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1 =-(3n -2)×4n +1-8,得T n =3n -23×4n +1+83. 所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83. 11.(2017·山东理,19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .11.解 (1)设数列{x n }的公比为q .由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2. 所以3q 2-5q -2=0,由已知得q >0,所以q =2,x 1=1.因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1. 由(1)得x n +1-x n =2n -2n -1=2n -1,记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n =(n +n +1)2×2n -1=(2n +1)×2n -2, 所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2.① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1 =32+21-2n -11-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.。

相关文档
最新文档