实验二 栈和队列的基本操作实现及其应用
栈和队列的实验报告
栈和队列的实验报告栈和队列的实验报告引言:栈和队列是计算机科学中常用的数据结构,它们在算法设计和程序开发中起着重要的作用。
本实验旨在通过实际操作和观察,深入理解栈和队列的概念、特点以及它们在实际应用中的作用。
一、栈的实验1.1 栈的定义和特点栈是一种具有特殊操作约束的线性数据结构,它的特点是“先进后出”(Last-In-First-Out,LIFO)。
栈的操作包括入栈(push)和出栈(pop),入栈操作将元素放入栈顶,出栈操作将栈顶元素移除。
1.2 实验步骤在本次实验中,我们使用编程语言实现了一个栈的数据结构,并进行了以下实验步骤:1.2.1 创建一个空栈1.2.2 向栈中依次压入若干元素1.2.3 查看栈顶元素1.2.4 弹出栈顶元素1.2.5 再次查看栈顶元素1.3 实验结果通过实验,我们观察到栈的特点:最后入栈的元素最先出栈。
在实验步骤1.2.2中,我们依次压入了元素A、B和C,栈顶元素为C。
在实验步骤1.2.4中,我们弹出了栈顶元素C,此时栈顶元素变为B。
二、队列的实验2.1 队列的定义和特点队列是一种具有特殊操作约束的线性数据结构,它的特点是“先进先出”(First-In-First-Out,FIFO)。
队列的操作包括入队(enqueue)和出队(dequeue),入队操作将元素放入队尾,出队操作将队头元素移除。
2.2 实验步骤在本次实验中,我们使用编程语言实现了一个队列的数据结构,并进行了以下实验步骤:2.2.1 创建一个空队列2.2.2 向队列中依次插入若干元素2.2.3 查看队头元素2.2.4 删除队头元素2.2.5 再次查看队头元素2.3 实验结果通过实验,我们观察到队列的特点:最先入队的元素最先出队。
在实验步骤2.2.2中,我们依次插入了元素X、Y和Z,队头元素为X。
在实验步骤2.2.4中,我们删除了队头元素X,此时队头元素变为Y。
三、栈和队列的应用栈和队列在实际应用中有广泛的应用场景,下面简要介绍一些常见的应用:3.1 栈的应用3.1.1 表达式求值:通过栈可以实现对表达式的求值,如中缀表达式转换为后缀表达式,并计算结果。
栈和队列的应用实验报告
}SqStack;
void CreateStack(SqStack &S);
void PushStack(SqStack &S,int e);
void PopStack(SqStack &S);
void DestroyStack(SqStack &S);
void PrintfStack(SqStack &S);
}
void DestroyStack(SqStack &S)
{ free(S.base);
S.base=NULL;
*S.top=-1;
S.stacksize=0;
printf("栈清空成功\n");
}
void PrintfStack(SqStack &S)
{ int *p;
p=S.top;
printf("The stack is:");
}
*S.top++=e;
printf("%d插入成功!\n",e);
}
void PopStack(SqStack &S)
{ int m;
if(S.top==S.base)
{ printf("The stack is empty!\n");
return;
}
m=*--S.top;
printf("%d is out of the stack!\n",m);
scanf("%d",&m);
}
while(m--)
{ printf("请输入要入栈的元素:");
数据结构栈和队列实验报告
数据结构栈和队列实验报告实验报告:数据结构栈和队列一、实验目的1.了解栈和队列的基本概念和特点;2.掌握栈和队列的基本操作;3.掌握使用栈和队列解决实际问题的方法。
二、实验内容1.栈的基本操作实现;2.队列的基本操作实现;3.使用栈和队列解决实际问题。
三、实验原理1.栈的定义和特点:栈是一种具有后进先出(LIFO)特性的线性数据结构,不同于线性表,栈只能在表尾进行插入和删除操作,称为入栈和出栈操作。
2.队列的定义和特点:队列是一种具有先进先出(FIFO)特性的线性数据结构,不同于线性表,队列在表头删除元素,在表尾插入元素,称为出队和入队操作。
3.栈的基本操作:a.初始化:建立一个空栈;b.入栈:将元素插入栈的表尾;c.出栈:删除栈表尾的元素,并返回该元素;d.取栈顶元素:返回栈表尾的元素,不删除。
4.队列的基本操作:a.初始化:建立一个空队列;b.入队:将元素插入队列的表尾;c.出队:删除队列表头的元素,并返回该元素;d.取队头元素:返回队列表头的元素,不删除。
四、实验步骤1.栈的实现:a.使用数组定义栈,设置栈的大小和栈顶指针;b.实现栈的初始化、入栈、出栈和取栈顶元素等操作。
2.队列的实现:a.使用数组定义队列,设置队列的大小、队头和队尾指针;b.实现队列的初始化、入队、出队和取队头元素等操作。
3.使用栈解决实际问题:a.以括号匹配问题为例,判断一个表达式中的括号是否匹配;b.使用栈来实现括号匹配,遍历表达式中的每个字符,遇到左括号入栈,遇到右括号时将栈顶元素出栈,并判断左右括号是否匹配。
4.使用队列解决实际问题:a.以模拟银行排队问题为例,实现一个简单的银行排队系统;b.使用队列来模拟银行排队过程,顾客到达银行时入队,处理完业务后出队,每个顾客的业务处理时间可以随机确定。
五、实验结果与分析1.栈和队列的基本操作实现:a.栈和队列的初始化、入栈/队、出栈/队以及取栈顶/队头元素等操作均能正常运行;b.栈和队列的时间复杂度均为O(1),操作效率很高。
数据结构实验报告2栈、队列、递归程序设计
日期:学号:姓名:
实验名称:实验报告二栈、队列、递归程序设计
实验目的与要求:
2.1栈和队列的基本操作
(1)正确理解栈的先进后出的操作特点,建立初始栈,通过相关操作显示栈底元素。
(2)程序中要体现出建栈过程和取出栈底元素后恢复栈的入栈过程,按堆栈的操作规则打印结果栈中的元素
{
return(s->top==-1);
}
//---出栈函数
int Pop(SeqStack *&s,ElemType &e)
{
if (s->top==-1)
return 0;
e=s->data[s->top];
s->top--;
return 1;
}
//---初始队列函数
void InitQueue(SqQueue *&q)
q->rear=(q->rear+1)%MaxSize;
q->elem[q->rear]=e;
return 1;
}
//---出队列函数
int OutQueue(SqQueue *&q,ElemType &e)
{
if (q->front==q->rear) //队空
return 0;
q->front=(q->front+1)%MaxSize;
printf("(10)栈为%s,",(StackEmpty(s)?"空":"非空"));
printf("队列为%s\n",(QueueEmpty(q)?"空":"非空"));
栈与队列实验报告总结
栈与队列实验报告总结实验报告总结:栈与队列一、实验目的本次实验旨在深入理解栈(Stack)和队列(Queue)这两种基本的数据结构,并掌握其基本操作。
通过实验,我们希望提高自身的编程能力和对数据结构的认识。
二、实验内容1.栈的实现:我们首先使用Python语言实现了一个简单的栈。
栈是一种后进先出(LIFO)的数据结构,支持元素的插入和删除操作。
在本次实验中,我们实现了两个基本的栈操作:push(插入元素)和pop(删除元素)。
2.队列的实现:然后,我们实现了一个简单的队列。
队列是一种先进先出(FIFO)的数据结构,支持元素的插入和删除操作。
在本次实验中,我们实现了两个基本的队列操作:enqueue(在队尾插入元素)和dequeue(从队头删除元素)。
3.栈与队列的应用:最后,我们使用所实现的栈和队列来解决一些实际问题。
例如,我们使用栈来实现一个算术表达式的求值,使用队列来实现一个简单的文本行编辑器。
三、实验过程与问题解决在实现栈和队列的过程中,我们遇到了一些问题。
例如,在实现栈的过程中,我们遇到了一个“空栈”的错误。
经过仔细检查,我们发现是因为在创建栈的过程中没有正确初始化栈的元素列表。
通过添加一个简单的初始化函数,我们解决了这个问题。
在实现队列的过程中,我们遇到了一个“队列溢出”的问题。
这是因为在实现队列时,我们没有考虑到队列的容量限制。
通过添加一个检查队列长度的条件语句,我们避免了这个问题。
四、实验总结与反思通过本次实验,我们对栈和队列这两种基本的数据结构有了更深入的理解。
我们掌握了如何使用Python语言实现这两种数据结构,并了解了它们的基本操作和实际应用。
在实现栈和队列的过程中,我们也学到了很多关于编程的技巧和方法。
例如,如何调试代码、如何设计数据结构、如何优化算法等。
这些技巧和方法将对我们今后的学习和工作产生积极的影响。
然而,在实验过程中我们也发现了一些不足之处。
例如,在实现栈和队列时,我们没有考虑到异常处理和性能优化等方面的问题。
实验二 堆栈和队列基本操作的编程实现
HUBEI UNIVERSITY OF AUTOMOTIVE TECHNOLOGY
数据结构
实验报告
实验二堆栈和队列基本操作的编程实现
【实验目的】
堆栈和队列基本操作的编程实现
要求:
堆栈和队列基本操作的编程实现(2学时,验证型),掌握堆栈和队列的建立、进栈、出栈、进队、出队等基本操作的编程实现,存储结构可以在顺序结构或链接结构中任选,也可以全部实现。
也鼓励学生利用基本操作进行一些应用的程序设计。
【实验性质】
验证性实验(学时数:2H)
【实验内容】
内容:把堆栈和队列的顺序存储(环队)和链表存储的数据进队、出队等运算其中一部分进行程序实现。
可以实验一的结果自己实现数据输入、数据显示的函数。
利用基本功能实现各类应用,如括号匹配、回文判断、事物排队模拟、数据逆序生成、多进制转换等。
【注意事项】
1.开发语言:使用C。
2.可以自己增加其他功能。
【实验分析、说明过程】
【思考问题】
【实验小结】 (总结本次实验的重难点及心得、体会、收获)。
实验报告——栈和队列的应用
实验报告——栈和队列的应用第一篇:实验报告——栈和队列的应用实验5 栈和队列的应用目的和要求:(1)熟练栈和队列的基本操作;(2)能够利用栈与队列进行简单的应用。
一、题目题目1.利用顺序栈和队列,实现一个栈和一个队列,并利用其判断一个字符串是否是回文。
所谓回文,是指从前向后顺读和从后向前倒读都一样的字符串。
例如,a+b&b+a等等。
题目2.假设在周末舞会上,男士们和女士们进入舞厅时,各自排成一队。
跳舞开始时,依次从男队和女队的队头上各出一人配成舞伴。
若两队初始人数不相同,则较长的那一队中未配对者等待下一轮舞曲。
现要求写一算法模拟上述舞伴配对问题,并实现。
题目3.打印机提供的网络共享打印功能采用了缓冲池技术,队列就是实现这个缓冲技术的数据结构支持。
每台打印机具有一个队列(缓冲池),用户提交打印请求被写入到队列尾,当打印机空闲时,系统读取队列中第一个请求,打印并删除之。
请利用队列的先进先出特性,完成打印机网络共享的先来先服务功能。
题目4.假设以数组Q[m]存放循环队列中的元素, 同时设置一个标志tag,以tag == 0和tag == 1来区别在队头指针(front)和队尾指针(rear)相等时,队列状态为“空”还是“满”。
试编写与此结构相应的插入(enqueue)和删除(dlqueue)算法。
题目5.利用循环链队列求解约瑟夫环问题。
请大家从本组未讨论过的五道题中选择一道,参照清华邓俊辉老师MOOC视频及课本相关知识,编写相应程序。
选择题目3:打印机提供的网络共享打印功能采用了缓冲池技术,队列就是实现这个缓冲技术的数据结构支持。
二、程序清单//Ch3.cpp #include #include #include“ch3.h” template void LinkedQueue::makeEmpty()//makeEmpty//函数的实现{ LinkNode*p;while(front!=NULL)//逐个删除队列中的结点{p=front;front=front->link;delete p;} };template bool LinkedQueue::put_in(T&x){//提交命令函数if(front==NULL){//判断是否为空front=rear=new LinkNode;//如果为空,新结点为对头也为对尾front->data=rear->data=x;if(front==NULL)//分配结点失败return false;} else{rear->link=new LinkNode;//如不为空,在链尾加新的结点rear->link->data=x;if(rear->link==NULL)return false;rear=rear->link;} return true;};template bool LinkedQueue::carry_out()//执行命令函数 { if(IsEmpty()==true)//判断是否为空{return false;} cout<data<LinkNode*p=front;front=front->link;//删除以执行的命令,即对头修改delete p;//释放原结点return true;};void main()//主函数 { LinkedQueue q;//定义类对象char flag='Y';//标志是否输入了命令const int max=30;//一次获取输入命令的最大个数while(flag=='Y')//循环{ int i=0;char str[max];//定义存储屏幕输入的命令的数组gets(str);//获取屏幕输入的命令while(str[i]!=''){q.put_in(str[i]);//调用提交命令函数,将每个命令存入队列中i++;}for(int j=0;j<=i;j++){if(q.IsEmpty()==true)//判断是否为空,为空则说明没有可执行的命令{cout<cin>>flag;continue;//为空跳出for循环为下次输入命令做好准备}q.carry_out();//调用执行命令的函数,将命令打印并删除}三、程序调试过程中所出现的错误无。
栈的操作(实验报告)
引言:栈是一种常见的数据结构,它具有特殊的操作规则,即先进后出(LIFO)。
本文将介绍栈的操作,并结合实验报告的方式详细阐述栈的概念、基本操作以及应用场景。
概述:栈是一种线性数据结构,由相同类型的元素按照特定顺序排列而成。
在栈中,只能在栈顶进行插入和删除操作,其他位置的元素无法直接访问。
栈具有两个基本操作:压栈(push)和弹栈(pop)。
其中,压栈将一个元素添加到栈顶,弹栈则是删除栈顶的元素。
除了基本操作外,栈还具有其他常见的操作,如获取栈顶元素(top)、判断栈是否为空(empty)等。
正文内容:一、栈的基本操作1.压栈(push)push操作的实现原理和步骤在实际应用中的使用场景和例子2.弹栈(pop)pop操作的实现原理和步骤在实际应用中的使用场景和例子3.获取栈顶元素(top)top操作的实现原理和步骤在实际应用中的使用场景和例子4.判断栈是否为空(empty)empty操作的实现原理和步骤在实际应用中的使用场景和例子5.栈的大小(size)size操作的实现原理和步骤在实际应用中的使用场景和例子二、栈的应用场景1.括号匹配使用栈实现括号匹配的原理和过程在编译器、计算表达式等领域中的应用2.浏览器的后退和前进功能使用栈来记录浏览器访问历史的原理和过程实现浏览器的后退和前进功能3.函数调用和递归使用栈来实现函数调用和递归的原理和过程在程序执行过程中的应用和注意事项4.实现浏览器缓存使用栈来实现浏览器缓存的原理和过程提高用户浏览速度的实际应用案例5.撤销操作使用栈来实现撤销操作的原理和过程在编辑器、图形处理软件等领域的实际应用总结:本文详细介绍了栈的操作,包括基本操作(压栈、弹栈、获取栈顶元素、判断栈是否为空、栈的大小)和应用场景(括号匹配、浏览器的后退和前进功能、函数调用和递归、实现浏览器缓存、撤销操作)。
通过了解栈的操作和应用,我们可以更好地理解数据结构中的栈,并能够在实际问题中灵活运用栈的特性。
栈和队列实验报告
栈和队列实验报告实验名称:栈和队列的实验研究摘要:本实验旨在通过设计并实现基于栈和队列的算法,探索其在数据结构和算法中的应用。
通过实验比较栈和队列的性能差异和适用场景,加深对栈和队列的理解和应用。
实验结果表明,栈和队列在不同的问题场景中具有不同的优势和适用性。
关键词:栈、队列、数据结构、算法、应用一、引言栈和队列是数据结构中常见且重要的两种数据结构,它们分别以LIFO(Last In First Out,后进先出)和FIFO(First In First Out,先进先出)的方式操作数据,广泛应用于各领域的编程和算法设计中。
本实验通过实现栈和队列相关操作的算法,探索它们在实际应用中的效率和优势。
二、实验设计与实现1.实验设计本实验采用C++语言来实现栈和队列的操作,并编写相应的算法来解决一些典型问题。
实验将比较栈和队列在以下几个方面的性能差异:a)插入操作的性能b)删除操作的性能c)查询操作的性能d)栈和队列的空间占用情况2.实验步骤a)设计栈的数据结构和相关操作的算法。
b)设计队列的数据结构和相关操作的算法。
c)分别使用栈和队列来解决一个典型问题,并比较它们的效率。
d)分析实验结果,总结栈和队列的适用场景和优势。
三、实验结果与分析1.栈的性能比较在本次实验中,我们使用栈来解决斐波那契数列问题。
首先,我们设计了一个栈的数据结构,并实现了如下操作:a) 入栈(push):将元素添加到栈顶。
b) 出栈(pop):将栈顶元素移出栈。
c) 查询栈顶元素(top):返回栈顶元素。
对比使用数组和链表实现栈的性能,我们发现使用链表实现的栈在插入和删除操作上有更好的性能表现,而使用数组实现的栈在查询操作上更高效。
这是因为使用链表实现的栈不需要移动大量元素,而使用数组实现的栈可以通过索引直接访问任意位置的元素。
2.队列的性能比较在本次实验中,我们使用队列来解决击鼓传花问题。
首先,我们设计了一个队列的数据结构,并实现了如下操作:a) 入队(enqueue):将元素添加到队列末尾。
栈和队列的应用实验报告
栈和队列的应用实验报告栈和队列的应用实验报告引言:栈和队列是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验报告旨在探讨栈和队列的基本概念、特性以及它们在实际应用中的具体使用。
一、栈的基本概念和特性栈是一种特殊的数据结构,它遵循“先进后出”的原则。
栈有两个基本操作:压栈(push)和弹栈(pop)。
压栈将元素添加到栈的顶部,弹栈则将栈顶元素移除。
栈还具有一个重要的特性,即它的访问方式是受限的,只能访问栈顶元素。
在实际应用中,栈可以用于实现递归算法、表达式求值、括号匹配等。
例如,在递归算法中,当函数调用自身时,需要将当前状态保存到栈中,以便在递归结束后能够恢复到正确的状态。
另外,栈还可以用于实现浏览器的“后退”功能,每次浏览新页面时,将当前页面的URL压入栈中,当用户点击“后退”按钮时,再从栈中弹出最近访问的URL。
二、队列的基本概念和特性队列是另一种常见的数据结构,它遵循“先进先出”的原则。
队列有两个基本操作:入队(enqueue)和出队(dequeue)。
入队将元素添加到队列的尾部,出队则将队列头部的元素移除。
与栈不同的是,队列可以访问头部和尾部的元素。
在实际应用中,队列经常用于任务调度、消息传递等场景。
例如,在操作系统中,任务调度器使用队列来管理待执行的任务,每当一个任务执行完毕后,从队列中取出下一个任务进行执行。
另外,消息队列也是一种常见的应用,它用于在分布式系统中传递消息,保证消息的顺序性和可靠性。
三、栈和队列在实际应用中的具体使用1. 栈的应用栈在计算机科学中有广泛的应用。
其中一个典型的应用是表达式求值。
当计算机遇到一个复杂的表达式时,需要将其转化为逆波兰表达式,然后使用栈来进行求值。
栈的特性使得它非常适合处理这种情况,可以方便地保存运算符和操作数的顺序,并按照正确的顺序进行计算。
另一个常见的应用是括号匹配。
在编程语言中,括号是一种常见的语法结构,需要保证括号的匹配性。
数据结构实验2——栈和队列实验报告
数据结构实验报告实验名称:实验2——栈和队列1 实验目的通过选择下面五个题目之一进行实现,掌握如下内容:进一步掌握指针、模板类、异常处理的使用掌握栈的操作的实现方法掌握队列的操作的实现方法学习使用栈解决实际问题的能力学习使用队列解决实际问题的能力2 实验内容利用栈结构实现八皇后问题。
八皇后问题19世纪著名的数学家高斯于1850年提出的。
他的问题是:在8*8的棋盘上放置8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列、同一斜线上。
请设计算法打印所有可能的摆放方法。
提示:1、可以使用递归或非递归两种方法实现2、实现一个关键算法:判断任意两个皇后是否在同一行、同一列和同一斜线上2. 程序分析主程序:#include<iostream>using namespace std;const int StackSize=8; //皇后的个数int num=0;template <class T>class SeqStack //定义顺序栈模板类{public:SeqStack(){top=-1;} //构造函数,初始化空栈void Push(T x); //入栈操作void Pop();//出栈操作void PlaceQueen(int row); //放置皇后bool Judgement();//判断是否符合条件void Print();//输出符合条件的皇后排列bool Empty(){if(top==-1) return true;else return false;}; //判断栈是否为空private:T data[StackSize]; //定义数组int top; //栈顶指针};template <class T>void SeqStack<T>::Push(T x) //入栈操作{if(top>=StackSize-1) throw"上溢";top++;//栈顶指针上移data[top]=x;}template <class T>void SeqStack<T>::Pop()//出栈操作{if(Empty()) throw"下溢";top--;//栈顶指针下移}template <class T>bool SeqStack<T>::Judgement()//判断该位置是否合适{for(int i=0;i<top;i++)if(data[top]==data[i]||(abs(data[top]-data[i]))==(top-i))//判断是否满足任意两个皇后不在同列同一斜线return false;return true;}template <class T>void SeqStack<T>::PlaceQueen(int row) //放置皇后{for (int i=0;i<StackSize;i++){Push(i); //入栈if (Judgement())//判断位置是否合适{if (row<StackSize-1)PlaceQueen(row+1); //如果合适满足条件则放置一个皇后,递归调用else{num++;//不满足条件则到下一行Print();//输出符合条件的皇后}}Pop();//出栈}}template <class T>void SeqStack<T>::Print()//输出皇后函数{cout<<"NO."<<num<<":"<<endl; for(int i=0;i<StackSize;i++){for(int j=0;j<data[i];j++){cout<<"□";}cout<<"■";for(int j=StackSize-1;j>data[i];j--){cout<<"□";}cout<<endl;}cout<<endl;}void main(){SeqStack<int> Queen;Queen.PlaceQueen(0);cout<<"总共有"<<num<<"种摆放方法。
数据结构栈和队列实验报告
数据结构栈和队列实验报告一、实验目的本次实验的主要目的是深入理解和掌握数据结构中的栈和队列的基本概念、操作原理以及实际应用。
通过编程实现栈和队列的相关操作,加深对其特性的认识,并能够运用栈和队列解决实际问题。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
三、实验原理(一)栈栈(Stack)是一种特殊的线性表,其操作遵循“后进先出”(Last In First Out,LIFO)的原则。
可以将栈想象成一个只有一端开口的容器,元素只能从开口端进出。
入栈操作(Push)将元素添加到栈顶,出栈操作(Pop)则从栈顶移除元素。
(二)队列队列(Queue)也是一种线性表,但其操作遵循“先进先出”(FirstIn First Out,FIFO)的原则。
队列就像是排队买票的队伍,先到的人先接受服务。
入队操作(Enqueue)将元素添加到队列的末尾,出队操作(Dequeue)则从队列的头部移除元素。
四、实验内容(一)栈的实现与操作1、定义一个栈的数据结构,包含栈顶指针、存储元素的数组以及栈的最大容量等成员变量。
2、实现入栈(Push)操作,当栈未满时,将元素添加到栈顶,并更新栈顶指针。
3、实现出栈(Pop)操作,当栈不为空时,取出栈顶元素,并更新栈顶指针。
4、实现获取栈顶元素(Top)操作,返回栈顶元素但不进行出栈操作。
5、实现判断栈是否为空(IsEmpty)和判断栈是否已满(IsFull)的操作。
(二)队列的实现与操作1、定义一个队列的数据结构,包含队头指针、队尾指针、存储元素的数组以及队列的最大容量等成员变量。
2、实现入队(Enqueue)操作,当队列未满时,将元素添加到队尾,并更新队尾指针。
3、实现出队(Dequeue)操作,当队列不为空时,取出队头元素,并更新队头指针。
4、实现获取队头元素(Front)操作,返回队头元素但不进行出队操作。
5、实现判断队列是否为空(IsEmpty)和判断队列是否已满(IsFull)的操作。
栈和队列基本操作实验报告
栈和队列基本操作实验报告实验二堆栈和队列基本操作的编程实现【实验目的】堆栈和队列基本操作的编程实现要求:堆栈和队列基本操作的编程实现(2学时,验证型),掌握堆栈和队列的建立、进栈、出栈、进队、出队等基本操作的编程实现,存储结构可以在顺序结构或链接结构中任选,也可以全部实现。
也鼓励学生利用基本操作进行一些应用的程序设计。
【实验性质】验证性实验(学时数:2H)【实验内容】内容:把堆栈和队列的顺序存储(环队)和链表存储的数据进队、出队等运算其中一部分进行程序实现。
可以实验一的结果自己实现数据输入、数据显示的函数。
利用基本功能实现各类应用,如括号匹配、回文判断、事物排队模拟、数据逆序生成、多进制转换等。
【实验分析、说明过程】分析:进栈操作先创建一个以x为值的新结点p,其data域值为x则进栈操作步骤如下: 将新结点p的指针域指向原栈顶S(执行语句p->next=S)。
将栈顶S指向新结点p(执行语句S=p)。
注:进栈操作的?与?语句执行顺序不能颠倒,否则原S指针其后的链表将丢失。
出栈操作先将结点栈顶S数据域中的值赋给指针变量*x,则删除操作步骤如下: 结点p 指针域指向原栈顶S(执行语句p=S)。
栈顶S指向其的下一个结点(执行语句S=S->next)释放p结点空间(执行语句free(p))。
队列分析:用链式存储结构实现的队列称为链队列,一个链队列需要一个队头指针和一个队尾指针才能唯一确定。
队列中元素的结构和前面单链表中的结点的结构一样。
为了操作方便,在队头元素前附加一个头结点,队头指针就指向头结点。
【思考问题】1. 栈的顺序存储和链表存储的差异,答:栈的顺序存储有‘后进先出’的特点,最后进栈的元素必须最先出来,进出栈是有序的,在对编某些需要按顺序操作的程序有很大的作用。
链表存储:通过链表的存储可以实现链表中任意位置的插入元素,删除任意元素,可以实现无序进出。
2. 还会有数据移动吗,为什么,答:栈的顺序存储不会有数据移动,移动的只是指向该数据地址的指针。
栈和队列实验报告
栈和队列实验报告引言:计算机科学中的数据结构是解决问题的关键。
栈和队列这两种常用的数据结构,无疑在许多实际应用中起着重要的作用。
本篇报告旨在探讨栈和队列的实验结果,并展示它们的实际应用。
一、栈的实验结果及应用1. 栈的实验结果在实验中,我们设计了一个基于栈的简单计算器,用于实现基本的四则运算。
通过栈的先进后出(Last In First Out)特性,我们成功实现了表达式的逆波兰表示法,并进行了正确的计算。
实验结果表明,栈作为一个非常有效的数据结构,可以很好地处理栈内数据的存储和检索。
2. 栈的应用栈在计算机科学中有许多实际应用。
其中之一是程序调用的存储方式。
在程序调用过程中,每个函数的返回地址都可以通过栈来保存和恢复。
另一个应用是浏览器的历史记录。
浏览器中每个访问网页的URL都可以通过栈来存储,以便用户能够追溯他们之前访问的网页。
二、队列的实验结果及应用1. 队列的实验结果在实验中,我们模拟了一个简单的出租车调度系统,利用队列的先进先出(First In First Out)特性实现乘客的排队和叫车。
实验结果表明,队列作为一个具有高效性和可靠性的数据结构,能够很好地处理排队问题。
2. 队列的应用队列在许多方面都有应用。
一个常见的应用是消息队列。
在网络通信中,消息队列可以用于存储和传递信息,确保按照特定的顺序进行处理。
另一个应用是操作系统的进程调度。
操作系统使用队列来管理各个进程的执行顺序,以实现公平和高效的资源分配。
三、栈和队列的比较及选择1. 效率比较栈和队列在实际应用中的效率取决于具体问题的需求。
栈的操作更简单,仅涉及栈顶元素的插入和删除,因此具有更高的执行速度。
而队列涉及到队头和队尾元素的操作,稍复杂一些。
但是,队列在某些问题中的应用更为广泛,例如调度问题和消息传递问题。
2. 如何选择在选择栈和队列时,需要根据实际问题的性质和需求进行综合考虑。
如果问题需要追溯历史记录或按照特定顺序进行处理,则应选择栈作为数据结构。
栈队列及其应用实验报告
一、实验目的1. 理解栈和队列的基本概念、特点及逻辑结构。
2. 掌握栈和队列的存储结构,包括顺序存储结构和链式存储结构。
3. 熟练掌握栈和队列的基本操作,如入栈、出栈、入队、出队等。
4. 分析栈和队列在实际问题中的应用,提高解决实际问题的能力。
二、实验内容1. 栈和队列的定义及特点2. 栈和队列的存储结构3. 栈和队列的基本操作4. 栈和队列的实际应用案例分析三、实验过程1. 栈和队列的定义及特点栈(Stack)是一种后进先出(Last In First Out,LIFO)的数据结构,它只允许在一端进行插入和删除操作。
栈的典型应用场景有函数调用、递归算法等。
队列(Queue)是一种先进先出(First In First Out,FIFO)的数据结构,它允许在两端进行插入和删除操作。
队列的典型应用场景有打印队列、任务队列等。
2. 栈和队列的存储结构(1)顺序存储结构栈和队列的顺序存储结构使用数组来实现。
对于栈,通常使用数组的一端作为栈顶,入栈操作在栈顶进行,出栈操作也在栈顶进行。
对于队列,通常使用数组的一端作为队首,入队操作在队尾进行,出队操作在队首进行。
(2)链式存储结构栈和队列的链式存储结构使用链表来实现。
对于栈,每个元素节点包含数据和指向下一个节点的指针。
入栈操作在链表头部进行,出栈操作在链表头部进行。
对于队列,每个元素节点包含数据和指向下一个节点的指针。
入队操作在链表尾部进行,出队操作在链表头部进行。
3. 栈和队列的基本操作(1)栈的基本操作- 入栈(push):将元素添加到栈顶。
- 出栈(pop):从栈顶删除元素。
- 获取栈顶元素(peek):获取栈顶元素,但不删除它。
- 判断栈空(isEmpty):判断栈是否为空。
(2)队列的基本操作- 入队(enqueue):将元素添加到队列尾部。
- 出队(dequeue):从队列头部删除元素。
- 获取队首元素(peek):获取队首元素,但不删除它。
北邮数据结构实验报告二_栈和队列
2009级数据结构实验报告实验名称:实验二栈和队列学生姓名:班级:班内序号:学号:日期:2010年12月18日实验要求题目四用栈做计算器。
设计一个算术四则运算表达式求值的简单计算器。
表达式求值是程序设计语言编译中最近本的问题,它要求把一个表达式翻译成能够直接求值的序列。
基本要求:输入中缀表达式能够转化成后缀表达式,比如输入中缀表达式“(A+B)*C”,输出“AB+C*”2、操作数使用单字母变量A、B、C等表示,操作符仅为+、-、*、/、(和);3、能够对变量A、B、C等赋值,得出正确的计算结果2. 程序分析首先,程序要求用户输入一个符号表达式,只能包含字母、+、-、*、/ 以及)和(,之后程序会用一个TurnInfixToPostfix()函数将表达式转化成后缀表达式存入一个栈中,转化过程借用逆波兰算法,建立一个符号栈,遍历用户输入的表达式,如果是字母,则直接输出,如果是运算符,则压入符号栈中(包括括号),在压栈的时候又需要注意,先要检查压栈前栈顶元素的优先级,如果优先级高于要压入的符号则直接压入该符号,否则要弹栈直到栈顶元素的优先级小于该元素的优先级然后才将该符号压入栈中(在压栈的时候会涉及到栈中有括号的情况,具体细节下面会说到),将转化的后缀表达式存入栈postfix,在输出的时候只要弹栈就行。
然后,要求用户逐个输入表达式中的字母的值,这时候,需要遍历当时在转化后缀表达式的时候过度容器vec_intoposfix,如果是字母则要求用户输入数值,压入用于计算的后缀表达式容器,如果是操作符则直接压入。
最后,在利用栈来计算值的时候,利用一个递归函数,就是一次弹栈,如果是操作符则先保存起来,接着继续弹栈,如果接下来的两个元素都为数字,就将这两个数字做相应的运算,然后压栈,如此反复,最后压入栈的元素就是表达式的值。
至此,程序的功能全部实现。
2.1 存储结构[内容要求]1、存储结构:顺序表、单链表或其他存储结构,需要画示意图,可参考书上P59页图2-92.2 关键算法分析关键算法一:将中缀表达式转化为后缀表达式VoidTurnInfixToPostfix(vector<char>&vec,stack<char>&sta,vector<char>&vecfix,stack< char>&stafix)1、 {2、int priority(-1);3、4、for (vector<char>::iterator itr=vec.begin();itr!=vec.end();itr++)5、{6、if(isLetter(*itr))7、{8、vecfix.push_back(*itr);9、}10、if (isOperator(*itr))11、{12、if(!sta.empty()) priority=getPriority(sta.top());13、else priority=-1;14、if (priority<getPriority(*itr)||priority==3&&sta.top()!=')')15、{16、sta.push(*itr);17、}18、else19、{20、if (sta.top()!=')')21、{22、while(priority>=getPriority(*itr)&&sta.top()!='(')23、{24、vecfix.push_back(sta.top());25、if (!sta.empty())26、{27、sta.pop();28、if(!sta.empty()) priority=getPriority(sta.top());29、else priority=-1;30、}31、else32、break;33、}34、sta.push(*itr);35、}36、else if(sta.top()==')')37、{38、while (sta.top()!='(')39、{40、vecfix.push_back(sta.top());41、if (!sta.empty()&&sta.top()!='(')42、{43、sta.pop();44、}45、else46、break;47、}48、}49、}50、51、52、}53、54、}55、for (vector<char>::iteratoritrfix=vecfix.end();itrfix!=vecfix.begin();--itrfix)56、stafix.push(*itrfix);57、stafix.push(*itrfix);58、}对表达式a + b * c – ( d – e) / f + g其符号栈的变化过程,红色表示未压栈的符号。
栈和队列的应用实验报告
栈和队列的应用实验报告
《栈和队列的应用实验报告》
一、实验目的
本实验旨在通过实际操作,掌握栈和队列的基本概念、操作及应用,加深对数
据结构的理解和应用能力。
二、实验内容
1. 栈的基本操作:包括入栈、出栈、获取栈顶元素等。
2. 队列的基本操作:包括入队、出队、获取队首元素等。
3. 栈和队列的应用:通过实际案例,探讨栈和队列在实际生活中的应用场景。
三、实验步骤
1. 学习栈和队列的基本概念和操作。
2. 编写栈和队列的基本操作代码,并进行调试验证。
3. 分析并实现栈和队列在实际应用中的案例,如表达式求值、迷宫问题等。
4. 进行实际应用案例的测试和验证。
四、实验结果
1. 成功实现了栈和队列的基本操作,并通过实际案例验证了其正确性和可靠性。
2. 通过栈和队列在实际应用中的案例,加深了对数据结构的理解和应用能力。
五、实验总结
通过本次实验,我深刻理解了栈和队列的基本概念和操作,并掌握了它们在实
际应用中的重要性和作用。
栈和队列作为数据结构中的重要内容,对于解决实
际问题具有重要意义,希望通过不断的实践和学习,能够更加熟练地运用栈和
队列解决实际问题,提高自己的编程能力和应用能力。
六、感想与展望
本次实验让我对栈和队列有了更深入的了解,也让我对数据结构有了更加深刻的认识。
我将继续学习和探索更多的数据结构知识,提高自己的编程能力和解决问题的能力,为将来的学习和工作打下坚实的基础。
同时,我也希望能够将所学知识应用到实际工程中,为社会做出更大的贡献。
武汉理工数据结构实验2 栈和队列基本操作和应用
实验2 栈和队列的基本操作和应用1实验目的(1)熟练掌握顺序栈的基本操作。
(2)掌握顺序栈的应用。
(3)掌握顺序循环队列的基本操作。
(4)掌握链式队列的基本操作。
2实验内容(1)设计一个顺序栈的基本操作的演示程序;(2)利用顺序栈,进行整数的不同进制之间的转换;(3)设计一个顺序循环队列的基本操作演示程序;(4)设计一个链式队列的基本操作演示程序。
【基本要求】I.实验内容(1)的基本要求:编写一个程序,将一个顺序栈的元素依次取出,并打印其元素值。
II.实验内容(2)的基本要求:编写一个程序,将一个非负的十进制整数转换成二进制。
III.实验内容(3)的基本要求:编写一个程序,将一个顺序队列的元素依次取出,并打印其元素值。
IV.实验内容(4)的基本要求:编写一个程序,将一个链式队列的元素依次取出,并打印其元素值。
【测试数据】自定3实验结果按照学校实验格式要求撰写实验报告,内容主要包括1)实验目的;2)实验内容;3)实验环境和方法;4)实验过程描述;5)实验心得体会参考程序如下:实验内容(1)参考程序/*sqStack.h文件*/#define INIT_SIZE 100#define INCREMENT 10typedef int ElemType;//typedef char ElemType;typedef struct SqStack {ElemType *base;ElemType *top;int stacksize;}SqStack;enum Status{OK,ERROR,OVERFLOW};/*sqStackOp.h文件*/#include "sqStack.h"Status InitStack(SqStack &S) ;Status GetTop(SqStack S,ElemType &e);Status Push(SqStack &S,ElemType e);Status Pop(SqStack &S,ElemType &e);bool StackEmpty(SqStack &S);/*sqStackOp.cpp文件*/#include <malloc.h>#include <stdlib.h>#include "sqStackOp.h"Status InitStack(SqStack &S) {//构造一个空的栈S.base=(ElemType*)malloc(INIT_SIZE*sizeof(ElemType));if(! S.base) exit(OVERFLOW); //存储分配失败S.top=S.base;S.stacksize=INIT_SIZE;return OK;} //InitStackStatus GetTop(SqStack S,ElemType &e){//若栈不空,则用e返回S的栈顶元素,并返回OK;否则返回ERROR if(S.top==S.base) return ERROR;e=*(S.top-1);return OK;} //GetTopStatus Push(SqStack &S,ElemType e){//插入元素e为新的栈顶元素if(S.top-S.base>=S.stacksize){ //栈满,追加存储空间S.base=(ElemType *)realloc(S.base,(S.stacksize+INCREMENT)*sizeof(ElemType));if(!S.base)exit(OVERFLOW); //存储分配失败S.top=S.base+S.stacksize;S.stacksize+=INCREMENT;}*S.top++=e;return OK;} //PushStatus Pop(SqStack &S,ElemType &e){//若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERRORif(S.top==S.base) return ERROR;e=*(--S.top);return OK;} //Push//判断栈是否为空bool StackEmpty(SqStack &S){if(S.top == S.base)return true;elsereturn false;}/*main.cpp文件*/#include <stdio.h>#include <stdlib.h>#include "sqStackOp.h"void main(){printf("Hellow stack \n");SqStack S; //定义顺序栈Sif(OK != InitStack(S)) {printf("顺序栈初始化出错,退出....\n");exit(-1);}Push(S, 1);Push(S,2);Push(S,3);int e;Pop(S, e);printf("出栈元素= %d \n",e);Push(S,4);Push(S,5);while(!StackEmpty(S)){Pop(S, e);printf("出栈元素= %d \n",e);}/*SqStack S; char x,y;InitStack(S); x='c';y='k';Push(S,x); Push(S,'a'); Push(S,y);Pop(S,x); Push(S,'t'); Push(S,x);Pop(S,x); Push(S,'s');while(!StackEmpty(S)){ Pop(S,y);printf("%c ",y); };printf("%c ",x);*/getchar();}实验内容(2)参考程序/*sqStack.h文件*/#define INIT_SIZE 100#define INCREMENT 10typedef int ElemType;typedef struct SqStack {ElemType *base;ElemType *top;int stacksize;}SqStack;enum Status{OK,ERROR,OVERFLOW};/*sqStackOp.h文件*/#include "sqStack.h"Status InitStack(SqStack &S) ;Status GetTop(SqStack S,ElemType &e);Status Push(SqStack &S,ElemType e);Status Pop(SqStack &S,ElemType &e);bool StackEmpty(SqStack &S);/*sqStackOp.cpp文件*/#include <malloc.h>#include <stdlib.h>#include "sqStackOp.h"Status InitStack(SqStack &S) {//构造一个空的栈S.base=(ElemType*)malloc(INIT_SIZE*sizeof(ElemType));if(! S.base) exit(OVERFLOW); //存储分配失败S.top=S.base;S.stacksize=INIT_SIZE;return OK;} //InitStackStatus GetTop(SqStack S,ElemType &e){//若栈不空,则用e返回S的栈顶元素,并返回OK;否则返回ERRORif(S.top==S.base) return ERROR;e=*(S.top-1);return OK;} //GetTopStatus Push(SqStack &S,ElemType e){//插入元素e为新的栈顶元素if(S.top-S.base>=S.stacksize){ //栈满,追加存储空间S.base=(ElemType *)realloc(S.base,(S.stacksize+INCREMENT)*sizeof(ElemType));if(!S.base)exit(OVERFLOW); //存储分配失败S.top=S.base+S.stacksize;S.stacksize+=INCREMENT;}*S.top++=e;return OK;} //PushStatus Pop(SqStack &S,ElemType &e){//若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERRORif(S.top==S.base) return ERROR;e=*(--S.top);return OK;} //Push//判断栈是否为空bool StackEmpty(SqStack &S){if(S.top == S.base)return true;elsereturn false;}/*main.cpp文件*/#include <stdio.h>#include <stdlib.h>#include "sqStackOp.h"void main(){SqStack s;int x;InitStack(s);scanf("%d",&x); //%d--十进制输入;%O--八进制输入;%x--十六进制输入//修改这里输入进制和下面整除和余数计算,就可以获得其他进制的转换while(x!=0){Push(s,x%8);x=x/8;}while(!StackEmpty(s)){Pop(s,x);printf("%d ",x);}printf("\n");getchar();}实验内容(3)参考程序/*sqQueue.h 文件*/#define MAXQSIZE 100typedef int QElemType;typedef struct SqQueue {QElemType *base;int front;int rear;}SqQueue;enum Status{OK,ERROR,OVERFLOW};/*sqQueueOp.h 文件*/#include "sqQueue.h"Status InitQueue (SqQueue &Q) ;Status EnQueue (SqQueue &Q, QElemType e);Status DeQueue (SqQueue &Q, QElemType &e) ;bool QueueEmpty(SqQueue &Q);int QueueLength(SqQueue Q);/*sqQueueOp.cpp 文件*/#include <malloc.h>#include <stdlib.h>#include "sqQueueOp.h"Status InitQueue (SqQueue &Q) {// 构造一个空队列QQ.base = (QElemType *) malloc(MAXQSIZE *sizeof (QElemType));if (!Q.base) exit (OVERFLOW);// 存储分配失败Q.front = Q.rear = 0;return OK;}Status EnQueue (SqQueue &Q, QElemType e) { // 插入元素e为Q的新的队尾元素if ((Q.rear+1) % MAXQSIZE == Q.front)return ERROR; //队列满Q.base[Q.rear] = e;Q.rear = (Q.rear+1) % MAXQSIZE;return OK;}Status DeQueue (SqQueue &Q, QElemType &e) { // 若队列不空,则删除Q的队头元素,// 用e返回其值,并返回OK; 否则返回ERRORif (Q.front == Q.rear) return ERROR;e = Q.base[Q.front];Q.front = (Q.front+1) % MAXQSIZE;return OK;}//判断队列是否为空bool QueueEmpty(SqQueue &Q){if(Q.front== Q.rear)return true;elsereturn false;}//计算循环队列长度int QueueLength(SqQueue Q){return (Q.rear - Q.front + MAXQSIZE) % MAXQSIZE;}/*main.cpp 文件*/#include <stdio.h>#include <stdlib.h>#include "sqQueueOp.h"void main(){printf("Hello Queue \n");SqQueue Q; //定义顺序队列QQElemType e;if(OK != InitQueue(Q)) {printf("顺序队列初始化出错,退出....\n");exit(-1);}EnQueue(Q,1);EnQueue(Q,3);EnQueue(Q,5);EnQueue(Q,7);printf("当前队列长度= %d \n",QueueLength(Q));DeQueue(Q,e);printf("队首元素%d出队,当前队列长度=%d\n",e,QueueLength(Q));EnQueue(Q,9);EnQueue(Q,11);while(!QueueEmpty(Q)){DeQueue(Q,e);printf("队首元素%d出队,当前队列长度=%d\n",e,QueueLength(Q));}getchar();}实验内容(4)参考程序/*linkQueue.h 文件*/typedef int QElemType;typedef struct QNode {// 结点类型QElemType data;struct QNode *next;} QNode, *QueuePtr;typedef struct { // 链队列类型QueuePtr front; // 队头指针QueuePtr rear; // 队尾指针} LinkQueue;enum Status{OK,ERROR,OVERFLOW};/*linkQueueOp.h 文件*/#include "linkQueue.h"Status InitQueue (LinkQueue &Q) ;Status EnQueue (LinkQueue &Q, QElemType e); Status DeQueue (LinkQueue &Q, QElemType &e) ; bool QueueEmpty(LinkQueue &Q);/*linkQueueOp.cpp 文件*/#include <malloc.h>#include <stdlib.h>#include "linkQueueOp.h"Status InitQueue (LinkQueue &Q) {// 构造一个空队列QQ.front = Q.rear = (QueuePtr)malloc(sizeof(QNode));if (!Q.front) exit (OVERFLOW);//存储分配失败Q.front->next = NULL;return OK;}Status EnQueue (LinkQueue &Q, QElemType e) { // 插入元素e为Q的新的队尾元素QueuePtr p = (QueuePtr) malloc (sizeof (QNode));if (!p) exit (OVERFLOW); //存储分配失败p->data = e;p->next = NULL;Q.rear->next = p;Q.rear = p;return OK;}Status DeQueue (LinkQueue &Q, QElemType &e) { // 若队列不空,则删除Q的队头元素,//用e 返回其值,并返回OK;否则返回ERROR if (Q.front == Q.rear) return ERROR;QueuePtr p = Q.front->next;e = p->data;Q.front->next = p->next;if (Q.rear == p) Q.rear = Q.front;free (p);return OK;}//判断队列是否为空bool QueueEmpty(LinkQueue &Q){if(Q.front == Q.rear)return true;elsereturn false;}/*main.cpp 文件*/#include <stdio.h>#include <stdlib.h>#include "linkQueueOp.h"void main(){printf("Hello LinkQueue \n");LinkQueue Q; //定义顺序队列QQElemType e;if(OK != InitQueue(Q)) {printf("顺序队列初始化出错,退出....\n");exit(-1);}EnQueue(Q,1);EnQueue(Q,3);EnQueue(Q,5);EnQueue(Q,7);DeQueue(Q,e);printf("队首元素%d出队,\n",e);EnQueue(Q,9);EnQueue(Q,11);while(!QueueEmpty(Q)){DeQueue(Q,e);printf("队首元素%d出队,\n",e);}getchar();}。
实验二—栈、队列的实现实验报告
if(!S.base)
{cout<<"新分配空间失败!!!"<<endl;
exit(0);
}
S.top = S.base + S.stacksize;
S.stacksize += STACKINCREMENT;
i++;
break;
case 2:
Pop(Stack,x);
cout<<x<<"出栈"<<endl;
break;
case 3:
cout<<"栈顶值为:"<<endl;
GetTop(Stack,y);
break;
case 4:
ClearStack(Stack);
break;
case 5:
cout<<"Exit!!"<<endl;
exit(0);
}
e=*--S.top;
//cout<<"删除成功!!!"<<endl;
}//Pop
void ClearStack(SqStack &S){
//把S置为空栈
if(S.base==S.top)
cout<<"此栈已经为空!!!"<<endl;
S.top=S.base;
}//ClearStack
}
*S.top++=e;
栈与队列实验总结
栈与队列实验总结在本次栈与队列实验中,我们学习了两种重要的数据结构,它们在计算机科学中具有广泛的应用。
通过实践操作,我们对栈和队列的原理、特性以及操作方法有了更深入的了解。
首先,我将对本次实验的实施过程进行总结。
在实验的开始,我们首先明确了栈和队列的基本概念。
栈是一种具有后进先出(Last In First Out,简称LIFO)特性的数据结构,类似于一叠盘子的堆叠;而队列则是一种具有先进先出(First In First Out,简称FIFO)特性的数据结构,类似于排队等候的过程。
在实验过程中,我们实现了栈和队列的基本操作。
对于栈而言,我们学习了push(入栈)、pop(出栈)、peek(查看栈顶元素)等操作。
这些操作使得我们可以对栈中的元素进行增加、删除和查看。
对于队列,我们学习了enqueue(入队)、dequeue(出队)、peek(查看队首元素)等操作。
这些操作使得我们可以对队列中的元素进行增加、删除和查看。
通过实践操作,我们熟悉了这些操作的实现方法,加深了对栈和队列的理解。
在实验过程中,我们还探讨了栈和队列的应用场景。
栈常见的应用场景包括函数调用、表达式求值、浏览器的前进后退功能等。
而队列常见的应用场景包括任务调度、缓冲区管理、消息传递等。
通过了解这些应用场景,我们更好地理解了栈和队列在现实生活和计算机领域中的重要性和实际价值。
总结起来,本次栈与队列实验为我们提供了宝贵的机会,使我们深入了解了栈和队列这两种重要的数据结构。
通过实践操作,我们掌握了栈和队列的基本操作方法,并了解了它们在实际应用中的价值。
这次实验不仅为我们拓宽了知识面,还培养了我们解决问题和分析复杂情况的能力。
在今后的学习和工作中,我们应继续加强对栈和队列的理解和应用,进一步拓展我们的数据结构和算法知识。
通过不断学习和实践,我们将能够更好地应用栈和队列解决实际问题,提高我们的编程能力和解决问题的能力。
本次栈与队列实验的总结到此结束,希望能够对大家有所帮助,也希望在今后的学习中能够继续进一步提高自己。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二栈和队列的基本操作实现及其应用一、实验目的1、熟练掌握栈和队列的基本操作在两种存储结构上的实现。
2、会用栈和队列解决简单的实际问题。
二、实验内容(可任选或全做)题目一、试写一个算法,判断依次读入的一个以@为结束符的字符序列,是否为回文。
所谓“回文“是指正向读和反向读都一样的一字符串,如“321123”或“ableelba”。
相关常量及结构定义:# define STACK_INIT_SIZE 100# define STACKINCREMENT 10# define OK 1# define ERROR 0typedef int SElemType;//栈类型定义typedef struct SqStack{ SElemType *base;SElemType *top;int stacksize;}SqStack;设计相关函数声明:判断函数:int IsReverse()栈:int InitStack(SqStack &S )int Push(SqStack &S, SElemType e )int Pop(SqStack &S,SElemType &e)int StackEmpty(s)题目二、编程模拟队列的管理,主要包括:出队列、入队、统计队列的长度、查找队列某个元素e、及输出队列中元素。
[实现提示]:参考教材循环队列的有关算法,其中后两个算法参考顺序表的实现。
题目三、RailsDescriptionThere is a famous railway station in PopPush City. Country there is incredibly hilly. The station was built in last century. Unfortunately, funds were extremely limited thattime. It was possible to establish only a surface track. Moreover, it turned out that the station could be only a dead-end one (see picture) and due to lack of available space it could have only one track.The local tradition is that every train arriving from the direction A continues in the direction B with coaches reorganized in some way. Assume that the train arriving from the direction A has N <= 1000 coaches numbered in increasing order 1, 2, ..., N. The chief for train reorganizations must know whether it is possible to marshal coaches continuing in the direction B so that their order will be a1, a2, ..., aN. Help him and write a program that decides whether it is possible to get the required order of coaches. You can assume that single coaches can be disconnected from the train before they enter the station and that they can move themselves until they are on the track in the direction B. You can also suppose that at any time there can be located as many coaches as necessary in the station. But once a coach has entered the station it cannot return to the track in the direction A and also once it has left the station in the direction B it cannot return back to the station.InputThe input consists of blocks of lines. Each block except the last describes one train and possibly more requirements for its reorganization. In the first line of the block there is the integer N described above. In each of the next lines of the block there is a permutation of 1, 2, ..., N. The last line of the block contains just 0.The last block consists of just one line containing 0.OutputThe output contains the lines corresponding to the lines with permutations in the input.A line of the output contains Yes if it is possible to marshal the coaches in the order required on the corresponding line of the input. Otherwise it contains No. In addition,there is one empty line after the lines corresponding to one block of the input. There is no line in the output corresponding to the last ``null'' block of the input. Sample Input51 2 3 4 55 4 1 2 366 5 4 3 2 1Sample OutputYesNoYes题目四、Sliding WindowDescriptionAn array of size n≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example:The array is [1 3 -1 -3 5 3 6 7], and k is 3.Window position Minimum value Maximum value[1 3 -1] -3 5 3 6 7 -131 [3 -1 -3] 5 3 6 7 -331 3 [-1 -3 5] 3 6 7 -351 3 -1 [-3 5 3] 6 7 -351 3 -1 -3 [5 3 6] 7 361 3 -1 -3 5 [3 6 7]37Your task is to determine the maximum and minimum values in the sliding window at each position.InputThe input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line.OutputThere are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values.Sample Input8 31 3 -1 -3 5 3 6 7Sample Output-1 -3 -3 -3 3 33 3 5 5 6 7题目五(选作考查串知识)DNA Evolution【Description】Evolution is a seemingly random process which works in a way which resembles certain approaches we use to get approximate solutions to hard combinatorial problems. You are now to do something completely different.Given a DNA string S from the alphabet {A,C,G,T}, find the minimal number of copy operations needed to create another string T. You may reverse the strings you copy, and copy both from S and the pieces of your partial T. You may put these pieces together at any time. You may only copy contiguous parts of your partial T, and all copied strings must be used in your final T.Example: From S= “ACTG” create T= “GTACTAATAAT”1.Get GT......... by copying and reversing "TG" from S.2.Get GT AC... by copying "AC" from S.3.Get GTAC TA….. by copying "TA" from the partial T.4.Get GTACTA AT by copying and reversing "TA" from the partial T.5.Get GTACTAAT AAT by copying "AAT" from the partial T.【Input】The first line of input gives a single integer, 1 ≤k≤10, the number of test cases. Then follow, for each test case, a line with the string S , length of S is less then 19, and a line with the string T , length of T is less then 19.【Output】Output for each test case the number of copy operations needed to create T from S, or "impossible" if it cannot be done.【Sample Input】4ACGTTGCAACACGTTCGATCGAAAAAAAAAAAAAAAAAAAA【Sample output】1impossible46题目六(选作考查数组知识)Magic Squares描述Following the success of the magic cube, Mr. Rubik invented its planar version, called magic squares. This is a sheet composed of 8 equal-sized squares:1 2 3 48 7 6 5In this task we consider the version where each square has a different color. Colors are denoted by the first 8 positive integers. A sheet configuration is given by the sequence of colors obtained by reading the colors of the squares starting at the upper left corner and going in clockwise direction. For instance, the configuration of Figure 3 is given by the sequence (1,2,3,4,5,6,7,8). This configuration is the initial configuration.Three basic transformations, identified by the letters `A', `B' and `C', can be applied to a sheet:∙'A': exchange the top and bottom row,∙'B': single right circular shifting of the rectangle,∙'C': single clockwise rotation of the middle four squares.Below is a demonstration of applying the transformations to the initial squares given above:A:8 7 6 51 2 3 4B:4 1 2 35 8 7 6C:1 72 48 6 3 5All possible configurations are available using the three basic transformations.You are to write a program that computes a minimal sequence of basic transformations that transforms the initial configuration above to a specific target configuration.输入A single line with eight space-separated integers (a permutation of (1..8)) that are the target configuration.输出样例输入2 6 8 4 5 73 1样例输出7BCABCCB三、实验步骤㈠、数据结构与核心算法的设计描述㈡、函数调用及主函数设计(可用函数的调用关系图说明)㈢程序调试及运行结果分析㈣实验总结四、主要算法流程图及程序清单1、主要算法流程图:2、程序清单(程序过长,可附主要部分)//int IsReverse(){ ….while( (e=getchar())!='@'){e 依次入栈、入队 //push(S,e);EnQueue(Q,e);……..}While(!StackEmpty(S)) { pop(S,a);DeQueue(Q,b);If(a!=b) return 0;}return 1;}。