2012年初中数学创新与知识应用竞赛试题
2012年全国初中数学竞赛试题及参考答案
—
1
=
么
+
c 口+a b的 ÷一 + 值为— — . +
7 甲) 图 4 ( .如 ,正 方 形 A C 的 边 BD ,E、F分 别 是 A B、B 的 C
( A)3 / 、2
4 甲) ( .小倩 和小玲每人都有若干面值为整数元的人民币. 小
题均给 出了代 号为 A,B,c ,D的 四个选项 ,其 中有且只有 一 倩对小 玲说 :“ 若给我 2元 ,我 的钱数将 是你 的 n倍” 你 ;小玲
个 选 项 是 正 确 的 .请 将 正 确 选 项 的 代 号 填 入 题 后 的 括 号 里 , 不 对小倩说 :“ 你若给我 n元 ,我的钱数将是你 的 2倍” .其 中 n为 填 、 多填 或错 填都 得 0分 )
( B)4
长为 2
曰 C
( C)2 / 、5
( D)45 .
中 点 ,AF与 D E、D 分 别 交 于 点 、 B N, ̄ AD MN的面积是
图2
3 5
舞
7 乙 ) 如 图 5 60 的半 径 为 2 , ( . , 3 0 C 点 E在 O D. D上 ,且 DC=D E,B E的 延 长 线 与 6 0 交 于点 F 3.
( )P B 。
( D)P 3
1
,
…
2 甲) ( .如果 正 比例 函数 Y=一( ≠0 与反 比例 函数 Y Ⅱ ) = ( ≠0 的图象有两个交点 ,其 中一个交点 的坐标为( 3 2 ,那 b ) 一 ,一 ) 么另一个交点的坐标为 (
( ( ,3 A) 2 ) ( C)( 2
2012年全国初中数学竞赛试题
2012全国初中数学竞赛各省市试题汇编重排版目录一2012广东初中数学竞赛预赛................................................................................................- 2 -二2012年全国初中数学竞赛预赛试题及参考答案(河南赛区)........................................- 5 -三2012年北京市初二数学竞赛试题..................................................................................... - 10 -四2012年全国初中数学竞赛(海南赛区)......................................................................... - 11 -五2012年全国初中数学竞赛(海南赛区)初赛试卷参考答案......................................... - 13 -六2012年全国初中数学竞赛试卷答案(福建赛区)......................................................... - 15 -七2012年全国初中数学竞赛试题......................................................................................... - 19 -八2012年全国初中数学竞赛天津赛区初赛试卷................................................................. - 21 -九2012年全国初中数学联赛(浙江赛区)试题及参考答案..............................................- 26 -十2012年四川初中数学联赛(初二组)初赛试卷 .................................................................. - 29 -十一2012年全国初中数学竞赛试题【安徽赛区】............................................................. - 30 -十二2012届湖北省黄冈地区九年级四科联赛数学试题..................................................... - 35 -十三2012年全国初中数学竞赛试题(副题)..................................................................... - 39 -十四2012年全国初中数学竞赛试题(副题)参考答案..................................................... - 41 -十五2012年全国初中数学竞赛试题(正题)..................................................................... - 50 -十六2012年全国初中数学竞赛试题(正题)参考答案......................................................- 55 -小贴士:word目录发生下列问题ctrl+左键显示“由于本机的限制,该操作已被取消,请与系统管理员联系”请按下列步骤自行解决1.开始,运行里输入regedit,回车2.在注册表中,找到HKEY_CURRENT_USER\Software\Classes\.html 项3.在默认项上点右键选择修改4.将Max2.Association.HTML改为Htmlfile,确认,然后退出注册表5.重启正在使用的Office程序,然后再次点Office里面超链接,ok了2012广东初中数学竞赛预赛2012年全国初中数学竞赛预赛试题及参考答案(河南赛区) 一、选择题(共6小题,每小题6分,共36分.1.在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【 】(A )2,3,1 (B )2,2,1 (C )1,2,1 (D )2,3,2 【答】A .解:完全平方数有1,9;奇数有1,3,9;质数有3.2.已知一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,则下列判断正确的是【 】(A )1m >- (B )1m <- (C )1m > (D )1m <【答】C .解:一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,说明其图象与y 轴的交点位于y 轴的正半轴,且y 随x 的增大而增大,所以10,10.m m ->⎧⎨+>⎩ 解得1m >.3.如图,在⊙O 中, CD DA AB ==,给出下列三个结论:(1)DC =AB ;(2)AO ⊥BD ;(3)当∠BDC =30°时,∠DAB =80°.其中正确的个数是【 】(A )0 (B )1 (C )2 (D )3【答】D .解:因为 CD AB =,所以DC =AB ;因为AD AB =,AO 是半径,所以AO ⊥BD ;设∠DAB =x 度,则由△DAB 的内角和为180°得:2(30)180x x -︒+=︒,解得80x =︒. 4. 有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是【 】第3题图(A )34 (B )23 (C )13 (D )21【答】B .解:从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是3264=. 5.在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(3,3)--,点C 是y 轴上一动点,要使△ABC 为等腰三角形,则符合要求的点C 的位置共有【 】(A )2个 (B )3个 (C )4个【答】D .解:由题意可求出AB =5,如图,以点A 为圆心AB 的长为半径画弧,交y 轴于C 1和C 2,利用勾股定理可求 出OC 1=OC 2=)62,0(),62,0(21-C C , 以点B 为圆心BA 的长为半径画弧,交y 轴于点C 3和C 4, 可得34(0,1),(0,7)C C -,AB 的中垂线交y 轴于点C 5,利用 三角形相似或一次函数的知识可求出)617,0(5-C . 6.已知二次函数221y x bx =++(b 为常数),当b 物线系”,图中的实线型抛物线分别是b 取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型抛物线),这条抛物线的解析式是【 】(A )221y x =-+ (B )2112y x =-+ (C )241y x =-+ (D )2114y x =-+【答】A .解:221y x bx =++的顶点坐标是⎪⎪⎭⎫ ⎝⎛--88,42b b ,设4b x -=,882b y -=,由4b x -=得x b 4-=,所以222218)4(888x x b y -=--=-=. 二、填空题(共6小题,每小题6分,共36分)7.若2=-n m ,则124222-+-n mn m 的值为 . 【答】7.解:71221)(212422222=-⨯=--=-+-n m n mn m . 8.方程112(1)(2)(2)(3)3x x x x +=++++的解是 .【答】120,4x x ==-.解:11(1)(2)(2)(3)x x x x +++++11111223x x x x =-+-++++y xO 第6题图 第5题图11213(1)(3)x x x x =-=++++.∴22(1)(3)3x x =++,解得 1x 9.如图,在平面直角坐标系中,点B 的坐标是(1,0),若点A 的坐标为(a ,b ),将线段BA 绕点B 顺时针旋转 90°得到线段BA ',则点A '的坐标是 .【答】(1,1)b a +-+.解:分别过点A 、A '作x 为C 、D .显然Rt △ABC ≌Rt △B A 'D . 由于点A 的坐标是(,)a b ,所以OD OB BD =+1OB AC b =+=+,1A D BC a '==-,所以点的A '坐标是(1,1)b a +-+.10.如图,矩形ABCD 中,AD =2,AB =3,AM =1, DE是以点A 为圆心2为半径的41圆弧, NB是以点M 为圆心2为半径的41圆弧,则图中两段弧之间的阴影部分的面积为 . 【答】2.解:连接MN ,显然将扇形AED 向右平移可与扇形MBN 重合,图中阴影部分的面积等于 矩形AMND 的面积,等于221=⨯.11.已知α、β是方程2210x x +-=的两根,则3510αβ++的值为 . 【答】2-.解:∵α是方程2210x x +-=的根,∴212αα=-.∴ 322(12)22(12)52αααααααααα=⋅=-=-=--=-,又 ∵2,αβ+=-∴ 3510(52)5105()8αβαβαβ++=-++=++=5(2)82⨯-+=-.12.现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有 个.【答】36.解:利用抽屉原理分析,设最多有x 个小朋友,这相当于x 个抽屉,问题变为把145颗糖放进x 个抽屉,至少有1个抽屉放了5颗或5颗以上,则41x +≤145,解得x ≤36,所以小朋友的人数最多有36个.三、解答题(第13题15分,第14题15分,第15题18分,共48分)13.王亮的爷爷今年(2012年)80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?解:设王亮出生年份的十位数字为x ,个位数字为y (x 、y 均为0 ~ 9的整数).∵王亮的爷爷今年80周岁了,∴王亮出生年份可能在2000年后,也可能是2000年前.故应分两种情况: …………………2分(1)若王亮出生年份为2000年后,则王亮的出生年份为200010x y ++,依题意,得2012(200010)20x y x y -++=+++,A BM 第10题图 E 第9题图整理,得 1011,2xy -=x 、y 均为0 ~ 9的整数,∴0.x = 此时 5.y =∴王亮的出生年份是2005年,今年7周岁.…………………8分(2)若王亮出生年份在2000年前,则王亮的出生年份为190010x y ++,依题意,得2012(190010)19x y x y -++=+++,整理,得 111022x y =-,故x 为偶数,又1021110211,09,22x xy --=≤≤ ∴ 779,11x ≤≤ ∴ 8.x = 此时7.y = ∴王亮的出生年份是1987年,今年25周岁. …………………14分 综上,王亮今年可能是7周岁,也可能是25周岁.……………15分14.如图,在平面直角坐标系中,直角梯形OABC 的顶点A 、B 的坐标分别是(5,0)、(3,2),点D 在线段OA 上,BD =BA , 点Q 是线段BD 上一个动点,点P 的坐标是(0,3),设直线PQ 的解析式为y kx b =+.(1)求k 的取值范围;(2)当k 为取值范围内的最大整数时,若抛物线25y ax ax =-的顶点在直线PQ 、OA 、AB 、BC 围成的四边形内部,求a 的取值范围.解:(1)直线y kx b =+经过P (0,3),∴ 3b =.∵B (3,2),A (5,0),BD =BA ,∴ 点D 的坐标是(1,0), ∴ BD 的解析式是1y x =-, 1 3.x ≤≤依题意,得 1,3.y x y kx =-⎧⎨=+⎩,∴4,1x k =- ∴ 41 3.1k -≤≤解得13.3k --≤≤……………………………………………7分 (2) 13,3k --≤≤且k 为最大整数,∴1k =-.则直线PQ 的解析式为3y x =-+.……………………………………………9分又因为抛物线25y ax ax =-的顶点坐标是525,24a ⎛⎫-⎪⎝⎭,对称轴为52x =.解方程组⎪⎩⎪⎨⎧=+-=.25,3x x y 得⎪⎪⎩⎪⎪⎨⎧==.21,25y x 即直线PQ 与对称轴为52x =的交点坐标为51(,)22, ∴125224a <-<.解得 822525a -<<-.……………………………………15分 15. 如图,扇形OMN 的半径为1,圆心角是90°.点B 是 MN上一动点, BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)求证:四边形EPGQ 是平行四边形;(2)探索当OA 的长为何值时,四边形EPGQ 是矩形;(3)连结PQ ,试说明223PQ OA +是定值. 解:(1)证明:如图①, ∵∠AOC =90°,BA ⊥OM ,BC ⊥ON , ∴四边形OABC 是矩形. ∴OC AB OC AB =,//. ∵E 、G 分别是AB 、CO 的中点, ∴.,//GC AE GC AE =∴四边形AECG 为平行四边形.∴.//AG CE ……………………………4分 连接OB , ∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点, ∴ GF ∥OB ,DE ∥OB , ∴ PG ∥EQ ,∴四边形EPGQ 是平行四边形.………………………………………………6分(2)如图②,当∠CED =90°时,□EPGQ 是矩形. 此时 ∠AED +∠CEB =90°.又∵∠DAE =∠EBC =90°,∴∠AED =∠BCE .∴△AED ∽△BCE .………………………………8分 ∴AD AEBE BC=. 设OA =x ,AB =y ,则2x ∶2y =2y ∶x ,得222y x =.…10分又 222OA AB OB +=,即2221x y +=.∴2221x x +=,解得x =∴当OA的长为3时,四边形EPGQ 是矩形.………………………………12分 (3)如图③,连结GE 交PQ 于O ',则.,E O G O Q O P O '=''='.过点P 作OC 的平行线AB C ODEF GP QMN 图②A B CO D EF GPQM N图①分别交BC 、GE 于点B '、A '.由△PCF ∽△PEG 得,2,1PG PE GE PF PC FC === ∴ PA '=23A B ''=13AB , GA '=13GE =13OA ,∴ 1126A O GE GA OA '''=-=.在Rt △PA O ''中,222PO PA A O ''''=+,即 2224936PQ AB OA =+, 又 221AB OA +=, ∴ 22133PQ AB =+,∴ 2222143()33OA PQ OA AB +=++=.……………………………………18分2012年北京市初二数学竞赛试题 .选择题(每小题5分,共25分).方程|2x -4|=5的所有根的和等于( ).A .-0.5B .4.5C .5D .4.在直角坐标系xOy 中,直线y =ax +24与两个坐标轴的正半轴形成的三角形的面积等于72,则不在直线y =ax +24上的点的坐标是( ).A .(3,12)B .(1,20)C .(-0.5,26)D .(-2.5,32).两个正数的算术平均数等于,则期中的大数比小数大( ).A .4B.C .6D ..在△ABC 中,M 是AB 的中点,N 是BC 边上一点,且CN =2BN ,连接AN 与MC 交于点O ,四边形BMON 的面积为14cm2,则△ABC 的面积为( ).A .56cm2B .60cm2C .64cm2D .68cm2.当a =1.67,b =1.71,c =0.46时,222121a ac ab bc b ab bc ac c ac bc ab++--+--+--+等于( ).A .20B .15C .10D .5.55 .填空题(每小题7分,共35分).计算:1×2-3×4+5×6-7×8+…+2009×2010-2011×2012=___..由1到10这十个正整数按某个次序写成一行,记为a1,a2,…,a10,S1=a1,S2=a1+a2,…,S10=a1+a2+…+a10,则在S1,S2,…,S10中,最多能有__个质数. .△ABC 中,AB =12cm ,AC =9cm ,BC =13cm ,自A 分别作∠C 平分线的垂线,垂足为M ,作∠B 的平分线的垂线,垂足为N ,连接MN ,则AMNABCS S ∆∆=____..实数x 和y 满足x2+12xy +52y2-8y +1=0,则x2-y2=___. .P 为等边△ABC 内一点,AP =3cm ,BP =4cm ,CP =5cm ,则四边形ABCP 的面积等于__cm2.B'N MA'QP O'GF E D C BA O 图③(满分10分).求证:对任意两两不等的三个数a,b ,c ,222()()()()()()()()()a b c b c a c a b a c b c b a c a c b a b +-+-+-++------是常数.(满分15分).已知正整数n 可以表示为2011个数字和相同的自然数之和,同时也能表示为2012个数字和相同的自然数之和,试确定n 的最小值.(满分15分).如图,在△ABC 中,∠ABC =∠BAC =70°,P 为形内一点,∠PAB =40°,∠PBA =20°,求证:PA +PB =PC .2012年全国初中数学竞赛(海南赛区)初 赛 试 卷(本试卷共4页,满分120分,考试时间:3月11日8:30——10:30)一、选择题(本大题满分50分,每小题5分) 1、下列运算正确的是( )A .x 2‧x 3=x 6B . 2x +3x =5x 2C .(x 2)3=x 6D . x 6÷x 2=x 32、有大小两种游艇,2艘大游艇与3艘小游艇一次可载游客57人,3艘大游艇与2艘小游艇一次可载游客68人,则3艘大游艇与6艘小游艇一次可载游客的人数为( ) A .129 B .120 C .108 D .963、实数a =20123-2012,下列各数中不能整除a 的是( ) A .2013 B .2012 C .2011 D .20104、如图1所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是( )A .251B .252C .256D .25245、一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是( )P CBA图16、要使1213-+-x x 有意义,则x 的取值范围为 A .321 x ≤≤ B .321 <x ≤ C .321x <≤ D . 321<x<7、菱形的两条对角线之和为L 、面积为S ,则它的边长为( )A .S L 4212-B .S L 2212-C .S L 4221-D .2421L S -8、如图2,将三角形纸片ABC 沿DE 折叠,使点A 落在BC 边上的点F 处, 且DE ∥BC ,下列结论中,一定正确的个数是( )①△CEF 是等腰三角形 ②四边形ADFE 是菱形③四边形BFED 是平行四边形 ④∠BDF +∠CEF =2∠AA .1B .2C .3D .4 9、如图3,直线x =1是二次函数 y =ax 2+bx +c 的图象的对称轴,则有A .a +b +c =0B .b >a +cC .b =2aD .abc >010、铁板甲形状为直角梯形,两底边长分别为4cm ,10cm ,且有一内角为60°;铁板乙形状为等腰三角形,其顶角为45°,腰长12cm .在不改变形状的前提下,试图分别把它们从一个直径为8.5cm 的圆洞中穿过,结果是( )A.甲板能穿过,乙板不能穿过 B .甲板不能穿过,乙板能穿过 C .甲、乙两板都能穿过 D .甲、乙两板都不能穿过 二、填空题(本大题满分40分,每小题5分)11、x 与y 互为相反数,且3=-y x ,那么122++xy x 的值为__________. 12、一次函数y =ax +b 的图象如图4所示,则化简1++-b b a 得________.13、若x=-1是关于x 的方程a 2x 2+2011ax -2012=0的一个根,则a 的值为__________. 14、一只船从A 码头顺水航行到B 码头用6小时,由B 码头逆水航行到A 码头需8小时,则一块塑料泡沫从A 码头顺水漂流到B 码头要用______小时(设水流速度和船在静水中的速度不变).15、如图5,边长为1的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是 .16、如图6,直线l 平行于射线AM ,要在直线l 与射线AM 上各找一点B 和C ,使得以A 、B 、C 为顶点的三角形是等腰直角三角形,这样的三角形最多能画_______个.17、如图7,△ABC 与△CDE 均是等边三角形,若∠AEB =145°,则∠DBE 的度数是________. 18、如图8所示,矩形纸片ABCD 中,AB =4cm ,BC =3cm ,图3 图4AB C D E F 图2图7 A B C D E图5 F 图6 l B ' D 'C DG把∠B、∠D分别沿CE、AG翻折,点B、D分别落在对角线AC的点B'和D'上,则线段EG的长度是________.三、解答题(本大题满分30分,每小题15分)19、某市道路改造工程,如果让甲工程队单独工作,需要30天完成,如果让乙工程队单独工作,则需要60天方可完成;甲工程队施工每天需付施工费2.5万元,乙工程队施工每天需付施工费1万元.请解答下列问题:(1)甲、乙两个工程队一起合作几天就可以完成此项工程?(2)甲、乙两个工程队一起合作10天后,甲工程队因另有任务调离,剩下的部分由乙工程队单独做,请问共需多少天才能完成此项工程?(3)如果要使整个工程施工费不超过65万元,甲、乙两个工程队最多能合作几天?(4)如果工程必须在24天内(含24天)完成,你如何安排两个工程队施工,才能使施工费最少?请说出你的安排方法,并求出所需要的施工费.20、如图9,四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA、PB、PC、PD.请解答下列问题:(1)如图9(1),当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;(2)如图9(2),当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2;(3)若矩形ABCD在平面直角坐标系xoy中,点B的坐标为(1,1),点D的坐标为(5,3),如图9(3)所示,设△PBC的面积为y,△PAD的面积为x,求y与x之间的函数关系式.2012年全国初中数学竞赛(海南赛区)初赛试卷参考答案一、选择题(本大题满分50分,每小题5分)图9 (2)图9(1)MNQAB CDP79、分析:由函数的图象可知:当x=1时有a +b +c <0,当x=-1时有a-b +c >0,即a +c >b,即b <a +c ,函数的对称轴为12=-=ab x ,则b =-2a ,因为抛物线的开口向上,所以a >0,抛物线与y 轴的交点在负半轴,所以c <0,由b =-2a 可得b <0.所以abc >0,因而正确答案为D 10、分析:分别计算铁板的最窄处便可知,如图A,直角梯形,AD=4cm ,BC=10cm ,∠C=60°,过点A 过AE//CD ,交BC 于点E ,过点B 作BE ⊥CD 于点F ,可求得AB=36cm >8.5cm ,BE=35cm >8.5cm 铁板甲不能穿过,如图B,等腰三角形ABC 中,顶角∠A=45°,作腰上的高线BD ,可求得BD=26cm <8.5cm , 所以铁板乙可以穿过; 所以选择B二、填空题(本大题满分40分,每小题5分)11、 45- 12、a +1 13、 a 1=2012, a 2=-1 14、4815、41单位面积 16、3个 17、85° 18、1017、分析:易证△CEA 与△CDB 全等,从而有∠DBC=∠EAC ,因为,∠ABE+∠BAE=180°-145°=35°所以有∠EAC+∠EBC=120°-35°=85°, 所以∠EBD=∠EBC+∠DBC=85°18、分析:AB =4cm ,BC =3cm ,可求得AC=5cm ,由题意可知C B '=BC=3cm ,A B '=2cm 设BE=x ,则AE=4-x ,则有(4-x )2-x 2 =22,x =1.5cm ,即BE=DG=1.5cm ,过点G 作GF ⊥AB 于点F ,则 可求出EF=1 cm ,所以EG=103122=+三、解答题(本大题满分30分,每小题15分)19、本题满分15分,第(1)、(2)、(3)小题,每小题4分,第(4)小题3分. 解:(1)设甲、乙两个工程队一起合作x 天就可以完成此项工程,依题意得:1)601301(=+x ,解得:x =20 答:甲、乙两个工程队一起合作20天就可以完成此项工程.(2)设完成这项道路改造工程共需y 天,依题意得:16010301=+⨯y ,解得y =40 。
2012年全国初中数学竞赛试题(含答案)
大安中学九年级数学竞赛试卷班级__________姓名______________成绩_________________一、选择题(共5小题,每小题7分,共35分)1.如果实数a ,b ,c在数轴上的位置如图所示,那么代数式||||a b b c ++可以化简为( ). (A) (B ) (C) (D )a2.如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ).(A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)3.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12 (D )144.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )45.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p二、填空题(共5小题,每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x的取值范围是.7.如图,正方形ABCD 的边长为E ,F 分别是AB ,BC 分别交于点M ,N ,则△DMN 的面积是 .8.如果关于x 的方程x 2+kx+43k 2-3k+92= 0的两个实数根分别为1x ,2x ,那么2012220111x x 的值为 .9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 .10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD = DC. 分别延长BA ,CD ,交点为E. 作BF ⊥EC ,并与EC 的延长线交于点F. 若AE = AO ,BC = 6,则CF 的长为 .三、解答题(共4题,每题20分,共80分)11.已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y <;关于x 的方程2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围.12.如图,⊙O 的直径为AB ,⊙O 1过点O ,且与⊙O 内切于点B .C 为⊙O 上的点,OC与⊙O 1交于点D ,且OD CD >.点E 在OD 上,且DC DE =,BE 的延长线与⊙O 1交于点F ,求证:△BOC ∽△1DO F .13.已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数. 当a ≥2012时,求a 的最小值.14.求所有正整数n ,使得存在正整数122012x x x ,, ,,满足122012x x x <<<,且122012122012n x x x +++=.中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题参考答案一、选择题 1.C解:由实数a ,b ,c 在数轴上的位置可知0b a c <<<,且b c >,所以||||()()()a b b c a a b c a b c ++=-+++--+a =-.2.D解:由题设知,2(3)a -=⋅-,(3)(2)b -⋅-=,所以263a b ==,.解方程组236y x y x⎧=⎪⎪⎨⎪=⎪⎩,,得32x y =-⎧⎨=-⎩,; 32.x y =⎧⎨=⎩,所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).3.D解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a a b a b++++++=, 于是 4423421444a b a b ++++-=.4.D解:设小倩所有的钱数为x 元、小玲所有的钱数为y 元,x y ,均为非负整数. 由题设可得2(2)2()x n y y n x n +=-⎧⎨+=-⎩,, 消去x 得 (2y -7)n = y+4,2n =721517215)72(-+=-+-y y y . 因为1527y -为正整数,所以2y -7的值分别为1,3,5,15,所以y 的值只能为4,5,6,11.从而n 的值分别为8,3,2,1;x 的值分别为14,7,6,7.5.D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以01239891036363636p p p p ====,,,,因此3p 最大.二、填空题6.7<x ≤19解:前四次操作的结果分别为3x -2,3(3x -2)-2 = 9x -8,3(9x -8)-2 = 27x -26,3(27x -26)-2 = 81x -80.由已知得27x-26≤487, 81x -80>487.解得 7<x ≤19.容易验证,当7<x ≤19时,32x -≤487 98x -≤487,故x 的取值范围是 7<x ≤19.7.8解:连接DF ,记正方形ABCD 的边长为2a . 由题设易知△BFN ∽△DAN ,所以21AD AN DN BF NF BN ===, 由此得2AN NF =,所以23AN AF =.在Rt △ABF 中,因为2AB a BF a ==,,所以AF ,于是 cos AB BAF AF ∠=. 由题设可知△ADE ≌△BAF ,所以 AED AFB ∠=∠,0018018090AME BAF AED BAF AFB ∠=-∠-∠=-∠-∠=.于是cos AM AE BAF =⋅∠=,23MN AN AM AF AM =-=-=,415MND AFD S MN S AF ∆∆==. 又21(2)(2)22AFD S a a a ∆=⋅⋅=,所以2481515MND AFD S S a ∆∆==.因为a ,所以8MND S ∆=. 8.32-解:根据题意,关于x 的方程有∆=k 2-4239(3)42k k -+≥0,由此得 (k -3)2≤0.又(k -3)2≥0,所以(k -3)2=0,从而k=3. 此时方程为x 2+3x+49=0,解得x 1=x 2=32-.故2012220111x x =21x =23-.9.8解:设平局数为a ,胜(负)局数为b ,由题设知23130a b +=,由此得0≤b ≤43. 又 (1)(2)2m m a b +++=,所以22(1)(2)a b m m +=++. 于是0≤130(1)(2)b m m =-++≤43,87≤(1)(2)m m ++≤130,由此得 8m =,或9m =.当8m =时,405b a ==,;当9m =时,2035b a ==,,5522a b a +>=,不合题设. 故8m =.10.223 解:如图,连接AC ,BD ,OD.由AB 是⊙O 的直径知∠BCA =∠BDA = 90°. 依题设∠BFC = 90°,四边形ABCD 是⊙O 的内接四边形,所以∠BCF =∠BAD,所以 Rt △BCF ∽Rt △BAD ,因此BC BACF AD=. 因为OD 是⊙O 的半径,AD = CD ,所以OD 垂直平分AC ,OD ∥BC , 于是2DE OEDC OB==. 因此 223DE CD AD CE AD ===,.由△AED ∽△CEB ,知DE EC AE BE ⋅=⋅.因为322BA AE BE BA ==,, 所以 32322BA AD AD BA ⋅=⋅,BA=22AD ,故AD CF BCBA =⋅==三、解答题11.解: 因为当13x -<<时,恒有0y <,所以23420m m ∆=+-+>()(),即210m +>(),所以1m ≠-. ………(5分) 当1x =-时,y ≤0;当3x =时,y ≤0,即2(1)(3)(1)2m m -++-++≤0,且 233(3)2m m ++++≤0,解得m ≤5-. ………(10分)设方程()()2320x m x m ++++=的两个实数根分别为12x x ,,由一元二次方程根与系数的关系得()121232x x m x x m +=-+=+,.因为1211910x x +<-,所以 121239210x x m x x m ++=-<-+, 解得12m <-,或2m >-.因此12m <-. …………(20分) 12. 证明:连接BD ,因为OB 为1O 的直径,所以90ODB ∠=︒.又因为DC DE =,所以△CBE 是等腰三角形.…………(5分)设BC 与1O 交于点M ,连接OM ,则90OMB ∠=︒.又因为O C O B =,所以22BOC DOM DBC ∠=∠=∠12DBF DO F =∠=∠.…………(15分)又因为1BOC DO F ∠∠,分别是等腰△BOC ,等腰△1DO F 的顶角,所以△BOC ∽△1DO F . …………(20分)13.解:设a -b = m (m 是素数),ab = n 2(n 是正整数). 因为 (a+b)2-4ab = (a -b)2, 所以 (2a -m)2-4n 2= m 2,(2a -m+2n)(2a -m -2n) = m 2. ………(5分)因为2a -m+2n 与2a -m -2n 都是正整数,且2a -m+2n >2a -m -2n (m 为素数),所以 2a -m+2n =m 2,2a -m -2n =1.解得 a =2(1)4m +,n =214m -.于是 b = a -m =214m -(). …………(10分)又a ≥2012,即2(1)4m +≥2012.又因为m 是素数,解得m ≥89. 此时,a ≥41)(892+=2025.当2025a =时,89m =,1936b =,1980n =.因此,a 的最小值为2025. …………(20分) 14.解:由于122012x x x ,, ,都是正整数,且122012x x x <<<,所以1x ≥1,2x ≥2,…,2012x ≥2012.于是 122012122012n x x x =+++≤1220122012122012+++=.…………(10分) 当1n =时,令12201220122201220122012x x x ==⨯=⨯,, ,,则1220121220121x x x +++=.…………(15分) 当1n k =+时,其中1≤k ≤2011,令 1212k x x x k ===,, ,,122012(2012)(1)(2012)(2)(2012)2012k k x k k x k k x k ++=-+=-+=-⨯,,,则1220121220121(2012)2012k k x x x k+++=+-⋅-1k n =+=. 综上,满足条件的所有正整数n 为122012, , , . …………(20分)。
2012年全国初中数学联赛试题详解
2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分) 1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<解答:1a ===b ==,2c ===1显然:b a c <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6. 解答:222222223232()234x xy y x xy y y x y y ++=+++=++=由0、1、2、3、4、5、6的平分别是0、1、4、9、16、25、36知唯有16+2⨯9=34故5555544444x y x y x y x y x y y y y y y +=-+=+=+=-⎧⎧⎧⎧+=±=±⎨⎨⎨⎨===-=-⎩⎩⎩⎩、,由、、、得 4444=9=1=9=1y y y y x x x x ===-=-⎧⎧⎧⎧⎨⎨⎨⎨--⎩⎩⎩⎩、、、共4组解。
3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A.3 B.3 C.3 D.3EBD解答:如图,做G H ⊥BE 于H ,易证Rt △AB E ∽Rt △GHB ,设GH=a ,则HE=a ,BH=2-a , 由GH BH a 2-a 2==a=AB BE 123得解得,故BG=3。
4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B )A .18-. B .0. C .1. D .98. 解答:44222222219=2=21=2()48a ab b a b a b ab a b ab ab +++-+-++--+2() 考查以ab 整体为自变量的函数的图像为抛物线219y=2()48ab --+其对称轴为14ab = 由22222020a b ab a b ab +-≥++≥和知1122ab -≤≤ 又1111()4242-->-,故当12ab =-时,函数取最小值0。
2012年衢州市初中数学创新与知识应用竞赛试题
5.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数 的图象与x轴有两个不同交点的概率是(A)
A. B. C. D.
6.如图,在梯形ABCD中,AB∥DC,AB⊥BC,E是AD的中点,
AB+BC+CD=6, ,则梯形ABCD的面积等于(A)
13.如图,把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,已知正方形的边长为4,那么折痕EF的长为___ _____;
14.点D是△ABC的边AB上的一点使得AB=3AD,P是△ABC外接圆上一点,使得∠ADP=∠ACB,则 的值为___ _____;
15.观察下列图形,根据①②③的规律,若图①为第1次分割,图②为第2次分割,图③为第3次分割,按照这个规律一直分割下,进行了n( )次分割,图中一共有_ _个三角形(用含n的代数式表示);
(1)∠MAN的大小;
(2)△AMN面积的最小值;
解:(1)如图,延长CB至E,使BE=DN,
则有△AND≌△AEB,
∴AN=AE,∠DAN=∠BAE
∴∠NAE=∠BAD=90°,
∵CN+CM+MN=2=CD+CB
∴
在△AMN和△AME中,
∵AN=AE,MN=ME,AM=AM,
∴△AMN≌△AME,
2012年衢州市初中数学创新与知识应用竞赛试题(附答案)
(满分120分,考试时间120分钟)
题号
一
二
三
总分
1——8
9——15
16
17
18
19
得分
评卷人
一、选择题(本题共有8小题,每小题5分,共40分,请选出一个正确的选项填在题后的括号内,不选、多选、错选均不给分)
2012年12月份九年级学科竞赛数学试题(含答案)
2012学年第一学期九年级12月份学科竞赛数学试题卷一、选择题(本大题共l 0小题,每小题3分) 1、若x-2y y =25 ,则xy等于( ) A 、45 B 、54 C 、125 D 、5 122、如果两个相似多边形的面积比为9:4,那么这两个相似多边形的相似比为( ) A 、9:4 B 、3:2 C 、2:3 D 、81:l63、圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为( ).A 、36πB 、48πC 、144πD 、72π 第5题 4、将二次函数y=x 2的图象向上平移2个单位,再向左平移3个单位,得到新的图象的二次函数表达式是( )A 、y=(x+3)2-2B 、y=(x-3)2-2C 、y=(x+3)2+2D 、y=(x-3)2+2 5、如图5,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为( )A 、80°B 、40°C 、20°D 、70°6、若函数y=(k-1)x 2-4x+5-k 既没有最大值也没有最小值,则有( ) 第7题 第8题 A 、 k>1 B 、k<1 C 、k=1 D 、k=07、如图7,某公园的一座石拱桥是圆弧形(劣弧),其跨度AB 为24米,拱桥的半径为13米,则拱高CD 为( ) A 、5米 B 、7米 C 、5 3 米 D 、8米8、如图8,圆上有A 、B 、C 、D 四点,其中∠BAD =80°,若弧ABC 、弧ADC 的长度分别为7π、11π,则弧BAD 的长度为( )A 、4πB 、8πC 、10πD 、15π9、若将函数y=a(x+3)(x-5)+b 的图像向右平行移动1个单位,则它与直线y=b 的交点坐标是( )A 、(-3,0)和(5,0)B 、(-2,b )和(6,b )C 、(-2,0)和(6,0)D 、(-3,b )和(5,b ) 10、关于二次函数y=mx 2-x+1。
全国初中数学竞赛试题含答案
中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分)1.如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式22||()||a a b c a b c -++-++可以化简为( ). (A )2c a (B )2a 2b (C ) a (D )a2.如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ).(A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)3.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12 (D )144.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )45.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p(第1题图)二、填空题(共5小题,每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .7.如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 .8.如果关于x 的方程x 2+kx+43k 2-3k+92= 0的两个实数根分别为1x ,2x ,那么2012220111x x 的值为 .9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 .10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD = DC. 分别延长BA ,CD ,交点为E. 作BF ⊥EC ,并与EC 的延长线交于点F. 若AE = AO ,BC = 6,则CF 的长为 .三、解答题(共4题,每题20分,共80分)11.已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y <;关于x 的方程2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围.(第7题图)(第10题图)12.如图,⊙O 的直径为AB ,⊙O 1过点O ,且与⊙O 内切于点B .C 为⊙O 上的点,OC 与⊙O 1交于点D ,且OD CD >.点E 在OD 上,且DC DE =,BE 的延长线与⊙O 1交于点F ,求证:△BOC ∽△1DO F .13.已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数. 当a ≥2012时,求a 的最小值.14.求所有正整数n ,使得存在正整数122012x x x ,, ,,满足122012x x x <<<,且122012122012n x x x +++=.(第12题图)中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题参考答案一、选择题 1.C解:由实数a ,b ,c 在数轴上的位置可知0b a c <<<,且b c >,所以||||()()()a b b c a a b c a b c ++=-+++--+a =-.2.D解:由题设知,2(3)a -=⋅-,(3)(2)b -⋅-=,所以263a b ==,.解方程组236y x y x⎧=⎪⎪⎨⎪=⎪⎩,,得32x y =-⎧⎨=-⎩,; 32.x y =⎧⎨=⎩,所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).3.D解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a a b a b++++++=, 于是 4423421444a b a b ++++-=.4.D解:设小倩所有的钱数为x 元、小玲所有的钱数为y 元,x y ,均为非负整数. 由题设可得2(2)2()x n y y n x n +=-⎧⎨+=-⎩,, 消去x 得 (2y -7)n = y+4,2n =721517215)72(-+=-+-y y y .因为1527y -为正整数,所以2y -7的值分别为1,3,5,15,所以y 的值只能为4,5,6,11.从而n 的值分别为8,3,2,1;x 的值分别为14,7,6,7.5.D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以01239891036363636p p p p ====,,,,因此3p 最大.二、填空题6.7<x ≤19解:前四次操作的结果分别为3x -2,3(3x -2)-2 = 9x -8,3(9x -8)-2 = 27x -26,3(27x -26)-2 = 81x -80.由已知得 27x -26≤487, 81x -80>487.解得 7<x ≤19.容易验证,当7<x ≤19时,32x -≤487 98x -≤487,故x 的取值范围是 7<x ≤19.7.8解:连接DF ,记正方形ABCD 的边长为2a . 由题设易知△BFN ∽△DAN ,所以21AD AN DN BF NF BN ===, 由此得2AN NF =,所以23AN AF =.在Rt △ABF 中,因为2AB a BF a ==,,所以225AF AB BF a =+=,于是 25cos AB BAF AF ∠==. 由题设可知△ADE ≌△BAF ,所以 AED AFB ∠=∠,0018018090AME BAF AED BAF AFB ∠=-∠-∠=-∠-∠=.(第7题)于是 25cos AM AE BAF =⋅∠=, 245315MN AN AM AF AM =-=-=,415MND AFD S MN S AF ∆∆==. 又21(2)(2)22AFD S a a a ∆=⋅⋅=,所以2481515MND AFD S S a ∆∆==. 因为15a =8MND S ∆=. 8.32-解:根据题意,关于x 的方程有∆=k 2-4239(3)42k k -+≥0,由此得 (k -3)2≤0.又(k -3)2≥0,所以(k -3)2=0,从而k=3. 此时方程为x 2+3x+49=0,解得x 1=x 2=32-.故2012220111x x =21x =23-. 9.8解:设平局数为a ,胜(负)局数为b ,由题设知23130a b +=,由此得0≤b ≤43. 又 (1)(2)2m m a b +++=,所以22(1)(2)a b m m +=++. 于是0≤130(1)(2)b m m =-++≤43,87≤(1)(2)m m ++≤130,由此得 8m =,或9m =.当8m =时,405b a ==,;当9m =时,2035b a ==,,5522a b a +>=,不合题设. 故8m =.(第10题)10.223 解:如图,连接AC ,BD ,OD.由AB 是⊙O 的直径知∠BCA =∠BDA = 90°. 依题设∠BFC = 90°,四边形ABCD 是⊙O 的内接四边形,所以∠BCF =∠BAD,所以 Rt △BCF ∽Rt △BAD ,因此BC BACF AD=. 因为OD 是⊙O 的半径,AD = CD ,所以OD 垂直平分AC ,OD ∥BC , 于是2DE OEDC OB==. 因此 223DE CD AD CE AD ===,.由△AED ∽△CEB ,知DE EC AE BE ⋅=⋅.因为322BA AE BE BA ==,, 所以 32322BA AD AD BA ⋅=⋅,BA=22AD ,故AD CF BCBA =⋅=2=. 三、解答题11.解: 因为当13x -<<时,恒有0y <,所以23420m m ∆=+-+>()(),即210m +>(),所以1m ≠-. ………(5分) 当1x =-时,y ≤0;当3x =时,y ≤0,即2(1)(3)(1)2m m -++-++≤0,且 233(3)2m m ++++≤0,解得m ≤5-. ………(10分)设方程()()2320x m x m ++++=的两个实数根分别为12x x ,,由一元二次方程根与系数的关系得()121232x x m x x m +=-+=+,.因为1211910x x +<-,所以 121239210x x m x x m ++=-<-+, 解得12m <-,或2m >-.因此12m <-. …………(20分) 12. 证明:连接BD ,因为OB 为1O 的直径,所以90ODB ∠=︒.又因为DC DE =,所以△CBE 是等腰三角形.…………(5分)设BC 与1O 交于点M ,连接OM ,则90OMB ∠=︒.又因为OC OB =,所以22BOC DOM DBC ∠=∠=∠12DBF DO F =∠=∠.…………(15分)又因为1BOC DO F ∠∠,分别是等腰△BOC ,等腰△1DO F 的顶角,所以△BOC ∽△1DO F . …………(20分)13.解:设a -b = m (m 是素数),ab = n 2(n 是正整数). 因为 (a+b)2-4ab = (a -b)2, 所以 (2a -m)2-4n 2= m 2,(2a -m+2n)(2a -m -2n) = m 2. ………(5分)因为2a -m+2n 与2a -m -2n 都是正整数,且2a -m+2n >2a -m -2n (m 为素数),所以 2a -m+2n =m 2,2a -m -2n =1.解得 a =2(1)4m +,n =214m -.于是 b = a -m =214m -(). …………(10分)又a ≥2012,即2(1)4m +≥2012.(第12题)又因为m 是素数,解得m ≥89. 此时,a ≥41)(892+=2025.当2025a =时,89m =,1936b =,1980n =.因此,a 的最小值为2025. …………(20分) 14.解:由于122012x x x ,, ,都是正整数,且122012x x x <<<,所以1x ≥1,2x ≥2,…,2012x ≥2012.于是 122012122012n x x x =+++≤1220122012122012+++=.…………(10分) 当1n =时,令12201220122201220122012x x x ==⨯=⨯,, ,,则1220121220121x x x +++=.…………(15分) 当1n k =+时,其中1≤k ≤2011,令 1212k x x x k ===,, ,,122012(2012)(1)(2012)(2)(2012)2012k k x k k x k k x k ++=-+=-+=-⨯,,,则1220121220121(2012)2012k k x x x k+++=+-⋅-1k n =+=. 综上,满足条件的所有正整数n 为122012, , , . …………(20分)。
2012年全国初中数学竞赛试题(正题)参考答案
2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19. 6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得,所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4). …………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为. …………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线. …………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD. 故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2. …………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m. …………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025. …………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.。
2012年全国初中数学竞赛试题(副题答案)
2012年全国初中数学竞赛试题(副题)参考答案一、选择题1.D解:第k行的最后一个数是,故第100行的最后一个数是.2. B解:这个表格中的矩形可由对角线的两个端点确定,由于包含黑色小方格,于是,对角线的一个端点确定,另一个端点有3×4=12种选择.3.B解:由于方程的两根均为有理数,所以根的判别式≥0,且为完全平方数.≥0,又2≥,所以,当时,解得;当时,解得.4. C解:当函数为二次函数时,有k2-1≠0,=(k+1)2-4(k2-1)<0.解得k>,或k<-1.当函数为一次函数时,k=1,此时y=-2x+1与x轴有公共点,不符合题意.当函数为常数函数时,k=-1,此时y=1与x轴没有公共点.所以,k的取值范围是k>,或k≤-1.5. B(第5题)解:如图,设,作BKCE,则,于是A,B,E,C四点共圆. 因为是的中点,所以,从而有,即平分.二、填空题6. 30(第6题)解:如图,连接PD,则.7.180解:设甲、乙、丙三车的速度分别为每分钟x,y,z米,由题意知,.消去z,得.设甲车出发后t分钟追上乙车,则,即,解得.8.<解:由a n==,得a1+a2+…+a2012==<1.9.25解:设甲袋中红、黑、白三种颜色的球数分别为,则有1≤≤9,且,(1)即,(2)于是.因此中必有一个取5.不妨设,代入(1)式,得到.此时,y可取1,2,…,8,9(相应地z取9,8,…,2,1),共9种放法.同理可得y=5,或者z=5时,也各有9种放法.但时,两种放法重复.因此共有9×3-2 = 25种放法.10. 6(第10题)解:如图,设△ABC内切圆为⊙I,半径为r,⊙I与BC,CA,AB分别相切于点D,E,F,连接IA,IB,IC,ID,IE,IF.由切线长定理得AF=p-a,BD=p-b,CE=p-c,其中p=(a+b+c).在Rt△AIF中,tan∠IAF=,即tan.同理,tan,tan.代入已知等式,得.因此a+c=.三、解答题11. 解:已知,又,且,所以b,c是关于x的一元二次方程的两个根.故≥0,≥0,即≥0,所以≥20.于是≤-10,≥10,从而≥≥10,故≥30,当时,等号成立.12. 解:将abc=d代入10ab+10bc+10ca=9d得10ab+10bc+10ca=9abc.因为abc≠0,所以,.不妨设a≤b≤c,则≥≥>0.于是,<≤,即<≤,<a≤.从而,a=2,或3.若a=2,则.因为<≤,所以,<≤,<b≤5.从而,b=3,4,5. 相应地,可得c=15,(舍去),5.当a=2,b=3,c=15时,d=90;当a=2,b=5,c=5时,d=50.若a=3,则.因为<≤,所以,<≤,<b≤.从而,b=2(舍去),3.当b=3时,c=(舍去).因此,所有正整数解为(a,b,c,d)=(2,3,15,90),(2,15,3,90),(3,2,15,90),(3,15,2,90),(15,2,3,90),(15,3,2,90),(2,5,5,50),(5,2,5,50),(5,5,2,50).13. 证明:延长DA至,使得,则,于是△DPC∽△,故,所以PO∥.(第13题)又因为△DPO ∽△,所以.同理可得,而AB∥CD,所以,故OP=OQ.14.解:(1)由题设可得,或,或.由,解得;由,解得;由,解得.所以满足题设要求的实数.(2)不存在.由题设(整数≥1)满足首项与末项的积是中间项的平方,则有,解得,这与矛盾.故不存在这样的数列.(3)如果删去的是1,或者是,则由(2)知,或数列均为1,1,1,即,这与题设矛盾.如果删去的是,得到的一列数为,那么,可得.如果删去的是,得到的一列数为,那么,开得.所以符合题设要求的的值为1,或.2012-04-16 人教网。
2012年全国初中数学 竞赛试题
2012年全国初中数学竞赛预赛试题及参考答案一、选择题(共6小题,每小题6分,共36分. 以下每道小题均给出了代号为A,B,C,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)1.在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【 】 (A )2,3,1 (B )2,2,1 (C )1,2,1 (D )2,3,2 【答】A .解.完全平方数有1,9;奇数有1,3,9;质数有3.2.已知一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,则下列判断正确的是【 】(A )1m >- (B )1m <- (C )1m > (D )1m < 【答】C .解.一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,说明其图象与y 轴的交点位于y 轴的正半轴,且y 随x 的增大而增大,所以10,10.m m ->⎧⎨+>⎩解得1m >.3.如图,在⊙O 中,CD DA AB ==,给出下列三个 结论.(1)DC =AB ;(2)AO ⊥BD ;(3)当∠BDC =30° 时,∠DAB =80°.其中正确的个数是【 】(A )0 (B )1 (C )2 (D )3 【答】D .解.因为CD AB =,所以DC =AB ;因为AD AB =,AO 是半径,所以AO ⊥BD ;设∠DAB =x 度,则由△DAB 的内角和为180°得.2(30)180x x -︒+=︒,解得80x =︒.4. 有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是【 】(A )34 (B )23 (C )13 (D )21【答】B .解.从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是3264=. 5.在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(3,3)--,点C 是y 轴上一动点,要使△A B C 为等腰三角形,则符合要求的点C 的位置共第3题图O DCBA有【 】(A )2个 (B )3个 (C )4个 (D )5个 【答】D .解.由题意可求出AB =5,如图,以点A 为圆心AB 的长为半径画弧,交y 轴于C 1和C 2,利用勾股定理可求出OC 1=OC 2=225126-=,可得)62,0(),62,0(21-C C , 以点B 为圆心BA 的长为半径画弧,交y 轴于点C 3和C 4, 可得34(0,1),(0,7)C C -,AB 的中垂线交y 轴于点C 5,利用 三角形相似或一次函数的知识可求出)617,0(5-C . 6.已知二次函数221y x bx =++(b 为常数),当b 取不同的值时,其图象构成一个“抛物线系”,图中的实线型抛物线分别是b 取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型抛物线),这条抛物线的解析式是【 】(A )221y x =-+ (B )2112y x =-+ (C )241y x =-+ (D )2114y x =-+【答】A .解.221y x bx =++的顶点坐标是⎪⎪⎭⎫ ⎝⎛--88,42b b ,设4b x -=,882b y -=,由4b x -=得x b 4-=,所以222218)4(888x x b y -=--=-=. 二、填空题(共6小题,每小题6分,共36分)7.若2=-n m ,则124222-+-n mn m 的值为 . 【答】7.解.71221)(212422222=-⨯=--=-+-n m n mn m .8.方程112(1)(2)(2)(3)3x x x x +=++++的解是 .【答】120,4x x ==-.yxO 第6题图xyOABC 1C 2C 3C 4C 5 第5题图解.11(1)(2)(2)(3)x x x x +++++11111223x x x x =-+-++++11213(1)(3)x x x x =-=++++. ∴22(1)(3)3x x =++,解得 120,4x x ==-.9.如图,在平面直角坐标系中,点B 的坐标是(1,0), 若点A 的坐标为(a ,b ),将线段BA 绕点B 顺时针旋转 90°得到线段BA ',则点A '的坐标是 . 【答】(1,1)b a +-+.解.分别过点A 、A '作x 轴的垂线,垂足分别 为C 、D .显然Rt △ABC ≌Rt △B A 'D . 由于点A 的坐标是(,)a b ,所以OD OB BD =+1OB AC b =+=+,1A D BC a '==-,所以点的A '坐标是(1,1)b a +-+.10.如图,矩形ABCD 中,AD =2,AB =3,AM =1,DE 是以点A 为圆心2为半径的41圆弧,NB 是以点M 为圆心2为半径的41圆弧,【答】2.解.连接MN ,显然将扇形AED 向右平移 可与扇形MBN 重合,图中阴影部分的面积等于 矩形AMND 的面积,等于221=⨯.11.已知α、β是方程2210x x +-=的两根,则3510αβ++的值为 .【答】2-.解.∵α是方程2210x x +-=的根,∴212αα=-.∴ 322(12)22(12)52αααααααααα=⋅=-=-=--=-, 又 ∵2,αβ+=-M第10题图E 第9题图∴ 3510(52)5105()8αβαβαβ++=-++=++=5(2)82⨯-+=-.12.现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有 个. 【答】36.解.利用抽屉原理分析,设最多有x 个小朋友,这相当于x 个抽屉,问题变为把145颗糖放进x 个抽屉,至少有1个抽屉放了5颗或5颗以上,则41x +≤145,解得x ≤36,所以小朋友的人数最多有36个.三、解答题(第13题15分,第14题15分,第15题18分,共48分)13.王亮的爷爷今年(2012年)80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?解.设王亮出生年份的十位数字为x ,个位数字为y (x 、y 均为0 ~ 9的整数).∵王亮的爷爷今年80周岁了,∴王亮出生年份可能在2000年后,也可能是2000年前.故应分两种情况. …………………2分(1)若王亮出生年份为2000年后,则王亮的出生年份为200010x y ++,依题意,得2012(200010)20x y x y -++=+++,整理,得 1011,2xy -=x 、y 均为0 ~ 9的整数,∴0.x = 此时 5.y =∴王亮的出生年份是2005年,今年7周岁.…………………8分(2)若王亮出生年份在2000年前,则王亮的出生年份为190010x y ++,依题意,得2012(190010)19x y x y -++=+++,整理,得 111022x y =-,故x 为偶数,又1021110211,09,22x xy --=≤≤ ∴ 779,11x ≤≤ ∴ 8.x = 此时7.y = ∴王亮的出生年份是1987年,今年25周岁. …………………14分 综上,王亮今年可能是7周岁,也可能是25周岁.……………15分14.如图,在平面直角坐标系中,直角梯形OABC 的顶点A 、B 的坐标分别是(5,0)、(3,2),点D 在线段OA 上,BD =BA , 点Q 是线段BD 上一个动点,点P 的坐标是(0,3),设直线PQ 的解析式为y kx b =+.(1)求k 的取值范围;(2)当k 为取值范围内的最大整数时,若抛物线25y ax ax =-的顶点在直线PQ 、OA 、AB 、BC 围成的四边形内部,求a 的取值范围.解.(1)直线y kx b =+经过P (0,3),∴ 3b =.∵B (3,2),A (5,0),BD =BA ,∴ 点D 的坐标是(1,0), ∴ BD 的解析式是1y x =-, 1 3.x ≤≤依题意,得 1,3.y x y kx =-⎧⎨=+⎩,∴4,1x k =-∴ 41 3.1k -≤≤解得13.3k --≤≤……………………………………………7分 (2) 13,3k --≤≤且k 为最大整数,∴1k =-.则直线PQ 的解析式为3y x =-+.……………………………………………9分又因为抛物线25y ax ax =-的顶点坐标是525,24a ⎛⎫-⎪⎝⎭,对称轴为52x =.解方程组⎪⎩⎪⎨⎧=+-=.25,3x x y 得⎪⎪⎩⎪⎪⎨⎧==.21,25y x 即直线PQ 与对称轴为52x =的交点坐标为51(,)22,∴125224a <-<.解得 822525a -<<-.……………………………………15分 15. 如图,扇形O M N 的半径为1,圆心角是90°.点B 是MN 上一动点,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)求证.四边形EPGQ 是平行四边形;(2)探索当OA 的长为何值时,四边形EPGQ 是矩形;(3)连结PQ ,试说明223PQ OA +是定值.解.(1)证明.如图①, ∵∠AOC =90°,BA ⊥OM ,BC ⊥ON , ∴四边形OABC 是矩形. ∴OC AB OC AB =,//. ∵E 、G 分别是AB 、CO 的中点, ∴.,//GC AE GC AE =∴四边形AECG 为平行四边形.∴.//AG CE ……………………………4分 连接OB , ∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点, ∴ GF ∥OB ,DE ∥OB , ∴ PG ∥EQ ,∴四边形EPGQ 是平行四边形.………………………………………………6分A BCO D EFGPQ M N图①(2)如图②,当∠CED =90°时,□EPGQ 是矩形. 此时 ∠AED +∠CEB =90°.又∵∠DAE =∠EBC =90°,∴∠AED =∠BCE .∴△AED ∽△BCE .………………………………8分 ∴AD AEBE BC=. 设OA =x ,AB =y ,则2x ∶2y =2y ∶x ,得222y x =.…10分又 222OA AB OB +=,即2221x y +=.∴2221x x +=,解得x =∴当OA的长为3时,四边形EPGQ 是矩形.………………………………12分 (3)如图③,连结GE 交PQ 于O ',则.,E O G O Q O P O '=''='.过点P 作OC 的平行线分别交BC 、GE 于点B '、A '.由△PCF ∽△PEG 得,2,1PG PE GE PF PC FC === ∴ PA '=23A B ''=13AB , GA '=13GE =13OA ,∴ 1126A O GE GA OA '''=-=. 在Rt △PA O ''中,222PO PA A O ''''=+,即 2224936PQ AB OA =+, 又 221AB OA +=, ∴ 22133PQ AB =+,∴ 2222143()33OA PQ OA AB +=++=.……………………………………18分A BCOD E F GP QMN 图②B'N MA'QP O'G F E D C B A O 图③。
2012年初中竞赛解答
“时代杯”2012年江苏省中学数学应用与创新邀请赛试题参考解答(初中组)(2012年12月19日下午15∶30 ~ 17∶00)注意事项:1. 本试卷共4页.满分150分.考试时间90分钟. 2. 用钢笔或圆珠笔(蓝色或黑色)直接答在试卷上. 3. 答卷前将密封线内的项目填写清楚.一、选择题(下列各题的四个选项中,只有一个是正确的.每题7分,共42分) 1. 从 - 3,- 2,- 1,4,5中任取2个数相乘,所得积中的最大值为a ,最小值为b ,则a b的值为 ( ) A .43- B .12- C .13 D .203答:A .2. 在平面直角坐标系xOy 中,平行四边形OABC 的顶点为O (0,0)、A (1,1)、B (3,0),则顶点C 的坐标是 ( ) A .(-3,1) B .(4,1) C .(-2,1) D .(2,-1) 答:D .3. 在△ABC 中,AD 为BC 边上的中线.已知AC =5,AD =4,则AB 的取值范围是( )A .1<AB<9 B .3<AB <13 C .5<AB <13 D .9<AB <13答:B .4. 如图,扇形OAB 是圆锥的侧面展开图,点O 、A 、B 分别是格点.已知小正方形方格的边长为1cm ,则这个圆锥的底面半径为 ( ) A .cm B C cmD .12cm 答:C .密封线姓名学校考号ABO(第4题)5.设整数x ,y 满足不等式x 2+y 2≤2x +2y ,则x +y 的不同值的个数为 ( ) A .9 B .7 C .5 D .4 答:C .6.在如图所示的44⨯方格中,每一横行、纵行和对角线上都应是1,2,3,4四个数,则 a 与b 的乘积的值为 ( )A .5B .4C .3D .2 答:B .二、填空题(每题7分,共28分)7. 若将9个数按照从小到大的顺序排成一列,中间的数恰是这9个数的平均数,前5个数的平均数是40,后5个数的平均数是60,则这9个数的和为__________. 答:450.8. 设b 为实数,点P (m ,n ) (m >0)在函数y =-x 2 + bx + 2的图象上,点P 关于原点的对称点Q 也在此函数的图象上,则m 的值为 _________. 答:2.9. 口袋中装有5个小球,其中1个红球,2个黄球,2个白球,它们的大小、形状完全一样. 从袋中摸出一个球后放回,再摸第二个球,则两次摸到的两个球为同色球的概率是 . 答:925. 10.德国数学家洛萨·科拉茨在1937年提出了一个猜想:如果n 是奇数,我们计算3n +1;如果n 是偶数,我们除以2.不断重复这样的运算,经过有限步骤后一定可以得到1.例如,n =6时,经过上述运算,依次得到一列数6,3,10,5,16,8,4,2,1.小梁同学对某个正整数n ,按照上述运算,得到一列数,已知第6个数为1,则正整数n 的所有可能取值为__________. 答:4,5,32.ba 1231(第4题)三、解答题(第11题、第12题每题18分,第13题22分,第14题22分,共80分) 11.(本题满分18分)在凸四边形ABCD 中,∠BAD =90°,对角线AC 与BD 互相垂直且相等,其交点为E ,E 为AC 的中点,求证:BE = DE .证明:(证法一)因为AC ⊥BD ,所以∠AED =∠BEA =90°.因此∠BAE +∠ABE =90°.又因为∠BAD =90°,所以∠BAE +∠DAE =90°, 从而∠ABE =∠DAE .于是△ABE ∽△DAE ,得AE DE =BEAE ,即AE 2=DE ·BE .…………… 6分 又因为E 为AC 的中点,所以AE =EC .又AC =BD ,所以AE =BD 2=DE +BE2. …………… 12分因此DE ·BE =(DE +BE 2)2,得BE = DE . …………… 18分(证法二)因为E 为AC 的中点,AC ⊥BD ,所以BD 是线段AC 的垂直平分线,从而AD =CD ,AB =CB .又BD =BD ,所以△ABD ≌△CBD . …………… 6分 又因为∠BAD =90°,所以∠BCD =90°. 所以∠BAD +∠BCD =180°.所以A 、B 、C 、D 四点共圆. …………… 12分 由∠BAD =90°得BD 是圆的直径.又因为AC =BD ,所以AC 也是圆的直径,从而点E 是圆心.故BE = DE . …………… 18分ABCDE(第11题)如图①所示,空圆柱形容器内放着一个实心的“柱锥体”(由一个圆柱和一个同底面的圆锥组成的几何体).现向这个容器内匀速注水,水流速度为5cm 3/s ,注满为止.已知整个注水过程中,水面高度h (cm)与注水时间t (s)之间的关系如图②所示.请你根据图中信息,求:(1)圆柱形容器的高与底面积; (2)“柱锥体”中锥体的高与底面积.解:(1)由图②知,圆柱形容器的高为12cm . …………… 3分从第26秒到第42秒,共注入水(42-26)×5(cm 3),则圆柱形容器的底面积为(42-26)×5÷(12-8)=20(cm 2). …………… 9分 (2)由图②知,“柱锥体”中,下部小圆柱的高为5cm ,上部小圆锥的高为8-5=3(cm). …………… 12分 从开始到第15秒,共注入水15×5 (3cm ),则圆柱形容器的底面积-“柱锥体”中锥体的底面积 =15×5÷5=15(cm 2).所以“柱锥体”中锥体的底面积为20-15=5(cm 2). …………… 18分图①图②(第12题)东方围棋学校组织选手进行围棋比赛,每两位选手都要进行比赛,决出胜负,胜者得1分,败者得0分.在所有选手中,男选手的人数是女选手人数的7倍.比赛结束后,经统计,男选手的总得分比女选手的总得分多252分.(1)设女选手共有n名,求所有选手的总得分;(用含n的式子表示)(2)求参加此次比赛的男选手的人数和女选手的人数;(用数字作答)(3)证明:在这次围棋比赛中,得分最高的选手一定是男选手.解:(1)由题设及女选手n人,可知男选手为7n人,则所有选手的总得分为8n·(8n-1)÷2=4n(8n-1)=32n2-4n. ……………………3分由于男选手的总得分比女选手的总得分多252分,所以男选手的总得分为23242522n n-+=2162126n n-+.……………………6分(2)男选手之间比赛的总得分为7(71)2n n-,所以23242522n n-+≥7(71)2n n-,即2173252n n--≤0.………………10分所以n(17n-3)≤252.经计算,n≥4时,n(17n-3)≥4(17n-3)≥4(17×4-3)=260≥252,故n<4.又4n(8n-1)=32n2-4n>252,所以n>2.因此n=3.经检验,n=3时符合题意.所以此次比赛有男选手21人,女选手3人.…………14分(3)由(2)可知,所有选手共得了276分,其中男选手共得了264分,女选手共得了12分.又女选手之间比赛,共得了3分,所以女选手共赢了男选手9分,或者说,女选手的最高得分不超过9+2=11分.………………18分因为11×21=231<264,所以一定有男选手的得分超过11分,故得分最高的选手一定是男选手.………………22分记[]x 表示不超过实数x 的最大整数,如[2.718]2=,[ 3.28]4-=-.(1)证明:不存在正整数c ,使得对于任意正整数n ,都有=;(2)求所有的正整数c ,使得对于任意正整数n ,都有=;(3)求所有的正整数,b c ,使得对于任意正整数n ,都有=.证明:(1)取n = 3,则=,即1=,得1≤3+c <2,-2≤c <1,这与c ≥1矛盾.所以不存在正整数c ,使得对于任意正整数n ,都有=.……… 4分(2)由题意知,取n = 3,则== 3,得3==,所以3< 4,得1≤c ≤3. …………………… 6分因为221n =++,而1n n <<+,所以412143n n n +<++<+.<< (*) …………………… 9分令=k ,则1k k <+,2241(1)k n k +<+≤.① 若k + 1是偶数,则2(1)k +能被4整除,于是2(1)44k n ++≥> 4n + 3. ② 若k + 1是奇数,则2(1)k +被4除余1,于是2(1)4(1)1k n +++≥> 4n + 3. 因此,由①,②知341+>+n k .从而推知1342414+<+<+<+≤k n n n k .故结合(*),得=== .所以c =1,2,3时,对于任意正整数n ,都有=.…… 14分(3)由题设可知,存在正整数,b c ,对于任意正整数n ,都有=,那么,若=1c ,对于任意正整数n ,都有=,则取=3,4n ,就有 和 ,得 93+1<16b ≤和164+1<25b ≤. 又b 为正整数,所以=4b . 因此,当=1c 时,必有=4b . ………………16分若2c ≥,对于任意正整数n ,都有=,则取2n c =,有2211(1)n c c +=+<+,从而2c ==,得2224441c bc c c c ≤+<++,213144b c c c-≤<++. 又2c ≥,b 为正整数,则有 46b ≤<,得 4,5b =.又n =3,有 ==3=,得9≤3b +c < 16,所以5b <.于是推知=4b . ………………19分因此,符合题意的=4b ,这样原问题转化为题中第(2)问,那么由(2)的结论,可知c 只有取1,2,3满足题意.综上,b = 4,c = 1,2,3. ……………… 22分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学创新与知识应用竞赛试题
一、选择题(共8小题,每小题5分,满分40分)
1.()20121-是( )
A .最大的负数
B .最小的非负数
C .绝对值最小的整数
D .最小的正整数
2.已知()26x y +=,()28x y -=,则xy 的值为( )
A .—2
B .—1
C . 12
-
D . —7 3.已知四边形C 1的两条对角线相等,但不垂直,顺次连结C 1各边中点得四
边形C 2,顺次连结C 2各边中点得四边形C 3,以此类推,四边形C 2012为( )
A .是矩形但不是菱形
B .是菱形但不是矩形
C .正方形
D .既非矩形又非菱形
4.如图,直线AB 和CD 相交于点O ,∠AOD =60°,取点E 有
OE =1m ,作点E 关于AB 的对称点F ,点F 关于
CD 的对称点G ,则EG 的距离为( )
A .1m
B .
C D .
5.若230x y -=,20x y z --=()0xyz ≠,则222
222
26x y z x y z -++--的值等于( ) A .12- B .12
C .—1
D .2 6.如图,在菱形ABCD 中,正△AEF 的两个顶点在边
B C ,CD 上,且AB =AE ,那么∠B 的度数是( )
A .50
B .60
C .70
D .80
7.一次函数y ax b =+,y bx a =+()a b <的图象同一平面直角坐标系内画出,
则其中一个正确的是( )
A .
B .
C .
D .
8.在△ABC 中,BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD =4,CE =3,那么△ABC 的面积等于( )
A .4
B .6
C .8
D .16
二、填空题(共6小题,每小题5分,满分30分)
9.小明对小李说:“你想一个数,乘以2,加上8,再除以2,最后减去你所想的数,我就知道结果.”这个结果是__________________.
10.不等式组2425
x a x b +>⎧⎨-<⎩的解集是02x <<,那么a b +的值等于___________.
11. 植树节时,某班平均每人植树6棵,如果只由女同学完成,每人应植
树15棵,如果只由男同学完成,每人应植树__________棵.
12.在反比例函数()0k y k x
=≠中,如果x 增加m %,那么y 就减少n %,
那么n =___________(用m 代数式表示)
13. 如图,在直角坐标系中,正△AOB 的边长为6,
一边OA 在x 轴上,点P 在线段OA 上,将线段BP
的中点绕点P 按顺时针方向旋转60°得到点C.
当点P 沿x 轴从点O 运动到点A 时,
点C 经过的路程是____________________.
14.在直角坐标系中,O 为原点,已知二次函数26y x x =-+的图像与x 轴
的另一交点为A ,在该二次函数的图象上取点P ,其横坐标为t ,如果△OPA 是钝角三角形,则t 的范围是_______________________.
三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分)
15.(本题12分)
我市为了引水库的水到城区作生活用水,要铺设引水管线.如图,
已知MN 为引水工程某段设计路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向有一棵大树A ,以A 为圆心,420m 为半径的圆形区域为湿地范围.去MN 上另一点B ,测得BA 的方向为南偏东75°,
已知MB =400)
1m. 不改变方向,引水路线是否穿过该湿地?若不穿过该湿地,通过计
算说明理由;若穿过该湿地,试求需穿过湿地部分的水管的长度.
16.(本题12分)
已知抛物线C :()2
25y x =--+.将抛物线C 向左平行移动2个单
位后,得到抛物线C 1;将抛物线C 作关于x 轴对称图形,得到抛物线C 2.
(1) x 的值在什么范围,抛物线C 1和抛物线C 2的值都随x 的增大而
减少;
(2) 抛物线C 1、C 2的交点与他们的顶点构成什么特殊的四边形?并
求出它的面积;
(3)在抛物线C 1、C 2围成的封闭图形上,试求平行于y 轴的线段的长度的最大值.
17.(本题12分)
维生素A ,试求该食品维生素B 的含量;
(2) 现在要将三种食品原料混合成100千克的食品.
① 若要求食品维生素B 的含量是维生素A 的含量的两倍,设甲食品原料有x kg ,请用x 的代数式表示配置这种食品的成本;
② 若要求食品至少需含440百单位的维生素A 及480百单位的维生素B ,请求出三种食品原料的分量,使得成本为最少,最少成本是多少?
17.(本题14分)
已知矩形ABCD的两边DC=10,DA=12,平行四边形EFGH的三个顶
点E、F、H分别在矩形ABCD边DC、AD、BC上,CE=2.
(1)若平行四边形EFGH是菱形.
①如图1,当点G刚好在边AB上时,试求DF的长;
②设DF=t,菱形EFGH的中心为M,△DGM的面积记为S,试求出
S关于t的函数解析式;
(2)若平行四边形EFGH是矩形,当△FGA是直角三角形时,试求出DF的值.
图1 图2。