(完整版)人教版新课标初中数学总复习知识点总结,推荐文档
人教版初中数学知识点总结.doc
人教版初中数学知识点总结.doc一、数与代数1. 有理数- 有理数的概念:整数和分数统称为有理数。
- 有理数的运算:加法、减法、乘法、除法、乘方、开方。
- 有理数的性质:绝对值、相反数、倒数。
2. 整数- 整数的分类:正整数、负整数、零。
- 整数的性质:奇数、偶数、质数、合数。
3. 分数与小数- 分数的表示:真分数、假分数、带分数。
- 分数的运算:加减乘除、通分、约分。
- 小数的表示:有限小数、无限循环小数。
- 小数与分数的互化。
4. 代数表达式- 代数式的概念:用字母表示数的表达式。
- 单项式与多项式:单项式的系数、次数;多项式的项、次数、升幂排列、降幂排列。
- 代数式的运算:加减、乘除、因式分解。
5. 一元一次方程- 方程的概念:含有未知数的等式。
- 解方程的方法:移项、合并同类项、系数化为1。
- 方程的应用:实际问题中的方程求解。
6. 二元一次方程组- 方程组的概念:两个或多个一元一次方程的集合。
- 解方程组的方法:代入法、消元法。
- 方程组的应用:解决实际问题中的多个未知数问题。
7. 不等式与不等式组- 不等式的概念:表示不等关系的式子。
- 不等式的解集:找出满足不等式关系的所有数。
- 不等式组的解法:求解多个不等式的公共解集。
二、几何1. 平面图形- 点、线、面的概念:点无大小、线有长度无宽度、面有长度和宽度。
- 角的概念:两条射线的夹角。
- 直线与射线:直线无限延伸,射线有起点无限延伸。
2. 三角形- 三角形的性质:内角和为180度,外角和为360度。
- 特殊三角形:等边三角形、等腰三角形、直角三角形。
- 三角形的分类:按边分类、按角分类。
3. 四边形- 四边形的性质:内角和为360度。
- 特殊四边形:正方形、长方形、菱形、平行四边形、梯形。
4. 圆- 圆的概念:平面上所有与定点等距离的点的集合。
- 圆的性质:圆心、半径、直径、弦、弧、切线。
- 圆的分类:正圆、椭圆、扇形。
5. 面积与体积- 平面图形的面积:长方形、正方形、三角形、圆。
初中数学知识点总结人教版
初中数学知识点总结人教版初中数学知识点总结(人教版)一、数与代数1. 有理数- 整数和小数- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值- 有理数的运算律2. 整式与分式- 单项式与多项式- 同类项与合并同类项- 整式的加减乘除- 因式分解- 分式的基本性质- 分式的乘除法- 分式的加减法3. 代数方程- 一元一次方程- 二元一次方程组- 解方程的基本方法- 列方程解应用题4. 函数- 函数的概念- 线性函数- 反比例函数- 函数的图像和性质- 解析式的应用二、几何1. 平面图形- 点、线、面的基本性质- 角的概念和分类- 三角形的分类和性质- 四边形的分类和性质- 圆的基本性质- 相似图形- 平行线与平行线的性质2. 几何变换- 平移- 旋转- 轴对称(镜像对称)3. 几何计算- 线段、角的计算- 三角形、四边形的面积计算- 圆的周长和面积计算- 体积和表面积的计算(棱柱、棱锥、圆柱、圆锥、球)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表(条形图、折线图、饼图)- 平均数、中位数、众数2. 概率- 随机事件- 概率的初步认识- 可能性的计算四、应用题1. 列方程解应用题- 行程问题- 工作问题- 利润问题- 比例问题2. 几何应用题- 面积问题- 体积问题- 角度计算问题3. 统计与概率应用题- 调查与统计分析- 可能性与预测请注意,以上内容是根据人教版初中数学教材的一般结构和知识点进行的总结,具体的教学内容可能会根据不同年份的教材版本和教学大纲有所变化。
教师和学生应参考最新的教材和教学指南来确定具体的教学内容和要求。
人教版初中数学知识点总结【完整版】
人教版初中数学知识点全总结第一章有理数1、有理数:无限不循环小数和开根开不尽的数叫无理数;整数和分数统称有理数.注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;有理数: 零、负整数、负分数、正分数、正整数2、数轴是规定了原点、正方向、单位长度的一条直线.3、相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0;(2)相反数的和为 0 a+b=0 a、b 互为相反数.4、绝对值:绝对值和我们学过的加、减、乘、除一样,是一种运算,运算符号通常用||表示。
这种运算的意义是:一个正数和0的绝对值是它本身,一个负数的绝对值是它的相反数。
总之,一个数的绝对值是非负数。
用代数式表示为:|a|=a(a>0) |a|=-a(a<0) |a|=0(a=0)在数轴上,一个数的绝对值表示为代表这个数的点到原点的距离。
如:|-5|表示在数轴上代表-5 的点与原点的距离,即|-5|=5。
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比 0 大,负数永远比 0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a≠0,那么 a 的倒数是1 ;若 ab=1 a、 ab 互为倒数;若ab=-1 a、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0 相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义 .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当 n 为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:这是一种记数的方法。
人教版初中数学知识点(全)
人教版初中数学知识点(全)一、整数与有理数1. 整数的概念与表示方法2. 整数的加减法3. 整数的乘法4. 整数的除法5. 整数的混合运算6. 有理数的概念与表示方法7. 有理数的加减法8. 有理数的乘法9. 有理数的除法10. 有理数的混合运算二、代数与方程1. 代数式的基本概念2. 代数式的运算3. 初等代数式4. 一元一次方程5. 一元一次方程的解6. 一元一次方程的应用三、平面图形1. 点、线、面的基本概念2. 直线的性质3. 角的概念与性质4. 线段的概念与性质5. 三角形的基本概念与性质6. 三角形的分类与判定7. 直角三角形与勾股定理8. 平行线与平行四边形9. 四边形的分类及其性质10. 梯形和平行四边形的面积四、图形的位置与方位1. 坐标系2. 图形的部分、全及简单运动3. 图形的位置关系4. 图形的投影和视图五、数据的处理与统计1. 统计调查与数据收集2. 单图形的统计3. 标线图4. 等距统计图与频数分布直方图5. 旋转、平移、翻折、镜面变换6. 几何图形的位置关系六、函数的初步认识1. 函数的概念与表示2. 函数的自变量、因变量与函数图象3. 线性函数及其图象的特征4. 恒等函数和常数函数5. 一元一次方程与一元一次函数七、空间与立体图形1. 立体图形的基本概念2. 正交投影3. 立体图形的展开图4. 空间中的位置关系与方向八、相似与全等1. 点、线、平面的基本性质2. 同位角和同旁内角3. 两个线的夹角与两个平面的夹角4. 直线与平面的位置关系5. 立体图形的拆分九、变量与变化1. 变量与量的关系2. 变量的代数表示3. 变量之间的关系及其图象4. 变量间比例关系及其图象十、数系的扩充1. 自然数、整数、有理数的关系2. 实数的概念与性质3. 几何图形的相似比与相似定理4. 实际问题与解整数方程5. 锐角三角函数、直角三角函数十一、平面直角坐标系1. 平面直角坐标系的建立2. 点与平面直角坐标系3. 点在平面直角坐标系中的坐标4. 平面直角坐标系与方程十二、几何图形的变换1. 图形的变换2. 平移和旋转3. 对称与中心对称4. 拓展与概括(图形自相似、放缩)以上是人教版初中数学知识点的概述,其中包括整数与有理数、代数与方程、平面图形、图形的位置与方位、数据的处理与统计、函数的初步认识、空间与立体图形、相似与全等、变量与变化、数系的扩充、平面直角坐标系以及几何图形的变换等内容。
人教版【初中数学】知识点总结-全面整理(超全)
人教版初中数学知识点总结目录七年级数学(上)知识点 (2)第一章有理数 (2)第二章整式的加减 (7)第三章一元一次方程 (9)第四章图形的认识初步 (11)七年级数学(下)知识点 (12)第五章相交线与平行线 (12)第六章平面直角坐标系 (16)第七章三角形 (17)第八章二元一次方程组 (23)第九章不等式与不等式组 (24)第十章数据的收集、整理与描述 (26)八年级数学(上)知识点 (28)第十一章全等三角形 (28)第十二章轴对称 (30)第十三章实数 (31)第十四章一次函数 (33)第十五章整式的乘除与分解因式 (34)八年级数学(下)知识点 (37)第十六章分式 (37)第十七章反比例函数 (40)第十八章勾股定理 (41)第十九章四边形 (42)第二十章数据的分析 (46)九年级数学(上)知识点 (47)第二十一章二次根式 (47)第二十二章一元二次根式 (49)第二十三章旋转 (51)第二十四章圆 (53)第二十五章概率 (55)九年级数学(下)知识点 (61)第二十六章二次函数 (61)第二十七章相似 (64)第二十八章锐角三角函数 (66)第二十九章投影与视图 (68)七年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大的数-小的数 > 0,小的数-大的数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:a.零不能做除数,无意义即13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n为正偶数时: (-a)n=a n 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次方与近似数370的精确度一样.1、错。
【精编】中考必备:人教版初中数学知识点总结(完整版)2023
【精编】中考必备:人教版初中数学知识点总结(完整版)2023一、数与式1.数的认识1.1 自然数自然数是人们最早形成的概念之一,即从1开始逐一加1的数字序列。
自然数包括正整数和零。
1.2 负数负数是小于零的整数。
负数在数轴上表示为向左移动。
1.3 整数整数由自然数、0和负数组成。
1.4 分数分数表示除法的一种形式。
分数由分子和分母组成,分子表示被除数,分母表示除数。
1.5 小数小数是不能化为整数比的数,可以写成分数的带分数形式或非循环小数和循环小数的形式。
2.有理数有理数是可以表示为两个整数之比的数,包括整数、分数和小数。
3.实数实数是有理数和无理数的统称。
4.函数函数是一种特殊的关系,它把一个数集的每个元素都对应到另一个数集的唯一元素上。
函数包括定义域、值域、图像等概念。
5.代数式及其计算代数式是用数和字母表示的式子。
代数式的计算包括合并同类项、提取公因式、配方法、乘法公式、因式分解等。
二、图形与几何1.平面图形平面图形包括点、线段、射线、直线、角、三角形、四边形、多边形和圆等。
2.三视图及等腰三角形三视图是一个物体分别在正、左、上三个方向上的投影图。
等腰三角形是指两边边长相等的三角形。
3.全等三角形及判断相似全等三角形是指对应的三边和三个内角全部相等的三角形。
相似三角形是指对应的两个角相等的三角形。
4.平行线及其性质平行线是指在同一个平面上不相交的直线。
平行线的性质包括平行公理、平行线性质、平行线定理等。
5.比例与分析比例是指两个数或两个量之间的相等关系。
比例的应用包括比例尺、比例方程、比例的四性质等。
6.圆与圆周角圆是指平面上任意一点与一个确定的点之间的距离相等的点的集合。
圆周角是指与圆心角对应的两条弧所夹的角。
7.计算器的使用计算器是辅助学习数学的工具之一,学生需要学会合理使用、读取和解读计算器上的数值。
三、数据与概率1.统计图及频数分布统计图用直方图、折线图、饼图等形式将数据进行可视化展示。
新人教版初中数学知识点总结(完整版)
新人教版初中数学知识点总结(完整版)新人教版学校数学学问点总结(完好版)1一元一次方程定义通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。
通常形式是ax+b=0(a,b为常数,且a≠0)。
一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。
这里a是未知数的系数,b是常数,x的次数必需是1。
即一元一次方程必需同时满意4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。
一元一次方程的五个核心问题一、什么是等式?1+1=1是等式吗?表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;其次类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是冲突等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。
一个等式中,假设等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。
等式与代数式不同,等式中含有等号,代数式中不含等号。
等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍旧是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍旧是一个等式。
二、什么是方程,什么是一元一次方程?含有未知数的等式叫做方程,如2x-3=8,x+y=7等。
推断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不行。
只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。
(完整word版)人教版初中数学知识点总结+公式-推荐文档
七年级数学(上)知识点第一章 有理数一. 知识框架二. 知识概念1.有理数:(1)凡能写成 形式的数, 都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数, 也不是负数;-a 不一定是负数, +a 也不一定是正数;pai 不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2. 数轴: 数轴是规定了原点、正方向、单位长度的一条直线.3. 相反数:(1)只有符号不同的两个数, 我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身, 0的绝对值是0, 负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;5.有理数比大小: (1)正数的绝对值越大, 这个数越大;(2)正数永远比0大, 负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小, 绝对值大的反而小;(5)数轴上的两个数, 右边的数总比左边的数大;(6)大数-小数 > 0, 小数-大数 < 0.6.互为倒数: 乘积为1的两个数互为倒数;注意: 0没有倒数;若 a ≠0, 那么 的倒数是 ;若ab=1( a 、b 互为倒数;若ab=-1( a 、b 互为负倒数.7.有理数加法法则:(1)同号两数相加, 取相同的符号, 并把绝对值相加;(2)异号两数相加, 取绝对值较大的符号, 并用较大的绝对值减去较小的绝对值;(3)一个数与0相加, 仍得这个数.8. 有理数加法的运算律:(1)加法的交换律: a+b=b+a ;(2)加法的结合律: (a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数, 等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘, 同号为正, 异号为负, 并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘, 有一个因式为零, 积为零;各个因式都不为零, 积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律: ab=ba;(2)乘法的结合律: (ab)c=a(bc);(3)乘法的分配律: a(b+c)=ab+ac .12.有理数除法法则: 除以一个数等于乘以这个数的倒数;注意: 零不能做除数, .13. 有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意: 当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n 为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .14. 乘方的定义:(1)求相同因式积的运算, 叫做乘方;(2)乘方中, 相同的因式叫做底数, 相同因式的个数叫做指数, 乘方的结果叫做幂;15. 科学记数法: 把一个大于10的数记成a×10n的形式, 其中a是整数数位只有一位的数, 这种记数法叫科学记数法.16.近似数的精确位: 一个近似数, 四舍五入到那一位, 就说这个近似数的精确到那一位.17.有效数字: 从左边第一个不为零的数字起, 到精确的位数止, 所有数字, 都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.第二章整式的加减一. 知识框架二.知识概念1. 单项式: 在代数式中, 若只含有乘法(包括乘方)运算。
人教版【初中数学】知识点总结-全面整理(超全)
人教版【初中数学】知识点总结-全面整理(超全) 人教版初中数学知识点总结——全面整理(超全)一、代数1. 定义、术语和符号定义:代数是在数域中,通过加、减、乘、除及括号等符号把数值或变量组合成不同式子来表达一种数学思想的数学学习。
术语:代数式(Algebraic Expression)、等式(Equation)、不等式(Inequality)符号:加、减、乘、除及括号2. 指数定义:指数是用一个主数的倍数来表示数量的增加或秩序的变化的一种表示法。
术语:秩(Power)、底数(Base)、指数(Exponent)、真指数(Real Exponent)、负指数(Negative Exponent)、秩的计算(Power calculation)3. 根式定义:根式是一些变量和数值加上开方符号组成的一种形式。
术语:根号(Radical)、根次(Root)、开方(Square Root)4. 平方根定义:平方根是表达某个数平方根的一种数学表达方法。
术语:平方(Square)、平方根(Square Root)、开双方(Double Square Root)、三角形(Triangles)二、图形1. 椭圆定义:椭圆是一种具有特殊特征的形状,它是由圆上的一组点组成的图形。
术语:椭圆(Ellipse)、长轴(Major Axis)、短轴(Minor Axis)、椭圆离心率(Eccentricity)2. 三角形定义:三角形是一种最基本的形状,由三条边组成。
术语:角(Angle)、角度(Angle Degree)、边(Side)、面积(Area)、勾股定理(Pythagorean Theorem)3. 四边形定义:四边形是一种经常用来表示几何图形的形状,它由四条恰当的边组成。
术语:矩形(Rectangle)、正方形(Square)、平行四边形(Parallelogram)、菱形(Rhombus)、梯形(Trapezoid)、多边形(Polygon)三、几何1. 颜色定义:颜色是由光的波长和强度产生的颜色,它是人类视觉中最真实的艺术表达。
人教版初中数学知识点总结(最新最全)
人教版初中数学知识点总结(最新最全)
一、代数
1. 整式
- 整式由常数、变量和运算符组成,可以进行加法、减法、乘法和乘方运算。
- 整式的基本性质包括结合律、交换律和分配律。
2. 一元一次方程
- 一元一次方程是指只含有一个未知数的一次方程。
- 求解一元一次方程的方法包括移项、合并同类项和化简等。
3. 二元一次方程组
- 二元一次方程组是指含有两个未知数的一次方程组。
- 通过消元法和代入法可以求解二元一次方程组。
4. 函数
- 函数是一种特殊的关系,每个自变量唯一对应一个因变量。
- 函数的图象可以用曲线表示,包括线性函数、二次函数和反比例函数等。
二、几何
1. 直线和角
- 直线是由一系列点组成的无限延伸的几何图形。
- 角是由两条射线共享一个端点形成的图形。
2. 三角形
- 三角形是由三条边和三个角组成的多边形。
- 三角形可以根据边长和角度分类,包括等边三角形、等腰三角形和直角三角形等。
3. 四边形
- 四边形是由四条边和四个角组成的多边形。
- 四边形包括矩形、正方形、菱形和梯形等。
三、概率与统计
- 概率与统计是研究事件发生可能性和数据分析的数学分支。
- 概率可以用来描述事件发生的可能性,统计可以用来分析和总结数据。
以上是人教版初中数学的知识点总结,希望对你有所帮助。
(以上内容仅供参考,具体内容请以教材为准)。
人教最新版初中数学知识点总结
人教最新版初中数学知识点总结一、整数:1.整数的概念和表示方法2.整数加法和减法的运算法则及应用3.整数乘法的运算法则及应用4.整数除法的运算法则及应用5.整数的混合运算及应用二、分数:1.分数的概念和表示方法2.分数的化简和约分3.分数的相加、相减的运算法则及应用4.分数的相乘、相除的运算法则及应用5.分数的混合运算及应用三、小数:1.小数的概念和表示方法2.小数与分数的互相转化3.小数的四则运算(加减乘除)及应用4.有限小数和循环小数的判断、化简和转化5.小数的混合运算及应用四、代数式:1.代数式的概念和基本性质2.代数式中的加减运算及应用3.代数式中的乘法运算及应用4.代数式的混合运算及应用5.代数式的应用解题五、一元一次方程:1.一元一次方程的概念和基本性质2.一元一次方程的解的判定和求解方法3.一元一次方程的应用解题4.一元一次方程组的概念、基本性质和解法5.一元一次方程组的应用解题六、图形的认识:1.直线、射线和线段的认识2.角的认识及基本性质3.三角形、四边形和多边形的认识及基本性质七、相似和全等:1.图形的相似性质及判定条件2.相似三角形的性质和判定条件3.全等三角形及其应用八、比例与变化:1.比例的概念、基本性质及其应用2.比例方程的概念和解法3.百分数的概念、基本性质及其应用4.增长率和减少率的概念及其应用九、数据与统计:1.数据的收集和整理2.数据的表示方法(列表、表格、图表)3.中心倾向度量(平均数、中位数、众数)4.数据的变异程度(极差、四分位数、方差)5.数据的分布形态(对称分布、偏态分布)十、平面几何:1.垂线、平行线和与平行线的交线的性质2.多边形的基本性质及分类3.圆的认识及基本性质4.圆的切线、弦和弧的性质5.同心圆和相切圆的性质及应用以上就是人教最新版初中数学的知识点总结,涵盖了整数、分数、小数、代数式、一元一次方程、图形的认识、相似和全等、比例与变化、数据与统计、平面几何等方面的知识。
(完整版)人教版初中数学总复习资料doc
(完整版)人教版初中数学总复习资料doc①已知三边作三角形②已知两边及其夹角作三角形③已知两角及其夹边作三角形④已知底边及底边上的高作等腰三角形⑹过一点、两点和不在同一条直线上的三点作圆⒏视图与投影⑴直棱柱、圆柱、圆锥、球的三视图⑵轴对称图形:等腰三角形、矩形、菱形、等腰梯形、正多边形、圆⑶中心对称图形:矩形、圆、⑷图形的平移和旋转⑸图形的相似:(三)概率与统计⒈统计⑴重要概念①总体:考察对象的全体。
②个体:总体中每一个考察对象。
③样本:从总体中抽出的一部分个体。
④样本容量:样本中个体的数目。
⑤众数:一组数据中,出现次数最多的数据。
⑥中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)。
⑵扇形统计图、条形统计图、折线统计图⑶计算方法①平均数:某1(某1某2某n)n某②加权平均数:kfk某某1f1某2f2f1f2fnkn)③样本方差:⑴s1[(某1某)2(某2某)2(某n某)2]n④样本标准差:ss2⑤极差:最大的数减去最小的数⒉概率①列表法、画树状图法93同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合1042定理1关于条直线对称的两个图形是全等形43定理2如果两个图形关于直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)某180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a某b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过其中一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形1177角相等的梯形是等腰梯形78平行等分段定理如果一平行在一条直上截得的段相等,那么在其他直上截得的段也相等79推1梯形一腰的中点与底平行的直,必平分另一腰80推2三角形一的中点与另一平行的直,必平分第三81三角形中位定理三角形的中位平行于第三,并且等于它的一半82梯形中位定理梯形的中位平行于两底,并且等于两底和的一半L=(a+b)÷2S=L某h83 (1) 比例的基本性如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么a:b=c:d 84 (2) 合比性如果 a/ b=c/ d,那么(a ±b)/b=(c ±d)/d85(3)等比性如果a/b=c/d=?=m/n(b+d+?+n≠0),那么(a+c+?+m)/(b+d+?+n)=a/b86平行分段成比例定理三条平行截两条直,所得的段成比例87推平行于三角形一的直截其他两(或两的延),所得的段成比例88定理如果一条直截三角形的两(或两的延)所得的段成比例,那么条直平行于三角形的第三89平行于三角形的一,并且和其他两相交的直,所截得的三角形的三与原三角形三成比例90定理平行于三角形一的直和其他两(或两的延)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角相等,两三角形相似(ASA)92直角三角形被斜上的高分成的两个直角三角形和原三角形相似93判定定理2两成比例且角相等,两三角形相似(SAS)94判定定理3三成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜和一条直角与另一个直角三角形的斜和一条直角成比例,那么两个直角三角形相似96性定理1相似三角形高的比,中的比与角平分的比都等于相似比97性定理2相似三角形周的比等于相似比98性定理3相似三角形面的比等于相似比的平方99任意角的正弦等于它的余角的余弦,任意角的余弦等于它的余角的正弦100任意角的正切等于它的余角的余切,任意角的余切等于它的余角的正切101是定点的距离等于定的点的集合102的内部可以看作是心的距离小于半径的点的集合12103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
人教版初中数学知识点总结(最新最全)
初中数学知识点总结第一章 有理数1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;②除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正 > 0,异号得负 < 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-an 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若02=++c b a ,则000===c b a 且且第二章 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
完整版人教版初中数学知识点汇总
完整版人教版初中数学知识点汇总一、整数及其运算1. 整数的概念和性质2. 整数的加法、减法及其性质3. 整数的乘法、除法及其性质4. 整数的混合运算及其应用二、分数及其运算1. 分数的概念和性质2. 分数的加法、减法及其性质3. 分数的乘法、除法及其性质4. 分数的混合运算及其应用三、小数及其运算1. 小数的概念和性质2. 小数的加法、减法及其性质3. 小数的乘法、除法及其性质4. 小数的混合运算及其应用四、代数式1. 代数式的基本概念2. 代数式的加减法3. 代数式的乘法4. 代数式的除法及其应用五、方程与方程式1. 方程的概念和性质2. 一元一次方程与方程式3. 一元一次方程的解法及其应用4. 一元一次方程组及其解法六、图形的初步认识1. 点、线、面的概念2. 线段、射线、直线、角的概念与性质3. 平行线与垂直线4. 三角形的概念及其性质七、相似与全等1. 图形的相似2. 相似三角形的判定及性质3. 全等图形的判定及性质4. 全等三角形的判定及性质八、比例与比例方程1. 比例的概念和性质2. 比例的应用3. 比例方程的解法及应用4. 类比九、数轴与坐标1. 有理数的数轴表示2. 二维坐标系及其应用3. 平面直角坐标系中点的坐标十、统计与概率1. 统计调查与收集资料2. 统计图3. 概率的初步认识及其运算以上是对完整版人教版初中数学知识点的汇总和概述。
每个知识点都包含其基本概念、性质、运算规则以及应用等方面的内容,以帮助初中生全面理解数学知识,并能够应用到实际问题中。
通过系统地学习这些数学知识点,学生能够提升数学素养,培养逻辑思维和问题解决能力,为进一步学习高中数学打下坚实的基础。
最新人教版初中数学知识点总结(最新最全)
初中数学目录第一章有理数①框架正整数(1, 2, 3)整数0有理数负整数(-1,-2)正分数(1/2 ,1/3 ,0.3)分数负分数(-1/2, ,1/3 ,-0.3)②相反数:两数相加为0 ;0的相反数为0绝对值:0的绝对值为0倒数:两数相乘为1;1的倒数为1;0没有倒数③正负数比较大小-8/21 -3/7 ;-(-0.3)│-1/3│④计算ab=ba abc=a(bc) a(b+c)=ab+ac有乘方:先乘法——再乘除——后加减;如有括号,先算括号内⑤科学记数法a*10n (a大于或等于1&小于10)235000 000⑥近似数(四舍五入)0.00356(精确到0.0001)566.1235(精确到个位)3.8963 (精确到0.01)0.0571(精确到千分位)0.00356(精确到万分位) 1.8935 (精确到0.001)61.235 (精确到个位)0.0571(精确到0.1)巩固:1、下列说法正确的是()A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数2、下列各对数中,数值相等的是()A -27与(-2)7B -32与(-3)2C -3×23与-32×2D ―(―3)2与―(―2)33、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是()A -12B -9C -0.01D -54、如果一个数的平方与这个数的差等于0,那么这个数只能是()A 0B -1C 1D 0或15、绝对值大于或等于1,而小于4的所有的正整数的和是()A 8B 7C 6D 56、计算:(-2)100+(-2)101的是()A 2100B -1C -2D -21007、比-7.1大,而比1小的整数的个数是()A 6B 7C 8D 98、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,其邮票发行为12050000枚,用科学记数法表示正确的是( )A.1.205×107 B.1.20×108 C.1.21×107 D.1.205×1049、下列代数式中,值一定是正数的是( )A.x2 B.|-x+1| C.(-x)2+2 D.-x2+110、已知8.622=73.96,若x2=0.7396,则x的值等于()A 86. 2B 862C ±0.862D ±862 11.下列说法正确的是()A.-a一定是负数; B.a定是正数;C.a一定不是负数; D.-a一定是负数12.如果一个数的平方等于它的倒数.那么这个数一定是() A.0 B.1 C.-1 D.±113.下列运算正确的是()A.-22÷(一2)2=l B.3123⎛⎫- ⎪⎝⎭=-8127C.-5÷13×35=-25 D.314×(-3.25)-634×3.25=-32.5.14.若a=-2×32,b=(-2×3)2,c=-(2×4)2,则下列大小关系中正确的是() A.a>b>0 B.b>c>a C.b>a>c D.c>a>b15.若x=2,y=3,则x y+的值为()A.5 B.-5 C.5或1 D.以上都不对16、计算:(-1)6+(-1)7=____________。
初中数学知识点总结文档版
初中数学知识点总结文档版一、数与代数1. 有理数- 整数和分数的概念- 有理数的加法、减法、乘法、除法运算规则- 有理数的比较大小和排序- 绝对值的概念及性质2. 整数的性质- 奇数和偶数- 质数和合数- 公约数和公倍数- 最大公约数和最小公倍数的求法3. 代数表达式- 单项式和多项式- 代数式的加减运算- 乘法公式,如平方差公式和完全平方公式4. 一元一次方程与不等式- 方程和不等式的基本性质- 解一元一次方程和不等式- 应用题中一元一次方程和不等式的运用5. 二元一次方程组- 方程组的解法,如代入法、消元法- 二元一次方程组的应用问题6. 函数的基本概念- 函数的定义和表示方法- 线性函数和二次函数的图像及性质- 函数的基本运算,如函数的和、差、积、商二、几何1. 平面图形- 点、线、面的基本性质- 角的概念,包括邻角、对顶角、平行线的性质- 三角形的分类和性质,包括等边三角形、等腰三角形、直角三角形- 四边形的分类和性质,包括矩形、正方形、平行四边形、梯形2. 圆的基本性质- 圆的定义和圆心、半径、直径- 弦、直径、弧、切线的性质- 圆周角和圆心角的关系3. 面积和体积的计算- 平行四边形、三角形、梯形的面积公式- 圆、扇形、弓形的面积计算- 长方体、正方体、圆柱、圆锥的体积和表面积公式4. 几何变换- 平移、旋转、轴对称的概念及性质- 通过坐标系进行几何变换的计算5. 相似与全等- 全等三角形的判定条件- 相似三角形的判定条件及其性质- 利用相似三角形解决实际问题三、统计与概率1. 统计- 数据的收集和整理- 频数、频率、频数分布表的概念- 条形图、折线图、饼图的绘制和解读2. 概率- 随机事件的概念- 概率的基本计算方法- 通过树状图解决简单的概率问题四、综合应用题- 结合数与代数、几何、统计与概率的知识点,解决实际问题- 培养逻辑思维和解题策略- 通过实际问题,提高数学应用能力以上是初中数学的主要知识点总结,学生应掌握这些基本概念、性质、公式和解题方法,以便为高中数学打下坚实的基础。
新人教版初中数学知识点总结(完整版)
新人教版初中数学知识点总结(完整版)新人教版初中数学知识点总结(完整版)1诱导公式的本质所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。
常用的诱导公式公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)=sin kzcos(2k)=cos kztan(2k)=tan kzcot(2k)=cot kz公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin()=-sincos()=-costan()=tancot()=cot公式三:任意角与 -的三角函数值之间的关系:sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:sin()=sincos()=-costan()=-tancot()=-cot新人教版初中数学知识点总结(完整版)2初中数学知识点总结:中位线知识要点:梯形的中线与两个底平行,等于两个底之和的一半。
1.中位线概念(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。
注意:(1)要把三角形的中位线与三角形的中线区分开。
三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。
(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。
(3)两条中线定义的联系:三角形可以看成是一个零底的梯形,然后梯形的中线就成了三角形的中线。
2.中位线定理(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.三角形两边中点的连线(中位线)平行于第BC边,且等于第三边的一半。
知识总结:三角形的中线形成的小三角形(中点三角形)的面积是原三角形的四分之一。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面笛卡尔坐标系:在平面上绘制两个原点重合的相互垂直的数轴,形成平面笛卡尔坐标系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.角(平角、周角、直角、锐角、钝角)
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
1联系:都是非负数, =│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
偶数:2n(n为自然数)
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算
1.运算法则(加、减、乘、除、乘方、开方)
3.样本标准差:
三、应用举例(略)
第四章 直线形
★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆内容提要☆
一、直线、相交线、平行线
1.线段、射线、直线三者的区别与联系
从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
第二章 代数式
★重点★代数式的有关概念及性质,代数式的运算
☆内容提要☆
一、 重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
三、应用举例(略)
四、数式综合运算(略)
第三章 统计初步
★重点★
☆内容提要☆
一、重要概念
1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
11.科学记数法: (1≤a<10,n是整数=
初中数学总复习知识点总结
实数
一、重要概念
1.数的分类及概念
数系表:
说明:“分类”的原则:1)相称(不重、不漏)
2)有标准
2.非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
二、计算方法
1.样本平均数:⑴ ;⑵若 , ,…, ,则 (a—常数, , ,…, 接近较整的常数a);⑶加权平均数: ;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴ ;⑵若 , ,…, ,则 (a—接近 、 、…、 的平均数的较“整”的常数);若 、 、…、 较“小”较“整”,则 ;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法则:⑴单÷单;⑵多÷单。
=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
7.算术平方根
4.相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”
到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)
附:典型例题
1. 知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
把分母中的根号划去叫做分母有理化。
9.指数
⑴ ( —幂,乘方运算)
1a>0时, >0;②a<0时, >0(n是偶数), <0(n是奇数)
⑵零指数: =1(a≠0)
负整指数: =1/ (a≠0,p是正整数)
二、运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质: = (m≠0)
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,