平行四边形性质经典例题及练习

合集下载

(完整版)平行四边形的性质判定练习题

(完整版)平行四边形的性质判定练习题

第一部分 平行四边形的性质练习题 例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。

变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。

例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。

变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。

例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。

变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

1、如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.2、平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.4、平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________5、.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=____,∠B_____.6、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .7、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

(完整版)平行四边形性质和判定习题(答案详细)(可编辑修改word版)

(完整版)平行四边形性质和判定习题(答案详细)(可编辑修改word版)

平行四边形性质和判定习题L如图,已知四边形ABCD为平行四边形,AE1BD于E- CF丄BD于F.(1)求证:BE=DF:X _勒(2)若N分别为边AD、BC±的点,且DM=BN.试判断四边形MENF的形状——必说明理由).2.如图所示,UAECF的对角线相交于点0, DB经过点O分別与AE, CF” p交于B. D.求证:四边形ABCD是平行四边形•3・如图,在四边形ABCD中,AB=CD, BF=DE, AE丄BD・CF丄BD,垂足分别为E, F.(1)求证J A ABE=A CDF:(2)若AC与BD交于点0,求证:AO=CO.4・已知:如图,他ABC中,^BAC=90\DE.DF是△ABC的中位线,连接EF、EF=AD・5・如图,已知D是A ABC的边AB上一点,CEIIAB,DE交AC于点0,且OA=0C,猜想线段CD与线段AE的大小关系和位置关并加以证明・B AD.求证:。

(不CNCBAFED FE系E6・如图,已知,UABCD中,AE=CF, M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形•7・如图,平行四边形ABCD, E 、F 两点在对角线BD 上,且BE=DF,连接AE. EG CF, FA ・求证:四边形AECF 是平行四边形•& 在UABCD 中,分别以AD 、BC 为边向内作等边△ADE 和等边△BCF,连接BE. DF ・求证:四边形BEDF 是平 行四边形・DBIIAC,且DB 丄AC. E 是AC 的中点,求证:BC=DE ・2如图,在梯形ABCD 中,ADIIBC, AD=24cm. BC=30cm,点P 自点A 向D 以IcmZs 的速度运动,到D 点Q 自点C 向B 以2cm/s 的速度运动,到B点即停止,直线PQ 截梯形为两个四边形•问当P. Q同时10. 已知脣 点即停止. 出发,几秒后其中一个四边形为平行四边形?IL 如图:已知D 、E 、F 分别是A ABC 各边的中点, 求证:AE 仃DF 互相平分.如图所示, 9・ED13.如图,已知四边形ABCD中,点E, F. G, H分别是AB、CD、AC. BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分・14.如图J oABCD 中,MNIIAC.试说明MQ=NP.15.已知:如图所示「平行四边形ABCD的对角线AC, BD柑交于点6 EF经过点0并且分别和AB. CD相交于点E, F,点G, H分别为OA, 0C的中点.求证:四边形EHFG是平行四边形.-46 如制已知的ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH. 连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,尖余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在A ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证J AF=CE:(2)如果AC=EF,且ZACB=135\试判断四边形AFCE是什么样的四边形,并证明你的结论・18,如图平行四边形ABCD 中.mBC=6(几 点E 、F 分別在CD.BC 的延长线上,AE||BD ・ EEhBB 垂足为点F, DF=2 (1) 求证:D 是EC 中点; (2) 求FC 的长.19.如图,已知A ABC 是等边三角形,点D 、F 分别在线段BC 、AB 匕 厶EFB=60。

八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。

(完整版)平行四边形的性质习题(有答案)

(完整版)平行四边形的性质习题(有答案)

平行四边形的性质测试题一、选择题(每题 3 分共 30 分)1.下边的性质中,平行四边形不必定具备的是()A.对角互补B.邻角互补C.对角相等D.内角和为 360°2.在中,∠ A:∠ B:∠ C:∠ D 的值能够是()A .1:2:3:4B .1:2:1:2C .1:1:2:2 D.1: 2:2:13.平行四边形的对角线和它的边能够构成全等三角形()A.3对B.4 对 C .5对D. 6 对A D 4.以下图,在中,对角线 AC、BD交于点 O,?以下式子中一O 定建立的是()B CA.AC⊥ BD B . OA=OC C. AC=BD D .AO=OD5.以下图,在中, AD=5,AB=3,AE均分∠ BAD交BC A D边于点 E,则线段 BE、 EC的长度分别为()BE C A .2和3 B.3和2 C .4和1 D .1和46.的两条对角线订交于点 O,已知 AB=8cm,BC=6cm,△AOB的周长是 18cm,那么△ AOD的周长是()A .14cmB .15cmC .16cmD .17cm7.平行四边形的一边等于14,它的对角线可能的取值是()A .8cm和 16cmB .10cm和 16cmC . 12cm和 16cmD . 20cm和 22cm 8.如图,在中,以下各式不必定正确的选项是()A.∠ 1+∠ 2=180° B .∠ 2+∠ 3=180C.∠ 3+∠ 4=180°D.∠ 2+∠4=180°9.如图,在中,∠ ACD=70°,AE⊥ BD于点E,则∠ ABE等于()A、20°B、25° C 、 30° D 、35°10.如图,在△ MBN中, BM=6,点 A、C、D 分别在 MB、NB、MN上,四边形 ABCD为平行四边形,∠NDC=∠ MDA,那么的周长是()二、填空题(每题 3 分共 18 分)11.在中,∠ A:∠ B=4:5,则∠ C=______.12.在中, AB:BC=1:2,周长为 18cm,则 AB=______cm,AD=_______cm.13.在中,∠A=30°,则∠ B=______,∠C=______,∠D=________.14.如图,已知:点 O是的对角线的交点, ?AC=?48mm,?BD=18mm,AD=16mm,那么△ OBC的周长等于 _______mm.15.如图,在中,E、F是对角线BD上两点,要使△ ADF≌△ CBE,还需增添一个条件是 ________.16.如图,在中,EF∥ AD,MN∥ AB,那么图中共有_______?个平行四边形.三、解答题17.已知:如图,在中,E、F是对角线AC?上的两点,AE=CF.BE与DF的大小有什么关系,并说明原因。

平行四边形经典练习题(3套)附详细解答过程

平行四边形经典练习题(3套)附详细解答过程

平行四边形经典练习题(3套)附详细解答过程练习1一、选择题(3′×10=30′)1.下列性质中,平行四边形具有而非平行四边形不具有的是().A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2. ABCD中,∠A=55°,则∠B、∠C的度数分别是().A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.下列正确结论的个数是().①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm5.在 ABCD中,AB+BC=11cm,∠B=30°,S ABCD=15cm2,则AB与BC的值可能是().A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm6.在下列定理中,没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1,其相对应三边之比为().A.1:2:1 B.1 1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个.A.2 B.3 C.4 D.510.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=?14,?AC=19,则MN的长为().A.2 B.2.5 C.3 D.3.5二、填空题(3′×10=30′)11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.12.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形,?周长都是18cm,则这条对角线长是_________cm.13.在ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,?若 ABCD?的周长为38cm,△ABD的周长比 ABCD的周长少10cm,则 ABCD的一组邻边长分别为______.14.在 ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则 ABCD的各内角度数分别为_________.15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,?则两条短边的距离是_____cm.16.如果一个命题的题设和结论分别是另一个命题的______和_______,?那么这两个命题是互为逆命题.17.命题“两直线平行,同旁内角互补”的逆命题是_________.18.在直角三角形中,已知两边的长分别是4和3,则第三边的长是________.19.直角三角形两直角边的长分别为8和10,则斜边上的高为________,斜边被高分成两部分的长分别是__________.20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+?c?是3?的倍数,?则c?应为________,此三角形为________三角形.三、解答题(6′×10=60′)21.如右图所示,在 ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求 ABCD的周长.22.如图所示,在ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF;(2)AE∥CF.F C DAE B23.如图所示, ABCD的周长是AB的长是DE⊥AB于E,DF⊥CB交CB?的延长线于点F,DE的长是3,求(1)∠C的大小;(2)DF的长.24.如图所示,ABCD中,AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、?∠CDA的平分线,AQ与BN交于P,CN与DQ交于M,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:?推理过程中要用到“平行四边形”和“角平分线”这两个条件).25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).求证:∠C=90°.26.如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S△A BE=60,?求∠C 的度数.27.已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,?求三条中位线的长.28.如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.29.如图所示,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,?CD?⊥MN于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,?使MN 不经过△ABC内部时,其他条件不变,上述结论是否成立呢?30.如图所示,E是ABCD的边AB延长线上一点,DE交BC于F,求证:S△ABF =S△EFC.练习2一、填空题(每空2分,共28分) 1.已知在中,AB =14cm ,BC =16cm ,则此平行四边形的周长为cm .2.要说明一个四边形是菱形,可以先说明这个四边形是形,再说明(只需填写一种方法)3.如图,正方形ABCD 的对线AC 、BD 相交于点O .那么图中共有个等腰直角三角形.4.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的拼合而成; (第3题) (2)菱形可以由两个能够完全重合的拼合而成; (3)矩形可以由两个能够完全重合的拼合而成.5.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为cm .6.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为和 .7.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为cm . 8.根据图中所给的尺寸和比例,可知这个“十”字标志的周长为m .第10题) 9.已知平行四边形的两条对角线互相垂直且长分别为12cm 和6cm ,那么这个平行四边形的面积为2cm .10.如图,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB ⊥BC ;(4)AO=OC .其中正确的结论是 . (把你认为正确的结论的序号都填上) 二、选择题(每题3分,共24分)11. 如果一个多边形的内角和等于一个三角形的外角和,那么这个多边形是()A 、三角形B 、四边形C 、五边形D 、六边形12.下列说法中,错误的是 ( ) A.平行四边形的对角线互相平分 B.对角线互相平分的四边形是平行四边形 C. 平行四边形的对角相等 D.对角线互相垂直的四边形是平行四边形13.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有( ) A.1个B.2个C.3个D.4个14. 四边形ABCD 中,AD//BC ,那么的值可能是()A 、3:5:6:4B 、3:4:5:6C 、4:5:6:3D 、6:5:3:415.如图,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ?的面积 ( )A.变大B.变小C.不变D.无法确定(第15题) (第16题) (第17题) A B C D EFA B C a b ABCD AB CDO ABCDOl16.如图,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果60=∠BAF ,则DAE ∠ 等于 ( )A. 15B. 30C. 45D. 6017.如图,在ABC ?中,AB=AC =5,D 是BC 上的点,DE ∥AB 交AC于点E ,DF ∥AC 交AB 于点F , 那么四边形AFDE 的周长是 ( ) A.5 B.10C.15D.2018.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∥CD ”,那么还不能判定四形 ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形; (3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形其中正确的说法是( )A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(2)(3)(4) 三、解答题(第19题8分,第20~23题每题10分,共48分) 19.如图,中,DB=CD , 70=∠C ,AE ⊥BD于E .试求DAE ∠的度数.(第19题)20.如图中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG , 100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.(第20题)21.工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH ;(2)摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是: ;(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:AB CD EABCD FEG.(图①) (图②) (图③) (图④) (第21题)22.李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树,李大伯开挖池塘,使池塘面积扩大一倍,又想保持柳树不动,如果要求新池塘成平行四边形的形状.请问李大伯愿望能否实现?若能,请画出你的设计;若不能,请说明理由.(第22题)练习一答案:A BC D一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°,130°,50°,130° ? ? 15.10 16.结论题设 17.同旁内角互补,两直线平行18.5.13 直角三、21. ABCD的周长为20cm 22.略23.(1)∠C=45°(2)DF=224.略25.?略 26.∠C=90° 27.三条中位线的长为:12cm;20cm;24cm 28.提示:连结BD,取BD?的中点G,连结MG,NG 29.(1)略(2)结论仍成立.提示:过F作FG⊥MN于G 30.略练习二答案1.60.2.平行四边形;有一组邻边相等.3.8. 提示:它们是.,,,,,,,ACDBCDABCABDAODCODBOCAOB?4.(1)等腰直角三角形; (2)等腰三角形; (3)直角三角形.7.3.8.4. 提示:如图所示,将“十”字标志的某些边进行平移后可得到一个边长为1m的正方形,所以它的周长为4m.8题)9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半.10. (1)(2)(4). 提示:四边形ABCD是菱形.11.B. 12.D.13.C. 14.C.15.C. 提示:因为ABC的底边BC的长不变,BC边上的高等于直线ba,之间的距离也不变,所以ABC的面积不变.16.A. 提示:由于()BAFDAEFAEDAEFAE∠-=∠=∠∠∠9021,所以通过折叠后得到的是由.17.B. 提示:先说明DF=BF,DE=CE,所以四边形AFDE的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC.18.C.19.因为BD=CD,所以,CDBC∠=∠又因为四边形ABCD是平行四边形,所以AD∥BC,所以,DBCD∠=∠因为20709090,,=-=∠-=∠⊥DDAEAEDBDAE中所以在直角.20.(1)因为四边形ABCD是平行四边形,所以AB=DC,又AF=CG,所以AB-AF=DC-CG,即GD=BF,又DG∥BF,所以四边形DFBG是平行四边形,所以DF=BG;(2)因为四边形DFBG是平行四边形,所以DF∥GB,所以AFDGBF∠=∠,同理可得DGEGBF∠=∠,所以100=∠=∠DGEAFD.21.(1)平行四边,两组对边分别相等的四边形是平行四边形;(2)矩,有一个是直角的平行四边形是矩形.22.如图所示,连结对角线AC、BD,过A、B、C、D分别作BD、AC、BD、AC的平行线,且这些平行线两两相交于E、F、G、H,四边形EFGH即为符合条件的平行四边形.ABCDEFGH。

八年级平行四边形专题练习(含答案)

八年级平行四边形专题练习(含答案)

中考专题复习平行四边形知识考点:理解并掌握平行四边形的判定和性质 精典例题:【例1】已知如图:在四边形ABCD 中,AB =CD ,AD =BC ,点E 、F 分别在BC 和AD 边上,AF =CE ,EF 和对角线BD 相交于点O ,求证:点O 是BD 的中点。

分析:构造全等三角形或利用平行四边形的性质来证明BO =DO 略证:连结BF 、DE在四边形ABCD 中,AB =CD ,AD =BC ∴四边形ABCD 是平行四边形 ∴AD ∥BC ,AD =BC 又∵AF =CE∴FD ∥BE ,FD =BE ∴四边形BEDF 是平行四边形∴BO =DO ,即点O 是BD 的中点。

【例2】已知如图:在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形EFGH 是平行四边形。

分析:欲证四边形EFGH 是平行四边形,根据条件需从边上着手分析,由E 、F 、G 、H 分别是各边上的中点,可联想到三角形的中位线定理,连结AC 后,EF 和GH 的关系就明确了,此题也便得证。

(证明略)变式1:顺次连结矩形四边中点所得的四边形是菱形。

变式2:顺次连结菱形四边中点所得的四边形是矩形。

变式3:顺次连结正方形四边中点所得的四边形是正方形。

变式4:顺次连结等腰梯形四边中点所得的四边形是菱形。

变式5:若AC =BD ,AC ⊥BD ,则四边形EFGH 是正方形。

变式6:在四边形ABCD 中,若AB =CD ,E 、F 、G 、H 分别为AD 、BC 、BD 、AC 的中点,求证:EFGH 是菱形。

娈式6图娈式7图变式7:如图:在四边形ABCD 中,E 为边AB 上的一点,△ADE 和△BCE 都是等边三角形,P 、Q 、M 、N 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形PQMN 是菱形。

例1图 O F E D CB A 例2图探索与创新:【问题】已知如图,在△ABC 中,∠C =900,点M 在BC 上,且BM =AC ,点N 在AC 上,且AN =MC ,AM 和BN 相交于P ,求∠BPM 的度数。

(完整版)平行四边形的性质练习题及答案

(完整版)平行四边形的性质练习题及答案

平行四边形的性质、课中强化(10分钟训练)1•如图3,在平行四边形 ABCD 中,下列各式不一定正确的是( )A. / 1 + Z 2=180 °B. / 2+ / 3=180 °C. / 3+Z 4=180的周长为( )3. 如图5,」ABCD 中,EF 过对角线的交点 O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形 BCFE 的周长为 ____________________ .4. 如图6,已知在平行四边形 ABCD 中,AB=4 cm , AD=7 cm , / ABC 的平分线交 AD 于点E ,5. 如图7,在平行四边形 ABCD 中,点E 、F 在对角线6. 如图 8,在 ABCD 中,AE 丄BC 于 E,AF 丄 CD 于 F,BE=2 cm,DF=3 cm, / EAF=60° ,试求 CF 的长.D. /2+ /4=180O , OE 丄AC 交AD 于丘,则厶DCEA.4 cmB.6 cmC.8 cmD.10 cm交CD 的延长线于点 F ,贝U DF= _____________cm.BD 上,且 BE=DF ,求证:AE=CF.图32•如图4,二ABCD 的周长为图5图6图7图8三、课后巩固(30分钟训练)1•二ABCD中,/A比/ B大20。

,则/ C的度数为()A.60 °B.80 °C.100 °D.120 2•以A、B、C三点为平行四边形的三个顶点,作形状不同的平行四边形,一共可以作(A.0个或3个B.2个C.3个D.4个3•如图9 所示,在—ABCD 中,对角线AC、BD交于点0,下列式子中一定成立的是()A.AC 丄BDB.OA=OCC.AC=BDD.AO=OD4•如图10,平行四边形ABCD中,对角线AC、BD相交于点O ,将厶AOD平移至△ BEC的位置,则图中与OA相等的其他线段有()A.1条B.2条C.3条D.4条5•如图11,在平行四边形ABCD中,EF // AB , GH // AD , EF与GH交于点O,则该图中的平行四边形的个数共有()6•如图12,平行四边形ABCD中,AE丄BD , CF丄BD,垂足分别为E、F,求证:/ BAE= / DCF.7、如图13所示,已知平行四边形ABCD中,E、F分别是BC和AD上的点,且BE=DF.求证:△ ABE CDF.A.7个B.8个C.9个D.11 个图12图138•如图14,已知四边形ABCD是平行四边形,/ BCD的平分线CF交边AB于F,/ ADC的平分线DG交边AB于G.⑴求证:AF=GB ;(2)请你在已知条件的基础上再添加一个条件,使得△EFG是等腰直角三角形,并说明理由•19.1.2平行四边形的判定二、课中强化(10分钟训练)1•如图3,在ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.AE=CFC.Z ADE= / CBFD. / AED= / CFB,使四边形AECF是平行四边形.4. 如图6,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:__________________5. 如图,在,ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN也是平行四边形.2.如图4,AB 喪DC ,DC=EF=10 ,DE=CF=8,则图中的平行四边形有,理由分别是图4 图53.如图5,E、F是平行四边形ABCD对角线BD上的两点,B.DE=BF图14三、课后巩固(30分钟训练)1•以不在同一直线上的三个点为顶点作平行四边形最多能作( )是平行四边形的是()4•已知四边形 ABCD 的对角线 AC 、BD 相交于点② OA=OC :③ AB=CD ;④/ BAD= / DCB :⑤ AD // BC.(1)从以上5个条件中任意选取 2个条件,能推出四边形 ABCD 是平行四边形的有(用序 号表示): _____________________________ :(2)对由以上5个条件中任意选取 2个条件,不能推出四边形 请选取一种情形举出反例说明平行四边形?6•如图,E 、F 是四边形ABCD 的对角线 AC 上的两点,AF=CE , DF=BE , DF // BE. 求证:⑴△AFD ◎△ CEB;(2)四边形ABCD 是平行四边形•A.4个B.3个C.2个D.1个2•下面给出了四边形 ABCD 中/A 、/ B 、/ C 、/ D 的度数之比,其中能判定四边形 ABCDA.1 : 2 : 3 : 4B. 2 : 2 : 3 : 3C. 2 : 3 : 3 : 2D. 2 : 3 : 2 : 33•九根火柴棒排成如右图形状,图中 ____ 个平行四边形 ,你判断的根据是O ,给出下列 5个条件:①AB // CD ;5•若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对角线 ABCD 是平行四边形的,,另17•如图,已知DC // AB,且DC= — AB , E为AB的中点.2(1) 求证:△ AED ◎△ EBC ;(2) 观察图形,在不添加辅助线的情况下,除△EBC夕卜,请再写出两个与△ AED的面积相等的三角形(直接写出结果,不要求证明): ___________________________8•如图,已知二ABCD中DE丄AC,BF丄AC,证明四边形DEBF为平行四边形9•如图,已知■ ABCD中,E、F分别是AB、CD的中点•求证:(1) △ AFD ◎△ CEB;(2) 四边形AECF是平行四边形•二、课中强化(10 分钟训练)1 答案:D2. 解析:因为四边形ABCD 是平行四边形,所以OA=OC. 又0E丄AC , 所以EA=EC.贝U △ DCE 的周长=CD+DE+CE=CD+DE+EA=CD+AD. 在平行四边形ABCD 中,AB=CD ,AD=BC ,且AB+BC+CD+AD=16 cm ,所以CD+AD=8 cm.答案:C3•解析:0E=0F=1,其周长=BE+BC+CF+EF=CD+BC+EF=AD+AB+2DF=8(cm).答案:8 cm4•解析:由平行四边形的性质AB // DC,知/ ABE= / F,结合角平分线的性质/ ABE= / EBC,得/ EBC= / F,再根据等角对等边得到BC=CF=7 ,再由AB=CD=4 , AD=BC=7 得到DF=DE=AD-AE=3.答案:35•答案:证明:•••四边形ABCD是平行四边形,••• AB // CD , AB=CD.•••/ ABE= / CDF.AB CD,在厶ABE和厶CDF中,ABE CDF ,BE DF .•△ ABE ◎△ CDF.• AE=CF.6. 解:•••/ EAF=60°AE 丄BC,AF 丄CD, C=120°. B=60°「./ BAE=30° .• AB=2BE=4(cm). • CD=4(cm). • CF=1(cm).三、课后巩固(30 分钟训练)1 答案:C2. 解析:分两种情况,A、B、C三点共线时,可作0个当点A、B、C不在同一直线上时,可作3 个. 答案:A3. 解析:平行四边形对角线互相平分,所以OA=OC. 答案:B4. 解析:由平行四边形的对角线互相平分知OA=OC;再由平移的性质:经过平移,对应线段平行且相等可得OA=BE.答案:B5•解析:本题借助于平行四边形的定义,按照从左到右,从小到大的顺序,可找到下列的平行四边形:DEOH,.HOFC,. DEFC, EAGO,OGBF,EABF,■ DAGH,■ HGBC,二ABCD.答案:C6•答案:证明:•••四边形ABCD是平行四边形,••• AB // CD , AB=CD. /-Z ABE= / CDF •/ AE 丄BD , CF 丄BD ,「./ AEB= / CFD=90 .•••△ABE ◎△ CDF. /.Z BAE= Z DCF.7、答案:证明:•••四边形ABCD是平行四边形,• AB=CD, Z B= Z D.在厶ABE和厶CDF中,AB CD,B D, •/△ ABE 也厶CDF.BE DF.8•答案:(1)证明:•••四边形ABCD是平行四边形,• AB // CD. AGD= Z CDG.vZ ADG= Z CDG,/•/ ADG= Z AGD. • AD=AG •同理,BC=BF.又•••四边形ABCD 是平行四边形,• AD=BC,AG=BF. • AG-GF=BF-GF ,即AF=GB.(2)解:添加条件EF=EG.理由如下:1 1由(1)证明易知Z AGD= Z ADG= Z ADC , Z BFC= Z BCF= Z BCD.2 2•/ AD // BC,/•/ ADC+ Z BCD=180 ./Z AGD+ Z BFC=90 ./Z GEF=90 .又v EF=EG ,•△ EFG为等腰直角三角形.二、课中强化(10分钟训练)1. 解析:当E、F满足AE=CF时,由平行四边形的对角线相等知OB=OD,OA=OC , 故OE=OF.可知四边形DEBF是平行四边形.当E、F满足Z ADE= Z CBF 时,因为AD // BC,所以Z DAE= Z BCF.又AD=BC,可证出厶ADE ◎△ CBF,所以DE=BF , Z DEA= Z BFC.故Z DEF= Z BFE.因此DE // BF,可知四边形DEBF是平行四边形.类似地可说明D也可以.答案:B2. 解析:因为AB^DC,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD是平行四边形;DC=EF , DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF是平行四边形•答案:四边形ABCD ,四边形CDEF 一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形3•解析:根据平行四边形的定义和判定方法可填BE=DF ;Z BAE= / CDF等.答案:BE=DF或Z BAE= Z CDF等任何一个均可4•解析:根据平行四边形的判定定理,知可填①AD // BC,② AB=CD,③Z A+ Z B=180,④Z C+ Z D=180 等•答案:不唯一,以上几个均可•1 15•答案:证明:T ABCD, A A B£C D.T M、N 是中点,「. BM=—AB,DN= CD. /• B M£DN.2 2A四边形BMDN也是平行四边形•三、课后巩固(30分钟训练)1•解析:要求最多能作几个,只要连结起三个顶点后构成三角形,分别以其中一边作为对角线,另两边作为平行四边形的邻边作图,即可得出三种答案:B2•解析:由两组对角分别相等的四边形是平行四边形易知,要使四边形ABCD是平行四边形需满足Z A= Z C,Z B= Z D,因此Z A与Z C,Z B与Z D所占的份数分别相等•答案:D3•答案:有3两组对边分别相等的四边形是平行四边形4•解析:本题是条件开放性试题,要使四边形ABCD是平行四边形,从边、角、对角线上考虑共有5种判定方法,因此只需将任意两个条件组合加以评砼卸?答案:(1)①与②;①与③;①与④;①与⑤;②与⑤;④与⑤(2)③与⑤两个条件不能推出四边形ABCD是平行四边形•如图,AB=CD且AD // BC,而四边形ABCD不是平行四边形•5•解析:由平行四边形对角线互相平分,能否画平行四边形,应以任两条的一半和第三边为三边,看是否能构成三角形即可20,16或20,14为对角线,另一条为一边可画平行四边形6•答案:证明:(1)•/ DF // BE ,•••/ AFD= / CEB.又••• AF=CE , DF=BE AFD CEB.(2)由(1)△ AFD CEB 知AD=BC,/ DAF= / BCE ,• AD // BC. •四边形ABCD是平行四边形.1 17. 答案:证明:(1) •/ E 为AB 的中点,• AE=EB= —AB. •••DC= — AB , DC // AB ,2 2• AE DC , EB DC. •四边形AECD和四边形EBCD都是平行四边形.• AD=EC , ED=BC. 又v AE=BE , •△AED ◎△ EBC.(2) △ ACD , △ ACE , △ CDE(写出其中两个三角形即可)8. 答案:证明:在—ABCD 中,AD=BC,AD // BC, DAC= / BCA.又•••/ DEA= / BFC=90 , • Rt△ ADE 也Rt △ CBF.A DE=BF.同理,可证DF=BE. •四边形DEBF为平行四边形.9.答案:证明:(1)在L d ABCD 中,AD=CB,AB=CD, / D= / B. •/ E、F 分别是AB、CD 的中点,• DF=2CD,BE=2A B.• DF=BE. •△ AFD心CE B.⑵在二ABCD 中,AB=CD,AB // CD.由(1)得BE=DF, • AE=CF.•四边形AECF是平行四边形。

平行四边形例题

平行四边形例题

平行四边形例题
例题:在平行四边形ABCD中,AB = 5,BC = 3,求平行四边形ABCD的周长。

题目解析:
1. 首先明确平行四边形的性质,平行四边形的对边相等。

- 在平行四边形ABCD中,AB与CD是一组对边,BC与AD是另一组对边。

- 已知AB = 5,根据对边相等可知CD = 5;已知BC = 3,根据对边相等可知AD = 3。

2. 然后求平行四边形的周长。

- 平行四边形的周长等于四条边的长度之和,即C = AB+BC + CD+AD。

- 把AB = 5,BC = 3,CD = 5,AD = 3代入可得:C=5 + 3+5+3 = 16。

再看一道例题:
例题:平行四边形ABCD中,∠A比∠B大30°,求平行四边形ABCD各个内角的度数。

题目解析:
1. 利用平行四边形邻角互补的性质。

- 在平行四边形ABCD中,∠A与∠B是邻角,所以∠ A+∠ B = 180^∘。

2. 又因为∠A比∠B大30°,即∠ A=∠ B + 30^∘。

- 把∠ A=∠ B + 30^∘代入∠ A+∠ B = 180^∘中,得到(∠ B + 30^∘)+∠ B=180^∘。

- 化简可得2∠ B+30^∘=180^∘,移项得到2∠ B = 180^∘-30^∘=150^∘,解得∠ B = 75^∘。

- 因为∠ A=∠ B + 30^∘,所以∠ A=75^∘+30^∘=105^∘。

- 根据平行四边形的对角相等,可知∠ C=∠ A = 105^∘,∠ D=∠ B = 75^∘。

第03讲 平行四边形的性质和判定(知识解读+达标检测)(解析版)

第03讲 平行四边形的性质和判定(知识解读+达标检测)(解析版)

第03讲平行四边形的性质和判定【题型1 根据平行四边形的性质求边长】【题型2根据平行四边形的性质求角度】【题型3根据平行四边形的性质求周长】【题型4 平行四边形的判定】【题型5 平行四边形的判定与全三角形综合】【题型6 平行四边形的性质与判定综合】考点1:平行四边形的性质1.边的性质:两组对边分别平行且相等,如下图:AD∥BC,AD=BC,AB∥CD,AB=CD;2.角的性质:两组对角分别相等,如图:∠A=∠C,∠B=∠D3.对角线的性质:对角线互相平分。

如图:AO=CO,BO=DO【题型1 根据平行四边形的性质求边长】【典例1】(2023秋•龙口市期末)如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=8,AC=12,则BD的长是( )A.16B.18C.20D.22【答案】C【解答】解:∵四边形ABCD是平行四边形,AC=12,∴OB=OD,OA=OC=AC=6,∵AB⊥AC,由勾股定理得:OB===10,∴BD=2OB=20.故选:C.【变1-1】(2023春•历下区校级期中)如图,在平行四边形ABCD中,∠A的平分线AE交CD于E,AB=8,BC=6,则EC等于( )A.1B.1.5C.2D.3【答案】C【解答】解:∵四边形ABCD为平行四边形,∴CD=AB=8,AD=BC=6.CD∥AB,∵∠DAB的平分线AE交CD于E,∴∠DAE=∠BAE,∵CD∥AB,∴∠AED=∠BAE,∴∠DAE=∠AED.∴ED=AD=6,∴EC=CD﹣ED=8﹣6=2.故选:C.【变式1-2】(2022秋•牟平区期末)如图,在平行四边形ABCD中,∠ABC的平分线交AD 于点E,∠BCD的平分线交AD于点F,若AB=4,AD=5,则EF的长度( )A.1B.2C.3D.4【答案】C【解答】解:∵平行四边形ABCD,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∵AB=4,AD=BC=5,∴2AB﹣BC=AE+FD﹣BC=EF=3.故选:C.【变式1-3】(2022秋•安化县期末)如图,F是平行四边形ABCD对角线BE上的点,若BF:FD=1:3,AD=12,则EC的长为( )A.6B.7C.8D.9【答案】C【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=12,∵BF:FD=1:3,∴EB:AD=BF:FD,∴EB:12=1:3,∴EB=4,∴EC=BC﹣EB=12﹣4=8.故选:C.【题型2根据平行四边形的性质求角度】【典例2】(2023春•环翠区期末)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )A.55°B.60°C.65°D.75°【答案】D【解答】解:延长EH交AB于N,∵△EFH是等腰直角三角形,∴∠FHE=45°,∴∠NHB=∠FHE=45°,∵∠1=30°,∴∠HNB=180°﹣∠1﹣∠NHB=105°,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2+∠HNB=180°,∴∠2=75°,故选:D.【变式2-1】(2023秋•二道区校级期末)如图,在▭ABCD中,∠A+∠C=80°,则∠D=( )A.80°B.40°C.70°D.140°【答案】D【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∴∠A+∠D=180°,∵∠A+∠C=80°,∴∠A=∠C=40°,∴∠D=180°﹣∠A=140°,故选:D.【变式2-2】(2023春•北安市校级期中)如图,平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=155°,则∠A的度数为( )A.155°B.130°C.125°D.110°【答案】B【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠ABC的平分线交AD于E,∠BED=155°,∴∠ABE=∠CBE=∠AEB=180°﹣∠BED=25°,∴∠A=180°﹣∠ABE﹣∠AEB=130°.故选:B.【变式2-3】(2023•巴东县模拟)四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC交AD于点E,DF∥BE交BC于点F,则∠CDF的度数为( )A.55°B.50°C.40°D.35°【答案】D【解答】解:∵∠ABC=70°,BE平分∠ABC,∴∠CBE=∠ABC=35°,∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=70°,AD∥BC,∴∠AEB=∠CBE=35°,∵DF∥BE,∴∠EDF=∠AEB=35°,∴∠CDF=∠ADC﹣∠EDF=70°﹣35°=35°,故选:D.【题型3根据平行四边形的性质求周长】【典例3】(2023春•光明区校级期中)如图,在平行四边形ABCD中,AE平分∠BAD交BC于E,BE=4,EC=3,则平行四边形ABCD的周长为( )cm.A.11B.18C.20D.22【答案】D【解答】解:∵四边形ABCD是平行四边形,∴AD与BC平行,AD=BC,AB=CD,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BA=BE=4,∵BC=BE+EC=4+3=7=AD,∴平行四边形ABCD的周长为2×(7+4)=22(cm),故选:D.【变式3-1】(2023春•东港区校级期中)在平行四边形ABCD中,∠A的角平分线把边BC 分成长度为4和5的两条线段,则平行四边形ABCD的周长为( )A.13或14B.26或28C.13D.无法确定【答案】B【解答】解:设∠A的平分线交BC于点E,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BEA=∠DAE,∵∠BAE=∠DAE,∴∠BEA=∠BAE,∴AB=EB,当EB=5,EC=4时,如图1,则AB=EB=5,BC=EB+EC=9,∴2AB+2BC=2×5+2×9=28;当EB=4,EC=5时,如图2,则AB=EB=4,BC=EB+EC=9,∴2AB+2BC=2×4+2×9=26,∴平行四边形ABCD的周长为26或28,故选:B.【变式3-2】(2023春•沙坪坝区期中)如图,在▱ABCD中,对角线AC、BD交于点O,周长为18,过点O作OE⊥AC交AD于点E,连结CE,则△CDE的周长为( )A.18B.9C.6D.3【答案】B【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵▱ABCD周长为18,∴AD+CD=9,∵OE⊥AC,OA=OC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+AE+DE=AD+CD=9.故选:B.【变式3-3】(2023秋•南关区校级期末)如图,在▱ABCD中,AD=10,对角线AC与BD 相交于点O,AC+BD=24,则△BOC的周长为 22 .【答案】22.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,AD=BC=10,∵AC+BD=24,∴OC+BO=12,∴△BOC的周长=OC+OB+BC=12+10=22.故答案为:22考点2:平行四边形的判定1.与边有关的判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形2.与角有关的判定:两组对角分别相等的四边形是平行四边形3.与对角线有关的判定:对角线互相平分的四边形是平行四边形【题型4 平行四边形的判定】【典例4】(2023秋•朝阳区校级期末)如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BC B.AB∥DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD=BC【答案】B【解答】解:A、AB∥DC,AD∥BC可利用两组对边分别平行的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;B、AB∥DC,AD=BC不能判定这个四边形是平行四边形,故此选项符合题意;C、AO=CO,BO=DO可利用对角线互相平分的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;D、AB=DC,AD=BC可利用两组对边分别相等的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;故选:B.【变式4-1】(2022秋•泰山区期末)下列条件中,能判定四边形是平行四边形的是( )A.一组对边相等,另一组对边平行B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角互补,另一组对角相等【答案】C【解答】解:A、一组对边相等,另一组对边平行,也有可能是等腰梯形B、一组对边平行,一组对角互补,也有可能是等腰梯形C、一组对角相等,一组邻角互补可得到两组对角分别相等,所以是平行四边形D、一组对角互补,另一组对角相等,可能是含两个直角的一般四边形.故选:C.【变式4-2】(2023春•台山市校级期中)在四边形ABCD中,AB∥DC,要使四边形ABCD 成为平行四边形,还需添加的条件是( )A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠D=180°D.∠A+∠B=180°【答案】D【解答】解:选项A,B中的两对角是对角关系,不能推出AD∥BC,选项C只能推出AB∥DC,选项D中两角是同旁内角,∵∠A+∠B=180°,∴AD∥BC,又∵AB∥DC,∴四边形ABCD为平行四边形,故选:D.【变式4-3】(2023•中牟县校级开学)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A.①②B.①④C.②④D.②③【答案】C【解答】解:∵只有②④两块碎玻璃的角的两边互相平行,且中间部分相连,角的两边的延长线的交点就是平行四边形的另两个顶点,∴带②④两块碎玻璃,就可以确定原来平行四边形玻璃的大小,能在商店配到一块与原来相同的平行四边形玻璃,故选:C.【题型5 平行四边形的判定与全三角形综合】【典例5】(2022秋•周村区期末)已知,如图,在▱ABCD中,点E、F分别在AD、BC上,且∠BAF=∠DCE.求证:(1)△ABF≌△CDE.(2)四边形AECF是平行四边形.【答案】(1)见解析过程;(2)见解析过程.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AD=BC,在△ABF和△CDE中,,∴△ABF≌△CDE(ASA);(2)∵△ABF≌△CDE,∴AF=CE,BF=DE,∴AE=CF,∴四边形AECF是平行四边形.【变式5-1】(2023春•惠城区期末)如图,在▱ABCD中,点E,F在对角线BD上,且BE =DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【答案】(1)见解答;(2)见解答.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE和△CDF中,,∴△ABE≌△DCF(SAS).∴AE=CF.(2)∵△ABE≌△DCF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.【变式5-2】(2023春•鱼台县期中)如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【答案】见试题解答内容【解答】证明:(1)∵四边形ABCD是平行四边形.∴AD∥BC,AD=BC.∴∠ADE=∠CBF.∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°.∵在△ADE与△CBF中,∴△ADE≌△CBF(AAS),∴AE=CF.(2)∵AE⊥BD,CF⊥BD,∴∠AEF=∠CFE=90°.∴AE∥CF.又∵AE=CF,∴四边形AECF是平行四边形.【变式5-3】(2023•新疆模拟)如图,在▱ABCD中,点E,F在对角线BD上,且BF=DE.证明:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【答案】(1)见解答;(2)见解答.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∵BF=DE,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.【题型6 平行四边形的性质与判定综合】【典例6】(2023春•温州月考)如图,在▱ABCD中,点E在AB上,点F在CD上,且AE =CF.(1)求证:四边形DEBF是平行四边形;(2)若DE为∠ADC的角平分线,且AD=6,EB=4,求▱ABCD的周长.【答案】(1)见解析;(2)32.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴DF∥BE,∵AE=CF,∴BE=DF,∴四边形DEBF是平行四边形;(2)解:∵DE为∠ADC的角平分线,∴∠ADE=∠CDE,∵CD∥AB,∴∠AED=∠CDE,∴∠ADE=∠AED,∴AE=AD=6,∵BE=4,∴AB=AE+BE=10,∴▱ABCD的周长=2(AD+AB)=2(6+10)=32.【变式6-1】(2023春•成都期末)如图,在▱ABCD中,点E,F在对角线AC上,且AF=CE,连接BE,DE,BF,DF.(1)求证:四边形BEDF是平行四边形;(2)若∠BAC=80°,AB=AF,DC=DF,求∠EBF的度数.【答案】(1)证明过程见解答;(2)30°.【解答】(1)证明:在▱ABCD中,AB=CD,AB∥CD,∴∠BAF=∠DCE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴BF=DE,∠DEF=∠BFA,∴ED∥BF,∴四边形BEDF是平行四边形;(2)解:∵四边形BEDF是平行四边形,∴BE=DF,∵AB=DC=DF,∴AB=BE,∴∠BEA=∠BAC=80°,∴∠ABE=180°﹣2×80°=20°,∵AB=AF,∴∠ABF=∠AFB=(180°﹣80°)=50°,∴∠EBF=∠ABF﹣∠ABE=50°﹣20°=30°.【变式6-2】(2023秋•锦江区校级期末)如图,点E、F是平行四边形ABCD对角线AC上两点,BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AC=8,BC=6,∠ACB=30°,求平行四边形ABCD的面积.【答案】(1)证明见解答过程;(2)24.【解答】(1)证明:平行四边形ABCD中,AD∥BC,AD=BC,∴∠ACB=∠CAD,又∵BE∥DF,∴∠BEC=∠DFA,在△BEC和△DFA中,,∴△BEC≌△DFA(AAS),∴BE=DF,又BE∥DF,∴四边形BEDF是平行四边形;(2)解:过A点作AG⊥BC,交CB的延长线于G,在Rt△AGC中,AC=8,∠ACB=30°,∴AG=4,∵BC=6,∴平行四边形ABCD的面积=BC•AG=4×6=24.【变式6-3】(2023春•和县校级期末)如图,BD是四边形ABCD的对角线,∠ADB=∠CBD,AD=BC,过点A作AE∥BD交C的延长于E.(1)求证:四边形ABDE是平行四边形;(2)过点E作EF⊥BC交BC的延长线于点F,连接DF,若,求DF的长.【答案】(1)见解析;(2)2.【解答】(1)证明:∵∠ADB=∠CBD,∴AD∥BC,∴∠ADE=∠BCD.∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CE,AB=CD,∵AE∥BD,∴∠EAD=∠BDA,∴∠EAD=∠DBC,在△EAD和△DBC中,,∴△EAD≌△DBC(ASA),∴DE=CD,∵AB=DE.∴四边形ABDE是平行四边形;(2)∵DE=CD=AB,∴FD是CE的中线,∵EF⊥BC,∴DF=CE==2.考点3:三角形的中位线三角形中位线:在△ABC 中,D,E 分别是A C,AC 的中点,连接DE.像DE 这样,连接三角形_两边中点的线段叫做三角形的中位线.B中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的二分之一。

平行四边形判定练习题

平行四边形判定练习题

平行四边形判定练习题在几何学中,平行四边形是指具有两对相互平行的对边的四边形。

要判定一个四边形是否为平行四边形,我们需要检查四边形的特性和属性。

下面是一些平行四边形判定的练习题,通过解答这些题目,你可以巩固对平行四边形的理解并提升你的几何技巧。

练习题一:已知四边形ABCD,其中AB ∥ CD,AC ⊥ CD,AD ⊥ AB。

判断四边形ABCD是否为平行四边形。

解答:根据题干已知条件,我们可以得到以下推理:1. AB ∥ CD:对于平行四边形,对边是相互平行的,所以该条件满足。

2. AC ⊥ CD:平行四边形的两条对边不仅平行,还相互垂直,所以该条件不满足。

因此,根据已知条件,四边形ABCD不是平行四边形。

练习题二:在四边形EFGH中,EF ∥ GH,FG ⊥ GH,EG ⊥ EF。

已知EF = 5 cm,FG = 8 cm,EG = 4 cm。

求EH的长度。

解答:根据题干已知条件,我们可以得到以下推理:1. EF ∥ GH:对于平行四边形,对边是相互平行的,所以该条件满足。

2. FG ⊥ GH:平行四边形的两条对边不仅平行,还相互垂直,所以该条件不满足。

3. EG ⊥ EF:平行四边形的两条对边不仅平行,还相互垂直,所以该条件满足。

根据已知条件,我们可以将四边形EFGH划分成两个直角三角形EFG和EGH。

根据直角三角形的性质,我们可以使用勾股定理求解:EG² + GH² = EH²代入已知值,得到:4² + 8² = EH²16 + 64 = EH²80 = EH²通过开方运算,得到:EH = √80 ≈ 8.94 cm所以,四边形EFGH中EH的长度约为8.94 cm。

练习题三:在平行四边形IJKL中,已知IJ = 6 cm,JK = 8 cm,KL = 6 cm,IL = 8 cm。

判断平行四边形IJKL的类型。

中考数学总复习《平行四边形的性质》练习题及答案

中考数学总复习《平行四边形的性质》练习题及答案

中考数学总复习《平行四边形的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在▱ABCD中,E为BC的中点,DE、AC交于点F,则EFDF的值为()A.1B.13C.23D.122.在□ ABCD中,∠A=70∘,则∠B度数为()A.110∘B.100∘C.70∘D.20∘3.如图,在□ABCD中,对角线AC,BD交于点O,下列结论一定成立的是()A.AC⊥BD B.AO=OD C.AC=BD D.OA=OC4.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.4√5B.5√5C.5√2D.6√25.如图,在平行四边形ABCD中,⊥A=130°,在AD上取DE=DC,则⊥ECB的度数是()A.65°B.50°C.60°D.75°6.已知▱ABCD中,∠A+∠C=70°,则∠B的度数为()A.125°B.135°C.145°D.155°7.在平行四边形ABCD中,若⊥A+⊥C=80°,则⊥B的度数是()A.140°B.100°C.40°D.120°8.如图,在▱ABCD中,点F是线段CD上一点,点A作▱BFGE,当点F从点C向点D运动过程中,四边形BFGE的面积的变化情况是()A.保持不变B.一直减小C.一直增大D.先增大后减小9.如图,在平行四边形ABCD中,⊥BAD的平分线交BC于点E,⊥ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.1610.如图,在⊥ABCD中,点E是DC边上一点,连接AE,BE,若AE,BE分别是⊥DAB,⊥CBA的角平分线,且AB=4,则⊥ABCD的周长为()A.10B.8 C.5 D.1211.如图,▱ABCD的对角线AC,BD交于点O,EF和GH过点O,且点E,H在边DC上,点G,F 在边AB上,若▱ABCD的面积为10,则阴影部分的面积为()A.6B.4C.3D.5212.如图,平行四边形ABFC的对角线x∈(1,e)相交于点E,点O为AC的中点,连接BO并延长,交FC的延长线于点D,交AF于点G,连接AD、OE,若平行四边形ABFC的面积为48,则SΔEOG的面积为()A.4B.5C.2D.3二、填空题13.如图,E是⊥ABCD边BC上一点,且AB=BE,连结AE,并延长AE与DC的延长线交于点F,⊥F=70°,则⊥D=度.14.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处.若∠1=∠2=50∘,则为.15.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若⊥BOC的周长比⊥AOB的周长大2cm,则CD=cm.16.在平行四边形ABCD中,⊥BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.17.如图,已知⊥ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标18.如图,E、F分别是⊥ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S⊥APD=10cm2,S⊥BQC=20cm2,则阴影部分的面积为cm2.三、综合题19.如图,▱ABCD中,以A为圆心,DA的长为半径画弧,交BA于点F,作⊥DAB的角平分线,交CD于点E,连接EF.(1)求证:四边形AFED是菱形;(2)若AD=4,⊥DAB=60°,求四边形AFED的面积.20.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC 是等边三角形.(1)求证:四边形ABCD是菱形.(2)若AC=8,AB=5,求ED的长.21.如图,在▱ABCD中AE⊥BC于E,AF⊥CD于F,且CE=CF.(1)求证:AE=AF;(2)求证:四边形ABCD是菱形.22.如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC相交于点O,连接DE.(1)求证:四边形ACED是矩形;(2)若⊥AOD=120°,AC=4,求对角线CD的长.23.图1,图2都是8×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点.(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图2中所画的平行四边形的面积为.24.如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是⊥BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若⊥B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)参考答案1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】A6.【答案】C7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】D12.【答案】C13.【答案】4014.【答案】105°15.【答案】416.【答案】217.【答案】(3,2),(﹣5,2),(1,﹣2)18.【答案】3019.【答案】(1)证明:∵AE为⊥DAB的角平分线∴⊥DAE=⊥EAF∵AB//CD∴⊥DEA=⊥EAF∴⊥DAE=⊥DEA∴AD=DE∵AD=AF∴DE=AF∵DE//AF∴四边形AFED为平行四边形∵AD=DE∴四边形AFED是菱形.(2)解:连接DF交AE于点O,如图所示:∵⊥DAB=60°,DA=AF ∴⊥DAF为等边三角形∵AD=4∴DF=4,DO=2∴AO= 2√3,AE= 4√3∴S四边形AFED= 12×4×4√3= 8√3.20.【答案】(1)证明:∵四边形ABCD是平行四边形∴AO=CO∵⊥EAC是等边三角形∴EA=EC∴EO⊥AC∴四边形ABCD是菱形(2)解:∵四边形ABCD是菱形,AC=8∴AO=CO=4,DO=BO在Rt⊥ABO中,BO=√AB2−AO2=3∴DO=BO=3在Rt⊥EAO中,EO=√EA2−AO2=4√3∴ED=EO-DO=4√3-3.21.【答案】(1)证明:∵AE⊥BC于E,AF⊥CD于F.∴△ACE与△ACF为直角三角形∵CE=CF,AC=AC∴Rt△ACE≌Rt△ACF(HL)∴AE=AF;(2)证明:∵在▱ABCD中,AE⊥BC于E,AF⊥CD于F ∴∠B=∠D∵AE=AF(已证)∴△ABE≌△ADF(AAS)∴AB=AD∴▱ABCD为菱形.22.【答案】(1)证明:四边形ABCD是平行四边形AD⊥BC,AD=BC,AB=DCCE=BCAD=CE,AD⊥CE四边形ACED是平行四边形AB=DC,AE=ABAE=DC四边形ACED是矩形;(2)解:四边形ACED是矩形,OA= 12AE,OC=12CD,AE=CD,OA=OC⊥AOC=180°-⊥AOD=180°-120°=60°⊥AOC是等边三角形OC=AC=4CD=8.23.【答案】(1)解:如图1,如图2;(2)624.【答案】(1)证明:如图(1)∵AE 是⊥BAD 的平分线 ∴⊥BAF=⊥DAF∵在平行四边形ABCD 中 ∴AB⊥DF ,AD⊥BC ∴⊥BAF=⊥F ,⊥DAF=⊥CEF ∴⊥F=⊥DAF=⊥CEF ∴CE=FC(2)解:四边形ABFC 是矩形 理由:如图(2)∵⊥B=60°,AD⊥BC ∴⊥BAD=120° ∵⊥BAF=⊥DAF ∴⊥BAF=60°则⊥ABE 是等边三角形可得AB=BE=AE ,⊥BEA=⊥AFC=60° ∵BC=2AB ∴AE=BE=EC∴⊥ABC 是直角三角形,⊥BAC=90° 在⊥ABE 和⊥FCE 中 ∵{∠ABE =∠FCE BE =EC ∠BEA =∠CEF ∴⊥ABE⊥⊥FCE (ASA ) ∴AB=FC 又∵AB⊥FC∴四边形ABFC 是平行四边形 再由⊥BAC=90°故四边形ABFC 是矩形.。

(完整版)平行四边形(知识点、经典例题、常考题型练习),推荐文档

(完整版)平行四边形(知识点、经典例题、常考题型练习),推荐文档

【例题精讲】
填空题:
在下列特征中, (1) 四条边都相等 (2) 对角线互相平分 (3) 对角线相等 (4) 对角线互相垂直 (5) 四个角都是直角 (6) 每一条对角线平分一组对角 (7) 对边相等且平行 (8) 邻角互补
平行四边形具有的是: 矩形具有的是: 菱形具行四边形(二)
【知识梳理】 由平行四边形的结构知,平行四边形可以分解为一些全等的三角形,并且包含着平行线的有关性质,
因此,平行四边形是全等三角形知识和平行线性质的有机结合,平行四边形包括矩形、菱形、正方形。 另一方面,平行四边形有许多很好的性质,使得构造平行四边形成为解几何题的有力工具。
【例题精讲】
两组对边 分别平行 四边形
只有一组 对边平行
一个角是直角
平行四边形 一组邻边相等
矩形 一组邻边相等 正方形
菱形 一个角是直角
两腰相等
等腰梯形


有一个角是直角 直角梯形
(2)四边形之间关系图 2:
四边形
正 矩形 方 菱形
形 平行四边形
等腰梯形 直角梯形 梯形
2、几种特殊的四边形的性质和判定:
3、一些定理和推论: 三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半。 推论:夹在两平行线间的平行线段相等。 推论:直角三角形斜边上的中线等于斜边的一半; 推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(1)如图,如果角 DAE=90 度,则 DAEF 为矩形
4
则必须:角 BAC=360 度-2*60 度-90 度=150 度 (而如果,另一种情况,BC 为短边,F 将落在 DAECB 的包围之中,角 DAE=2*60 度+角 BAC>90 度,DAEF 不可能为矩形,而 BC 为短边,角 BAC<90 度) (2)如果:DA=AE,则:DAEF 为菱形 则必须:AB=AC (3)如果:角 BAC=60 度 则:角 DAE=3*60 度=180 度 D,A,E 共线,所以:以 D、A、E、F 为顶点的四边形不存在 据此,(2)的结论应稍加改变为: 当 AB=AC,且角 BAC 不等于 60 度时,四边形 DAEF 是菱形

数学八年级平行四边形性质与判定4套练习及答案

数学八年级平行四边形性质与判定4套练习及答案

平行四边形练习题1平行四边形的性质(一) 一、选择题1.平行四边形的两邻角的角平分线相交所成的角为( ) A.锐角 B.直角 C.钝角 D.不能确定2.平行四边形的周长为24cm ,相邻两边的差为2cm ,则平行四边形的各边长为( ) A.4cm ,4cm ,8cm ,8cm B.5cm ,5cm ,7cm ,7cm C.5.5cm ,5.5cm ,6.5cm ,6.5cm D.3cm ,3cm ,9cm ,9cm3. 如.则∠A.28C.324. 在5A.6.在□A100二、填7. .8. 9.10.. ∠C 11. 中,对角线AC 、BD 相交于点O ,图中全等三角形共有对12.如图所示,在ABCD 中,∠B =110°,延长AD 至F ,CD 至E ,连结EF ,则∠E+∠F= 三、解答题13. 在四边形ABCD 中,AB ∥CD ,∠A =∠C ,求证:四边形ABCD 是平行四边形. 14. 在□ABCD 中, ∠A+∠C=160°, , 求∠A,∠C,∠B,∠D 的度数第11题图 第12题图15. .如图所示,四边形ABCD 是平行四边形,BD ⊥AD ,求BC ,CD 及OB 的长.16. 如图,在□ABCD 中,E 、F 分别是BC 、AD 上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由.课时一答案:一、1.B ,提示:平行四边形的两邻角的和为180°,所以它们的角平分线的夹角为90°;2.B ,提示:设相邻两边为,,ycm xcm 根据题意得⎩⎨⎧=-=+212y x y x ,解得⎩⎨⎧==57y x ;3. B ,提示:根据平行四边形的性质对角相等得∠D =∠ABC=120°,邻角互补得∠CAB +∠CAD+∠D =180°,则∠CAB =180°-32°-120°=28°;4. D ,提示:根据平行四边形的对角相等,得对角的比值相等故选D ;5.A ;6.B ,由题意得∠A =60°,根据平行四边形的邻角互补,得∠B =180°-60°=120°; 二、7.3提示:°11.4;三角形三、∴AD 14.解:又∵∠∵在□∴∠B 15. 解:∵∵∴16. AE =平行四边形的性质(二)1. 如图所示,如果该平行四边形的一条边长是8,一条对角线长为6,那么它的另一条对角线长x 的取值范围是________.2.长为( A.8.3 3. ,交AD4.为( A.155. 已知ABCD ,求证:6. 为E 、7.已知O 为平行四边形ABCD 对角线的交点,△AOB 的面积为1,则平行四边形的面积为( )第3题图A.1B.2C.3D.48.平行四边形的对角线分别为y x ,,一边长为12,则y x ,的值可能是下列各组数中的( ) A.8与14 B.10与14 C.18与20 D.10与28 9. □ABCD 中,若,6,10,30cm AB cm BC B ===∠ 则□ABCD 的面积是 .10. 如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45°,且AE+AF=则平行四边形ABCD 的11.点E ,F 分别在AC,AB 上,且DE ∥求证:12. M 、N ,•点(1(2第10题图 第11题图课时二答案:1. 10<x <22,提示:根据三角形的三边关系得11215<<x ,解得2210<<x ;2. B ;3. BC =AD =4.8;4.A ;提示:根据面积法求出邻边的比为3∶2,则邻边为7.5,5,则面积为7.5×2=15cm 2;5. 证明:∵ABCD ,∴OA =OC ,DF ∥EB ∴∠E =∠F ,又∵∠EOA =∠FOC ∴△OAE ≌△OCF ,∴OE =OF ;6. OE =OF , 在□ABCD 中,OB=OD ,∵BE ⊥AC ,DF ⊥AC ∴∠BEO =∠DFO ,又∠7.D 边,若11.∴∠B=12. ( 在∴∠平行四边形的判定(一) 一、选择题1.下列条件中不能判定四边形ABCD 为平行四边形的是( ) A.AB=CD,AD=BC B.AB ∥CD ,AB=CD C.AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC2.已知:四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;② AB=CD, ③AD=BC ,④∠A=∠C ,⑤∠B=∠D ,能使四边形ABCD 成为平行四边形的条件的个数是( ) A.4 B.3 C.2 D.13.4. 5.为平行四边形,6.如图所示,ABCD E 、7.如图所示,在ABCD 且8. 9.ABCD 行四边形.10. 如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥四边形AECF 为平行四边形.11. 如图所示,平行四边形ABCD的对角线A C、BD相交于点O,E、F是直线AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.12.CE课时三答案:一、1.C ;2.B ,提示:AD ∥BC ,添加条件①③④能使四边形ABCD 成为平行四边形;3.C ;4.B ;二、5. AD =BC (或AB ∥CD 或∠A=∠C 或∠B=∠D );6.30°,6,9;7.对角线互相平分;8. 3; 三、9.在ABCD 中,AD=CB,AB=CD,∠D =∠B ,∵E 、F 分别为AB 、CD 的中点,∴DF=BE , 又∵AB ∥CD ,AB=CD ,∴AE=CF ,∴四边形AECF 是平行四边形. 10. 证明:∵ABCD∴AB =CD ,AB ∥CDAE ∴11. 12. 证明:BC ∴又 ∴△BE ∴BE ∴连结 BO ∴又 AE ∴EO ∴∴BE DF ∴∥课时四平行四边形的判定(二)1.如图所示,D 、E 、F 为△ABC 的三边中点, 则图中平行四边形有( ) A.1个 B2个 C 3个 D.4个2. D 、为20A.153.4.□分别是5. 连结6. (1)(2)7. BC ,BA ∥DE ,BD ∥AE ,EF=FC ,路车,路线是B →A →E →F ,乙乘2路,路线是B →D ,假设两车速度相同,途中耽误时间相同,那么谁先到达F 站,请说明理由.第1题图第6题图8. 如图所示,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求证:CD∥AB;(2)求证:△BDE≌△ACE;(3)若O为AB中点,求证:OF=12BE.9..10.是OA11.如图所示,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?第9题图第10题图课时四答案:1.C;2.D ,提示:根据三角形中位线的性质定理:;21,21DEF LMN ABC DEF L L L L ∆∆∆∆== 3.26或22,提示:当两腰上的中位线长为3时,则底边长为6,腰长为10,三角形的周长为26,当两腰上的中位线长为5时,则底边长为10,腰长为6,三角形的周长为22;4.平行四边形 ;5.平行四边形;6.证明:(1)∵ 四边形ABCD 是平行四边形,∴AB ∥CF .∴∠1=∠2,∠3=∠4 ∵E 是AD 的中点,∴ AE=DE .∴△ABE ≌△DFE .(2)四边形ABDF 是平行四边形.∵△ABE ≌△DFE∴AB=DF 又AB ∥CF .∴四边形ABDF 是平行四边形.7.解:∵BA ∥DE ,BD ∥AE ,∴四边形ABDE 是平行四边形∴AB=DE ,BD=AE ,又EF=FC 且AF ∥BC ,EC ⊥BC ,∴DE=DC ,∴EA+AE+EF=BD+DC+CF ,∴二人同时到达F 站.8.证明:(1)∵BD=CD ,∴∠BCD=∠1.∵ ∠l=∠2,∠BCD=∠2.∴CD ∥AB .(2) ∵ CD ∥AB ∴∠CDA=∠3.∠BCD=∠2=∠3.且BE=AE .且∠CDA=∠BCD .∴DE=CE .在△BDE 和△ACE 中, DE=CE ,∠DEB=∠CEA ,BE=AE .∴△BDE ≌△ACE(3) ∵△BDE ≌△ACE∠4=∠1,∠ACE=∠BDE=90°.∴∠ACH=90°一∠BCH又CH ⊥AB ,.∴ ∠2=90°一∠BCH∴∠ACH=∠2=∠1=∠4.AF=CF∵∠AEC=90°一∠4,∠ECF=90°一∠ACH∠ACH=∠4 ∠AEC=∠ECF .CF=EF .∴ EF=AFO 为AB 中点,OF 为△ABE 的中位线 ∴OF=12BE 9. 线段AC 与EF 互相平分.理由是:∵四边形ABCD 是平行四边形.∴AB ∥CD ,即AE ∥CF ,AB =CD ,∵BE =DF ,∴AE =CF∴四边形AECF 是平行四边形,∴AC 与EF 互相平分.10.是平行四边形,△AOE ≌△COF .11是平行四边形,四边形AMCN 、BMDN 是平行四边形.。

平行四边形经典例题讲解(3套)

平行四边形经典例题讲解(3套)

经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠.又BE DF ∥,BEC DFA ∴∠=∠,BEC DFA ∴△≌△,∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长.【【答案】20、解法一: ∵∴又∵∴∴∥即得是平行四边形∴∴四边形的周长解法二:连接3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC A DCBA DC BD C AB EF∵∴又∵∴≌∴∴四边形的周长解法三:连接∵∴又∵∴∴∥即是平行四边形∴∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD 的对角线AC 上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△.(2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==,,AFD CEB ∴△≌△(SAS).AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=A BDE FC A DCB(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=°1390∴∠+∠=°12∠=∠90DAM ABE DA AB ∠=∠==°,DAM ABE ∴△≌△DM AE ∴=AE EP =DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,°Rt Rt DAM ABE ∴△≌△14DM AE ∴=∠=∠,1590∠+∠=°4590∴∠+∠=°AE DM ∴⊥AE EP ⊥ A D C B E B C E DA F P FDM EP ∴⊥∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。

平行四边形专题(含答案)

平行四边形专题(含答案)

平行四边形专题一.选择题(共15小题)1.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16 B.14<α<26C.12<α<20 D.以上答案都不正确2.下列说法中错误的个数是()①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是矩形③两条对角线互相垂直的矩形是正方形;④两条对角线相等的菱形是正方形⑤任何一个具有对称中心的四边形一定是正方形或矩形⑥角既是轴对称图形又是中心对称图形⑦线段、圆、矩形、菱形、正方形都是中心对称图形⑧正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条A.1个B.2个C.3个D.4个3.如图,在▱中,8,6,∠30°,点E,F在上,且,则△的面积为()A.8 B.4 C.6 D.124.下列说法:①平行四边形的任意一条对角线把平行四边形分成两个全等三角形.②平行四边形的面积等于三角形的面积的2倍.③平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形.④平行四边形对角线的交点到一组对边的距离相等,其中正确的个数有()A.1个B.2个C.3个D.4个5.平行四边形中,对角线和相交于点O,如果12,10,,那么x的取值范围是()A.1<x<11 B.5<x<6 C.10<x<12 D.10<x<226.如图所示,四边形是平行四边形,那么下列说法正确的有()①四边形是平行四边形,记做“四边形是▱”;②把四边形分成两个全等的三角形;③∥,且∥;④四边形是平行四边形,可以记做“▱”.A.1个B.2个C.3个D.4个7.如图,▱的对角线、交于点O,平分∠交于点E ,且∠60°,,连接.下列结论:①∠30°;②S▱•;③;④,成立的个数有()A.1个B.2个C.3个D.4个8.在▱中,3,4,当▱的面积最大时,下列结论正确的有()①5;②∠∠180°;③⊥;④.A.①②③B.①②④C.②③④D.①③④9.如图,在平行四边形中,2,F是的中点,作⊥,垂足E在线段上,连接、,则下列结论中一定成立的是()①∠∠;②;③S△2S△;④∠3∠.A.①②B.②③④C.①②④D.①②③④10.如图,平行四边形的周长是26,对角线与交于点O,⊥,E是中点,△的周长比△的周长多3,则的长度为()A.3 B.4 C.5 D.811.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S23D.3S1+4S312.如图,▱的对角线,交于点O,已知8,12,6,则△的周长为()A.13 B.17 C.20 D.2613.如图,在▱中,6,8,∠C的平分线交于E,交的延长线于F,则的值等于()A.2 B.3 C.4 D.614.如图,在▱中,平分∠,交于点F,平分∠,交于点E,6,2,则长为()A.8 B.10 C.12 D.14 15.如图,在△中,∠90°,3,4,点D在上,以为对角线的所有▱中,最小的值是()A.2 B.3 C.4 D.5二.解答题(共11小题)16.如图,在▱中,E是的中点,连接并延长交的延长线于点F.(1)求证:;(2)连接,若2,求证:⊥.17.如图,E是▱的边的中点,延长交的延长线于点F.(1)求证:△≌△.(2)若∠90°,5,3,求的长.18.如图,四边形中,∥,⊥交于点E,⊥交于点F,且.求证:四边形是平行四边形.19.如图,平行四边形中,⊥,∠45°,E、F分别是、上的点,且,连接交于O.(1)求证:;(2)若⊥,延长交的延长线于G,当1时,求的长.20.如图,是△的角平分线,它的垂直平分线分别交,,于点E,F,G,连接,.(1)请判断四边形的形状,并说明理由;(2)若∠30°,∠45°,2,点H是上的一个动点,求的最小值.21.如图,▱中,⊥,∠45°,E、F分别是,上的点,且,连接交于O.(1)求证:;(2)若⊥,延长交的延长线于G,当1时,求的长.22.如图,▱放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段′的长及点E的坐标.23.如图,在四边形中,∥,∠90°,8,12,18,点P从点A出发以2的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,∥?(2)从运动开始,当t取何值时,△为直角三角形?24.如图,四边形为平行四边形,∠的角平分线交于点F,交的延长线于点E.(1)求证:;(2)连接,若⊥,∠60°,4,求平行四边形的面积.25.如图,▱的对角线、相交于点O,.(1)求证:△≌△;(2)若,连接、,判断四边形的形状,无需说明理由.26.已知:如图,在▱中,E,F分别是边,上的点,且,直线分别交的延长线、的延长线于点G,H,交于点O.(1)求证:△≌△;(2)连接,若,则四边形是什么特殊四边形?请说明理由.平行四边形专题(答案)一.选择题(共15小题)1.(2015春•博野县期末)已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16 B.14<α<26C.12<α<20 D.以上答案都不正确【分析】因为平行四边形的对角线互相平分,根据三角形三边之间的关系,可先求得另一对角线的一半的取值为大于7而小于13,则它的另一条对角线α的取值范围为14<α<26.【解答】解:如图,已知平行四边形中,10,6,求的取值范围,即a的取值范围.∵平行四边形∴2,26∴α,3∴在△中:﹣<<即:14<α<26故选B.【点评】此题主要考查平行四边形的性质和三角形三边之间的关系.2.(2012•麻城市校级模拟)下列说法中错误的个数是()①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是矩形③两条对角线互相垂直的矩形是正方形;④两条对角线相等的菱形是正方形⑤任何一个具有对称中心的四边形一定是正方形或矩形⑥角既是轴对称图形又是中心对称图形⑦线段、圆、矩形、菱形、正方形都是中心对称图形⑧正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条A.1个B.2个C.3个D.4个【分析】对平行四边形性质的考查,以及矩形,正方形,中心对称图形的性质及判定.【解答】解:①中对角线互相平分的四边形是平行四边形,所以①对;②等腰梯形两条对角线也相等,②也不对;③中对角线互相垂直的矩形是正方形,正确;④两条对角线相等的菱形是正方形,正确,⑤任何一个具有对称中心的四边形一定是正方形或矩形,错误,等腰梯形,菱形都有对称中心;⑥角是轴对称图形但不是中心对称图形,所以⑥不对⑦线段、圆、矩形、菱形、正方形都是中心对称图形,都有对称中心,所以正确;⑧正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条,正三角形只有三条对称轴.所以题中共有②⑤⑥⑧四个错误,故答案选D.【点评】本题综合考查了各种图形的性质以及有关判定,熟记性质和判定,准确掌握知识是解题的关键.3.如图,在▱中,8,6,∠30°,点E,F在上,且,则△的面积为()A.8 B.4 C.6 D.12【分析】可先求平行四边形的总面积,因为,所以三个小三角形的面积相等,进而可求解.【解答】解:如图,过点D作⊥于点G,∵6,∠30°,∴3,∴平行四边形的面积为•8×3=24,∴△的面积为×24=12∴△的面积×12=4故选B.【点评】平行四边形的面积等于平行四边形的边长与该边上的高的积.即•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高,并注意体会三角形面积相等的条件.4.下列说法:①平行四边形的任意一条对角线把平行四边形分成两个全等三角形.②平行四边形的面积等于三角形的面积的2倍.③平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形.④平行四边形对角线的交点到一组对边的距离相等,其中正确的个数有()A.1个B.2个C.3个D.4个【分析】平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.根据平行四边形的性质,结合图形,逐一分析即可.【解答】解:根据平行四边形的基本性质和判定,可知:①平行四边形的任意一条对角线把平行四边形分成两个全等三角形,正确.②平行四边形的面积等于三角形的面积的2倍,说明不清楚,比较对象不明了,所以错误.③平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形,正确.④平行四边形对角线的交点到一组对边的距离相等,正确.故选C.【点评】主要考查了平行四边形的基本性质,并利用性质解题,熟记性质是解题的关键,注意解题时要数形结合.5.(2011春•东莞校级期中)平行四边形中,对角线和相交于点O,如果12,10,,那么x的取值范围是()A.1<x<11 B.5<x<6 C.10<x<12 D.10<x<22【分析】根据题意画出图形,根据平行四边形的对角相互相平分,可得,;根据三角形的三边关系,可得x的取值范围是1<x<11.【解答】解:∵四边形是平行四边形,12,10,∴6,5,∵,∴x的取值范围是1<x<11.故选A.【点评】此题考查了平行四边形的性质:平行四边形的对角相互相平分.还考查了三角形的三边关系:三角形中任意两边之和>第三边,三角形中任意两边之差<第三边.题目比较简单,解题时要细心.6.如图所示,四边形是平行四边形,那么下列说法正确的有()①四边形是平行四边形,记做“四边形是▱”;②把四边形分成两个全等的三角形;③∥,且∥;④四边形是平行四边形,可以记做“▱”.A.1个B.2个C.3个D.4个【分析】根据平行四边形的基本性质和基本表示方法进行判断即可.【解答】解:根据有关概念和性质可知:①四边形是平行四边形,记做“四边形是▱”,错误.②把四边形分成两个全等的三角形,正确.③∥,且∥,正确④四边形是平行四边形,可以记做“▱”,应该为:记做“▱”,错误.故选B.【点评】主要考查了平行四边形的基本性质和基本表示方法.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7.(2015•绥化)如图,▱的对角线、交于点O,平分∠交于点E,且∠60°,,连接.下列结论:①∠30°;②S▱•;③;④,成立的个数有()A.1个B.2个C.3个D.4个【分析】由四边形是平行四边形,得到∠∠60°,∠120°,根据平分∠,得到∠∠60°推出△是等边三角形,由于,得到,得到△是直角三角形,于是得到∠30°,故①正确;由于⊥,得到S▱•,故②正确,根据,,且>,得到≠,故③错误;根据三角形的中位线定理得到,于是得到,故④正确.【解答】解:∵四边形是平行四边形,∴∠∠60°,∠120°,∵平分∠,∴∠∠60°∴△是等边三角形,∴,∵,∴,∴∠90°,∴∠30°,故①正确;∵⊥,∴S▱•,故②正确,∵,,∵>,∴≠,故③错误;∵,,∴,∴,故④正确.故选:C.【点评】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.8.(2016•菏泽)在▱中,3,4,当▱的面积最大时,下列结论正确的有()①5;②∠∠180°;③⊥;④.A.①②③B.①②④C.②③④D.①③④【分析】当▱的面积最大时,四边形为矩形,得出∠∠∠∠90°,,根据勾股定理求出,即可得出结论.【解答】解:根据题意得:当▱的面积最大时,四边形为矩形,∴∠∠∠∠90°,,∴5,①正确,②正确,④正确;③不正确;故选:B.【点评】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱的面积最大时,四边形为矩形是解决问题的关键.9.(2016•虞城县二模)如图,在平行四边形中,2,F是的中点,作⊥,垂足E 在线段上,连接、,则下列结论中一定成立的是()①∠∠;②;③S△2S△;④∠3∠.A.①②B.②③④C.①②④D.①②③④【分析】由在平行四边形中,2,F是的中点,易得,继而证得①∠∠;然后延长,交延长线于M,分别利用平行四边形的性质以及全等三角形的判定与性质得出△≌△(),得出对应线段之间关系进而得出答案.【解答】解:①∵F是的中点,∴,∵在▱中,2,∴,∴∠∠,∵∥,∴∠∠,∴∠∠,∴∠∠,故此选项正确;②延长,交延长线于M,∵四边形是平行四边形,∴∥,∴∠∠,∵F为中点,∴,在△和△中,,∴△≌△(),∴,∠∠M,∵⊥,∴∠90°,∴∠∠90°,∵,∴,故②正确;③∵,∴S△△,∵>,∴S△<2S△故S△2S△错误;④设∠,则∠,∴∠∠90°﹣x,∴∠180°﹣2x,∴∠90°﹣180°﹣2270°﹣3x,∵∠90°﹣x,∴∠3∠,故此选项正确.故选C.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△≌△是解题关键.10.(2016•绵阳)如图,平行四边形的周长是26,对角线与交于点O,⊥,E 是中点,△的周长比△的周长多3,则的长度为()A.3 B.4 C.5 D.8【分析】由▱的周长为26,对角线、相交于点O,若△的周长比△的周长多3,可得13,﹣3,求出和的长,得出的长,再由直角三角形斜边上的中线性质即可求得答案.【解答】解:∵▱的周长为26,∴13,,∵△的周长比△的周长多3,∴()﹣()﹣3,∴5,8.∴8.∵⊥,E是中点,∴4;故选:B.【点评】此题考查了平行四边形的性质、直角三角形斜边上的中线性质.熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出是解决问题的关键.11.(2016•宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S23D.3S1+4S3【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c 表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=()(a﹣c )2﹣c2,∴S21﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S23=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.12.(2016•丽水)如图,▱的对角线,交于点O,已知8,12,6,则△的周长为()A.13 B.17 C.20 D.26【分析】由平行四边形的性质得出3,6,8,即可求出△的周长.【解答】解:∵四边形是平行四边形,∴3,6,8,∴△的周长3+6+8=17.故选:B.【点评】本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.13.(2016•泰安)如图,在▱中,6,8,∠C的平分线交于E,交的延长线于F,则的值等于()A.2 B.3 C.4 D.6【分析】由平行四边形的性质和角平分线得出∠∠,证出8,同理:6,求出﹣2,﹣2,即可得出结果.【解答】解:∵四边形是平行四边形,∴∥,8,6,∴∠∠,∵平分∠,∴∠∠,∴∠∠,∴8,同理:6,∴﹣2,﹣2,∴4;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明三角形是等腰三角形是解决问题的关键.14.(2016•丹东)如图,在▱中,平分∠,交于点F,平分∠,交于点E,6,2,则长为()A.8 B.10 C.12 D.14【分析】由平行四边形的性质和角平分线得出∠∠,得出6,同理可证6,再由的长,即可求出的长.【解答】解:∵四边形是平行四边形,∴∥,6,,∴∠∠,∵平分∠,∴∠∠,则∠∠,∴6,同理可证:6,∵﹣2,即6+6﹣2,解得:10;故选:B.【点评】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出是解决问题的关键.15.(2013•达州)如图,在△中,∠90°,3,4,点D在上,以为对角线的所有▱中,最小的值是()A.2 B.3 C.4 D.5【分析】由平行四边形的对角线互相平分、垂线段最短知,当⊥时,线段取最小值.【解答】解:∵在△中,∠90°,∴⊥.∵四边形是平行四边形,∴,.∴当取最小值时,线段最短,此时⊥.∴∥.又点O是的中点,∴是△的中位线,∴ 1.5,∴23.故选B.【点评】本题考查了平行四边形的性质,以及垂线段最短.解答该题时,利用了“平行四边形的对角线互相平分”的性质.二.解答题(共11小题)16.(2016•西宁)如图,在▱中,E是的中点,连接并延长交的延长线于点F.(1)求证:;(2)连接,若2,求证:⊥.【分析】(1)由在▱中,E是的中点,利用,即可判定△≌△,继而证得结论;(2)由2,,可得,又由△≌△,可得,然后利用三线合一,证得结论.【解答】证明:(1)∵四边形是平行四边形,∴∥,∴∠∠,∵E为中点,∴,在△与△中,,∴△≌△(),∴;(2)∵2,,∴,∵△≌△,∴,∴⊥.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.17.(2016•温州)如图,E是▱的边的中点,延长交的延长线于点F.(1)求证:△≌△.(2)若∠90°,5,3,求的长.【分析】(1)由平行四边形的性质得出∥,∥,证出∠∠F,∠∠,由证明△≌△即可;(2)由全等三角形的性质得出3,由平行线的性质证出∠∠90°,由勾股定理求出,即可得出的长.【解答】(1)证明:∵四边形是平行四边形,∴∥,∥,∴∠∠F,∠∠,∵E是▱的边的中点,∴,在△和△中,,∴△≌△();(2)解:∵≌△,∴3,∵∥,∴∠∠90°,在▱中,5,∴4,∴28.【点评】此题考查了平行四边形的性质、全等三角形的判定方法、勾股定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18.(2016•新疆)如图,四边形中,∥,⊥交于点E,⊥交于点F,且.求证:四边形是平行四边形.【分析】由垂直得到∠∠90°,根据可证明△≌△,得到,根据平行四边形的判定判断即可.【解答】证明:∵⊥,⊥,∴∠∠90°,∵∥,∴∠∠,在△和△中,∵,∴△≌△(),∴,∵∥,∴四边形是平行四边形.【点评】本题考查了平行四边形的判定,平行线的性质,全等三角形的性质和判定等知识点的应用,关键是推出,主要考查学生运用性质进行推理的能力.19.(2016•梅州)如图,平行四边形中,⊥,∠45°,E、F分别是、上的点,且,连接交于O.(1)求证:;(2)若⊥,延长交的延长线于G,当1时,求的长.【分析】(1)由平行四边形的性质和证明△≌△,得出对应边相等即可;(2)证出,再证明,得出1,即可得出结果.【解答】(1)证明:∵四边形是平行四边形,∴∥,∴∠∠.在△与△中,∴△≌△().∴.(2)解:∵⊥,∥,∴∠∠90°.∵∠45°,∴∠∠45°.∴∵⊥,∴∠∠90°.∴∠∠45°.∴,∴1,由(1)可知,1,∴3,∴3.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键.20.(2016•滨州)如图,是△的角平分线,它的垂直平分线分别交,,于点E,F,G,连接,.(1)请判断四边形的形状,并说明理由;(2)若∠30°,∠45°,2,点H是上的一个动点,求的最小值.【分析】(1)结论四边形是菱形.只要证明即可.(2)作⊥于M,⊥于N,连接交于点H,此时最小,在△中,求出、即可解决问题.【解答】解:(1)四边形是菱形.理由:∵垂直平分,∴,,∴∠∠,∵∠∠,∴∠∠,在△和△中,,∴△≌△,∴,∴,∴四边形是菱形.(2)作⊥于M,⊥于N,连接交于点H,此时最小,在△中,∵∠90°,∠30°,2,∴,∵∥,⊥,⊥,∴∥,,2,在△中,∵∠90°,∠45°,∴∠∠45°,∴,∴3,在△中,∵∠90°,.3,∴10.∵,∴的最小值为10.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H 的位置,属于中考常考题型.21.(2015•枣庄)如图,▱中,⊥,∠45°,E、F分别是,上的点,且,连接交于O.(1)求证:;(2)若⊥,延长交的延长线于G,当1时,求的长.【分析】(1)通过证明△与△全等即可求得.(2)由△是等腰直角三角形,得出∠45°,因为⊥,得出∠45°,所以△与△都是等腰直角三角形,从而求得的长和2,然后等腰直角三角形的性质即可求得.【解答】(1)证明:∵四边形是平行四边形,∴,∥,∴∠∠,在△与△中∴△≌△()∴;(2)解:∵⊥,∴∠90°,∵∠45°,∴∠∠45°,∵⊥,∴∠∠45°,∴△是等腰直角三角形,∵∥,⊥,∴⊥,∴,△是等腰直角三角形,∵△≌△()∴,∴,即2,∵△是等腰直角三角形,∴1,∴,∴在等腰△中,22∴2,【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质以及平行线分行段定理.22.(2015•潜江)如图,▱放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段′的长及点E的坐标.【分析】(1)由A与B的坐标求出的长,根据四边形为平行四边形,求出的长,进而确定出C 坐标,设反比例解析式为,把C坐标代入求出k的值,即可确定出反比例解析式;(2)根据平移的性质得到B与B′横坐标相同,代入反比例解析式求出B′纵坐标得到平移的距离,即为′的长,求出D′纵坐标,即为E纵坐标,代入反比例解析式求出E横坐标,即可确定出E坐标.【解答】解:(1)∵▱中,A(2,0),B (6,0),D(0,3),∴4,∥,∴C(4,3),设反比例解析式为,把C坐标代入得:12,则反比例解析式为;(2)∵B(6,0),∴把6代入反比例解析式得:2,即B′(6,2),∴平行四边形向上平移2个单位,即′=2,∴D′(0,5),把5代入反比例解析式得:,即E (,5).【点评】此题考查了平行四边形的性质,反比例函数图象上点的坐标特征,以及待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.23.(2015•柳州)如图,在四边形中,∥,∠90°,8,12,18,点P从点A出发以2的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,∥?(2)从运动开始,当t取何值时,△为直角三角形?【分析】(1)已知∥,添加即可判断以为顶点的四边形是平行四边形.(2)点P处可能为直角,点Q处也可能是直角,而后求解即可.【解答】解:(1)当∥时,四边形是平行四边形,此时,∴12﹣2,∴4.∴当4时,四边形是平行四边形.(2)过D点,⊥于F,∴8.﹣18﹣12=6,10,①当⊥,则18.即:218,∴6;②当⊥,此时P一定在上,1=10+12﹣222﹣2t,2,易知,△∽△2P1,∴,解得:,③情形:当⊥时,因∠<90°,此种情形不存在.∴当6或时,△是直角三角形.【点评】此题主要考查了一组对边平行且相等的四边形是平行四边形以及圆与圆的位置关系等知识,注意分情况讨论和常见知识的应用.24.(2016•永州)如图,四边形为平行四边形,∠的角平分线交于点F,交的延长线于点E.(1)求证:;(2)连接,若⊥,∠60°,4,求平行四边形的面积.【分析】(1)由平行四边形的性质和角平分线得出∠∠,即可得出;(2)先证明△是等边三角形,得出4,2,由勾股定理求出,由证明△≌△,得出△的面积=△的面积,因此平行四边形的面积=△的面积•,即可得出结果.【解答】(1)证明:∵四边形是平行四边形,∴∥,∥,,∴∠∠,∵是∠的平分线,∴∠∠,∴∠∠,∴,∴;(2)解:∵,∠60°,∴△是等边三角形,∴4,∵⊥,∴2,∴2,∵∥,∴∠∠,∠∠E,在△和△中,,∴△≌△(),∴△的面积=△的面积,∴平行四边形的面积=△的面积•×4×2=4.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质、勾股定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题(2)的关键.25.(2015•呼和浩特)如图,▱的对角线、相交于点O,.(1)求证:△≌△;(2)若,连接、,判断四边形的形状,无需说明理由.【分析】(1)先证出,再由即可证明△≌△;(2)由对角线互相平分证出四边形是平行四边形,再由对角线相等,即可得出四边形是矩形.【解答】(1)证明:∵四边形是平行四边形,∴,,∵,∴,在△和△中,,∴△≌△();(2)解:四边形是矩形;理由如下:∵,,∴四边形是平行四边形,∵,∴四边形是矩形.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.26.(2016•青岛)已知:如图,在▱中,E,F分别是边,上的点,且,直线分别交的延长线、的延长线于点G,H,交于点O.(1)求证:△≌△;(2)连接,若,则四边形是什么特殊四边形?请说明理由.【分析】(1)由平行四边形的性质得出,∠∠,由证明△≌△即可;(2)由平行四边形的性质得出∥,,证出,得出四边形是平行四边形,得出,再由等腰三角形的三线合一性质得出⊥,即可得出四边形是菱形.【解答】(1)证明:∵四边形是平行四边形,∴,∠∠,在△和△中,,∴△≌△();(2)解:四边形是菱形;理由如下:如图所示:∵四边形是平行四边形,∴∥,,∵,∴,∴四边形是平行四边形,∴,∵,∴⊥,∴四边形是菱形.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质、菱形的判定.熟练掌握平行四边形的性质,证出四边形是平行四边形是解决问题(2)的关键.。

(完整版)平行四边形的性质及判定典型例题

(完整版)平行四边形的性质及判定典型例题

平行四边形的性质及判定 (典型例题)1.平行四边形及其性质例1如图,O 是卜二・ABCD 对角线的交点.△ OBC 的周长为59, BD=38 , AC=24,贝卩AD= __ 若厶OBC 与厶OAB 的周长之差为 15,贝y AB=QABCD 的周长= _____ .AC ,可得BC ,再由平行四边形对边相等知 AD=BC ,由平行四 边形的对角线互相平分,可知△ OBC 与厶OAB 的周长之差就为BC 与AB 之差,可得AB ,进而可得」ABCD 的周长.解 EBCD 中0A 二= OB = OD = |E D (平行四边形的对角线互相平分)•••△ OBC 的周长=0B + 0C +EC分析: 根据平行四边形对角线互相平先 所OC =1=19 + 12 + BC=59••• BC=28—ABCD 中,•BC=AD(平行四边形对边相等)•AD=28△ OBC的周长-△ OAB的周长=(OB + OC + BC)-(OB + OA+AB)=BC-AB=15•AB=13•••二ABCD的周长=AB + BC + CD + AD=2(AB + BC)=2(13 + 28)=82说明:本题条件中的△ OBC占厶OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15 .例2判断题(1) 两条对边平行的四边形叫做平行四边形. ()(2) 平行四边形的两角相等.()(3) 平行四边形的两条对角线相等.()(4) 平行四边形的两条对角线互相平分. ()(5) 两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.()(6) 平行四边形的邻角互补.()分析:根据平行四边形的定义和性质判断.解:(1) 错两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD // BC .显然四边形ABCD 不是平行四边形.(2) 错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3) 错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4) 对根据平行四边形的性质定理 3 可判断是正确的.(5) 错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6) 对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在二ABCD中,E、F是AC上的两点.且AE=CF .求证:ED // BF .分析:欲址DE // BF,只需/ DEC二/ AFB,转证=/ ABF CDF, 因卜二,ABCD,则有AB丄CD,从而有/ BAC= / CDA .再由AF=CF 得AF=CE .满足了三角形全等的条件.证明:v AE=CFAE+EF二CF+EF••• AF=CE在二ABCD中AB // CD(平行四边形的对边平行)• / BAC= / DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)•••△ ABF刍乂 CDE(SAS)•••/ AFB= / DCE• ED // BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4如图已知在△ ABC中DE // BC // FG,若BD=AF、求证; DE + FG=BC .分析1:要证DE + FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH // AB(或DM // AC),得至U DE=BH、只需证HC=FG ,因AF=BD=EH , / CEH=/ A. / AGF = Z C所以△ AFG幻/ EHC .此方法称为截长法.分析2:过C点作CK // AB交DE的延长线于K,只需证FG=EK , 转证△ AFG CKE .过E作EH // AB交于Hv DE // BC•••四边形DBHE是平行四边形(平行四边形定义)••• DB=EHDE=BH(平行四边形对边也相等)又BD=AF• AF=EHv BC // FGAGF= / C(两直线平行同位角相等)同理 / A= / CEH• △ AFG EHC(AAS)••• FG=HC••• BC二BH+HC二DE二FG.过C作CK // AB交DE的延长线于K.v DE // BC•四边形DBCK是平行四边形(平行四边形定义)•CK=BD DK=BC(平行四边形对边相等)又BD=AF•AF=CKv CK // AB• / A= / ECK(两直线平行内错角相等)v BC // FG•••/ AGF二/ AED(两直线平行同位角相等)又/ CEK二/ AED(对顶角相等)•••/ AGF= / CEK•••△ AFG S' CKE(AAS)FG=EKDE+EK=BC• DE+FG=BC例 5 如图I—ABCD 中,/ ABC=3 /A,点 E 在CD 上,CE=1 , EF丄CD交CB延长线于F,若AD=1,求BF的长.u --- ---------- r分析:根据平行四边形对角相等,邻角互补,可得/ C= / F=45°进而由勾股定理求出CF ,再根据平行四边形对边相等,得BF的长.解:在二ABCD 中,AD // BC•••/ A +/ ABC=180 (两直线平行同旁内角互补)vZ ABC=3 / A•••/ A=45 ,Z ABC=135•••Z C= Z A=45 (平行四边形的对角相等)•EF 丄CD•Z F=45°(直角三角形两锐角互余)•EF=CE=1在RtAOEF中,CF = JCE之》EF金=(勾股定理)v AD=BC=1二BF = CF”EC = Q[例6如图1,‘ ■ ABCD中,对角线AC长为10cm , Z CAB=30 , AB长为6cm,求一ABCD的面积.解:过点C作CH丄AB,交AB的延长线于点H .(图2)vZ CAB=30-■.CH 二丄= 1 X10=52 2••• S—ABCD = AB-CH = 6X5=30(cm2)答:二ABCD的面积为30cm2 .说明:由于二=底>高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C 作高.例7如图,E、F分别在’・ABCD的边CD、BC上,且EF //求证:S△ ACE二S △ ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.二ABCD DE // AB•••/ DEG= / BHF(两直线平行同位角相等)/ GDE= / DAB(同上)AD // BC•••/ DAB= / FBH(同上):丄 GDE= / FBHv DE // BH , DB // EH•四边形BHED是平行四边形V DE二BH(平行四边形对边相等)GDE 刍乂 FBH(ASA)••• S△ GDE=S △ FBH(全等三角形面积相等).GE=FH(全等三角形对应边相等).S△ ACE=S △ AFH(等底同高的三角形面积相等).S △ ADE = S △ ABF说明:平行四边形的面积等于它的底和高的积.即S二二a・ha .a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.例8如图,在二ABCD中,BE平分/ B交CD于点E, DF 平分/ D交AB于点F,求证BF=DE .分析EF二DE (目标)十BEDP 为口DF"d叫西3 ]1=Z 3 r Z 1=Z 2f t"S亠彩姑皤彩B口ABCD证明:T四边形ABCD是平行四边形二DE // FB,/ ABC= / ADC(平行四边形的对边也平行对角相等)•••/仁/ 3(两直线平行内错角相等)而Z]=^Z ADC,Z2=|ZABC•••/ 2= / 3• DF // BE(同位角相等两条直线平行)•四边形BEDF为平行四边形(平行四边形定义)• BF=DE .(平行四边形的对边相等)说明:此例也可通过△ ADF CBE来证明,但不如上面的方法简捷.例9如图,CD的Rt△ ABC斜边AB上的高,AE平分/ BAC 交CD于E, EF // AB,交BC于点F,求证CE=BF .分析作EG // BC,交AB于G,易得EG=BF .再由基本图, 可得EG=EC ,从而得出结论.过E点作EG // BC交AB于G点.v EF // AB••• EG=BFv CD为Rt△ ABC斜边AB上的高•/ BAC + / B=90°.Z BAC + / ACD = 90°•/ B= Z ACD•Z ACD=Z EGAv AE 平分Z BAC•Z 1= Z 2又AE=AE•△ AGE ACE(AAS)•CE=EG•CE=BF .说明:(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE .(连F点作FG // AE,交AB于G)例10如图,已知I —ABCD的周长为32cm , AB : BC=5 : 3, AE 丄BC 于E, AF 丄DC 于F,/ EAF=2 / C,求AE 和AF 的长.分析:从化简条件开始①由二ABCD的周长及两邻边的比,不难得到平行四边形的边长.口虹CD 的周长=321 fAB=10AB : BC-5 : 3 p |BC=6②/ EAF=2 / C告诉我们什么?AF i FC1 ZFAE^ZC=180°] oAE 1 EAF-2 Z C j討c=6°这样,立即可以看ADF、△ AEB都是有一个锐角为30°的直角三角形.于是有= = = 3再由勾股定理求出解:——ABCD的周长为32cm即AB+BC+CD+DA=32v AB=CD BC=DA(平行四边形的对边相等)/.AB + BC = - X32 = 16 2又AB : BC=5 : 35+3BC= —X3 = 65+3/ EAF+ / AFC+ / C+ / CEA=360 (四边形内角和等于360°v AE 丄BC / AEC=90AF 丄DC / AFC=90•••/ EAF+ / C=180/ EAF=2 / CT AB // CD(平行四边形的对边平行)•••/ ABE二/ C=60 (两直线平行同位角相等)同理/ ADF=60SRiAABE 中,ZBAE = 30* BE = |AB = 5£—■Al = ja =E^ = 5^3 (cm)在RtAADF中,ZDAF = 30° DF= ^AP = |B C=3■f-j d—iAF - 7A D3 -I>F a = M Ccm)说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2 .平行四边形的判定例1填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是—,理由是(2)如图2, D、E分别在△ ABC的边AB、AC上,DE=EF , AE=EC , DE // BC贝卩四边形ADCF是__,理由是__ ,四边形BCFD 是—,理由是—分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC , DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD // CF即BD // CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行 四边形,既是平行四边形的一个性质,又是平行四边形的一个判定 方法.例 2 女口图,四边形 ABCD 中,AB=CD . / ADB 二 /CBD=90 .求 证:四边形ABCD 是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法, 这三类也是按边、角和对角线分类,具体的五个方法如下表:CIID 从对角钱看一(5 )对角线互相平分 因此必须根据已知条件与图形结构特点,选择判定方法.证法一:v AB=CD . Z ADB= / CBD=90 , BD=DB .••• Rt △ ABD 坐 Rt △ CDB .「( 1)两组对边分别平存C I )从边看 —(2)两组对边分别相等_(3)-组对边平行且相尊 (1)从边看 (II )从角看 (4)两组对角分别相等 的四边形绘平行四边形•••/ ABD= / CDB,/ A= / C.•/ ABD+ / CBD= / CDB+ / ADB即 / ABC= / CDA .•四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:vZ ADB= / CBD=90 , AB=CD、BD=DB .•Rt△ ABD 坐Rt△ CDB .•Z ABD=Z CDB.•AB //CD.(内错角相等两直线平行)•四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt △ ABD幻Rt △ CDB .••• DA=BC又T AB二CD•四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.例3如图,‘「ABCD中,E、G、F、H分别是四条边上的点, 且AE=CF , BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG 、GF、FH 、HE.T四边形ABCD是平行四边形•••/ A= / C, AD=CB .T BG=DH•AH=CG又AE=CF•△ AEH CFG(SAS)•HE=GF同理可得EG=FH•四边形EGFH 是平行四边形(两组对边分别相等的四边形是平行四边形)•EF 与GH 互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.例4如图,二ABCD中,AE丄BD于E, CF丄BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ ABE CDF••• AE= CF进而可得四边形AECF是平行四边形.证明:口ABCD中,AB屯CD(平行四边形的对边平行,对边相等)•/ ABD= / CDB(两直线平行内错角相等)AE 丄BD、CF 丄BD•AE // CF / AEB= / CFD=90•△ ABE CDF(AAS)•AE=CF•四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5如图,二ABCD中,E、F分别在AD、BC上,且AE=CF , AF、BE相交于G, CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF // EC , BE // DF,从而四边形GEHF为平行四边形.证明:」ABCD中,AD丄BC(平行四边形对边平行且相等)v AE=CF /. DE=BFT四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)二AF // CE , BE // DF(平行四边形对边平行)•••四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)••• GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6如图,已知—ABCD中,EF在BD上,且BE=DF ,点G、H 在AD、CB上,且有AG=CH , GH与BD交于点0,求证EG丄HF分析:证EF 、GH 互相平分二GEHF 为平行四边形.证明:连 BG 、DH 、GF 、EHT ABCD 为平行四边形.••• AD 垒 BC又 AG=HC• DG 丄 BH•四边形BGDH 为平行四边形(一组对边平行且相等的四边形是平行四边形)• HO = GO , DO=BO (平行四边形的对角线互相平分) 又 BE=DF•OE=OF•四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)••• EG丄HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7如图,——ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH , HF、FG、GE,只须证明EHFG为平行四边证法一:连结EH , HF、FG、GEv AE丄BD , G是AD中点.-■.GE=C J D =^AD2/ GED二 / GDE同理可得HF =HB =^EC,Z HFE =Z HEFV四边形ABCD是平行四边形••• AD 岂BC,/ GDE= / HBF••• GE=HF,/ GED= / HFB•GE // HF•四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)•EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明厶ABE CDF• BE=DFT四边形ABCD为平行四边形••• AD 些BCT G、H分别为AD、BC的中点•DG 丄BH•四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)•BD和GH互相平分(平行四边形对角线互相平分)•OG=OH , OB=OD又BE=DF•OE=OF•EF和GH互相平分.例8如图,已知线段a、b与/ a,求作:—ABCD ,使/ ABC二/ a, AB=a , BC=b ,分析:已知两边与夹角,可先确定△ ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1) 作/ EBF二/ a,⑵在BE、BF上分别截取BA=a , BC=b ,⑶分别为A、C为圆心,b, a为半径作弧,两弧交于点D, 二四边形ABCD为所求.*证明:由作法可知AB=CD = aBC=AD=b二四边形ABCD 为平行四边形(两组对边分别相等的四边形为平 行四边形)且/ ABC 二 / a, AB=a , BC=b- ABCD 为所求说明:常见的平行四边形作图有以下几种:(1) 已知两邻边(AB 、BC)和夹角(/ B).(2) 已知一边(BC)和两条对角线(AC , BD).(3) 已知一边(BC)和这条边与两条对角线的夹角 (如/ DBC ,Z ACB).⑷已知一边(CD)和一个内角(/ ABC)以及过这个角的顶点的一条对角线(BD ,且BD > CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.。

平行四边形性质及判定练习题及答案

平行四边形性质及判定练习题及答案

平行四边形性质及判定练习题及答案1、已知平行四边形ABCD中,AE⊥BC,AF⊥CD,E,F分别是BC,CD的中点,则2、已知平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是多少?3、已知平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,求AB的长。

4、下列哪些命题是正确的:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形。

5、已知平行四边形ABCD中,AB=6,AC=4,E,D,F 分别是AB,BC,CA的中点,求四边形AEDF的周长。

6、已知平行四边形ABCD的对角线AC、BD相交于点O,下列哪个结论不正确:(A)DC∥AB;(B)OA=OC;(C)AD=BC;(D)DB平分∠ADC。

7、已知平行四边形ABCD中,AB=4,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,求BC的长。

8、已知平行四边形ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF,若EF=3,则CD的长为多少?9、已知平行四边形ABCD中,对角线AC、BD相交于点O,点E是BC的中点,OE=3,求AB的长。

10、已知平行四边形ABCD中,AB=8,AD=5,E,F分别是AB,AD的中点,连接EF,求四边形CDEF的周长。

11、已知平行四边形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,OE=3,求AD的长。

12、已知平行四边形ABCD中,AB=5,BC=7,对角线AC,BD相交于点O,点E是BC的中点,求AE的长。

13、已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,求DC边上的高AF的长度。

14、在平行四边形ABCD中,AB=2cm,BC=3cm,∠B、∠C的平分线分别交AD于F、E,求EF的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形性质经典例题及练习(4)
一、平行四边形的性质: 1、平行四边形对边相等且平行 2、平行四边形对角相等,邻角互补 3、平行四边形对角线互相平分 二、典型例题 1、角度的计算
例1 、 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四
个内角各是多少度?
解 设平行四边形的一个内角的度数为x ,则它的邻角的度数为3x ,根据题
意,得x+3x=180,解得x=45,∴ 3x=135
∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°. 练习:
(1).在平行四边形ABCD 中,∠A : ∠B=3:2,则∠C=____ 度, ∠D=_______度. (2)平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _____ . (3) 在平行四边形ABCD 中,∠B -∠A=20°,则∠D 的度数是 。

2、边长及周长计算 例2 已知:如图,
ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,
的周长比 的 周长多8cm ,求这个平行四边形各边的长. (答案:19cm ,11cm ,19cm ,11cm .)
说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差. 练习:
(1)已知:平行四边形一边AB=12 cm,它的长是周长的1/6,则BC=______ cm,CD=______ cm.
(2)已知平行四边形的周长是100cm, AB:BC=4 : 1,则AB 的长是______.
(3)已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______________.
(4)用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的边长为________短边长为__________.
3、面积计算
例3、已知:如图,
ABCD 的周长是
,由钝角顶点D 向AB ,
BC 引两条高DE ,DF ,且,
.求这个平行四边
形的面积.
解答:设. ∵ 四边形ABCD 为平行四边形,

.
又∵四边形ABCD 的周长为36,∴ ① ∵
, ∴
∴ ② 解由①,②组成的方程组,得
.
∴.
说明:本题考查平行四边形的性质及面积公式,解题关键是把几
何问题转化为方程组的问题. 练习:
1、平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的面积是____________.
2、如图,
中,对角线AC 长为10 cm ,∠CAB =
30°,AB 长为6 cm ,则的面积是____________.
3、平行四边形邻边长是4 cm 和8cm ,一边上的高是5 cm ,则另一边上的高是
____________. 4、在中,∠A =30°,AB =7 cm ,AD =6 cm ,则
=______.
5、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边
形面积。

四、综合练习
1、 已知:如图 ,点E 在矩形ABCD 的边BC 上,且,垂足为F 。

求证:
2、如图,平行四边形ABCD 中,AB=5cm, BC=3cm, ∠D 与∠C 的平分线分别交AB 于F,E, 求AE, EF, BF 的长?
3 、如图,在
ABCD 中,已知对角线AC 和BD 相交于点O ,△BOC 的周长为24,
BC=10,求对角线AC 与BD 的和是多少?
4、如图,在□ABCD 中,点E 、F 是对角线AC 上两点,且AE =CF .
求证:∠EBF =∠FDE .
5、已知平行四边形ABCD ,2BC AB =,M 为AD 的中点,CE AB ⊥.求证:3EMD AEM ∠=∠.
6、已知:如图,平行四边形ABCD 内有一点E 满足ED AD ⊥于点D ,EBC EDC ∠=∠,45ECB ∠=︒,求证BE=CD .
7. 已知:如图,AB//DC ,AC 、BD 交于O ,且AC=BD 。

求证:OD=OC.
8.已知:如图,在平行四边形ABCD 中,AB = 2BC ,M 为AB 的中点,
求证:CM ⊥DM .
A
B
C
D
O
E M
D
C
B
A
E
D
C
B
A。

相关文档
最新文档