鲁教版初三下期中考试1

合集下载

(完整word版)鲁教版初三英语(下)期中考试试题

(完整word版)鲁教版初三英语(下)期中考试试题

(说明:请将选择题的答案写在最后的答题卡上。

总分120分。

)一、单项选择。

(20分)( ) 1. I think teenagers should_______ to choose the clothes they like.A.be allowed B.allow C.be allow D.to allow ( ) 2.We should go to school at 8 o'clock ________school mornings.A.at B.in C.on D.of( ) 3.Something is wrong with my computer.I'll get it_________.A.repair B.repairing C.to repair D.repaired ( ) 4._________,they are too short.A.To present B.At present C.In present D.About present ( ) 5. Everyone ______to have at least eight _______sleep at night.A.needs;hour’s B.need;hours’C.needed;hour’s D.needs;hours’( ) 6.“We have a lot of classes every day.”“________.”A.So we do B.So do We C.We do so D.So are we ( ) 7. Mary ha s gone to the teacher’s office. ____________ has Joan.A. AndB. NeitherC. SoD. But( ) 8. Have you studied ___________ working ____________ a group?A. by, toB. by, withC. in, toD. in, with ( ) 9. If you don't know how to spell new words, _______ in a dictionary.A. look them upB. look they upC. look up themD. look up they( )10. Usually we get _____about something and end up _____in Chinese.A. exciting; speakingB. exciting; speakC. excited; speakingD. excited; speak( )11. —____you ever ____with a group?—Yes, I have.A. Have; studyB. Have; studiedC. Do; studyD. study ( )12. Some students think that studying grammar is not helpful____.A. at allB. allC. veryD. not at all. ( )13. I have _____the English club for three months.A. joinedB. been inC. taken part inD. become a member of ( ) 14.Our teacher is very strict _______us ______ our English study.A.in;with B.with;in C.for;in D.in;for ( ) 15.The other day,my friends and I______ the rules that we have inschool.A.talk about B.talked about C.talking about D.talked ( )16. The doctor looked over Peter carefully after he _______to the hospital.A.takes B.is taken C.took D.was taken( ) 17. The keyboard is used ___ putting information into the computer.A. forB. toC. asD. in( ) 18. Lucy has ___ been to China, has she?A. everB. justC. neverD. before( ) 19. Mr. Wang has been at the school since ____.A. two yearsB. for two yearsC. two years agoD. two years before( ) 20. Great changes ________ in my hometown since 1980.A. have been taken placeB. took placeC. have taken placeD. were taken place二、完形填空(10分)Which is the best way to learn a foreign language? We remembered that we all learned our own language when we were 21 , if we can learn a second language in the same way, it won’t seem to be so 22 . Think of what small children do.They listen to 23 people say and they try to imitate what they 24 . When they want something they have to 25 for it. They are using language, talking 26 it all the time. If 27 use a second language like this all the time, they will learn it more 28 . It is also important to remember that we learn our own language by hearing people speak it, 29 by seeing what they write. In school, though you learn to hear and speak, to read and write, you must learn all new words through the ear, you can read them, spell them and write them 30 .( )21. A. boys B. girls C. children D. young people ( )22. A. important B. difficult C. interesting D. easy( )23. A. that B. which C. what D. old( )24. A. see B. listen C. hear D. speak( )25. A. send B. look C. wait D. ask( )26. A. in B. by C. on D. with ( )27. A. people B. teachers C. children D. workers ( )28. A. slowly B. hardly C. quickly D. carefully ( )29. A. not B. and C. but D. then ( )30. A. first B. earlier C. before D. laterThe children in Mr. Wu’s class are different from those in the other classesof the school. They don’t watch TV!TV is not very good for children. So Mr. Wu asks them not to watch TV fora week. He tells them that they can have fun doing other things. The childrensay, “Let’s see if Mr. Wu is right. ”So they don’t watch TV. They read, makemodel planes, play football and play games with their parents and friends. Thechildren never have so much fun reading or playing games. They say, “Wewon’t watch TV any longer! ”( )31. What are the children in Mr. Wu’s class different from those in theother classes of the school?A. They love watching TV.B. They don’t watch TV.C. They often watch TV.D. They watch TV so much.( ) 32. Is watching TV so long good or bad for children?A. Watching TV so long is good for children.B. Watching TV is just OK.C. Watching TV so long is bad for children.D. Watching TV is neither good nor bad( )33. What does Mr. Wu ask their children to do?A. He asks them to watch TV.B. He asks them not to watch TV for a weekC. He asks them not to watch TV.D. He asks them to watch TV for a week( )34. Do the children watch TV after the teacher tells them not to dothat?A. Yes they doB. Yes, but they don’t watch it at once.C. No, they can’tD. No, they want to see if Mr. Wu is right.( )35. The best title (标题)for the passage (段落)is _________.A. Watch TVB. A Good TV ShowC. Children Love TVD. Children Have Fun Without TVBMany teenagers feel that the most important people in their lives are their friends. They believe that their family members don’t know as well as their friends do.In large families,it is quite often for brothers and sisters to fight with each other and then they can only go to their friends for some ideas.It is very important for teenagers to have one good friend or a group of friends.Even they are not with their friends.they usually spend a lot of time talking among themselves on the phone. This communication(交际)is very important in children's growing up,because friends can disuss (讨论)something.These things are difficult to say to their family members.However, parents often try to choose their children's friends for them.Some parents may even stop their children from meeting their good friends.Have you ever thought of the following questions?Who chooses your friends?Do you choose your friends or your friends choose you?Have you got a good friend your parents don't like?Your answers are welcome.( )36.Many teenagers think that_____ can understand them better.A. friends B.brothers C.sisters D.parents ( )37. ______is very important to teenagers.A.To make friends B.CommunicationC.To stop meeting friends D.Both A and B( )38.When teenagers have something difficult to say to their parents,they usually_____.A.stay alone at homeB.fight with their parentsC.discuss it with their friendsD.go to their brothers and sisters for help( )39.The sentence“Your answers are welcome”means“______”.A.You are welcome to discuss the questions with usB.We've got no idea,so your answers are welcomeC.Your answers are always rightD.You can give us all the right answers( )40.Which of the following is the writer's attitude(态度)?A. Parents should choose friends for their children.B.Children should choose everything they like.C.Parents should understand their children better.D.Teenagers should only go to their friends for help.CDavid Brenner came from a poor family. When he finished his school, he was given a wonderful present. “Some of my friends got new clothes and a f ewrich boys even got new cars.”H e remembered, “my father reached into his trousers pocket and took something out, I held out my hand, and he let my present drop into it --a nickel! ”“Dad said to me, Buy a newspaper with that. Read every word of it. Then turn to the classified section and get yourself a job. Get into the world. It’s all yours now! ”“I always thought that was a great joke my father had played on me until a few years later when I was in the Army, sitting in a foxhole, and thinking about my family and my life. It was then that I came to know that my friends had got only new cars, or only new clothes. My father has given me the whole world. What a great present! ”( )41. What did David get as a present when he left school?A. New clothesB. A new carC. Something niceD. A nickel.( )42. David’s father asked him to read the newspaper to _________.A. find interesting storiesB. find himself a jobC. know what happened in the worldD. learn more things in it( )43. Some years went by and David became a ________.A. doctorB. teacherC. soldierD. driver( )44. In the end David understood the present his father gave himwas________.A. greatB. unimportantC. beautifulD. useless( )45. What does the word “nickel” in the passage mean?A. 五美分B. 镍C. 钉子D. 筛子DJapanese students work very hard but many are unhappy.They feel heavy pressures from their parents.Most students are always told by their parents to study harder and better so that they can have a wonderful life in the future, Though this may be a good idea for those very bright students,it can have terrible results for many students who are not gifted(有天赋的)enough.Many of them have tried very hard at school but have failed in the exams and have their:parents lose hope.Such students feel.that they are hated by everyone elsethey mee t and they don’t want to go to school any longer.They become dropouts(脱离传统社会的人).It is surprising that though most Japanese parents are worried about their children,they do not help them in any way.Many parents feel that they are not able to help their children and that it is the teacher’s work to help children.To make:matters worse,a lot of parents send their children to those schools opening in the evenings and on weekends-they only help the students to pass the exams and never teach them any real sense of the world.Many Japanese schools usually have rules about everything from the students hair to their clothes and things in their school bags.Child psychologists now think that such strict rules are harmful to the feelings of the students. Almost 40% of the students said that no one had taught them how to get on with others, how to tell right from wrong and how to show lave and care for others, even for their parents.( )46.Many Japanese students are unhappy because______.A.they don't like schoolB. they don't like studyC.their teachers are very strictD.their parents give them heavy pressures( )47.“Pressures”in the second sentence means_______.A.关怀B.压力 C.礼物D.责任( )48. Those students who________ may have a wonderful life in the future.A.are very clever B.are beautifulC.are not gifted D.are very handsome( )49. To our surprise in Japan many parents________.A. don't help their childrenB. are worried about their children and help them in any wayC. aren’t worried about their childrenD. are worried about their children,but don't help them in any way ( )50.According to the passage,it's necessary to teach students_______.A.to show love and care for others B.how to study wellC.how to get on with others D.all above(非选择题部分)四、根据句意及首字母完成单词。

【鲁教版】初三数学下期中试卷(及答案)(1)

【鲁教版】初三数学下期中试卷(及答案)(1)

一、选择题1.在ABC 中,D ,E 分别为,BC AC 上的点,且2AC EC =,连结,AD BE ,交于点F ,设:,:x CD BD y AF FD ==,则( )A .1y x =+B .1x y x +=C .413y x =+D .21x y x -=- 2.如图,在正方形ABCD 中,E 为BC 中点,3DF FC =. 联结AE AF EF 、、.那么下列结果错误的是( )A .ABE △与ECF 相似B .ABE △与AEF 相似C .ABE △与ADF 相似D .AEF 与ECF 相似3.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .64.如图,在直角坐标系中,矩形OABC 的顶点O 在原点,边OA 在x 轴上,OC 在y 轴上,如果OA B ''△与OAB 关于点O 位似,且OA B ''△的面积等于OAB 面积的14,则点B '的坐标为( )A .3,12⎛⎫ ⎪⎝⎭B .3,12⎛⎫ ⎪⎝⎭或3,12⎛⎫-- ⎪⎝⎭C .()3,2D .()3,2或()3,2--5.下列相似图形不是位似图形的是( )A .B .C .D . 6.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .16 7.反比例函数y =k x 的图象经过点A (﹣2,3),则此图象一定经过下列哪个点( ) A .(3,2) B .(﹣3,﹣2) C .(﹣3,2) D .(﹣2,﹣3) 8.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y=3x的图象经过A 、B 两点,则菱形ABCD 的面积是( )A .2B .4C .2D .29.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则12k k -的值为( )A .2B .3C .4D .510.已知(5,-1)是双曲线(0)k y k x =≠上的一点,则下列各点中不在该图象上的是( )A .1(,15)3- B .(5,1) C .(1,5)- D .1(10,)2- 11.已知反比例函数k y x=的图象过二、四象限,则一次函数y kx k =+的图象大致是( ) A . B . C . D . 12.如图,直线y =x +2与y 轴交于点A ,与直线y =﹣3x +10交于点B ,P 是线段AB 的中点,已知反比例函数y =k x的图象经过点P ,则k 的值为( )A .1B .3C .6D .8二、填空题13.如果x :y =3:2,那么x y x-的值是__. 14.如图,////AB GH CD ,点H 在BC 上,AC 与BD 交于点G ,2AB =,3CD =,则GH 的长为 .15.如图所示,在△ABC 中DE ∥BC ,若2EFB EFD S S ∆∆=,则 DE:BC=______.16.如果23a c b d ==,其中20b d +≠,那么22a c b d +=+________. 17.函数y =||12m m x --是y 关于x 的反比例函数,那么m 的值是_____. 18.如图,函数y =1x 和y =﹣3x的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为C ,交l 2于点A ,PD ⊥y 轴,垂足为D ,交l 2于点B ,则△PAB 的面积为_____.19.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =k x(k ≠0)的图象经过其中两点,则m 的值为_____. 20.如图,直线y =ax 经过点A (4,2),点B 在双曲线y =k x (x >0)的图象上,连结OB 、AB ,若∠ABO =90°,BA =BO ,则k 的值为_____.三、解答题21.已知:△ABC 在坐标平面内,三个顶点的坐标为A (0,3)、B (3,4)、C (2,2).(正方形网格中,每个小正方形边长为1个单位长度)(1)画出△ABC 向下平移4个单位得到的△A 1B 1C 1;(2)以B 为位似中心,在网格中画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比2:1,直接写出C 2点坐标是 ;(3)△A 2BC 2的面积是 平方单位.22.如图,Rt ABC ∆中,90ACB ∠=︒,顶点A 、B 都在反比例函数()0k y x x=>的图象上,直线AC x ⊥轴,垂足为D ,连结OA ,使OA AB ⊥于A ,连结OC ,并延长交AB 于点E ,当2AB OA =时,点E 恰为AB 的中点,若()1,A n .(1)求反比例函数的解析式;(2)求EOD ∠的度数.23.如图,已知在平面直角坐标系中,O 是坐标原点,点A(2,5)在反比例函数1k y x=的图象上.一次函数y 2=x +b 的图象过点A ,且与反比例函数图象的另一交点为B . (1)求反比例函数和一次函数的解析式;(2)连结OA 和OB ,求△OAB 的面积;(3)根据图象直接写出y 1>y 2时,x 的取值范围.24.已知:如图,一次函数的图象与反比例函数k y x=的图象交于A 、B 两点,且点B 的坐标为.(1)求反比例函数k y x =的表达式; (2)点在反比例函数k y x=的图象上,求△AOC 的面积; (3)在(2)的条件下,在坐标轴上找出一点P ,使△APC 为等腰三角形,请直接写出所有符合条件的点P 的坐标.25.阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.材料二:若关于x 的一元二次方程ax 2+bx +c = 0(a ≠0)的两根分别为1x ,2x ,则有12b x x a +=-,12c x x a⋅=. 问题解决: (1)请你写出三个能构成“和谐三数组”的实数 ;(2)若1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根,3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解.求证:x 1,x 2,x 3可以构成“和谐三数组”;(3)若A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值.26.如图,在△ABC 中,AB =AC =10,BC =12,正方形DEFG 的顶点D 、G 分别在AB 、AC 上,EF 在BC 上,AH ⊥BC 于H ,交DG 于点M ,求正方形DEFG 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】过D 作DG ∥AC 交BE 于G ,可得△BDG ∽△BCE ,△DGF ∽△AEF ,根据相似三角形的性质可得x 与y 的数量关系.【详解】解:如图,过D 作DG ∥AC 交BE 于G ,∴△BDG ∽△BCE ,△DGF ∽△AEF , ∴BD DG BC CE =,DG DF AE AF =, ∵AC =2EC ,∴AE =CE ,则BD DF BC AF = ∴BD DF BD CD AF =+, ∴BD CD AF BD DF+=, ∵x =CD :BD ,y =AF :FD ,∴1+x =y ,∴y =x +1,故选:A ..【点睛】本题考查相似三角形的性质和应用,恰当作辅助线构建相似三角形是解题的关键. 2.C解析:C【分析】根据正方形的性质及勾股定理逆定理可以判断△AEF 是直角三角形,再根据三角形相似的判定可以选出结果错误的选项.【详解】解:设正方形边长为1 ,则由已知可得:5,244AE EF AF ======, ∴222552541616AE EF AF +=+==,∴△AEF 是直角三角形, ∴在RT △ABE 、RT △ECF 、RT △ADF 、RT △AEF 中, ∠B=∠C=∠AEF=∠D ,42,3AB EC AE AD BE CF EF DF ====, ∴RT △ABE 、RT △ECF 、RT △AEF 两两相似,但是△ABE 与 △ADF 不相似,∴A 、B 、D 正确,C 错误,故选C .【点睛】本题考查正方形与三角形相似的综合应用,灵活运用正方形的性质和三角形相似的判定是解题关键.3.D解析:D【分析】根据平行线分线段成比例求出EC ,即可解答.【详解】解:∵DE ∥BC , ∴AD AE DB EC =,即643EC=, 解得:EC=2,∴AC=AE+EC=4+2=6;故选:D .【点睛】 本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理. 4.D解析:D【分析】由OA B ''△与OAB 关于点O 位似,且OA B ''△的面积等于OAB 面积的14,利用相似三角形的面积比等于相似比的平方,即可求得OA B ''△与OAB 的位似比为1:2,又由点B 的坐标为(6,4),即可求得答案.【详解】解:∵OA B ''△与OAB 关于点O 位似,∴OA B ''△∽OAB ,∵OA B ''△的面积等于OAB 面积的14, ∴位似比为1:2,∵点B 的坐标为(6,4), ∴点B′的坐标是:(3,2)或(-3,-2).故选D .【点睛】此题考查了位似图形的性质.此题难度不大,注意位似图形是特殊的相似图形,注意掌握相似三角形的面积比等于相似比的平方定理的应用,注意数形结合思想的应用. 5.D解析:D【分析】根据位似变换的概念判断即可.【详解】解:D 中两个图形,对应边不互相平行,不是位似图形,A 、B 、C 中的图形符合位似变换的定义,是位似图形,故选:D .【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.6.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA ∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~,EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.7.C解析:C【分析】根据反比例函数图象上点的坐标特征即可求解.【详解】解:∵反比例函数y=kx的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,将四个选项代入反比例函数y=kx的解析式,只有C选项符合题意,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是根据A点的坐标求出k值.8.A解析:A【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】如图,作AH⊥BC交CB的延长线于H,∵反比例函数y=3x的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB=222222+=,∵四边形ABCD是菱形,∴BC=AB=22,∴菱形ABCD的面积=BC×AH=42,故选A.【点睛】本题考查的是反比例函数的系数k 的几何意义、菱形的性质,根据反比例函数解析式求出A 的坐标、点B 的坐标是解题的关键.9.C解析:C【分析】据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k ,由题意可知△AOB 的面积为12k −22k . 【详解】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k , ∴△AOB 的面积为12k −22k , ∴12k −22k =2, ∴k 1-k 2=4,故选:C .【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于中等题型,10.B解析:B【详解】解:因为点(5,-1)是双曲线(0)k y k x =≠上的一点, 将(5,-1)代入(0)k y k x=≠得k=-5; 四个选项中只有B 不符合要求:k=5×1≠-5.故选B .【点睛】本题考查反比例函数图象上点的坐标特征.11.B解析:B【分析】 先根据反比例函数k y x=的图象过二、四象限可知0k <,再根据一次函数的性质进行判断即可.【详解】解:反比例函数k y x=的图象过二、四象限, 0k ∴<,∴一次函数y kx k =+中,0k <,∴此函数的图象过二、三、四象限.故选:B .【点睛】本题考查的是反比例函数及一次函数的性质,根据反比例函数的图象判断出k 的取值范围是解答此题的关键.12.B解析:B【分析】先求出直线y =x +2与坐标轴的交点A 坐标,再由两条直线解析式构成方程组,解方程组求得B 点坐标,进而求得中点P 的坐标,问题就迎刃而解了.【详解】解:直线y =x +2中,令x =0,得y =2,∴A (0,2),解2310y x y x =+⎧⎨=-+⎩得24x y =⎧⎨=⎩, ∴B (2,4),∵P 是线段AB 的中点,∴P (1,3),把(1,3)P 代入k y x=中,得3k =, 故选:B .【点睛】本题主要考查了两条直线的相交问题,反比例函数图象上点的坐标特征,待定系数法.本题的关键是求出P 点坐标. 二、填空题13.【分析】根据已知条件得出再把化成然后代值计算即可得出答案【详解】∵∴∴故答案为:【点睛】此题考查了比例的性质熟练掌握比例的性质是解题的关键 解析:13【分析】 根据已知条件得出23y x =,再把x y x -化成1y x-,然后代值计算即可得出答案.【详解】∵:3:2x y =, ∴23y x =, ∴211133x y y x x -=-=-=. 故答案为:13. 【点睛】此题考查了比例的性质,熟练掌握比例的性质是解题的关键.14.【分析】根据平行线分线段成比例定理由AB ∥GH 得出由GH ∥CD 得出将两个式子相加即可求出GH 的长【详解】解:即①即②①②得解得故答案为:【点睛】本题考查了平行线分线段成比例定理熟练运用等式的性质进行 解析:65【分析】根据平行线分线段成比例定理,由AB ∥GH ,得出GH CH AB BC=,由GH ∥CD ,得出3GH BH BC=,将两个式子相加,即可求出GH 的长. 【详解】解://AB GH ,GH CH AB BC∴=, 即2GH CH BC=①, //GH CD , GH BH CD BC∴=, 即3GH BH BC=②, ①+②, 得23GH GH CH BH BC BC+=+, CH BH BC +=,123GH GH ∴+=, 解得65GH =.5【点睛】 本题考查了平行线分线段成比例定理,熟练运用等式的性质进行计算.本题难度适中. 15.1:2【分析】由可得DF :FB=1:2又由DE ∥BC 可得△DFE 和△BFC 相似确定DE:BC 【详解】解:设为1则为2∵∴DF :FB=1:2又∵DE ∥BC ∴△DFE ∽△BFC ∴DE:BC=DF:FB=解析:1:2【分析】由2EFB EFD S S ∆∆=,可得DF :FB=1:2,又由DE ∥BC ,可得△DFE 和△BFC 相似,确定DE:BC.【详解】解:设EFD S ∆为1,则EFB S ∆为2,∵2EFB EFD S S ∆∆=,∴DF :FB=1:2,又∵DE ∥BC ,∴△DFE ∽△BFC ,∴DE:BC=DF:FB=1:2故答案为1:2【点睛】本题考查了相似三角形的性质和判定,解题的关键在于根据面积比确定边长的比. 16.【分析】根据已知条件得出再根据b+2d≠0即可得出答案【详解】解:∵∴∵b+2d≠0∴;故答案为:【点睛】本题考查了比例的性质熟练掌握比例的性质是解题的关键 解析:23【分析】 根据已知条件得出2223a c b d ==,再根据b+2d≠0,即可得出答案. 【详解】解:∵23a c b d ==, ∴2223a cb d ==, ∵b+2d≠0, ∴2223a cb d +=+;3【点睛】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.17.﹣2【分析】由反比例函数的定义得x的次数为1m-2≠0联立方程组即可解【详解】解:由题意得|m|﹣1=1m﹣2≠0解得m=﹣2故答案是:﹣2【点睛】此题考查反比例函数的定义解题关键在于掌握反比例函数解析:﹣2【分析】由反比例函数的定义得x的次数为1,m-2≠0联立方程组即可解.【详解】解:由题意,得|m|﹣1=1、m﹣2≠0.解得m=﹣2.故答案是:﹣2.【点睛】此题考查反比例函数的定义,解题关键在于掌握反比例函数的定义.18.8【详解】解:∵点P在y=上∴|xp|×|yp|=|k|=1∴设P的坐标是(a)(a 为正数)∵PA⊥x轴∴A的横坐标是a∵A在y=﹣上∴A的坐标是(a﹣)∵PB⊥y轴∴B的纵坐标是∵B在y=﹣上∴代解析:8【详解】解:∵点P在y=1x上,∴|x p|×|y p|=|k|=1,∴设P的坐标是(a,1a)(a为正数),∵PA⊥x轴,∴A的横坐标是a,∵A在y=﹣3x上,∴A的坐标是(a,﹣3a),∵PB⊥y轴,∴B的纵坐标是1a,∵B在y=﹣3a上,∴代入得:1a =﹣3x,解得:x =﹣3a ,∴B 的坐标是(﹣3a ,1a ), ∴PA =|1a ﹣(﹣3a)|=4a ,PB =|a ﹣(﹣3a )|=4a , ∵PA ⊥x 轴,PB ⊥y 轴,x 轴⊥y 轴,∴PA ⊥PB ,∴△PAB 的面积是:12PA ×PB =12×4a×4a =8. 故答案为8.【点睛】本题考查了反比例函数和三角形面积公式的应用,关键是能根据P 点的坐标得出A 、B 的坐标,本题具有一定的代表性,是一道比较好的题目. 19.-1【分析】根据已知条件得到点在第二象限求得点一定在第三象限由于反比例函数的图象经过其中两点于是得到反比例函数的图象经过于是得到结论【详解】解:点分别在三个不同的象限点在第二象限点一定在第三象限在第 解析:-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.【详解】 解:点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限, ∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x=≠的图象经过其中两点, ∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -, 326m ∴⨯=-, 1m ∴=-,故答案为:1-.【点睛】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键. 20.3【分析】作BC ⊥x 轴于CAD ⊥BC 于D 易证得△BOC ≌△ABD 得出OC=BDBC=AD 设B 的坐标为(mn )则OC=mBC=n 根据线段相等的关系得到解得求得B 的坐标然后代入y=(x >0)即可求得k 的解析:3.【分析】作BC ⊥x 轴于C ,AD ⊥BC 于D ,易证得△BOC ≌△ABD ,得出OC=BD ,BC=AD ,设B 的坐标为(m ,n ),则OC=m ,BC=n ,根据线段相等的关系得到24m n n m -⎧⎨-⎩== ,解得13m n ⎧⎨⎩== ,求得B 的坐标,然后代入y=kx(x >0)即可求得k 的值. 【详解】解:作BC ⊥x 轴于C ,AD ⊥BC 于D ,则∠COB+∠OBC=90°,∵∠ABO=90°,∴∠OBC+∠ABD=90°,∴∠COB=∠ABD ,在△BOC 和△ABD 中COB ABD OCB BDA OB AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BOC ≌△ABD (AAS ),∴OC=BD ,BC=AD ,设B 的坐标为(m ,n ),则OC=m ,BC=n ,∵点A (4,2),∴24m n n m -⎧⎨-⎩== ,解得, ∴B 的坐标为(1,3), ∵点B 在双曲线y=k x (x >0)的图象上, ∴k=1×3=3,故答案为3.【点睛】此题考查反比例函数图象上点的坐标特征,三角形全等的判定和性质,得出相等线段列出关于m 、n 的方程组是解题的关键.三、解答题21.(1)图见解析;(2)图见解析,2C(1,0);(3)10【分析】(1)利用平移的性质得出对应点的坐标即可画出平移后的图形;(2)利用位似图形的性质得出对应点的坐标即可画出平移后的图形,进而可得点C2的坐标;(3)根据所画图形判断出△A2BC2为等腰直角三角形,利用三角形的面积公式即可求解.【详解】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2BC2即为所求,C2点坐标为(1,0),故答案为:(1,0);(3)∵A2C2=BC2=224225+=,A2B=2262210+=,∴A2C22+BC22= A2B2,∴△A2BC2是等腰直角三角形,且∠A2C2B=90°,∴△A2BC2的面积位为:12×(25)2=10平方单位,故答案为:10.【点睛】本题考查平移变换和位似变换的性质、勾股定理及其逆定理、三角形的面积公式,掌握变换性质,正确得出变换后的对应点的位置是解答的关键.22.(1)反比例函数的解析式为12y+=2)22.5°【分析】(1)根据同角的余角相等和相似三角形的判定可证得△AOD∽△BAC,则有AO OD ADAB AC BC==,进而有AC=2,BC=2n,则点B坐标为(2n+1,n﹣2),由(2n+1)(n ﹣2)=1·n解出n值,即可求得k值进行解答;(2)根据直角三角形的中线等于斜边的一半可证得BE=CE=AE=12AB=OA,进而∠AEO=2∠ECB=45°,由BC∥x轴得∠EOD=∠ECB即可解答·【详解】解:(1)∵直线AC x ⊥轴,OA AB ⊥,∴∠OAE=90°,∠ADO=90°,∴∠AOD+∠OAD=90°,∠BAC+∠OAD=90°,∴∠AOD=∠BAC ,又∠ACB=∠ADO=90°,∴△AOD ∽△BAC , ∴AO OD AD AB AC BC==, ∵()1,A n ,∴OD=1,AD=n ,又2AB OA =,∴AC=2OD=2,BC=2AD=2n ,∵∠ACB=∠ADO=90°,∴BC ∥x 轴,∴点B 的坐标为(2n+1,n ﹣2),∵点A 、B 都在反比例函数()0k y x x =>的图象上, ∴(2n+1)(n ﹣2)=1·n ,解得:n 1= 1n 2= 1(负值,舍去),则A(1,1,则k=1×(1+=1+∴反比例函数的解析式为1y x=; (2)∵Rt ABC ∆中,90ACB ∠=︒,点E 为AB 的中点,∴BE=CE=AE=12AB , 又∵AB=2OA ,∠OAE=90°,∴∠AEO=∠AOE=45°,∠ECB=∠EBC,∵∠AEO=2∠ECB ,∴∠ECB= 12∠AEO=22.5°, ∵BC ∥x 轴,∴∠EOD=∠ECB=22.5°.【点睛】本题考查了求反比例函数的解析式、相似三角形的判定与性质、坐标与图形、直角三角形的斜边中线性质、等腰三角形的性质、三角形的外角、平行线的性质等知识,是一道与反比例函数有关的几何题,难度适中,解答的关键是熟练掌握相关知识的运用,利用数形结合思想找寻知识的关联点,进行推理、探究与计算.23.(1)反比例函数110y x =,一次函数23y x =+(2)212(3)5x <-或02x << 【分析】(1)本题根据待定系数法,将点A 坐标代入函数解析式求解即可.(2)本题首先求得点B 的坐标,继而求解直线与坐标轴的交点坐标,最后利用割补法求解本题.(3)本题根据图像即可直接作答.【详解】(1)∵点(2,5)A 是直线2y x b =+与反比例函数1k y x =的图象的一个交点, ∴将A 点分别代入得:52b =+;52k =, ∴3b =,10k =.故反比例函数和一次函数的解析式分别为110y x =和23y x =+. (2)如下图所示:联立方程12103y x y x ⎧=⎪⎨⎪=+⎩,得25x y =⎧⎨=⎩或52x y =-⎧⎨=-⎩, ∴点(5,2)B --.∵点C 与点D 分别是直线23y x =+与y 轴的交点和与x 轴的交点,∴点(0,3)C ,点(3,0)D -,即3OD OC ==,∴11213532222AOB AOD BOD S S S =+=⨯⨯+⨯⨯=. 故△OAB 的面积为212. (3)观察函数图象可知,12y y > 时,x 的取值范围为:5x <-或02x <<.【点睛】本题考查反比例函数与一次函数的综合,待定系数法求解解析式需要熟练掌握,其次求解不规则图形的面积通常利用割补法,比较函数大小时,利用图像法更为高效. 24.(1);(2)32;(3)(-1,0)、(0,0)、(0,1). 【详解】(1)一次函数的图象过点B , ∴∴点B 坐标为∵反比例函数k y x =的图象经过点B 反比例函数表达式为 (2)设过点A 、C 的直线表达式为,且其图象与轴交于点D ∵点在反比例函数的图象上 ∴∴点C 坐标为∵点B 坐标为∴点A 坐标为解得: 过点A 、C 的直线表达式为∴点D 坐标为∴(3)①当点P 在x 轴上时,设P(m ,0)∵AC=2,AP=22(1)2m ++,CP=22(2)1m ++,∴22(1)2m ++=22(2)1m ++或22(2)1m ++=2,解得:m=0或-1②当点P 在y 轴上时,设P(0,n),∵AC=2,AP=221(2)n +-,CP=222(1)n +-,∴221(2)n +-=222(1)n +-或221(2)n +-=2解得:n=0或1 综上所述:点P 的坐标可能为、、 25.(1)65,2,3(答案不唯一);(2)见解析;(3)m =﹣4或﹣2或2. 【分析】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案; (2)根据一元二次方程根与系数的关系求出1211+x x ,然后再求出31x ,只要满足1211+x x =31x 即可; (3)先求出三点的纵坐标y 1,y 2,y 3,然后由“和谐三数组”可得y 1,y 2,y 3之间的关系,进而可得关于m 的方程,解方程即得结果.【详解】解:(1)∵115236+=, ∴65,2,3是“和谐三数组”; 故答案为:65,2,3(答案不唯一); (2)证明:∵1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根, ∴12b x x a +=-,12c x x a⋅=, ∴12121211bx x b a c x x x x ca -++===-⋅, ∵3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解, ∴3c x b =-,∴31b x c =-, ∴1211+x x =31x , ∴x 1 ,x 2,x 3可以构成“和谐三数组”;(3)∵A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x =的图象上, ∴14y m =,241y m =+,343y m =+, ∵三点的纵坐标y 1,y 2,y 3恰好构成“和谐三数组”, ∴123111y y y =+或213111y y y =+或312111y y y =+, 即13444m m m ++=+或13444m m m ++=+或31444m m m ++=+, 解得:m =﹣4或﹣2或2.【点睛】本题是新定义试题,主要考查了一元二次方程根与系数的关系、反比例函数图象上点的坐标特征和对新知“和谐三数组”的理解与运用,正确理解题意、熟练掌握一元二次方程根与系数的关系与反比例函数的图象与性质是解题的关键.26.23.04【分析】根据正方形的性质得到DG ∥BC ,推出△ADG ∽△ABC ,利用相似三角形对应边上高的比等于相似比,列方程求解即可.【详解】解:设正方形DEFG 的边长为x ,DE =DG =x .∵四边形DEFG 为正方形∴DG ∥BC ,∠DEC =90︒∴△ADG ∽△ABC ∴12AM AH DG x BC == 又∵ AB =AC =10,BC =12,AH ⊥BC ∴ BH =12BC =6,∠DEC =∠AHC =90︒ 在Rt △ABH 中,根据勾股定理得AH 8==∴AM =AH -MH =AH -DE =8-x ∴88AM x AH -= ∴8128x x -=,解得x =4.8 ∴S 正方形DEFG =x 2=23.04【点睛】 本题考查了相似三角形的判定与性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.。

【鲁教版】九年级数学下期中试卷(附答案)(1)

【鲁教版】九年级数学下期中试卷(附答案)(1)

一、选择题1.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .62.如图,在ABC ∆中,,D E 分别是边,BC AC 上的点,且11,BD BC AE AC n m ==,连接,AD BE 交于点F ,则AF AD的值为( )A .1m n -B .1m m n +-C .1n m n +-D .1n m - 3.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为( )A .90B .180C .270D .3600 4.已知a 3b 4=,则下列变形错误的是( ) A .34a b= B .34a b = C .4a=3b D .43b a = 5.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠6.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①AED B ∠=∠;②//DE BC ;③AD AE AC AB=;④AD BC DE AC ⋅=⋅,能满足ADE ACB 的条件有( )A .1个B .2个C .3个D .4个7.如图,已知双曲线()0k y x x=>经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2.则k =( )A .2B .12C .1D .48.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( ) A .120x x < B .130x x < C .230x x <D .120x x +< 9.若点A (a ,b )在反比例函数2y x =的图像上,则代数式ab-4的值为( ) A .0 B .-2 C .2 D .-610.如图,反比例函数k y x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .1211.若点()()()1231,,1,,3,A y B y C y -在反比例函数6y x =的图像上,则123,,y y y 的大小关系是( )A .123y y y <<B .132y y y <<C .321y y y <<D .213y y y << 12.一次函数y =kx ﹣k 与反比例函数y =k x在同一直角坐标系内的图象大致是( ) A . B . C . D .二、填空题13.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折 叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG = 1.5 S △FGH ;④AG+DF=FG ;其中正确的是______________.(填写正确结论的序号)14.如图,直线////AF BE CD ,直线AC 交BE 于B ,直线FD 交BE 于E ,2AB cm =,1BC cm =, 1.8EF cm =,求DE 的长为______cm .15.如图,已知△ABC 中,∠B =90°,BC =3,AB =4,D 是边AB 上一点,DE ∥BC 交AC 于点E ,将△ADE 沿DE 翻折得到△A ′DE ,若△A ′EC 是直角三角形,则AD 长为_____.16.如图,P 为△ABC 的重心,连结AB 并延长BC 于点D ,过点P 作EF ∥BC 分别交AB ,AB 于点E ,F .若△ABC 的面积为36,则△AEF 的面积为____.17.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y=3x 的图象经过A 、B 两点,则菱形ABCD 的面积是_____;18.在直角坐标系中,已知A (0,4)、B (2,4),C 为x 轴正半轴上一点,且OB 平分∠ABC ,过B 的反比例函数y =k x交线段BC 于点D ,E 为OC 的中点,BE 与OD 交于点F ,若记△BDF 的面积为S 1,△OEF 的面积为S 2,则12S S =_____.19.如图,A 、B 两点在双曲线()30y x x=>,分别经过A 、B 两点向坐标轴作垂线段,已知1S =阴影,则12S S +=______.20.若点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,则y1,y2的大小关系是y1_____y2.三、解答题21.在如图所示的12个小正方形组成的网格中,ABC的三个顶点都在小正方形的顶点上.仅用无刻度的直尺按要求完成下列作图.(1)在图1网格中找格点D,作直线BD,使直线BD与AC的交点P是AC的中点.(2)在图2网格中找格点E,作直线BE交AC于点Q,使得CQ CB=.22.△ABC在边长为1的正方形网格中如图所示.(1)以点C为位似中心,作出△ABC的位似图形△A1B1C1,使其位似比为1:2.且△A1B1C1位于点C的异侧,并表示出A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C2.23.如图,一次函数()0y ax b a =+≠的图象与反比例函数()0k y k x=≠的图象相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,5tan 3DCO ∠=,过点A 作AE x ⊥轴于点E ,若点C 是OE 的中点,且点A 的横坐标为-6.(1)求该反比例函数和一次函数的解析式;(2)连接ED ,求ADE 的面积.24.在平面直角坐标系xOy 中,直线l :1y x =-与双曲线k y x=相交于点(2,)A m . (1)求点A 坐标及反比例函数的表达式;(2)若直线l 与x 轴交于点B ,点P 在反比例函数的图象上,当OPB △的面积为1时,求点P 的坐标.25.如图,一次函数y =ax +b 的图象与反比例函数的图象交于A (﹣4,2)、B (2,n )两点,且与x 轴交于点C .(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB 的面积;(3)根据图象写出一次函数的值<反比例函数的值x 的取值范围.26.如图,在ABC 中,D 为BC 上一点,BAD C ∠=∠.(1)求证:C ABD BA ∽△△.(2)若6,3AB BD ==,求CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平行线分线段成比例求出EC ,即可解答.【详解】解:∵DE ∥BC , ∴AD AE DB EC =,即643EC=, 解得:EC=2,∴AC=AE+EC=4+2=6;故选:D .【点睛】 本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理. 2.C解析:C【分析】过D 作DG ∥AC 交BE 于G ,易证△BDG ∽△BCE ,△DGF ∽△AEF,利用三角形相似的性质即可解答.【详解】解:过D 作DG ∥AC 交BE 于G ,则△BDG ∽△BCE , ∴DG BD CE BC=, ∵1BD BC n =,∴1DG BD CE BC n ==, ∵1AE ACm =, ∴1m CE AC m-=, ∴DG=11m CE AC n mn-⋅= ∵DG ∥AC ,∴△DGF ∽△AEF ,∴111m AC DF DG m mn AF AE n AC m--===, ∴1AD m n AF n +-=,即1AF n AD m n =+-, 故选:C .【点睛】本题考查了相似三角形的判定与性质、比例性质,熟练掌握相似三角形的判定与性质,添加辅助线构造相似三角形是解答的关键.3.A解析:A【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x ,x ,则9x -x =80,解得:x =10,故较大三角形的面积为:9x =90.故选:A .【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.4.A解析:A【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】 解:由34a b =得,4a=3b , A 、由等式性质可得:ab=12,原变形错误,故这个选项符合题意;B 、由等式性质得到4a=3b ,原变形正确,故这个选项不符合题意;C 、由等式性质可得:4a=3b ,原变形正确,故这个选项不符合题意;D 、由等式性质可得:4a=3b ,原变形正确,故这个选项不符合题意;故选:A .【点睛】本题考查比例的性质.熟练掌握内项之积等于外项之积是解题的关键.5.C解析:C【分析】根据31AD =,30AE =,可得21∠<∠;根据题意,通过计算AB 和CD ,可得12AD AEAC AB,即证明ADE ACB ∽,即可得到各个角度的大小关系. 【详解】∵31AD =,30AE =∴21∠<∠ ∵31AD =,29DB =,30AE =,32EC =∴60AB AD BD =+=,62AC AE EC =+= ∴12AD AE AC AB ∵50A ∠=︒∴ADE ACB ∽∴14∠=∠,23∠∠= ∴13∠>∠,24∠<∠故选:C .【点睛】本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.6.B解析:B【分析】根据相似三角形的判定逐个判断即可得.【详解】①在ADE 和ACB △中,AED B A A ∠=∠⎧⎨∠=∠⎩, ADEACB ∴,则条件①能满足; ②//DE BC ,ADE ABC ∴,则条件②不能满足;③在ADE 和ACB △中,AD AE AC AB A A⎧=⎪⎨⎪∠=∠⎩,ADE ACB ∴,则条件③能满足;④由AD BC DE AC ⋅=⋅得:AD DE AC BC=, 对应的夹角ADE ∠与C ∠不一定相等,∴此时ADE 和ACB △不一定相似,则条件④不能满足;综上,能满足的条件有2个,故选:B .【点睛】 本题考查了相似三角形的判定,熟练掌握判定方法是解题关键.7.A解析:A【分析】通过设F的坐标,得到点B 的坐标,再利用四边形面积OFBE 等于矩形面积OABC 减去三角形COE 和△AOF 的面积作等量,解得k 值即可.【详解】解:设点F 的坐标(m ,k m ), ∵点F 是AB 的中点,∴点B 的坐标(m ,2k m), 则 S 四边形OEBF =S 矩形OABC -S △COE -S △AOF ,∴2=m 21122k k k m --(k>0) ∴2=2k-k ,∴k=2,故选:A.【点睛】本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,难点是根据一点的坐标表示其他点的坐标.8.A解析:A【分析】根据反比例函数2yx=和x1<x2<x3,y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.【详解】解:∵反比例函数2yx=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.9.B解析:B【解析】试题∵点(a,b)反比例函数2yx=上,∴b=2a,即ab=2,∴原式=2-4=-2.故选B.考点:反比例函数图象上点的坐标特征.10.B解析:B【分析】根据平移和平行四边形的性质将点D也用a、b表示,再根据反比例函数图象上的点的横纵坐标的乘积相等列式算出a、b,再由点坐标求出k的值.【详解】解:∵()3,0A ,()0,4B ,∴A 可以看作由B 向右平移3个单位,向下平移4个单位得到的,根据平行四边形的性质,D 也可以看作由C 向右平移3个单位,向下平移4个单位得到的,∵(),C a b ,∴()3,4D a b +-,∵7.5a b +=,∴(),7.5C a a -,()3,3.5D a a +-,∵C 、D 都在反比例函数图象上,∴它们横纵坐标的乘积相等,即()()()7.53 3.5a a a a -=+-,解得 1.5a =, ∴()1.57.5 1.59k =⨯-=.故选:B .【点睛】本题考查反比例函数与几何图形的结合,解题的关键是根据题目条件,用同一个未知数设出反比例函数图象上的点,然后用反比例函数图象上点的性质列式求解.11.B解析:B【分析】根据反比例函数的解析式分别代入求解,把123,,y y y 的值求解出来,再进行比较,即可得到答案.【详解】解:∵点()()()1231,,1,,3,A y B y C y -在反比例函数6y x =的图像上, ∴1166y -==-,2166y ==,3362y ==, 即:132y y y <<,故选B .【点睛】本题主要考查了与反比例函数有关的知识点,能根据已知条件求出未知量是解题的关键,再比较大小的时候注意符号.12.C解析:C【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:A.∵由反比例函数的图象在一、三象限可知,k >0∴0k -<∴一次函数y kx k =-的图象经过一、三、四象限.故本选项错误;B.∵由反比例函数的图象在二、四象限可知,k 0<∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项错误;C.∵由反比例函数的图象在二、四象限可知,k 0<∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项正确;D.∵由反比例函数的图象在二、四象限可知,k 0<∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项错误.故选:C【点睛】本题考查的是反比例函数、一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k 的符号,再根据一次函数的性质进行解答.二、填空题13.①③④【分析】根据矩形的性质和折叠的性质可知DF 的长度利用勾股定理可求出AGGFGHHF 的长度结合题意逐个判断即可【详解】①:根据题意可知∴即故①正确;②:∴∴∴∵∴设AG=x 则GH=xGF=8-x解析:①③④【分析】根据矩形的性质和折叠的性质,可知45EBF GBH ∠+∠=︒,DF 的长度.利用勾股定理可求出AG 、GF 、GH 、HF 的长度,结合题意逐个判断即可.【详解】①:根据题意可知EBC EBF ∠=∠,GBA GBH ∠=∠,90EBC EBF GBA GBH ∠+∠+∠+∠=︒,∴45EBF GBH ∠+∠=︒,即45EBG ∠=︒.故①正确;②:90EFD AFB ∠+∠=︒,90ABF AFB ∠+∠=︒,∴EFD ABF ∠=∠,∴ABF DFE , ∴AB AF DF DE=,∵8AF ===,∴8463DE AF DF AB ===. 设AG =x ,则GH =x ,GF =8-x ,HF =BF -BH =10-6=4.又∵在Rt GHF 中,222GH HF GF +=,∴2224(8)x x +=-解得x =3,即AG =3, ∴623AB AG ==. ∴AB DE AG DF≠ 故DEF 和△ABG 不相似.故②错误;③:由②得GH =3,1163922ABG S AB AG ==⨯⨯=,1134622GFH S GH HF ==⨯⨯=. ∴:9:6 1.5ABG GFH S S ==.故③正确.④:DF =10-8=2,由②可知AG +DF =3+2=5,GF =8-3=5.∴AG +DF =GF .故④正确.故答案为①③④.【点睛】本题考查折叠的性质、矩形的性质、三角形相似的判定和性质结合勾股定理来解题.本题利用勾股定理计算出AG 的长度是解题的关键.14.09【分析】直接根据平行线分线段成比例定理求解即可【详解】解:∵∴即:∴DE=09cm 故答案为:09【点睛】此题主要考查了平行线分线段成比例定理熟练运用定理是解答此题的关键解析:0.9 【分析】直接根据平行线分线段成比例定理求解即可.【详解】解:∵////AF BE CD ,∴AB EF BC DE= 即:2 1.8=1DE∴DE=0.9cm故答案为:0.9【点睛】此题主要考查了平行线分线段成比例定理,熟练运用定理是解答此题的关键15.或【分析】先根据勾股定理得到AC =5再根据平行线分线段成比例得到AD :AE =AB :AC =4:5设AD =x 则AE =A′E =xEC =5﹣xA′B =2x ﹣4在Rt △A′BC 中根据勾股定理得到A′C 再根据△ 解析:78或258 【分析】 先根据勾股定理得到AC =5,再根据平行线分线段成比例得到AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =2x ﹣4,在Rt △A ′BC 中,根据勾股定理得到A ′C ,再根据△A ′EC 是直角三角形,根据勾股定理得到关于x 的方程,解方程即可求解.【详解】解:在△ABC 中,∠B =90°,BC =3,AB =4,∴AC =5,∵DE ∥BC ,∴AD :AB =AE :AC ,即AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =24x ﹣, 在Rt △A ′BC 中,A ′C =22(24)3x -+,∵△A ′EC 是直角三角形,∴①当A '落在边AB 上时,∠EA ′C =90°,∠BA ′C =∠ACB ,A ′B =3×cot ∠ACB =39344⨯=, ∴AD =1974248⎛⎫-= ⎪⎝⎭;②点A 在线段AB 22(24)3x -+2+(5﹣54x )2=(54x )2,解得x 1=4(不合题意舍去),x 2=258.故AD 长为78或258. 故答案为:78或258. 【点晴】本题考查了勾股定理和平行线等分线段成比例定理,掌握相关知识是解决问题的关键. 16.16【分析】先根据重心性质得再证明最后根据相似三角形的性质求解即可【详解】解:∵P 为△ABC 重心∴∵∴∴∴故答案为16【点睛】本题考查了三角形的重心的性质和相似三角形的判定与性质重心到顶点的距离与重 解析:16 【分析】先根据重心性质得223AP AP PD AD ==,,再证明AEF ABC ∽,最后根据相似三角形的性质求解即可.【详解】解:∵P 为△ABC 重心, ∴223AP AP PD AD ==, ∵//EF BC∴AEF ABC ∽∴23AE AF AB AC == ∴22()163AEF ABC S S ==△△ 故答案为16.【点睛】本题考查了三角形的重心的性质和相似三角形的判定与性质,重心到顶点的距离与重心到对边中点的距离之比为2:1是解答本题的关键.17.【分析】作AH⊥BC交CB的延长线于H根据反比例函数解析式求出A的坐标点B的坐标求出AHBH根据勾股定理求出AB根据菱形的面积公式计算即可【详解】作AH⊥BC交CB的延长线于H∵反比例函数y=的图象解析:42【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y=3x的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB2222=2,∵四边形ABCD是菱形,∴BC=AB=2∴菱形ABCD的面积=BC×AH=2故答案为2【点睛】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.18.【分析】过点B作BH⊥OC于H构造出矩形利用矩形的性质进而求解出CDEF的坐标最终分别计算出S1S2即可求出结果【详解】如图过点B作BH⊥OC 于H∵A(04)B(24)∴OA=4AB=2AB∥OC∴解析:23 60【分析】过点B作BH⊥OC于H,构造出矩形,利用矩形的性质,进而求解出C、D、E、F的坐标,最终分别计算出S1,S2,即可求出结果.【详解】如图,过点B 作BH ⊥OC 于H .∵A (0,4)、B (2,4),∴OA =4,AB =2,AB ∥OC ,∴∠ABO =∠BOC ,∵OB 平分∠ABC ,∴∠ABO =∠OBC ,∴∠BOC =∠OBC ,∴CB =OC ,设BC =OC =m ,∵BH ⊥OC ,AB ∥OC ,∴∠AOH =∠OHB =∠ABH =90°,∴四边形ABHO 是矩形,∴BH =OA =4,AB =OH =2,在Rt △BCH 中,则有m 2=42+(m ﹣2)2,∴m =5,∴C (5,0),∴直线B C 的解析式为42033=-+y x , ∵反比例函数k y x=经过点B (2,4), ∴k =8, 由842033y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得24x y =⎧⎨=⎩或383x y =⎧⎪⎨=⎪⎩, ∴D (3,83), ∴直线OD 的解析式为89y x =, ∵OE =EC ,∴E (52,0), ∴直线BE 的解析式为y =﹣8x +20, 由82089y x y x =-+⎧⎪⎨=⎪⎩,解得942x y ⎧=⎪⎨⎪=⎩, ∴F (94,2),∴S1=2×1﹣12×1×43﹣12×1×14﹣12×34×23=2324,S2=12×52×2=52,∴122323245602SS==,故答案为:2360.【点睛】本题考查了反比例函数与一次函数的综合问题,能够熟练的做出辅助线,通过矩形的性质进行分析,是解决问题的关键.19.4【分析】根据反比例函数系数k的几何意义求出S1+S阴影和S2+S阴影求出答案【详解】解:∵AB两点在双曲线上∴S1+S阴影=3S2+S阴影=3∴S1+S2=6-2=4故答案为:4【点睛】本题考查的解析:4【分析】根据反比例函数系数k的几何意义,求出S1+S阴影和S2+S阴影,求出答案.【详解】解:∵A、B两点在双曲线3yx=上,∴S1+S阴影=3,S2+S阴影=3,∴S1+S2=6-2=4,故答案为:4.【点睛】本题考查的是反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.20.<【分析】直接利用反比例函数的增减性分析得出答案【详解】∵反比例函数中k=﹣1<0∴在每个象限内y随x的增大而增大∵点A(﹣4y1)B(﹣2y2)都在反比例函数的图象上且﹣2>﹣4∴y1<y2故答案解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1y x =-中,k =﹣1<0, ∴在每个象限内,y 随x 的增大而增大, ∵点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x =-的图象上,且﹣2>﹣4, ∴y 1<y 2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.三、解答题21.(1)画图见解析;(2)画图见解析.【分析】(1)根据题意画图即可;(2)由平行线性质得到MAQ NCQ ∠=∠,继而可证明AMQ CNQ ∽△△,再根据相似三角形的性质解得35CQ AC =,最后根据勾股定理解题即可. 【详解】(1)如图1所示,取格点D ,连接AD ,CD ,则四边形ABCD 为矩形,连接BD 交AC 于点P ,由于矩形对垂线互相平分,则点P 为AC 中点,故图1中直线BD ,格点D 即为所求.(2)如图2所示,找格点M ,N ,使得2AM =,3CN =,连接MN 与AC 交于点Q ,连接BQ 并延长交格点于点E ,则格点E 即为所求.∵//AM CN ,MAQ NCQ ∴∠=∠,又AQM CQN ∠=∠(对顶角相等)AMQ CNQ ∴∽△△,23AM AQ CN CQ ∴==, 即35CQ AC =, 由勾股定理得:222AC AB BC =+,又4AB =,3BC =,22435AC ∴=+=335355CQ AC CB ∴==⨯==, 故CQ CB =,∴格点E 即为所求.【点睛】本题考查网格作图,涉及相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)图见解析;(3,﹣3);(2)图见解析.【分析】(1)首先找到A 、B 、C 点对应点A 1、B 1、C 1,然后连接即可;(2)利用网格特点和旋转的性质画出A 、B 的对应点A 2、B 2即可【详解】解:(1)如图,△A 1B 1C 1所作,点A 1的坐标为(3,﹣3);(2)如图,△A 2B 2C 2为所作.【点睛】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.23.(1)553y x =--;30y x =-;(2)ADE 的面积为15. 【分析】(1)根据题意求得OE =6,OC =3,Rt △COD 中,5tan 3DCO ∠=,OD =5,即可得到A (﹣6,5),D (0,﹣5,C (﹣3,0),运用待定系数法即可求得反比例函数与一次函数的解析式;(2)利用三角形面积公式即可求得.【详解】解:(1)由题意知:6OE =,3OC =,在Rt COD 中,5tan 3OD DCO CO ∠==, 5OD ∴=,()0,5D ∴-,()3,0C -,代入y=ax+b ,530b a b =-⎧∴⎨-+=⎩,解得535a b ⎧=-⎪⎨⎪=-⎩, ∴一次函数的解析式为553y x =--, 当6x =-时,()56553y =-⨯--=, ()6,5A ∴-,()6530k ∴=-⨯=-∴反比例函数解析式为30y x =-; (2)由题意知:3EC =,5AE =,5OD =ADE ACE DCE S S S ∴=+△△△1122EC AE EC OD =⋅+⋅ 11353522=⨯⨯+⨯⨯ =15.ADE ∴的面积为15【点睛】本题主要考查了反比例函数与一次函数的交点问题以及解直角三角形的应用,解决问题的关键是掌握待定系数法求函数解析式的方法.24.(1)点(2,1)A ,反比例函数2y x =;(2)点()P 12,或(-1,-2) 【分析】(1)代入坐标点先求坐标,再求反比例函数表达式;(2)作图,根据图像求出P 点纵坐标,再代入反比例函数即可求出坐标.【详解】(1)∵A 在y=x-1上,∴当x=2时,y=1,即m=1,点(2,1)A ,再把A 的坐标代入反比例函数解得:2y x=; (2)由函数表达式可求得点(1,0)B ,∵1OPB S =△,即12OB ||1p y =, ∴||1p y =,点()P 12,或(-1,-2); 【点睛】此题考查反比例函数与一次函数相关知识,结合图像是关键.25.(1)反比例函数8y x -=,一次函数y=-x-2;(2)6AOB S ∆=;(3)-4<x <0或x >2.【分析】(1)先根据点A 的坐标求出反比例函数的解析式,再求出B 的坐标是(2,-4),利用待定系数法求一次函数的解析式;(2)求出C 点坐标,再利OC 把△AOB 的面积分成两个部分求解;(3)当一次函数的值<反比例函数的值时,直线在双曲线的下方,直接根据图象得出x 的取值范围.【详解】解:(1)设反比例函数的解析式为k y x =,因为经过A (-4,2), ∴k=-8,∴反比例函数的解析式为8y x -=. 因为B (2,n )在8y x -=上, ∴842n ,∴B 的坐标是(2,-4)把A (-4,2)、B (2,-4)代入y=ax+b ,得4224a b a b -+=⎧⎨+=-⎩, 解得:12a b =-⎧⎨=-⎩, ∴y=-x-2;(2)y=-x-2中,当y=0时,x=-2;∴直线y=-x-2和x 轴交点是C (-2,0), ∴OC=2∴112422622AOB S ∆=⨯⨯+⨯⨯=; (3)由图象可知-4<x <0或x >2时一次函数的值<反比例函数的值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数综合.这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.26.(1)证明见解析.(2)9.【分析】(1)根据两组角对应相等的两个三角形相似即可得到结论;(2)根据C ABD BA ∽△△求得BC=12,根据DC=BC-BD 即可求出答案.【详解】(1)如图所示:,BAD C B B ∠=∠∠=∠,∴C ABD BA ∽△△.(2)ABD CBA ∽,AB BD BC AB ∴=,即636BC =, 解得:12BC =,1239DC BC BD ∴=-=-=.【点睛】 此题考查相似三角形的判定及性质,熟记三角形的判定定理是解题的关键.。

【鲁教版】九年级数学下期中模拟试卷(附答案)(1)

【鲁教版】九年级数学下期中模拟试卷(附答案)(1)

一、选择题1.下列图形中一定是相似形的是( ) A .两个等腰三角形 B .两个菱形C .两个矩形D .两个正方形2.如图,在正方形ABCD 中,E 为BC 中点,3DF FC =. 联结AE AF EF 、、.那么下列结果错误的是( )A .ABE △与ECF 相似B .ABE △与AEF 相似C .ABE △与ADF 相似D .AEF 与ECF 相似3.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =则EF ED ⋅的值为( )A .4B .6C .8D .164.如图,△ABC 是等腰直角三角形,∠ACB =90°,点E 、F 分别是边BC 、AC 的中点,P 是AB 上一点,以PF 为一直角边作等腰直角△PFQ ,且∠FPQ =90°,若AB =12,PB =3,则QE 的值为( )A .2B .4C .2D .3 5.已知P ,Q 是线段AB 的两个黄金分割点,且AB=10,则PQ 长为( )A .5B .5+1)C .5D .56.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC 相似的是( )A .B .C .D .7.下列函数中,y 随x 的增大而减少的是( )A .1y x=-B .2y x=-C .()30y x x =-> D .4y x=()0x < 8.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为()1,1-,点B 在x 轴正半轴上,点D 在第三象限的双曲线8y x=上,过点C 作//CE x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .2.3D .59.关于反比例函数3y x=,下列说法错误的是( ) A .图象关于原点对称B .y 随x 的增大而减小C .图象分别位于第一、三象限D .若点(,)M a b 在其图象上,则3ab =10.如图,直线1122y x =+与双曲线26y x=交于()2A m ,、()6B n -,两点,则当12y y <时,x 的取值范围是()A .6x <-或2x >B .60x -<<或2x >C .6x <-或02x <<D .62x -<<11.在函数()0ky k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<12.如图,直线y =x +2与y 轴交于点A ,与直线y =﹣3x +10交于点B ,P 是线段AB 的中点,已知反比例函数y =kx的图象经过点P ,则k 的值为( )A .1B .3C .6D .8二、填空题13.如图,在正方形ABCD 中,4AB =,P 是BC 边上一动点(不与B ,C 重合),DE AP ⊥于E .若PA x =,DE y =,则y 关于x 的函数解析式为_____.14.如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB BC ⊥,CD BC ⊥,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得20BE m =,10EC m =,20CD m =,则河的宽度AB 等于_______.15.如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,D 是AB 边的中点,P 是BC 边上一动点(点P 不与B 、C 重合),若以D 、C 、P 为顶点的三角形与ABC 相似,则线段PC______.16.如果23a cb d ==,其中20b d +≠,那么22a cb d +=+________. 17.过原点直线l 与反比例函数ky x=的图像交于点(2,)A a -,(,3)B b -,则k 的值为____.18.如图,△BOD 都是等腰直角三角形,过点B 作AB ⊥OB 交反比例函数y kx=(x >0)于点A ,过点A 作AC ⊥BD 于点C ,若S △BOD ﹣S △ABC =3,则k 的值为____.19.如图,直线y =ax 经过点A (4,2),点B 在双曲线y =kx(x >0)的图象上,连结OB 、AB ,若∠ABO =90°,BA =BO ,则k 的值为_____.20.从﹣3,﹣2,﹣1,0,1,2这6个数中任意取出一个数记作k ,则既能使函数y =k x的图象经过第一、第三象限,又能使关于x 的一元二次方程x 2﹣kx +1=0有实数根的概率为_____.参考答案三、解答题21.如图,在平面直角坐标系中,一次函数122y x =-的图象分别交x 、y 轴于点A 、B ,抛物线2y x bx c =++经过点A 、B ,点P 为第四象限内抛物线上的一个动点.(1)求此抛物线的函数解析式.(2)过点P 作//PM y 轴,分别交直线AB 、x 轴于点C 、D ,若以点P 、B 、C 为顶点的三角形与以点A 、C 、D 为顶点的三角形相似,求点P 的坐标. (3)当2PBA OAB ∠=∠时,求点P 的坐标.22.在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,2A -,()2,1B -,()4,3C -.(1)画出ABC 关于x 轴对称的111A B C △;(2)以点O 为位似中心,在网格中画出111A B C △的位似图形222A B C △,使222A B C △与111A B C △的相似比为2:1;(3)设点(),P a b 为ABC 内一点,则依上述两次变换后点P 在222A B C △内的对应点2P 的坐标是______.23.在如图小正方形的边长均为1的正方形网格中,△ABC 的顶点都在格点上.(1)以点O 为位似中心画△ABC 的位似图形△A 1B 1C 1,位似比为1:2. (2)在(1)中所画得图形中,△ABC 的中线CD 与△A 1B 1C 1的中线C 1D 1的位置关系为 .24.如图,在平面直角坐标系中,一次函数152y x =-+的图象于反比例函数(0)ky k x=≠的图象相交于点(8,t)A 和点B .(1)求反比例函数的关系式和点B 的坐标; (2)结合图象,请直接写出在第一象限内,当152kx x-+>时x 的取值范围. 25.某校园艺社计划利用已有的一堵长为10m 的墙,用篱笆围一个面积为212m 的矩形园子.(1)如图,设矩形园子的相邻两边长分别为()x m 、()y m . ①求y 关于x 的函数表达式; ②当4y 时,求x 的取值范围;(2)小凯说篱笆的长可以为9.5m ,洋洋说篱笆的长可以为10.5m.你认为他们俩的说法对吗?为什么?26.已知12y y y =-,1y 与x 成正比例,2y 与()2x -成反比例,当2x =-时,7y =-;3x =时,13y =.求:y 关于x 的函数解析式【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据对应角相等,对应边成比例的两个图形,叫做相似图形进行判断即可. 【详解】A 、两个等腰三角形,三个角不一定相等,因此不一定相似,故本选项错误,不符合题意.B 、两个菱形对应角不一定相等,故本选项不符合题意;C 、两个矩形的边不一定成比例,故不一定相似,故本选项错误,不符合题意.D 、两个正方形四个角相等,各边一定对应成比例,所以一定相似,故本选项正确,符合题意; 故选:D . 【点睛】本题考查了相似图形的判定,掌握对应角相等,对应边成比例的两个图形,叫做相似图形是解题的关键.2.C解析:C 【分析】根据正方形的性质及勾股定理逆定理可以判断△AEF 是直角三角形,再根据三角形相似的判定可以选出结果错误的选项. 【详解】解:设正方形边长为1 ,则由已知可得:1511595114416164AE EF AF =+==+==+=,∴222552541616AE EF AF +=+==,∴△AEF 是直角三角形, ∴在RT △ABE 、RT △ECF 、RT △ADF 、RT △AEF 中,∠B=∠C=∠AEF=∠D ,42,3AB EC AE AD BE CF EF DF ====, ∴RT △ABE 、RT △ECF 、RT △AEF 两两相似,但是△ABE 与 △ADF 不相似, ∴A 、B 、D 正确,C 错误, 故选C . 【点睛】本题考查正方形与三角形相似的综合应用,灵活运用正方形的性质和三角形相似的判定是解题关键.3.D解析:D 【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论. 【详解】解:∵四边形ABCD 是正方形, ∴∠BAC=∠ADB=45°,∵把△ABC 绕点A 逆时针旋转到△AB'C', ∴∠EAF=∠BAC=45°, ∵∠AEF=∠DEA , ∴△AEF ∽△DEA ,∴AE EFDE AE =, ∴EF•ED=AE 2, ∵AE=4,∴EF•ED 的值为16, 故选:D . 【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.4.C解析:C 【分析】取AB 的中点D ,连结FD ,根据等腰直角三角形的性质得到∠A=45°,根据三角形中位线定理得到EF ∥AB ,EF=12AB=6,DF=12,证明△FDP ∽△FEQ ,根据相似三角形的性质列出比例式,代入计算,得到答案.【详解】解:如图,取AB 的中点D ,连结FD ,∵△ABC 为等腰直角三角形,AB=12, ∴2∠A=45°,∵点D 、E 、F 分别是△ABC 三边的中点,AB=12,PB=3, ∴AD=BD=6,DP=DB-PB=6-3=3,EF 、DF 为△ABC 的中位线, ∴EF ∥AB ,EF=12AB=6,DF=122,∠EFP=∠FPD , ∴∠FDA=45°,32262DF EF ==, ∴∠DFP+∠DPF=45°, ∵△PQF 为等腰直角三角形, ∴∠PFE+∠EFQ=45°,FP=PQ , ∴∠DFP=∠EFQ ,∵△PFQ 是等腰直角三角形, ∴2PF FQ =∴DF PFEF FQ=, ∵DF PFEF FQ=,∠DFP=∠EFQ , ∴△FDP ∽△FEQ , ∴2QE EF DP DF ==,即23QE=, 解得,2, 故选:C . 【点睛】本题考查了等腰直角三角形,相似三角形的判定和性质,根据题意作出辅助线,构造出三角形的中位线是解题的关键.5.C解析:C 【分析】画出图像,根据黄金分割的概念写出对应线段的比值,求出AQ 、PB 的长度,再根据PQ=AQ+PB-AB即可求出PQ的长度.【详解】解:如图,根据黄金分割点的概念,可知512PB AQAB AB==,∴AQ=PB,AB=10,∴AQ=PB=51105552⨯=,∴PQ=AQ+PB-AB=555555101052010(52)+-==.故选:C.【点睛】本题主要考查黄金分割的概念,熟记黄金分割的概念并根据黄金分割的比值列式是解题关键.6.B解析:B【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【详解】解:由勾股定理得:AB2231+10,BC=2,AC2211+2,∴AC:BC:AB=125A、三边之比为152,图中的三角形(阴影部分)与△ABC不相似;B、三边之比:125△ABC相似;C253,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2513△ABC不相似.故选:B.【点睛】此题考查三角形相似判定定理的应用,解答关键是应用勾股定理求出边长.7.D解析:D【分析】根据反比例函数kyx=中k>0,在每个象限内,y随着x的增大而减小;k<0,在每个象限内,y随着x的增大而增大求解.【详解】-1<0,在每个象限内,y 随着x 的增大而增大,故A 选项错误;-2<0,在每个象限内,y 随着x 的增大而增大,故B 选项错误;-3<0且x >0,y 随着x 的增大而增大,故C 选项错误;4>0且x <0,y 随着x 的增大而减小,故D 选项正确;故选D .【点睛】本题考查反比例函数的性质,解题的关键是掌握反比例函数的性质.8.B解析:B【分析】证明()△△DHA CGD AAS ≅,()△△ANB DGC AAS ≅得到:1AN DG AH===,而11AH m =--=,解得2m =-,即可求解;【详解】 设点8,D m m ⎛⎫ ⎪⎝⎭, 如图所示,过点D 作x 轴的垂线交CE 于点G ,过点A 作x 轴的平行线DG 于点H ,过点A 作AN x ⊥轴于点N ,∵90GDC DCG ∠+∠=︒,90GDC HDA ∠=∠=︒,∴HDA GCD ∠=∠,又AD CD =,90DHA CGD ∠=∠=︒,∴()△△DHA CGDAAS ≅,∴HA DG =,DH CG =, 同理可得:()△△ANB DGCAAS ≅, ∴1AN DG AH===, 则点8,1G m m ⎛⎫- ⎪⎝⎭,CG DH =, 11AH m =--=,解得:2m =-,故点()2,5G --,()2,4D --,()2,1H-, 则点8,55E ⎛⎫-- ⎪⎝⎭,25GE =, ∴223555CE CG GE DH GE =-=-=-=. 故答案选B .【点睛】本题主要考查了反比例函数图象上点的坐标特征,正方形的性质,准确分析计算是解题的关键.9.B解析:B【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵反比例函数3y x=, ∴该函数图象关于原点轴对称,故选项A 正确;在每个象限内,y 随x 的增大而减小,故选项B 错误;该函数图象为别位于第一、三象限,故选项C 正确;若点M (a ,b )在其图象上,则ab=3,故选项D 正确;故选:B .【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答. 10.C解析:C【解析】试题根据图象可得当12y y <时,x 的取值范围是:x <−6或0<x <2.故选C.11.B解析:B【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】解:(0)k y k x=<的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.12.B解析:B【分析】先求出直线y =x +2与坐标轴的交点A 坐标,再由两条直线解析式构成方程组,解方程组求得B 点坐标,进而求得中点P 的坐标,问题就迎刃而解了.【详解】解:直线y =x +2中,令x =0,得y =2,∴A (0,2),解2310y x y x =+⎧⎨=-+⎩得24x y =⎧⎨=⎩, ∴B (2,4),∵P 是线段AB 的中点,∴P (1,3),把(1,3)P 代入k y x=中,得3k =, 故选:B .【点睛】本题主要考查了两条直线的相交问题,反比例函数图象上点的坐标特征,待定系数法.本题的关键是求出P 点坐标. 二、填空题13.【分析】根据正方形的性质以及DE ⊥AP 即可判定△ADE ∽△PAB 根据相似三角形的性质即可列出y 与x 之间的关系式需要注意的是x 的范围【详解】解:∵四边形ABCD 为正方形∴∠BAD =∠ABC =90°∴∠解析:(164y x x =<<【分析】根据正方形的性质以及DE ⊥AP 即可判定△ADE ∽△PAB ,根据相似三角形的性质即可列出y 与x 之间的关系式,需要注意的是x 的范围.【详解】解:∵四边形ABCD 为正方形,∴∠BAD =∠ABC =90°,∴∠EAD +∠BAP =90°,∠BAP +∠APB =90°,∴∠EAD =∠APB ,又∵DE ⊥AP ,∠AED =∠B =90°,∴△ADE ∽△PAB . ∴=AD DE AP AB ,即4=4y x∴(164y x x =<<.故答案为:(164y x x =<< 【点睛】 本题考查相似三角形,解题关键是熟练运用相似三角形的判定与性质,本题属于中等题型.14.【分析】易证△ABE ∽△DCE 即可求得【详解】∵∠ABE=∠DCE=90°∠BEA=∠DEC ∴△ABE ∽△DCE ∴即故答案为:【点睛】本题考查相似三角形的实际应用掌握相似三角形的判定定理是解题的关键 解析:40m【分析】易证△ABE ∽△DCE ,即可求得.【详解】∵∠ABE=∠DCE=90°,∠BEA=∠DEC∴△ABE ∽△DCE ∴=AB BE CD CE即20=2010AB cm m cm =40AB m故答案为:40m【点睛】本题考查相似三角形的实际应用,掌握相似三角形的判定定理是解题的关键.15.或【分析】分两种情况求解或利用相似三角形对应边成比例求出PC 的长【详解】解:①如图∵且D 是AB 中点∴∴∵∴∴∵∴∴解得;②如图此时∴即解得故答案是:或【点睛】本题考查相似三角形的性质和判定解题的关键 解析:4或254 【分析】 分两种情况求解,90CPD ∠=︒或90CDP ∠=︒,利用相似三角形对应边成比例求出PC 的长.【详解】解:①如图,90CPD ∠=︒,∵90ACB ∠=︒,且D 是AB 中点,∴AD BD CD ==,∴DCP ABC ∠=∠,∵90CPD BCA ∠=∠=︒,∴CPD BCA , ∴CP CD BC BA=, ∵6AC =,8BC =,∴10AB =,5AD BD CD ===,∴5810CP =,解得4CP =;②如图,90CDP ∠=︒,此时CDPBCA , ∴CP CD BA BC =,即5108CP =,解得254CP =.故答案是:4或254. 【点睛】 本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定. 16.【分析】根据已知条件得出再根据b+2d≠0即可得出答案【详解】解:∵∴∵b+2d≠0∴;故答案为:【点睛】本题考查了比例的性质熟练掌握比例的性质是解题的关键 解析:23【分析】 根据已知条件得出2223a c b d ==,再根据b+2d≠0,即可得出答案. 【详解】解:∵23a c b d ==, ∴2223a cb d ==, ∵b+2d≠0, ∴2223a cb d +=+; 故答案为:23. 【点睛】 本题考查了比例的性质,熟练掌握比例的性质是解题的关键.17.-6【分析】由AB 在过原点的直线l 上且在反比例函数的图像上可得AB 关于原点对称根据关于原点对称的点的坐标特征可求出ab 的值把a 值代入反比例函数解析式即可得答案【详解】∵过原点的直线l 与反比例函数y=解析:-6【分析】由A 、B 在过原点的直线l 上且在反比例函数的图像上可得A 、B 关于原点对称,根据关于原点对称的点的坐标特征可求出a 、b 的值,把a 值代入反比例函数解析式即可得答案.【详解】∵过原点的直线l 与反比例函数y=kx 的图象交于点A(−2,a),B(b ,−3),∴A 、B 两点关于原点对称,∵关于原点对称的点的横坐标和纵坐标都互为相反数,A(−2,a),B(b ,−3),∴a=3,b=2,把A (-2,3)代入y=kx 得3=k−2,故答案为:-6【点睛】本题考查反比例函数图象的性质,反比例函数的图象关于原点对称,熟练掌握图象性质是解题关键.18.6【分析】设A点坐标为(ab)根据等腰直角三角形的性质得BC=ACOD=BD 由S△BOD-S△ABC=3得出OD2-AC2=6利用平方差公式得到(OD+AC)(OD-AC)=6得到a•b=6根据反比解析:6.【分析】设A点坐标为(a,b),根据等腰直角三角形的性质得BC=AC,OD=BD,由S△BOD-S△ABC=3得出OD2-AC2=6,利用平方差公式得到(OD+AC)(OD-AC)=6,得到a•b=6,根据反比例函数图象上点的坐标特征易得k=6.【详解】设A点坐标为(a,b).∵△ABC和△BOD都是等腰直角三角形,∴BC=AC,OD=BD∵S△BOD﹣S△ABC=3,1 2OD212-AC2=3,OD2﹣AC2=6,∴(OD+AC)(OD﹣AC)=6,∴ab=6,∴k=6.故答案为:6.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数ykx=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.19.3【分析】作BC⊥x轴于CAD⊥BC于D易证得△BOC≌△ABD得出OC=BDBC=AD设B的坐标为(mn)则OC=mBC=n根据线段相等的关系得到解得求得B的坐标然后代入y=(x>0)即可求得k的解析:3.【分析】作BC⊥x轴于C,AD⊥BC于D,易证得△BOC≌△ABD,得出OC=BD,BC=AD,设B的坐标为(m,n),则OC=m,BC=n,根据线段相等的关系得到24m nn m-⎧⎨-⎩==,解得13mn⎧⎨⎩==,求得B的坐标,然后代入y=kx(x>0)即可求得k的值.解:作BC ⊥x 轴于C ,AD ⊥BC 于D ,则∠COB+∠OBC=90°,∵∠ABO=90°,∴∠OBC+∠ABD=90°,∴∠COB=∠ABD ,在△BOC 和△ABD 中COB ABD OCB BDA OB AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BOC ≌△ABD (AAS ),∴OC=BD ,BC=AD ,设B 的坐标为(m ,n ),则OC=m ,BC=n ,∵点A (4,2),∴24m n n m -⎧⎨-⎩== ,解得, ∴B 的坐标为(1,3),∵点B 在双曲线y=k x(x >0)的图象上, ∴k=1×3=3,故答案为3.【点睛】此题考查反比例函数图象上点的坐标特征,三角形全等的判定和性质,得出相等线段列出关于m 、n 的方程组是解题的关键.20.【分析】确定使函数的图象经过第一三象限的k 的值然后确定使方程有实数根的k 值找到同时满足两个条件的k 的值即可【详解】解:这6个数中能使函数y =的图象经过第一第三象限的有12这2个数∵关于x 的一元二次方解析:16【分析】确定使函数的图象经过第一、三象限的k 的值,然后确定使方程有实数根的k 值,找到同时满足两个条件的k 的值即可.解:这6个数中能使函数y =k x的图象经过第一、第三象限的有1,2这2个数, ∵关于x 的一元二次方程x 2﹣kx +1=0有实数根,∴k 2﹣4≥0,解得k ≤﹣2或k ≥2,能满足这一条件的数是:﹣3、﹣2、2这3个数,∴能同时满足这两个条件的只有2这个数, ∴此概率为16, 故答案为:16. 三、解答题21.(1)2722y x x =--;(2)3,52⎛⎫- ⎪⎝⎭或7,22⎛⎫- ⎪⎝⎭;(3)73,2⎛⎫- ⎪⎝⎭. 【分析】(1)本题所求二次函数的解析式含有两个待定字母,一般需要两个点的坐标建立方程组,现在可求A 、B 点坐标,代入列方程组可解答;(2)根据∠ADC=90°,∠ACD=∠BCP ,可知相似存在两种情况:①当∠CBP=90°时,如图1,过P 作PN ⊥y 轴于N ,证明△AOB ∽△BNP ,列比例式可得结论;②当∠CPB=90°时,如图2,则B 和P 是对称点,可得P 的纵坐标为-2,代入抛物线的解析式可得结论;(3)设点A 关于y 轴的对称点为A′,求出直线A′B 的解析式,再联立抛物线的解析式解答即可.【详解】解:(1)令0x =,得1222y x =-=-,则()0,2B -, 令0y =,得1022x =-,解得4x =, 则()4,0A ,把()4,0A ,()0,2B -代入()20y ax bx c a =++≠中, 得16402b c c ++=⎧⎨=-⎩, 解得722b c ⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为:2722y x x =--. (2)∵//PM y 轴,∴90ADC ∠=︒,∵ACD BCP ∠=∠, ∴以点P 、B 、C 为顶点的三角形与以点A 、C 、D 为顶点的三角形相似,存在两种情况:①当90CBP ∠=︒时,如图,过P 作PN y ⊥轴于N ,∵90ABO PBN ABO OAB ∠+∠=∠+∠=︒,∴PBN OAB ∠=∠,∵90AOB BNP ∠=∠=︒,∴Rt PBNRt BAO △△, ∴PN BN BO AO=. 设27,22P x x x ⎛⎫-- ⎪⎝⎭. ∴2722224x x x ⎛⎫---- ⎪⎝⎭=,化简得2302x x -=. 解得0x =(舍去)或32x =. 当32x =时,2273732252222y x x ⎛⎫=--=-⨯-=- ⎪⎝⎭. ∴3,52P ⎛⎫- ⎪⎝⎭;②当90CPB ∠=︒时,如下图,则//PB x 轴,所以B 和P 是对称点,所以当2y =-时,27222x x --=-,解得0x =(舍去)或72x =. ∴7,22P ⎛⎫- ⎪⎝⎭.综上,点P的坐标是3 ,52⎛⎫-⎪⎝⎭或7,22⎛⎫-⎪⎝⎭.(3)设点A关于y轴的对称点为'A,则'A B AB=.∴'BAO B AO∠=∠.直线'A B交抛物线于P.∴'2PBA BAO BA O BAO∠=∠+∠=∠.∵()4,0A,∴()'4,0A-.设直线'A B的解析式为()0y kx b k=+≠.∵()0,2B-.∴4002k bk b-+=⎧⎨⋅+=-⎩.解得122kb⎧=-⎪⎨⎪=-⎩.∴直线'A B的解析式为122y x=--,由方程组2122722y xy x x⎧=--⎪⎪⎨⎪=--⎪⎩,得230x x-=.解得0x=(舍去)或3x=.当3x=时,117232222y x=--=-⨯-=-.所以点P的坐标是73,2⎛⎫-⎪⎝⎭.【点睛】此题是二次函数的综合题,是中考的压轴题,难度较大,计算量也大,主要考查了待定系数法求解析式,还考查了三角形的面积,相似三角形的性质与判定,并学会构造相似三角形解决问题.22.(1)见解析;(2)见解析;(3)()2,2a b -.【分析】(1)先根据关于x 轴对称的点的坐标特征描出A 1、B 1、C 1,然后再顺次连接即可; (2)先根据关于原点为位似中心的对应点的坐标之间的关系,把点A 1、B 1、C 1的横纵坐标都扩大2倍得到A 2、B 2、C 2的坐标,然后描点,最后顺次连接即可;(3)利用(1)、(2)中的坐标变换规律求解即可.【详解】解:(1)如图,△A 1B 1C 1即为所求图形;(2)如图,△A 2B 2C 2即为所求图形;(3)根据(1)(2)的变换规律可得:2P (2a ,-2b ).【点睛】本题主要考查了轴对称变换和位似变换,掌握作轴对称图形和位似图形的的步骤成为解答本题的关键.23.(1)画图见解析;(2)11//CD C D【分析】(1)根据位似图形的性质可以得解;(2)根据位似图形的性质可得解.【详解】(1)如图△A 1B 1C 1就是所求作的图形.分别在射线AO 、BO 、CO 上截取1112OA OA OB OB OC OC ===,,,连结 111,,A B C 即得所作图形;(2)∵在(1)中所画的图形中,△ABC 的中线CD 与111A B C 的中线 11C D 是对应线段, ∴由“位似图形中不经过位似中心的对应线段平行”的性质可以得到:CD ∥11C D .【点睛】本题考查位似图形的应用与作图,熟练掌握位似图形的意义和性质是解题关键. 24.(1)B 的坐标为(2,4);(2)2<x <8【分析】(1)把点A (8,t )代入,求得t 的值,然后根据待定系数法即可求得反比例函数的关系式,解析式联立成方程组,解方程组求得点B 的坐标;(2)根据图象即可求得.【详解】解:(1)∵A (8,t )在一次函数y=-12x+5的图象上, ∴t=-12×8+5=1, ∴A (8,1),∵反比例函数y=k x (k≠0)的图象经过点A (8,1), ∴k=8×1=8,∴反比例函数的解析式为y=8x, 解1528y=xy x ⎧=-+⎪⎪⎨⎪⎪⎩81x y ⎧⎨⎩==或24x y ⎧⎨⎩== ∴B 的坐标为(2,4);(2)由图象可知,在第一象限内,当152k x x -+>时,x 的取值范围是2<x <8. 【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式及利用图象比较函数值的大小.解题的关键是:确定交点的坐标.25.(1)①1265y x x ⎛⎫=⎪⎝⎭,②635x ;(2)小凯的说法错误,洋洋的说法正确. 【分析】(1)①根据矩形的面积公式计算即可,注意自变量的取值范围;②构建不等式即可解决问题; (2)构建方程求解即可解决问题;【详解】(1)①由题意xy =12, 1265y x x ⎛⎫∴= ⎪⎝⎭②y ⩾4时,124x ≥,解得3x ≤ 所以635x . (2)当1229.5x x +=时,整理得:2419240,0x x -+=∆<,方程无解. 当12210.5x x+=时,整理得2421240,570x x -+=∆=>,符合题意; ∴小凯的说法错误,洋洋的说法正确.【点睛】本题考查反比例函数的应用.(1)①中需注意,因为墙的宽度为10m ,所以y≤10,据此可求得自变量x 的取值范围;②中求得x 的取值要与①中取公共解集;(2)能根据根的判别式判断一元二次方程解的情况是解决此问的关键.26.432y x x =+- 【分析】 设1y kx =,()22m y x =-,得到()2m y kx x =--,将x 与y 的两组对应值代入得到二元一次方程组722213332m k m k ⎧-=--⎪⎪--⎨⎪=-⎪-⎩,求出解集即可得到答案. 【详解】解:设1y kx =,()22m y x =-, 则()2my kx x =--, 根据题意得:722213332m k m k ⎧-=--⎪⎪--⎨⎪=-⎪-⎩, 解得:34k m =⎧⎨=-⎩, 则函数解析式是:432y x x =+-. 【点睛】此题考查正比例函数的定义,反比例函数的定义,求出二元一次方程组的解,正确理解正比例函数与反比例函数的定义并正确计算是解题的关键.。

【鲁教版】九年级数学下期中一模试题(附答案)(1)

【鲁教版】九年级数学下期中一模试题(附答案)(1)

一、选择题1.如图,ABC 和CDE △都是等边三角形,点G 在CA 的延长线上,GB GE =,若10BE CG +=,32AG BE =,则AF 的长为( )A .1B .43C .95D .22.如图,直线////a b c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F ,若23=AB BC ,则DE DF 的值为( )A .13B .23C .25D .353.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A ,4CF =,则点E 的坐标是( )A .()8,4-B .()10,3-C .()10,4-D .()8,3-4.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB ADAC AB= D .AB BCAC BD= 5.如图,在ABC ∆中,,D E 分别是边,BC AC 上的点,且11,BD BC AE AC n m==,连接,AD BE 交于点F ,则AFAD的值为( )A .1m n - B .1mm n +-C .1nm n +-D .1nm - 6.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似.A .4个B .3个C .2个D .1个7.函数y a x a =+与(0)ay a x=≠在同一直角坐标系中的图像可能是( ) A . B . C .D .8.已知反比例函数2y -x=,点A (a-b ,2),B (a-c ,3)在这个函数图象上,下列对于a ,b ,c 的大小判断正确的是( ) A .a <b <c B .a <c <bC.c<b<aD.b<c<a9.下列函数中图象不经过第三象限的是()A.y=﹣3x﹣2 B.y=2xC.y=﹣2x+1 D.y=3x+210.如图,函数kyx=与2(0)y kx k=-+≠在同一平面直角坐标系中的图像大致( )A.B.C.D.11.已知反比例函数kyx=的图象过二、四象限,则一次函数y kx k=+的图象大致是()A.B.C.D.12.如图,双曲线kyx=经过Rt BOC∆斜边上的中点A,且与BC交于点D,若BOD 6S∆=,则k的值为()A.2B.4C.6D.8二、填空题13.如图,ABC 中,1BC =.若113AD AB =,且11//D E BC ,照这样继续下去,12113D D D B =,且22//D E BC ;23213D D D B =,且33//D E BC ;…;1113n n n D D D B --=,且//n n D E BC 则101101=D E _________.14.如图,在Rt ACB 中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF 为直角三角形时,线段AE 的长为________.15.如图,90A B ∠=∠=︒,AB a ,AD BC <,在边AB 上取点P ,使得PAD △,PBC 与PDC △两两相似,则AP 长为___________.(结果用含a 的代数式表示)16.若233a b c==,且233a b c ++=,则a b c -+=__________. 17.如果反比例函数2k y x-=的图像在第二、四象限内,那么k 的取值范围是______.18.设A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,则实数k 的取值范围是__.19.已知点A (-1,2)在反比例函数1m y x-=的图象上,则m =_____________. 20.如图,直线3y x =-+与y 轴交于点A ,与反比例函数()0ky x x=<的图象交于点C ,过点C 作CB x ⊥轴于点B ,若3AO BO =,则k 的值为________.三、解答题21.如图,在平面直角坐标系中,△OAB 的顶点坐标分别为O (0,0)、A (﹣1,2)、B (﹣2,﹣1),P (m ,n )是△OAB 的边AB 上一点.(1)画出将△OAB 向右平移2个单位,再向下平移1个单位后的△O 1A 1B 1 ,并写出点P 的对应点P 1的坐标;(2)以原点O 为位似中心,在y 轴的左侧画出△OAB 的一个位似△OA 2B 2 ,使它与△OAB 的相似比为2:1,并写出点P 的对应点P 2的坐标;(3)判断△O 1A 1B 1与△O 2A 2B 2,能否是关于某一点Q 为位似中心的位似图形,若是,请在图中标出位似中心Q ,并写出点Q 的坐标.22.已知:如图,在边长为4的菱形ABCD 中,60D ∠=︒,点E 、F 分别在边AB 、AD 上,BE DF =,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:~BEC BCH ∆∆;(2)当E 是边AB 的中点时,试求CH 的长度.23.已知反比例函数ky x=的图象与正比例函数2y x =的图象交于点()2,m ,求这个反比例函数的表达式,并在同一平面直角坐标系内,画出这两个函数的图象.24.如图,已知函数()0ky x x=>的图象经过点,,A B 点A 的坐标为()1,2.过点A 作//AC y 轴,1AC =(点C 位于点A 的下方),过点C 作//CD x 轴,与函数的图象交于点D ,过点B 作BE CD ⊥,垂足E 在线段CD 上,连接,OC OD .()1求OCD ∆的面积;()2当12BE AC =时,求CE 的长.25.小明根据学习函数的经验,对函数y =x+1x的图象与性质进行了探究.下面是小明的探究过程,请补充完整: (1)函数y =x+1x的自变量x 的取值范围是 . (2)如表列出了y 与x 的几组对应值,请写出m ,n 的值:m = ,n = . (3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象. (4)结合函数的图象,请完成: ①当y =52时,x = ; ②写出该函数的一条性质 ;③若方程x+1x=t 有两个相等的实数根,则t 的值是 . x … ﹣3﹣2﹣112- 13-13121 2 3 4 …y …103-52- ﹣252-103- m52 2 52 n174…26.如图所示,在平行四边形ABCD 中,E 是CD 的延长线上一点,12DE CD =,连接BE 与AC ,AD ,FE 分别交于点O ,F .(1)若DEF ∆的面积为2,求平行四边形ABCD 的面积. (2)求证2·OB OE OF =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】过点G 作GH ⊥BE ,垂足为点H ,设BE =2x ,进而可表示出相关线段长,再根据CH =12CG 列出方程求得x =1,最后再根据GAF GDE △∽△可得AF AG DE DG=,进而可求得AF 的长. 【详解】解:过点G 作GH ⊥BE ,垂足为点H ,设BE =2x ,∵10BE CG +=,32AG BE =, ∴CG =10-2x ,AG =3x , ∴AC =CG -AG =10-5x ,∵ABC 和CDE △都是等边三角形,∴BC =AC =10-5x ,CD =DE =CE =BC -BE =10-7x ,∠ABC =∠DEC =∠C =60°, ∵GB =GE ,GH ⊥BE , ∴BH =HE =x , ∴CH =CE +HE =10-6x , ∵∠GHC =90°,∠C =60°, ∴∠HGC =30°, ∴CH =12CG , ∴10-6x =12(10-2x ), 解得:x =1,∴AG =3x =3,CG =10-2x =8,CD =DE =10-7x =3, ∴GD =CG -CD =5, ∵∠ABC =∠DEC , ∴AB//DE ,∴GAF GDE ∽, ∴AF AGDE DG =, 即335AF =, 解得95AF =,故选:C . 【点睛】本题考查了等边三角形的性质,含30°的直角三角形的性质,相似三角形的判定及性质,设BE =2x ,利用含30°的直角三角形的性质列出方程是解决本题的关键.2.C解析:C 【分析】先由23AB BC =得出25AB AC =,再根据平行线分线段成比例定理即可得到结论. 【详解】∵23AB BC =, ∴25AB AC =, ∵a ∥b ∥c , ∴25DE AB DF AC ==, 故选:C . 【点睛】本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.3.B解析:B 【分析】根据题意可求得CE 、OF 的长度,根据点E 在第二象限,从而可以得到点E 的坐标. 【详解】解:∵四边形ABCO 是矩形 ∴90ECF FOA B ∠=∠=∠=︒∵将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A ∴90AFE B ∠=∠=︒∴90CEF CFE OFA CFE ∠+∠=∠+∠=︒ ∴CEF OFA ∠=∠ ∴Rt ECF Rt FOA ∽根据题意可设CE x =,则8BE x =-,则8BE x =- ∵4CF =∴在Rt ECF △中,()22248x x +=-∴3x =根据题意可设OF y = ∵Rt ECF Rt FOA ∽ ∴CE CFOF OA=∴348y = ∴6y = ∴6OF =∴10CO CF OF =+= ∴点E 的坐标为()10,3-. 故选:B 【点睛】本题考查了勾股定理、矩形的性质、翻折变换、坐标与图形变化(轴对称)、相似三角形的判定和性质等知识点,解题的关键是明确题意找出所求问题需要的条件,利用数形结合的思想进行解答.4.D解析:D 【分析】根据三角形相似的判定方法一一判断即可. 【详解】解:A 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ; B 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ; C 、根据两边成比例夹角相等两三角形相似即可判定△ABC ∽△ADB ; D 、无法判断三角形相似. 故选:D . 【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.5.C解析:C 【分析】过D 作DG ∥AC 交BE 于G ,易证△BDG ∽△BCE ,△DGF ∽△AEF,利用三角形相似的性质即可解答. 【详解】解:过D 作DG ∥AC 交BE 于G , 则△BDG ∽△BCE , ∴DG BDCE BC=, ∵1BD BC n=, ∴1DG BD CE BC n==,∵1AE AC m =, ∴1m CE ACm -=, ∴DG=11m CE AC n mn-⋅= ∵DG ∥AC ,∴△DGF ∽△AEF ,∴111m AC DF DG m mn AF AE n AC m--===, ∴1AD m n AF n +-=,即1AF n AD m n =+-, 故选:C .【点睛】本题考查了相似三角形的判定与性质、比例性质,熟练掌握相似三角形的判定与性质,添加辅助线构造相似三角形是解答的关键.6.D解析:D【分析】直接利用相似图形的判定方法分别判断得出答案.【详解】解:①两个菱形不一定相似,因为对应角不一定相等;②两个矩形不一定相似,因为对应边不一定成比例;③两个平行四边形不一定相似,因为形状不一定相同;④两个正方形相似,正确.故选:D .【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.7.B解析:B分a>0与a<0两种情况,根据一次函数和反比例函数的图象与性质解答即可.【详解】解:当a>0时,y=|a|x+a=ax+a的图象在第一、二、三象限,ayx=的图象在第一、三象限,此时选项B正确;当a<0时,y=|a|x+a=﹣ax+a的图象在第一、三、四象限,ayx=的图象在第二、四象限,此时没有正确选项;故选:B.【点睛】本题考查了一次函数与反比例函数的图象与性质,属于常考题型,熟练掌握上述知识是解题关键.8.B解析:B【分析】利用反比例函数图象上点的坐标特征得到2(a-b)=-2,3(a-c)=-2,则a-b=-1<0,a-c=-2 3<0,再消去a得到-b+c=-13<0,然后比较a、b、c的大小关系.【详解】∵点A(a-b,2),B(a-c,3)在函数2y-x=的图象上,∴2(a-b)=-2,3(a-c)=-2,∴a-b=-1<0,a-c=-23<0,∴a<b,a<c,∵-b+c=-13<0,∴c<b,∴a<c<b.故选B.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.C解析:C【分析】由一次函数的性质和反比例函数的性质分析即可得到答案.∵一次函数y=﹣3x﹣2中,k=-3<0,b=-2<0∴一次函数y=﹣3x﹣2的图象经过第三象限,故选项A不符合题意;∵反比例函数y0,∴反比例函数y B不符合题意;∵一次函数yx+1中,0,b=1>0∴一次函数yx+1的图象经过第一、二、四象限,不经过第三象限,故选项C符合题意;∵一次函数y=3x+2中,k=3>0,b=2>0,∴一次函数y=3x+2的图象经过第一、二、三象限,故选项D不符合题意.故选:C.【点睛】此题主要考查了一次函数和反比例函数的图象和性质,熟记两类函数的各种性质是解题的关键.10.B解析:B【分析】先根据反比例函数的图像,判断k的符号,然后再判断一次函数的图像.【详解】A中,反比例函数经过一、三象限,故k>0,则一次函数应经过一、二、四象限,错误;B中,反比例函数经过一、三象限,故k>0,则一次函数应经过一、二、四象限,正确;C中,反比例函数经过二、四象限,故k<0,则一次函数应经过一、二、三象限,错误;D中,反比例函数经过二、四象限,故k<0,则一次函数应经过一、二、三象限,错误;故选:B.【点睛】本题考查一次函数与反比例函数图像的性质,解题关键是通过函数的系数符号,判断函数图象经过的象限.11.B解析:B【分析】先根据反比例函数kyx=的图象过二、四象限可知0k<,再根据一次函数的性质进行判断即可.【详解】解:反比例函数kyx=的图象过二、四象限,∴一次函数y kx k =+中,0k <,∴此函数的图象过二、三、四象限.故选:B .【点睛】本题考查的是反比例函数及一次函数的性质,根据反比例函数的图象判断出k 的取值范围是解答此题的关键.12.B解析:B【分析】 设,k A x x ⎛⎫ ⎪⎝⎭,根据A 是OB 的中点,可得22,k B x x ⎛⎫ ⎪⎝⎭,再根据BC OC ⊥,点D 在双曲线k y x =上,可得2,2k D x x ⎛⎫ ⎪⎝⎭,根据三角形面积公式列式求出k 的值即可. 【详解】 设,k A x x ⎛⎫ ⎪⎝⎭ ∵A 是OB 的中点 ∴22,k B x x ⎛⎫ ⎪⎝⎭∵BC OC ⊥,点D 在双曲线k y x =上 ∴2,2k D x x ⎛⎫ ⎪⎝⎭∴BOD 112322222k k S BD OC x k x x ∆⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ∵BOD 6S ∆= ∴3642k =÷= 故答案为:B .【点睛】 本题考查了反比例函数的几何问题,掌握反比例函数的性质、中点的性质、三角形面积公式是解题的关键.二、填空题13.【分析】由D1E1∥BC 可得△AD1E1∽△ABC 然后由相似三角形的对应边成比例证得继而求得D1E1的长又由D1D2=可得AD2=继而求得D2E2的长同理可求得D3E3的长于是可得出规律则可求得答案解析:10121()3- 【分析】由D 1E 1∥BC ,可得△AD 1E 1∽△ABC ,然后由相似三角形的对应边成比例,证得111D E AD BC AB =,继而求得D 1E 1的长,又由D 1D 2= 113D B ,可得AD 2= 59AB ,继而求得D 2E 2的长,同理可求得D 3E 3的长,于是可得出规律,则可求得答案.【详解】解:∵D 1E 1∥BC ,∴△AD 1E 1∽△ABC , ∴111D E AD BC AB=, ∵BC=1,AD 113AB =, ∴D 1E 113=, ∵D 1D 2=113D B , ∴AD 2= 59AB , 同理可得:22254211()993D E ==-=-, 3331921()273D E ==-, ∴21().3n n n D E =-∴101101D E =10121()3-. 故答案为:10121()3-.【点睛】 此题考查了相似三角形的判定与性质.得到规律21().3nn n D E =-是关键. 14.或【分析】(1)分别在中应用含角的直角三角形的性质以及勾股定理求得再根据垂直平分线的性质等边三角形的判定和性质等腰三角形的判定求得最后利用线段的和差即可求得答案;根据垂直平分线的性质全等三角形的判定 解析:6或285【分析】(1)分别在Rt ACB ∆、Rt BDF ∆、Rt DEF ∆中应用含30角的直角三角形的性质以及勾股定理求得1EF =,2DE =,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得2BE =,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得//DM CN ,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得125BE =,最后利用线段的和差即可求得答案.【详解】解:①当90AFN ∠=︒时,如图1:∵在Rt ACB ∆中,90C ∠=︒,4AC =,30ABC ∠=︒∴28AB AC == ∴2243BC AB AC∵90AFN DFB ∠=∠=︒,30ABC ∠=︒∴60FDB ∠=︒∵3==CD DB ∴132DF BD ==∴ 在Rt DEF △中,设EF x =,则22DE EF x == ∵222EF DF DE +=∴()22223x x -= ∴1x =∴1EF =,2DE =∵DM 垂直平分线段BN∴DBDN ∵60FDB ∠=︒ ∴BDN 是等边三角形∴30FDM EDB EBD ∠=∠=∠=︒∴2BE DE ==∴826=-=-=AE AB BE ;②当90ANF ∠=︒时,连接AD 、CN 交于点O ,过点E 作⊥EH DB 于H ,如图2:设EH x =,则3BH x =,233DH x = ∵DM 垂直平分线段BN ,点D 是BC 的中点∴CD DN BD ==∵AD AD = ∴()Rt ACD Rt AND HL ≌∵AC AN =∵CD DN =∴AD 垂直平分线段CN∴90AON ∠=︒∵CD DB =,MN BM =∴//DM CN∴90ADM AON ∠=∠=︒∵90ACD EHD ∠=∠=︒∴90ADC EDH ∠+∠=︒,90EDH DEH ∠+∠=︒∴∠=∠ADC DEH∴ACD DHE ∽ ∴AC CD DH EH = ∴23233=-x∴65x =∴1225==BE x ∴1228855=-=-=AE AB BE . ∴综上所述,满足条件的AE 的值为6或285. 故答案是:6或285【点睛】本题考查了垂直平分线的性质和判定、含30角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.15.或【分析】根据△PAD △PBC 都是直角三角形△PAD △PBC △PDC 两两相似利用相似三角形性质分类讨论即可;【详解】∵△PAD △PBC 都是直角三角形△PAD △PBC △PDC 两两相似∴△PDC 是直角三 解析:12a 或13a 【分析】 根据△PAD ,△PBC 都是直角三角形,△PAD ,△PBC ,△PDC 两两相似,利用相似三角形性质分类讨论即可;【详解】∵△PAD ,△PBC 都是直角三角形,△PAD ,△PBC ,△PDC 两两相似,∴△PDC 是直角三角形,当90DPC ∠=︒时,∴90APD BPC ∠+∠=︒,∵90BPC BCP ∠+∠=︒,∴APD BCP ∠=∠,∵90A B ∠=∠=︒,∴△△APD BCP ,当△△APD PDC 时,∴APD PDC ∠=∠,此时CD ∥AB ,90ADC ∠=︒,四边形ABCD 是矩形,∴AD=BC ,与题意矛盾,故不存在这种情况;当△△APD PCD 时,∴ADP PDC ∠=∠,APD PCD ∠=∠,∴PCD BCP ∠=∠,过点P 作PM CD ⊥于M ,∴90PMD A ∠=∠=︒,90PMC B ∠=∠=︒,在△PAD 和△PMD 中,A PMD ADP MDP PD PD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△△PAD PMD ≅,∴PA=PM ,在△PBC 和△PMC 中,B PMC BCP MCP CP CP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△△PBC PMC ≅,∴PB=PM , ∴12PA PB AB ==, ∵AB a , ∴12AP a =; 当90PDC ∠=︒时, 当△△△ADPDCP BCP 时,60APD DPC BPC ∠=∠=∠=︒,∴30ADP ∠=︒, ∴12AP PD =, 在△DPC 和△BPC 中,PDC B DPC BPC PC PC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△△DPC BPC ≅,∴PD=PB , ∴12AP PB =, ∴1133AP AB a ==; ∴AP 的长为12a 或13a . 【点睛】 本题主要考查了相似三角形的性质应用,结合全等三角形证明求解是解题的关键. 16.66【分析】设a=2kb=3kc=3k 代入求出k 值进而求得abc 然后代入所求代数式中求解即可【详解】解:由可设a=2kb=3kc=3k 代入得:4k+3k+3k=33解得:k=33∴a=66b=c=9解析:6.6【分析】设a=2k ,b=3k ,c=3k ,代入233a b c ++=,求出k 值,进而求得a 、b 、c ,然后代入所求代数式中求解即可.【详解】 解:由233a b c ==可设a=2k ,b=3k ,c=3k , 代入233a b c ++=得:4k+3k+3k=33,解得:k=3.3,∴a=6.6,b=c=9.9, ∴a b c -+=a =6.6,故答案为:6.6.【点睛】本题考查了比例的性质、代数式求值,熟练掌握比例的性质,巧妙设参是解答的关键. 17.k <2【分析】由反比例函数的图象位于第二四象限得出k-2<0即可得出结果【详解】解:∵反比例函数的图象位于第二四象限∴k-2<0∴k <2故答案为:k <2【点睛】本题考查了反比例函数的图象以及性质;熟解析:k <2.【分析】由反比例函数的图象位于第二、四象限,得出k-2<0,即可得出结果.【详解】解:∵反比例函数的图象位于第二、四象限,∴k-2<0,∴k <2,故答案为:k <2.【点睛】本题考查了反比例函数的图象以及性质;熟练掌握反比例函数的图象和性质,并能进行推理论证是解决问题的关键.18.﹣1<k <1【分析】根据函数值的大小关系判别函数的图象位置根据位置判定比例系数的大小再解不等式【详解】因为A (x1y1)B (x2y2)为函数图象上的两点且x1<0<x2y1>y2所以函数图象分支在二解析:﹣1<k <1【分析】根据函数值的大小关系,判别函数的图象位置,根据位置判定比例系数的大小,再解不等式.【详解】因为A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2, 所以函数图象分支在二、四象限所以k 2-1<0解得﹣1<k <1故答案为:﹣1<k <1【点睛】考核知识点:反比例函数的图象.数形结合,熟记反比例函数的性质是关键.19.-1【分析】将点A (-12)代入反比例函数即可求出m 的值【详解】将点A (-12)代入反比例函数得解得m=-1;故答案为:-1【点睛】本题考查了反比例函数图象上点的坐标特征所有在反比例函数上的点的横纵解析:-1【分析】将点A (-1,2)代入反比例函数1m y x -=即可求出m 的值. 【详解】将点A (-1,2)代入反比例函数1m y x-=,得 121m -=-, 解得,m=-1;故答案为:-1.【点睛】本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.20.-4【分析】先求出点A 的坐标然后表示出AOBO 的长度根据AO=3BO 求出点C 的横坐标代入直线解析式求出纵坐标用待定系数法求出反比例函数解析式【详解】解:∵直线与y 轴的交点A 的坐标为∴∵∴轴∴点C 的横解析:-4【分析】先求出点A 的坐标,然后表示出AO 、BO 的长度,根据AO=3BO ,求出点C 的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.【详解】解:∵直线3y x =-+与y 轴的交点A 的坐标为()0,3,∴3AO =.∵3AO BO =,∴1BO =,CB x ⊥轴∴点C 的横坐标为1-.把1x =-代入3y x =-+,得()134y =--+=,∴点C 的坐标为()1,4-,把()1,4C -代入k y x=,得4k =-. 故答案是:-4.【点睛】 本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C 的横坐标并求出纵坐标是解题的关键.三、解答题21.(1)()121P m n +-,,作图见解析;(2) ()222P m n ,,作图见解析;(3)能关于某一点Q 为位似中心的位似图形,Q (4,-2).【分析】(1)根据平移规律,画出111,,A B O 即可;(2)根据位似图形的性质,画出△22OA B 即可;(3)对应点连线的交点即为位似中心;【详解】解:(1)△111O A B 如图所示,1P (m+2,n-1);(2)△22OA B 如图所示,2P (2m ,2n ).(3)能关于某一点Q 为位似中心的位似图形,Q (4,-2);【点睛】本题考查作图-位似变换,作图-平移变换等知识,解题的关键是熟练掌握位似变换、平移变换的性质,属于中考常考题型.22.(1)证明见解析;(2)43【分析】(1)证明DCF BCE H ∠=∠=∠,即可解决问题;(2)连接AC ,由菱形的性质可得△ABC 和△ADC 是等边三角形,利用等边三角形三线合一的性质可CF ,再利用勾股定理求出HF 即可解决问题.【详解】解:(1)证明:∵四边形ABCD 是菱形∴//CD CB D B CD AB =∠=∠,,∵DF BE =∴(CDF )CBE SAS ∆≅∆∴DCF BCE ∠=∠∵//CD AB∴H DCF ∠=∠∴BCE H ∠=∠∵B B ∠=∠∴BEC BCH ∆∆∽(2)连接AC ,如图所示,∵四边形ABCD 是菱形∴∠B=∠D=60°,∠DAB=120°,AB=BC=CD=DA=4,∴△ABC 和△ADC 是等边三角形,∴∠BAC=∠DAC=60°∵E 是边AB 的中点∴AE=BE=2∴DF=BE=2∴AF=DF=2∴CF ⊥AD ∴22224223CF AC AF =--=∵∠DAB=120°,∴∠HAF=60°,∠AHF=30°∴AH=2AF=4∴22224223AH AF --=∴CH=CF+HF=3233【点睛】本题考查了相似三角形的判定与性质、等边三角形的判定与性质以及勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.8y x=,见解析【分析】把()2,m 代入2y x =求出m 的值,利用待定系数法即可求解.【详解】 解:由题意,反比例函数k y x =的图象与正比例函数2y x =的图象交于点()2,m , 则()2,m 在2y x =上,∴224m =⨯=,又∵()2,m 在k y x =上, ∴28k m ==,∴反比例函数的表达式:8y x=, 函数图象如图: .【点睛】本题考查反比例函数与一次函数的交点,掌握待定系数法求解析式是解题的关键. 24.(1)12;(2)13【分析】(1)根据点A 坐标求出函数表达式及点C 坐标,再求出点D 坐标,然后根据坐标计算面积即可;(2)先求出BE 得到点B 的纵坐标,再利用表达式求出横坐标,从而计算即可.【详解】解:(1)∵函数()0k y x x =>的图象经过点A(1,2), ∴21k =,即2k =, ∴2y x=, ∵//AC y 轴,1AC =,∴点C 的坐标为(1,1),∵//CD x 轴,点D 在函数图象上,∴点D 的坐标为(2,1),∴CD=1, ∴111122OCD S =⨯⨯=△; (2)∵12BE AC =, ∴12BE =, ∵BE CD ⊥,∴点B 的纵坐标是32, ∴点B 的横坐标是43, ∴41133CE =-=. 【点睛】本题考查了反比例函数的应用,熟练掌握待定系数法求表达式及特殊点的坐标特征是解题的关键.25.(1)x≠0;(2)103;103;(3)画图见解析;(4)①x 1=﹣2,x 2=﹣12;②函数图象在第一、三象限且关于原点对称;③t<-2或t >2.【分析】(1)由x 在分母上,可得出x≠0;(2)代入x=13、3求出m 、n 的值; (3)连点成线,画出函数图象;(4)①代入y=52,求出x 值; ②观察函数图象,写出一条函数性质;③观察函数图象,找出当x+1x=t有两个相等的实数根时t的取值范围(亦可用根的判别式去求解).【详解】解:(1)∵x在分母上,∴x≠0.故答案为:x≠0.(2)当13x=时,1103y xx=+=;当x=3时,1103y xx=+=.故答案为:103,103.(3)连点成线,画出函数图象.(4)①当52y=-时,有152xx+=-,解得:x1=﹣2,x2=12 -,经检验,x1=﹣2,x2=12-是原方程的根.故答案为:-2,12 -.②观察函数图象,可知:函数图象在第一、三象限且关于原点对称.故答案为:函数图象在第一、三象限且关于原点对称.③∵1x tx+=有两个不相等的实数根,∴t<﹣2或t>2.故答案为:t=-2或t=2.【点睛】本题考查了反比例函数的性质、反比例函数的图象、正比例函数的性质以及正比例函数图象,数形结合解题的关键26.(1)平行四边形ABCD 的面积为24;(2)见解析.【分析】(1)由平行四边形的性质可得对边相等,对边分别平行,从而可判定△DEF ∽△ABF ,△DEF ∽△CEB ,从而可得相似比,利用相似三角形的面积比等于相似比的平方及△DEF 的面积为2,可求得答案.(2)由AD ∥BC ,AB ∥DC ,分别判定△AOF ∽△COB ,△ABO ∽△CEO ,从而可得比例式,等量代换,再变形即可得出结论.【详解】解:(1)四边形ABCD 是平行四边形,AB CD ∴=, 12DE CD =, ∴21AB CD DE DE ==, 四边形ABCD 是平行四边形,//AB DC ∴,DEF ABF ∴∆∆∽,∴24()1ABF DEF S AB S DE ∆∆==, 又2DEF S ∆=,8ABF S ∆∴=;四边形ABCD 是平行四边形, //AD BC ∴,DEF CEB ∴∆∆∽,∴2211()()39DEF CBE S DE S CE ∆∆===, 9218CBE S ∆∴=⨯=,18216CBE DEF BCDF S S S ∆∆∴=-=-=四边形,∴平行四边形ABCD 的面积为:81624+=.(2)证明://AD BC ,AOF COB ∴∆∆∽,∴AO OF CO OB=, //AB DC ,ABO CEO ∴∆∆∽,∴AO OB CO OE=,∴OF OB OB OE=,2·OB OE OF∴=.【点睛】本题考查了平行四边形的性质与相似三角形的判定与性质等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.。

【鲁教版】九年级数学下期中一模试卷含答案(1)

【鲁教版】九年级数学下期中一模试卷含答案(1)

一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:42.下列各组线段的长度成比例的是( ) A .2cm ,4cm ,6cm ,8cm B .10cm ,20cm ,30cm ,40cm C .2.2cm ,3.3cm ,5cm ,8cmD .20cm ,30cm ,60cm ,40cm3.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE :S △CDE 的值是( ).A .1:2B .1:3C .1:4D .2:54.已知如图,DE 是△ABC 的中位线,AF 是BC 边上的中线,DE 、AF 交于点O .现有以下结论:①DE ∥BC ;②OD =14BC ;③AO =FO ;④AODS =14ABCS.其中正确结论的个数为( )A .1B .2C .3D .45.如图,△ABC 、△FGH 中,D 、E 两点分别在AB 、AC 上,F 点在DE 上,G 、H 两点在BC 上,且DE ∥BC ,FG ∥AB ,FH ∥AC ,若BG :GH :HC=4:6:5,则△ADE 与△FGH 的面积比为何?( )A .2:1B .3:2C .5:2D .9:4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案6.如图,已知在ABC ∆中,点D 、E 分别是AB 和AC 的中点,BE 、CD 相交于点O ,若2DOE S ∆=,则BOC S ∆=( )A .4B .6C .8D .107.下列式子中表示y 是x 的反比例函数的是( ) A .24y x =-B .y=5x 2C .y=21xD .y=13x8.已知反比例函数ky x=的图像过点(2,3)-,那么下列各点也在该函数图像上的是( ) A .(2,3)B .(2,3)--C .(1,6)D .(6,1)-9.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( )A .120x x <B .130x x <C .230x x <D .120x x +<10.如图,反比例函数ky x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .1211.已知(5,-1)是双曲线(0)ky k x=≠上的一点,则下列各点中不在该图象上的是( ) A .1(,15)3-B .(5,1)C .(1,5)-D .1(10,)2-12.如图,直线y =x +2与y 轴交于点A ,与直线y =﹣3x +10交于点B ,P 是线段AB 的中点,已知反比例函数y =kx的图象经过点P ,则k 的值为( )A .1B .3C .6D .8二、填空题13.贺哲同学的身高1.86米,影子长3米,同一时刻金老师的影子长2.7米,则金老师的身高为________米(结果保留两位小数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2
B
C
D
A
O
2011-2012学年度第二学期期中考试八年级
数学试题
一、选择题(每小题只有一个正确选项,将答案填在题后面答题栏内对应位置。

) 1、等腰三角形底边上的高与底边的比是1∶2,则它的顶角等于( ) A 、60° B 、90° C 、120° D 、150° 2.如图,要使ABCD 成为矩形,需添加的条件是( ) A .AB BC = B .AC BD ⊥ C .90ABC ∠=° D .12∠=∠
3、如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,若BD 、AC 的和为cm 18,
CD :DA=2:3,△AOB 的周长为cm 13,那么BC 的长是( ) A cm 6 B cm 9 C cm 3 D cm 12 4、下列命题中不成立...的是( ) A .矩形的对角线相等
B .三边对应相等的两个三角形全等
C .两个相似三角形面积的比等于其相似比的平方
D .一组对边平行,另一组对边相等的四边形一定是平行四边形
5、给出下列命题:①平行四边形的对角线互相平分;②对角线互相平分的四边形
是平行四边形;③菱形的对角线互相垂直;④对角线互相垂直的四边形是菱形。

其中真命题的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个
6、顺次连接梯形四边中点得到的四边形是矩形,则梯形应满足( ) A.等腰梯形 B 直角梯形 C 对角线互相垂直 D 对角线相等且垂直
7、用两个全等的直角三角形拼成下列图形:①平行四边形;②矩形;③菱形;④正方形 ⑤等腰三角形⑥等边三角形,其中一定可以拼成的图形是 ( ) A. ①④⑤ B. ②⑤⑥ C. ①②③ D. ①②⑤
8、△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,CD ⊥AB 于点D 若BC=a ,则CD 等于( ) A.
21
a B.
23a C.2
3
a D. 3a 9、为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,
2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为,根据题意所列方程为( ) A .
B .
C .
D .
10、若关于的一元二次方程有两个不相等的实数根,则的
取值范围是
(A)
(B)

(c) (D) 且
11、用配方法解方程时,原方程应变形为( )
A .
B .

2题图 第3题图
A
B
C
D
O
班级: 姓名: 考号:
C .
D .
12、方程的两个根是等腰三角形的底和腰,则这个三角形的周长为()
A.12 B.12或15 C.15 D.不能确定
选择题答题栏:
二、填空题:
13、把方程(1-2x)(1+2x)=2x2-1化为一般形式:
14、等腰△ABC底边上任意一点D,AB=AC=5cm,过D作DE∥AC交AB于E,DF∥AB 交AC于F,则四边形AEDF的周长为
15、已知方程230
x x k
-+=有两个相等的实数根,则k=
16、已知x1、x2是方程x2+6x+3=0的两实数根,则
2
1
1
1
x
x
+的值为.
17、BD是平行四边形ABCD的对角线,点E、F在
BD上,要使四边形AECF是平行四边形,
还需要增加的一个条件是___________.
三、解答题
18、(1) 解一元二次方程:0
3
2
32=
-
+
-)
(
)
(x
x
x
(2)用配方法解一元二次方程:x
x3
1
22=
+
19、如图:四边形ABCD是平行四边形,AE=CF,AE、CF分别为∠BAD、∠BCD
的角平分线.
求证:四边形BEDF是平行四边形


线





20、关于x 的方程04
22=+++k
x k kx )(有两个不相等的实数根.
(1)求k 的取值范围。

(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由
21、已知正方形ABCD 的边AD 上一点,连接BE 过点A 作AH ⊥BE ,垂足为H ,延长交CD 于点F ,求证:DE=CF
22、某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:
(1)该企业每年盈利的年增长率是多少? (2)该企业从2006年至2008年总盈利多少万元?
班级: 姓名: 考号:
23、如图l -3-32,已知在等腰梯形ABCD 中,AD ∥BC . ⑴若AD =5,BC =11,梯形的高是4,求梯形的周长; ⑵若AD=3,BC=7,BD=5 2 ,求证AC ⊥BD .
(备用图)
24、已知:在△ABC 中,AB=AC=a ,M 为底边BC 上任意一点,过点M 分别作AB 、AC 的平行线交AC 于P ,交AB 于Q. (1)求四边形AQMP 的周长;
(2)写出图中的两对相似三角形(不需证明);
(3)M 位于BC 的什么位置时,四边形AQMP 为菱形?说明你的理由

封线内禁止
作答。

相关文档
最新文档