专题10 四边形-2017版[中考15年]深圳市2002-2016年中考数学试题分项解析(解析版)
专题10 二次函数与四边形的综合-中考数学函数考点全突破
一、考点分析:二次函数的综合题中在第二三小问比较常考到四边形的问题,这类题目主要考察两种题型:1.四边形的面积最值问题 2.特殊平行四边形的存在性问题,这类包括平行四边形,矩形菱形等。
二、解决此类题目的基本步骤与思路1.四边形面积最值问题的处理方法:核心步骤:对于普通四边形要转化成两个三角形进行研究,然后用求三角形面积最值问题的方法来求解2对于特殊平行四边形问题要先分类,(按照边和对角线进行分类)3.画图,(画出大致的平行四边形的样子,抓住目标点坐标)4. 计算(利用平行四边形的性质以及全等三角形的性质)三、针对于计算的方法选择1.全等三角形抓住对应边对应角的相等2.在利用点坐标进行长度的表示时要利用两点间距离公式3.平行四边形的对应边相等列相关的等式4.利用平行四边形的对角线的交点从而找出四个点坐标之间的关系X A+X C=X B+X D Y A+Y C=Y B+Y D (利用P是中点,以及中点坐标公式)A(x1,y1)、B(x2,y2),那么AB中点坐标就是(,)处理矩形菱形的方法与平行四边形方法类似注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想 3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
四、二次函数问题中四边形面积最值问题1.如图,已知抛物线213y x bx c =++经过ABC V 的三个顶点,其中点(0,1)A ,点(9,10)B -,//AC x 轴,点P 是直线AC 下方抛物线上的一个动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;【解析】:(1)用待定系数法求出抛物线解析式即可;(2)设点P (m , m2+2m+1),表示出PE=﹣m2﹣3m ,再用S 四边形AECP=S △AEC+S △APC=AC ×PE ,建立函数关系式,求出最大值即可设点P (m ,m 2+2m+1)∴E(m ,-m+1)∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是此时点P(﹣,﹣). *网2.抛物线y=-x2+6x交x轴正半轴于点A,顶点为M,对称轴MB交x轴于点B,过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD的延长线于点F,作直线MF.(1)求点A,M的坐标;(2)当BD为何值时,点F恰好落在该抛物线上?(3)当BD=1时,①求直线MF的表达式,并判断点A是否落在该直线上;②延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1,S2,S3,则S1∶S2∶S3=__3∶4∶8__.解:(1)令y=0,则-x2+6x=0,解得x1=0,x2=6,∴A(6,0),∴对称轴是直线x=3,∴M(3,9);(3)①当BD=1时,BE=3,∴F(5,3).设MF 的表达式为y =kx +b ,将M (3,9),F (5,3)代入, 得⎩⎪⎨⎪⎧9=3k +b ,3=5k +b ,解得⎩⎪⎨⎪⎧k =-3,b =18, ∴y =-3x +18.∵当x =6时,y =-3×6+18=0, ∴点A 落在直线MF 上; ②∵BD =1,BC =1, ∴△BDC 为等腰直角三角形, ∴△OBE 为等腰直角三角形,五、二次函数中特殊平行四边形的存在性问题(一)例题演示已知:如图,在平面直角坐标系xOy 中,直线与x 轴、y 轴的交点分别为A 、B ,将∠OBA 对折,使点O 的对应点H 落在直线AB 上,折痕交x 轴于点C . (1)直接写出点C 的坐标,并求过A 、B 、C 三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;【解析】:(1)点A的坐标是纵坐标为0,得横坐标为8,所以点A的坐标为(8,0);点B的坐标是横坐标为0,解得纵坐标为6,所以点B的坐标为(0,6);由题意得:BC是∠ABO的角平分线,所以OC=CH,BH=OB=6。
广东省深圳市2017年中考数学真题试题(含扫描答案)
深圳市2017年初中毕业生学业考试数学试题解析第Ⅰ卷(共60分)一、选择题1.-2的绝对值是( )A .-2B .2C .12-D .12 2.图中立体图形的主视图是( )A .B .C .D .3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( )A .58.210⨯B .58210⨯C .68.210⨯D .78210⨯ 4.观察下列图形,其中既是轴对称又是中心对称图形的是( ) A . B . C . D .5.下列选项中,哪个不可以..得到12//l l ?( )A .12∠=∠B .23∠=∠C . 35∠=∠D .34180∠+∠=o6.不等式组32521x x -<⎧⎨-<⎩的解集为( ) A .1x >- B .3x < C .1x <-或3x > D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%330x =B .(110%)330x -=C . 2(110%)330x -=D .(110%)330x +=8.如图,已知线段AB ,分别以A B 、为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得25CAB ∠=o ,延长AC 至M ,求BCM ∠的度数为( )A .40oB .50oC . 60oD .70o9.下列哪一个是假命题( )A .五边形外角和为360oB .切线垂直于经过切点的半径C . (3,2)-关于y 轴的对称点为(3,2)-D .抛物线242017y x x =-+对称轴为直线2x =10.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60o,然后在坡顶D 测得树顶B 的仰角为30o ,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA .203.30 C . 303 D .4012.如图,正方形ABCD 的边长是3,BP CQ =,连接,AQ DP 交于点O ,并分别与边,CD BC 交于点,F E ,连接AE .下列结论:①AQ DP ⊥;②2OA OE OP =g ;③AOD OECF S S ∆=四边形;④当1BP =时,13tan 16OAE ∠=.其中正确结论的个数是( )A .1B .2C .3D .4二、填空题13.因式分解:34a a -= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 . 15.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知21i =-,那么(1)(1)i i +-=g .16.如图,在Rt ABC ∆中,90ABC ∠=o ,3AB =,4BC =,Rt MPN ∆,90MPN ∠=o ,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP = .三、解答题17.计算222|2cos45(1)8--+-o18.先化简,再求值:22()224x x x x x x +÷-+-,其中1x =-. 19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车等,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型频数 频率 A30 x B18 0.15 Cm 0.40 D n y(1)学生共__________人,x =__________,y =__________;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有___________人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图一次函数y kx b =+与反比例函数(0)m y x x=>交于(2,4)A 、(,1)B a ,与x 轴,y 轴分别交于点C D 、.(1)直接写出一次函数y kx b =+的表达式和反比例函数(0)m y x x=>的表达式;(2)求证:AD BC =. 22.如图,线段AB 是O e 的直径,弦CD AB ⊥于点H ,点M 是弧CBD 上任意一点,2,4AH CH ==.(1)求O e 的半径r 的长度;(2)求sin CMD ∠;(3)直线BM 交直线CD 于点E ,直线MH 交O e 于点N ,连接BN 交CE 于点F ,求HE HF g 的值.23.如图,抛物线22y ax bx =++经过点(1,0),(4,0)A B -,交y 轴于点C :(1)求抛物线的解析式(用一般式表示).(2)点D为y轴右侧抛物线上一点,是否存在点D使23ABC ABDS S∆∆=,若存在请直接给出点D坐标;若不存在请说明理由.(3)将直线BC绕点B顺时针旋转45o,与抛物线交于另一点E,求BE的长.。
(部编版)2020年中考数学试题分项版解析汇编第期专题10四边形含解析6
专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( ) A . 6 B . 12 C. 16 D .18 【答案】B. 【解析】试题分析:设多边形的边数为n,则有(n-2)×180°=n ×150°,解得:n=12.故选B. 考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C.AC BD = D .12∠=∠ 【答案】C.考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20 【答案】D 【解析】试题分析:根据菱形的对角线互相垂直,可知OA=3,OB=4,根据勾股定理可知AB=5,所以菱形的周长为4×5=20. 故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn的值为( ) A .22 B .21C .215-D .随H 点位置的变化而变化【答案】B 【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m=8a , 设CM=x ,DE=y ,则DM=2a-x ,EM=2a-y , ∵∠EMG=90°, ∴∠DME+∠CMG=90°. ∵∠DME+∠DEM=90°, ∴∠DEM=∠CMG ,又∵∠D=∠C=90°△DEM ∽△CMG , ∴CG CM MGDM DE EM==,即22CG x MG a x y a y ==-- ∴CG=(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM+CG+MG=24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a-x )2+y 2=(2a-y )2整理得4ax-x 2=4ay∴CM+MG+CG=2444ax x aya y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( ) A .四边形 B .五边形 C .六边形 D .八边形 【答案】C 【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n-2)·180°=720°,解得n=6,故是六边形. 故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD CD =,则四边形AEDF 是菱形 D .若AD 平分BAC ∠,则四边形AEDF 是菱形 【答案】D 【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形. 若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误; 若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误; 若BD=CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误; 若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721 D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则ta n B D E ∠的值是 ( )A B .14 C .13D【答案】A. 【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DFEB EF BF==,因点E 是边BC 的中点且AD=BC,所以AD AF DFEB EF BF===2,设EF=x ,可得AF=2x ,在Rt △ABE 中,由射影定理可得 ,再由AD AF DFEB EF BF ===2可得,在Rt △DEF 中,tan BDE ∠=4EF DF ==,故选A. 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A ...8【答案】A. 【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点4AF EF EL ∴==∴=,P 是F E 的中点,2PK ∴=DH =1PP CD ∴=高为82S ∴==L K H故答案选A.考点:平行四边形的面积,三角函数.10.(2017江苏苏州第7题)如图,在正五边形CDAB E中,连接BE,则∠ABE的度数为A.30 B.36 C.54 D.72【答案】B.【解析】试题分析:∠ABE=3601=3652︒⨯︒故答案选B.考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题)如图,矩形EFGH的四个顶点分别在菱形ABCD的四条边上,BE BF=,将,AEH CFG∆∆分别沿,EH FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的116时,则AEEB为()A.53B.2 C.52D.4【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题) 二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【解析】试题分析:连结AC,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG的边长分别为3和1,根据勾股定理可求得,AC=3,即可得AE=2,因P 为AE 的中点,可得,再由正方形的性质可得GM=EM=2,FG 垂直于AC ,在Rt △PGM 中,PM=2 ,由勾股定理即可求得2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB 等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.DC3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③ 【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)A C B OB ∴=,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODFBDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40),F CF OC CFO COF ∴=<∴∠>∠,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似. 则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1,22FG OB FG OB ∴==D E 、 是OB 的三等分点,DE ∴=1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯=解得:1162AN OB=,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确133OD OB == ,故④错误.综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70° 【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70° 考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24 【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA=OC ,OB=OD=12BD=5,CD=AB=4,由sin ∠BDC=35,证出AC⊥CD ,OC=3,AC=2OC=6,得出▱ABCD 的面积=CD•AC=24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD=32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH=EH ,设AH=x ,则DH=EH=8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x=3,即可得AH=3,EH=5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EHBE BF EF==,即3452BF EF ==,解得BF=83 ,EF=103 ,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA+PE 的最小值是 .9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】5. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB=BG=EF=CD=5,AD=GF=3,在Rt △BCG 中,根据勾股定理求得CG=4,再由1122BCGSBC CG BG CM =⋅=⋅,即可求得CM=125,在Rt △BCM 中,根据勾股定理求得95==,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE=MN=3,BM=EN=95,所以CN=MN-CM=3-125=35,在Rt △ECN 中,根据勾股定理求得===.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】5. 【解析】试题分析:连接AG,设DG=x,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC ==''CC BB ∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB,已知菱形的周长为cm 24,根据菱形的性质可得AB=6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE=33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和 三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 , ∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 .考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长.【答案】(1)证明见解析.(2【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解. 本题解析:(1)证明:∵E 为AD 中点,AD=2BC,∴BC=ED, ∵AD ∥BC, ∴四边形ABCD 是平行四边形,∵AD=2BE, ∠ABD=90°,AE=DE ∴BE=ED, ∴四边形ABCD 是菱形.(2)∵AD ∥BC,AC 平分∠BAD ∴∠BAC=∠DAC=∠BCA,∴BA=BC=1, ∵AD=2BC=2,∴sin ∠ADB=12,∠ADB=30°, ∴∠DAC=30°, ∠ADC=60°.在RT △ACD 中,AD=2,CD=1,考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A . (1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ,1);(2)1;(3)33(,22-或3(,22. 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A 的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB=2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B ,∴根据题意,由折叠的性质可得△A ’OP ≌△AOP.∴OA ’由OB B A ⊥',得∠A ’BO=90°.在Rt △A ’OB 中,'A B =∴点A ,1).(2) 在Rt △AOB 中,∴2AB ==∵当P 为AB 中点, ∴AP=BP=1,OP=12AB=1. ∴OP=OB=BP,∴△BOP 是等边三角形 ∴∠BOP=∠BPO=60°, ∴∠OPA=180°-∠BPO=120°. 由(1)知,△A ’OP ≌△AOP , ∴∠OPA’=∠OPA =120°,P ’A=PA=1, 又OB=PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B=OP=1.(3)33(22或3(,22. 4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若AP =CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF=4【解析】试题分析:(Ⅰ)分情况CP=CD 、PD=PC 、DP=DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由 ,从而可得 .试题解析:(Ⅰ)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2)当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3)当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC =,185=,∴PC=2CQ =365 ,∴AP=AC-PC=145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC=∠PDF=90°,即∠ADP+∠PDC=∠PDC+∠CDF ,∴∠ADP=∠CDF ,∵∠BCD=90°,OE=OD ,∴OC=12 ED ,在矩形PEFD 中,PF=DE ,∴OC=12PF ,∵OP=OF=12PF ,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,又∵∠OPC +∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,即∠PCD+∠FCD=90°,在Rt △ADC 中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD ,∴△ADP ∽△CDF ,∴34C F C DA P A D==, ,∴CF=4 .5.(2017广东广州第24题)如图13,矩形ABCD的对角线AC,BD相交于点O,COD∆关于CD的对称图形为CED∆.(1)求证:四边形OCED是菱形;(2)连接AE,若6cmAB=,BC=.①求sin EAD∠的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1/cm s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动.当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【答案】(1)详见解析;(2)①2sin3EAD∠=②32AP=和Q走完全程所需时间为32s【解析】(2)①连接OE ,直线OE分别交AB于点F ,交DC于点G COD∆关于CD的对称图形为CED∆,OE DC DC AB∴⊥,OF AB EF AD∴⊥在矩形ABCD中,G为DC的中点,且O为AC的中点OG∴为CAD∆的中位线OG GE∴==同理可得:F为AB的中点,3OF AF==92AE∴===32sin sin932EAD AEFEAD AEF∠=∠∴∠=∠==②过点P作PM AB⊥交AB于点MQ∴由O运动到P所需的时间为3s由①可得,23AM AP=∴点O以1.5/cm s的速度从P到A所需的时间等于以1/cm s从M运动到A即:11OP PAOP MAt t t OP MA=+=+=+Q∴由O运动到P所需的时间就是OP+MA和最小.如下图,当P运动到1P ,即1PO AB时,所用时间最短.3t OP MA∴=+=在11Rt APM∆中,设112,3AM x AP x==222221111(3)=(2)AP AM PM x x=+∴解得:12x=32AP∴=32AP∴=和Q走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置 6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。
2017年深圳市中考数学试卷含答案解析(Word版)
2017年广东省深圳市中考数学试卷'、选择题1.-2的绝对值是(A. - 2 B . 2 C. - D.2.图中立体图形的主视图是(3.随看“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为(5 A . 8.2 X 1055 6 7B . 82 X 105C . 8.2 X 106D . 82X1074.观察下列图形,其中既是轴对称又是中心对称图形的是(5.下列选项中,哪个不可以得到11 // 12?( )B .D. C.D.A. / 1= Z 2B. Z 2= Z 3C .Z 3= Z 5D . Z 3+ Z 4=180 °6.不等式组1Sift MJb... 的解集为7.—球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A. 10%x=330B.(1 —10%)x=330C. (1 —10%)2x=330 D . (1+10% )x=3308如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧,dpql的交点得到直线I,在直线I上取一点C,使得/ CAB=25 ° ,延长AC至M,求/ BCM的度数为()A. 40 °B. 50 ° C . 60 ° D . 70 °9 •下列哪一个是假命题()A •五边形外角和为360 °B•切线垂直于经过切点的半径C.(3, —2)关于y轴的对称点为(-3, 2)D .抛物线y=x2—4x+2017对称轴为直线x=210 .某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A .平均数B .中位数C .众数D .方差11•如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点CB 60 ° D B 30 °处测得树顶的仰角为,然后在坡顶测得树顶的仰角为,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m .A. 20豳・B. 30C. 30 逐D. 4012 •如图,正方形ABCD的边长是3, BP=CQ,连接AQ , DP交于点O,并分别与边CD , BC交于点F , E,连接AE,下列结论:①AQ丄DP :②OA 2=OE?OP ;③S△ AOD=S四边形OECF;④当BP=1时,tan Z OAE= ,其中正确结论的个数是()二、填空题313 .因式分解:a - 4a=14 .在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是15 •阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=- 1,那么(1+i) ? (1 - i)=16 .如图,在Rt△ ABC 中,Z ABC=90 ° , AB=3 , BC=4 , Rt△ MPN , Z MPN=90点P在AC上,PM交AB于点E, PN交BC于点F,当PE=2PF时,AP=二、解答题17 •计算:一 -2 - 2cos45 ° (- 1)—2+ _ .裨| +诉:18.先化简,再求值:(,其中x= - 1 .19 .深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y20 .一个矩形周长为56厘米.(1) 当矩形面积为180平方厘米时,长宽分别为多少?(2) 能围成面积为200平方米的矩形吗?请说明理由.21 .如图,一次函数y=kx +b与反比例函数y= ' (x>0)交于A (2, 4), B (a, X1), 与x轴,y轴分别交于点C , D.(1)直接写出一次函数y=kx +b的表达式和反比例函数y= (x>0)的表达式;CD丄AB于点H,点M是i上任意一(1 )求。
2024年中考数学二次函数压轴题专题10平行四边形的存在性问题(学生版)
专题10平行四边形的存在性问题_、知识导航考虑到求证平行四边形存在,必先了解平行四边形性质:(1) 对应边平行且相等;(2) 对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:x A -x B =x D - x cy A -y B = yD-y c可以理解为点B 移动到点A,点。
移动到点O,移动路径完全相同.(2)对角线互相平分转化为:\ z 乙,、2 一 2可以理解为AC 的中点也是BQ 的中点.D【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:X A~X B =X D~ X C -y B = yD-y c + x c = + X by A + % = % + 为x A +x c ^x B +x D2 _ 2 \X A +X C=X B +X D总 + % 二 % + 北 U a + %=% + %、2 — 2当AC 和BQ 为对角线时,结果可简记为:A+C = B + D (各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系 中的4个点A 、B 、。
、D 满足"A+O8+ZT,则四边形ABCQ 是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCQ 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化, 故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1) 四边形A8CQ 是平行四边形:AC. BQ 一定是对角线.(2) 以A 、B 、。
、。
四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类问题.1.三定一动已知A (1, 2) B (5, 3) C (3, 5),在坐标系内确定点。
使得以A 、B 、。
、。
四个点为顶点的四边形是 平行四边形.思路1:利用对角线互相平分,分类讨论:设。
专题10 四边形-2017版[中考15年]上海市2002-2016年中考数学试题分项解析(解析版)
1.(上海市2006年4分)在下列命题中,真命题是【 】 A .两条对角线相等的四边形是矩形; B .两条对角线互相垂直的四边形是菱形; C .两条对角线互相平分的四边形是平行四边形; D .两条对角线互相垂直且相等的四边形是正方形。
【答案】D 。
2.(上海市2007年4分)已知四边形ABCD 中,90A B C ===∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是【 】 A .90D =∠B .AB CD =C .AD BC =D .BC CD =【答案】D 。
【考点】正方形的判定。
【分析】由∠A=∠B=∠C=90°可判定为矩形,因此再添加条件:一组邻边相等,即可判定为正方形。
故选D 。
3.(上海市2011年4分)矩形ABCD 中,AB =8,BC =,点P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是【 】.(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.【答案】C。
4.(2013年上海市4分)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是【】(A)∠BDC =∠BCD (B)∠ABC =∠DAB (C)∠ADB =∠DAC (D)∠AOB =∠BOC【答案】C。
【考点】等腰梯形的判定,平行的性质,等腰三角形的判定。
【分析】根据等腰梯形的判定,逐一作出判断:A.由∠BDC =∠BCD只能判断△BCD是等腰三角形,而不能判断梯形ABCD是等腰梯形;B.由∠ABC =∠DAB和AD∥BC,可得∠ABC =∠DAB=900,是直角梯形,而不能判断梯形ABCD是等腰梯形;5.(上海市2014年4分)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.【答案】B.【解析】1.(上海市2002年2分)已知AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连结DE、DF,在不再连结其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是▲ .【答案】AB=AC或∠B=∠C或AE=AF。
专题10四边形-2017年中考数学试题分项版解析汇编(解析版)
端点 C , D 重合) ,折痕交 AD 于点 E ,交 BC 于点 F ,边 AB 折叠后与边 BC 交于点 G ,设正方形 ABCD
的周长为 m , CHG 的周长为 n ,则 n 的值为(
)
m
2
A.
2
1
B.
2
51
C.
2
D .随 H 点位置的变化而变化
【答案】 B 【解析】 试题分析:设正方形 ABCD 的边长为 2a,正方形的周长为 m=8a, 设 CM =x,DE=y,则 DM =2a-x, EM=2a-y, ∵∠ EMG =90°, ∴∠ DME +∠ CMG =90°. ∵∠ DME +∠ DEM =90°, ∴∠ DEM =∠ CMG , 又∵∠ D=∠ C=90°△ DEM ∽△ CMG ,
考点 :1、圆周角性质定理, 2、等腰三角形性质
7.(2017 山东滨州第 16 题 )如图, 将矩形 ABCD 沿 GH 对折, 点 C 落在 Q 处,点 D 落在 AB 边上的 E 处,EQ
与 BC 相交于点 F .若 AD= 8, AB= 6, AE =4,则 △EBF 周长的大小为 ___________.
F 沿点 到点 的方向平移,得到
中点,当点 与点 重合时,四边形
CD 的面积为
F .设 、 分别是 F 、 F 的
A . 28 3
B . 24 3
C. 32 3
D . 32 3 8
【答案】 A. 【解析】
试题分析:作 DH AB, PK AB, FL AB
在菱形 CD 中,
60 , D 8 , F 是 的中点
AF 4, EF 2 3, EL 3
-5-
P 是 F 的中点, PK
中考复习函数专题10 一次函数中的四边形问题(老师版)
专题10 一次函数中的四边形问题知识对接考点一、怎样解一次函数中的四边形问题1、四边形面积常转化为若干个三角形面积之和(或差).2、画出草图,把要求的图形构建出来,根据面积公式,把直线与坐标轴的交点计算出来,把坐标转化成线段,代入面积公式求解。
3、规则图形(公式法); 不规则图形(切割法)不含参数问题 ;含参数问题(用参数表示点坐标,转化成线段)注意:坐标的正负、线段的非负性。
求面积时,尽量使底或高中的一者确定下来(通过对图像的观察,确定底和高),然后根据面积公式,建立等式。
专项训练一、单选题1.如图在平面直角坐标系中,直线y kx k =+与x 轴,y 轴分别交于点B 、A ,将线段AB 沿某个方向平移,点A 、B 对应的点M 、N 恰好在直线22y x =-和直线2x =上,则当四边形AMNB 为菱形时N 点坐标为( )A .()2,1B .()2,2C .()2,3D .()2,4【答案】A 【分析】求出A (0,k )和B (-1,0),B 的对应点N 的横坐标为2,由此知道往右平移了3个单位,得到A 的对应点M 的横坐标为3,将M 点横坐标代入22y x =-中即可求出M 坐标,进而求解. 【详解】解:令y kx k =+中y =0,得到B (-1,0),令x =0,得到A (0,k ), ∵B 的对应点N 在2x =上,∵N 点横坐标为2,故AB 往右平移了3个单位, ∵M 点横坐标为3,将x =3代入22y x =-中, 解得y =4,故M 点的坐标为(3,4), 又四边形AMNB 为菱形, ∵AB ²=AM ²,∵1+k ²=3²+(4-k )²,解得k =3, ∵A (0,3),即AB 往右平移3个单位,往上平移了1个单位, 故N 坐标为(2,1), 故选:A . 【点睛】本题考查了一次函数的平移、菱形的性质等知识点,属于基础题,计算过程中细心即可. 2.如图,在平面直角坐标系中,四边形ABCD 是菱形,//AB x 轴,点B 的坐标为()4,1,60BAD ∠=︒,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形ABCD 的两边分别交于点M ,N (点N 在点M 的上方),连接OM ,ON ,若OMN 的面积为S ,直线l 的运动时间为t 秒(06t ≤≤),则S 与t 的函数图象大致是( )A .B .C .D .【答案】C 【分析】当直线l 从A 开始运动,MN 逐渐增大,到经过点MN 达到最大值,此时AM =2,故运动时间为2,此时02t ≤≤; 当直线l 从D 开始运动,MN 保持不变,到经过点B ,此时AB =4,故运动时间为2,此时2<4t ≤;当直线l 从经过B 的位置向右开始运动,MN 开始减小,到经过点C ,MN 为0,此时BG =2,故运动时间为2,此时4<6t ≤三种情形,确定面积S 与t 的函数关系式,根据关系式确定图像即可. 【详解】解:由题意知AB =AD =CD =BC =4, ∵∵BAD =60°,∵当直线l 经过点D 时,运动时间为2, ∵C 的横坐标为6, 如图1,当02t ≤≤时,//l y 轴,AMN OMN S S S ∆∆∴== ,60,AM t BAD ︒=∠=,MN ∴=21;2S t ∴=⨯=图像是经过原点,开口向_上的- -段抛物线; 如图2,当2<4t ≤时,MN 是定长,4,60,AD BAD ︒=∠=MN ∴=1;2S t =⨯⨯∴图像是经过原点,正比例函数上的一段;2y x =的比例系数2 ∵面积线段的倾斜度要比2y x =的陡; 如图3,当4<6t ≤时,4,60,BC CBG ︒=∠=2,C G G B ∴==(4,1),(6,1),C B ∴41,61k b k b +=⎧⎪∴⎨+=⎪⎩解得1k b ⎧=⎪⎨=-⎪⎩∵直线的解析式为1y =+-∵N 坐标为(,1),t M 坐标为(1t +-11MN ∴=-+-=+1(2S t ∴=⨯⨯+;=图像是开口向下的一段抛物线; 故选:C . 【点睛】本题主要考查对动点问题的函数图象,勾股定理,三角形的面积,二次函数的图象,正比例函数的图象,含30度角的直角三角形的性质,菱形的性质等知识点的理解和掌握,能根据这些性质进行计算是解此题的关键,用的数学思想是分类讨论思想.3.如图,在平面直角坐标系中,四边形11112222333,,OA B C A A B C A A B C ,…都是菱形,点123,,A A A …都在x 轴上,点123,,C C C ,…都在直线y x =11212323160,1C OA C A A C A A OA ∠=∠=∠==︒=,则点n C 的横坐标是( )A .2321n -⨯-B .2321n -⨯+C .1321n -⨯-D .1321n -⨯+【答案】A 【分析】分别过点123,,,...C C C 作x 轴的垂线,交于123,,,...D D D ,再连接112233,,,...C D C D C D,利用勾股定理及根据菱形的边长求得1A 、2A 、3A ⋯的坐标然后分别表示出1C 、2C 、3C ⋯的坐标找出规律进而求得n C 的坐标. 【详解】。
(部编版)2020年中考数学试题分项版解析汇编第期专题10四边形含解析0
专题10 四边形一、选择题1.(2017浙江衢州第8题)如图,在直角坐标系中,点A 在函数)0(4>=x xy 的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数)0(4>=x xy 的图象交于点D 。
连结AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于( )A. 2B. 32C. 4D. 34 【答案】C . 【解析】试题解析:设A (a ,4a ),可求出D (2a ,2a), ∵AB ⊥CD , ∴S 四边形ACBD =12AB•CD=12×2a×4a=4, 故选C .考点:反比例函数系数k 的几何意义.2.(2017浙江衢州第9题)如图,矩形纸片ABCD 中,A B=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A.53 B. 35 C. 37 D. 45 【答案】B . 【解析】试题解析: ∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置, ∴AE=AB ,∠E=∠B=90°, 又∵四边形ABCD 为矩形, ∴AB=CD , ∴AE=DC , 而∠AFE=∠DFC , ∵在△AEF 与△CDF 中,AFE CFD E DAE CD ⎧∠=∠⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4, ∵Rt △AEF ≌Rt △CDF , ∴FC=FA ,设FA=x ,则FC=x ,FD=6﹣x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6﹣x )2,解得x=133, 则FD=6﹣x=53. 故选B .考点:1.矩形的性质;2.折叠问题.3.(2017山东德州第11题)如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为b(a >b),M 在边BC 上,且BM=b ,连AM ,MF ,MF 交CG 于点P ,将△ABM 绕点A 旋转至△ADN ,将△MEF 绕点F 旋转至△NGF 。
广东省各市中考数学分类解析 专题10:四边形
广东中考数学试题分类解析汇编专题10:四边形一、选择题1. (广东佛山3分)依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是【】A.平行四边形B.矩形C.菱形D.梯形【答案】 A。
【考点】三角形中位线定理,平行四边形的判定。
【分析】根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC。
∴EF=GH,EF∥GH。
∴四边形EFGH是平行四边形。
由于四边形EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所以AC=BD或AC⊥BD不一定成立,从而得不到矩形或菱形的判断。
故选A。
2.(广东广州3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是【】A.26B.25C.21D.20【答案】C。
【考点】等腰梯形的性质,平行四边形的判定和性质。
【分析】∵BC∥AD,DE∥AB,∴四边形ABED是平行四边形。
∴BE=AD=5。
∵EC=3,∴BC=BE+EC=8。
∵四边形ABCD是等腰梯形,∴AB=DC=4。
∴梯形ABCD的周长为:AB+BC+CD+AD=4+8+4+5=21。
故选C。
3. (广东广州3分)在平面中,下列命题为真命题的是【】A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形【答案】C。
【考点】命题与定理,正方形的判定,菱形的判定,矩形的判定,平行四边形的判定。
【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例排除:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如铮形(如图),故此选项错误。
专题10四边形(第01期)-2021年中考数学试题分项版解析汇编(广东福建专版)(解析版)
专题10:四边形一、选择题1.(2015•广东深圳,第 12题,3分)如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽△BEF ;④S ⊿BEF =572。
在以上4个结论中,正确的有( ) A 、1 B 、2 C 、3 D 、42.(2015•广东梅州市,第5题,3分)下列命题正确的是( )A .对角线互相垂直的四边形是菱形B .一组对边相等,另一组对边平行的四边形是平行四边形C .对角线相等的四边形是矩形D .对角线互相垂直平分且相等的四边形是正方形【答案】D.【解析】试题分析:根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.A 、对角线互相垂直的四边形不一定是菱形,故本选项错误;B 、一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;C 、对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;D 、对角线互相垂直平分且相等的四边形是正方形,故本选项正确.故选:D .考点:命题与定理.3.(2015•广东广州市,第8题,3分)下列命题中,真命题的个数有(*)①对角线互相平分的四边形是平行四边形②两组对角分别相等的四边形是平行四边形③一组对边平行,另一组对边相等的四边形是平行四边形(A )3个 (B )2个 (C )1个 (D )0个【答案】B【解析】试题分析:根据平行四边形的判定定理可得:①和②为真命题,根据③可得这个四边形为等腰梯形. 考点:平行四边形的判定.4.(2015•广东汕尾市,第 6题,4分)下列命题正确的是( )A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形5.(2015•广东汕尾市,第 9题,4分)如图,将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕为EF ,若A B=4,BC=2,那么线段EF 的长为( )A.2 5B. 5C. 455D. 255二、填空题6.(2015•广东茂名,第 14题,3分)如图,将矩形ABCD沿对角线BD折叠,使点C与C′重合.若AB=3,则C′D的长为.【答案】3.【解析】试题分析:在矩形ABCD中,CD=AB,∵矩形ABCD沿对角线BD折叠后点C和点C′重合,∴C′D=CD,∴C′D=AB,∵AB=3,∴C′D=3.故答案为:3.7. (2015•广东佛山,第13题,3分)如图,在Rt△ABC中,AB=BC,∠B=90°,AC=10.四边形BDEF 是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的面积是.8.(2015•广东,第 11题,3分)正五边形的外角和等于(度).【答案】360【解析】试题分析:任何n边形的外角和都等于360度.考点:多边形的外角和.9.(2015•广东,第 12题,3分)如题12图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是.【答案】6【解析】考点:菱形的性质.10. (2015•广东梅州市,第13题,3分)如图,在□ABCD 中,BE 平分∠ABC ,BC=6,DE=2,则□ABCD 的周长等于 .11.(2015•广东梅州市,第14题,3分)如图,将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕为EF ,若AB=4,BC=2,那么线段EF 的长为 .【答案】5.【解析】 试题分析:如图,AC 交EF 于点O ,由勾股定理先求出AC 的长度,根据折叠的性质可判断出RT △EOC ∽RT △ABC ,从而利用相似三角形的对应边成比例可求出OE ,再由EF=2OE 可得出EF 的长度如图所示,AC 交EF 于点O ,由勾股定理知52 AC ,又∵折叠矩形使C 与A 重合时有EF ⊥AC ,则Rt △AOE ∽Rt △ABC ,∴,∴OE=,故EF=2OE=5.故答案为:5.考点:翻折变换(折叠问题).12.(2015•广东广州,第 16题,3分)如图,四边形ABCD 中,∠A=90°,AB=33AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 * .13.(2015•广东汕尾市,第15题,5分)如图,在□ABCD中,BE平分∠ABC,BC = 6,DE = 2 ,则□ABCD 周长等于 .【答案】20【解析】试题分析:由□ABCD可得AD∥BC,AD=BC,因此可得∠AEB=∠CBE,由BC=6,DE=2,可知AE=4,再由BE平分∠ABC,可得∠ABE=∠CBE,因此可知∠AEB=∠ABE,所以AE=AB=4,所以□ABCD的周长为2×(6+4)=20. 考点:平行四边形的性质,角平分线的性质三、解答题:14. (2015•广东,第 21题,7分)如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE 沿AE对折至△AFE,延长交BC于点G,连接AG.(1)、求证:△ABG≌△AFG; (2)、求BG的长.15.(2015•广东广州,第 18题,9分)如图7,正方形ABCD中,点E、F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.【答案】略.【解析】试题分析:根据正方形的性质得出AD=AB,∠D=EAB=90°,然后结合AE=DF得出△ADF和△BAE全等,得到BE=AF.试题解析:∵四边形ABCD是正方形∴AD=AB ∠D=∠EAB=90°在△EAB和△FDA中,AE=DF ∠EAB=∠D AB=AD ∴△EAB≌△FDA ∴BE=AF.考点:正方形的性质、三角形全等.16.(2015•广东广州市,第24题,14分)如图10,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(2)、在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC为对角线,BD=8.②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB 的距离.∴∠ABC=∠ADC=90° ∴AC 即为所求圆的直径。
广东省深圳市2017年中考数学真题试题(含扫描答案)
深圳市2017年初中毕业生学业考试数学试题解析第Ⅰ卷(共60分)一、选择题1.-2的绝对值是( )A .-2B .2C .12-D .12 2.图中立体图形的主视图是( )A .B .C .D .3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( )A .58.210⨯B .58210⨯C .68.210⨯D .78210⨯ 4.观察下列图形,其中既是轴对称又是中心对称图形的是( ) A . B . C . D .5.下列选项中,哪个不可以..得到12//l l ?( )A .12∠=∠B .23∠=∠C . 35∠=∠D .34180∠+∠=o6.不等式组32521x x -<⎧⎨-<⎩的解集为( )A .1x >-B .3x <C .1x <-或3x >D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%330x =B .(110%)330x -=C . 2(110%)330x -=D .(110%)330x +=8.如图,已知线段AB ,分别以A B 、为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得25CAB ∠=o ,延长AC 至M ,求BCM ∠的度数为( )A .40oB .50oC . 60oD .70o9.下列哪一个是假命题( )A .五边形外角和为360oB .切线垂直于经过切点的半径C . (3,2)-关于y 轴的对称点为(3,2)-D .抛物线242017y x x =-+对称轴为直线2x =10.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60o,然后在坡顶D 测得树顶B 的仰角为30o ,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA .203.30 C . 303.4012.如图,正方形ABCD 的边长是3,BP CQ =,连接,AQ DP 交于点O ,并分别与边,CD BC 交于点,F E ,连接AE .下列结论:①AQ DP ⊥;②2OA OE OP =g ;③AOD OECF S S ∆=四边形;④当1BP =时,13tan 16OAE ∠=.其中正确结论的个数是( )A .1B .2C .3D .4二、填空题13.因式分解:34a a -= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 . 15.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知21i =-,那么(1)(1)i i +-=g .16.如图,在Rt ABC ∆中,90ABC ∠=o ,3AB =,4BC =,Rt MPN ∆,90MPN ∠=o ,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP = .三、解答题17.计算2|22|2cos45(1)8--+-o18.先化简,再求值:22()224x x x x x x +÷-+-,其中1x =-. 19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车等,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型频数 频率 A30 x B18 0.15 Cm 0.40 D n y(1)学生共__________人,x =__________,y =__________;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有___________人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图一次函数y kx b =+与反比例函数(0)m y x x=>交于(2,4)A 、(,1)B a ,与x 轴,y 轴分别交于点C D 、.(1)直接写出一次函数y kx b =+的表达式和反比例函数(0)m y x x=>的表达式;(2)求证:AD BC =. 22.如图,线段AB 是O e 的直径,弦CD AB ⊥于点H ,点M 是弧CBD 上任意一点,2,4AH CH ==.(1)求O e 的半径r 的长度;(2)求sin CMD ∠;(3)直线BM 交直线CD 于点E ,直线MH 交O e 于点N ,连接BN 交CE 于点F ,求HE HF g 的值.23.如图,抛物线22y ax bx =++经过点(1,0),(4,0)A B -,交y 轴于点C :(1)求抛物线的解析式(用一般式表示).(2)点D为y轴右侧抛物线上一点,是否存在点D使23ABC ABDS S∆∆=,若存在请直接给出点D坐标;若不存在请说明理由.(3)将直线BC绕点B顺时针旋转45o,与抛物线交于另一点E,求BE的长.。
专题10 四边形-2017版[中考15年]广州市2002-2016年中考数学试题分项解析(解析版)
2017版[中考15年]广东省2002-2016年中考数学试题分项解析专题10 四边形1. (2002年广东广州2分)如图,若四边形ABCD 是半径为1cm 的⊙O 的内接正方形,则图中四个弓形(即四个阴影部分)的面积和为【 】A.()22m 2c π-B.()22m 1c π-C.()2m 2c π-D.()2m 1c π-2. (2003年广东广州3分)如图,在菱形ABCD 中,∠ABC =60°.AC =4.则BD 的长为【 】A.38B.34C.32D.8 【答案】B 。
3.(2009年广东广州3分)如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,4,则ΔCEF的周长为【】交DC的延长线于点F,BG⊥AE,垂足为G,BG=2A.8B.9.5C.10D.5【答案】A。
【考点】平行四边形的判定和性质,勾股定理,等腰三角形的判定和性质,相似三角形的判定和性质。
∴△CEF的周长=CE+CF+FE=8。
故选A。
4.(2011年广东广州3分)已知ABCD的周长为32,AB=4,则BC=【】A.4B.12C.24D.285. (2012年广东广州3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是【】A.26B.25C.21D.206. (2012年广东广州3分)在平面中,下列命题为真命题的是【】A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形故选C。
7.(2013年广东广州3分)如图,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB=4,AD=6 ,则tan B =【 】A. B. C.1148.(2015年中考广东广州3分)下列命题中,真命题的个数有【 】 ①对角线互相平分的四边形是平行四边形 ②两组对角分别相等的四边形是平行四边形③一组对边平行,另一组对边相等的四边形是平行四边形 A.3个 B.2个 C.1个 D.0个 【答案】B考点:平行四边形的判定.1. (2002年广东广州3分)如图,在正方形ABCD 中,AO ⊥BD ,OE 、FG 、HI 都垂直于AD ,EF 、GH 、IJ 都垂直于AO ,若已知AIJ S 1∆=,则ABCD S 正方形= 。
(完整word版)2017深圳中考数学试题及答案解析,推荐文档
2016年广东省深圳市中考数学试卷第一部分 选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的)1.下列四个数中,最小的正数是( )A .—1 B. 0 C. 1 D. 2 2.把下列图形折成一个正方体的盒子,折好后与“中”相对的字是( )A .祝 B.你 C.顺 D.利 3.下列运算正确的是( )A.8a-a=8B.(-a)4=a 4C.a 3×a 2=a 6D.(a-b )2=a 2-b 24.下列图形中,是轴对称图形的是( )5.据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学计数法表示为( )A.0.157×1010B.1.57×108C.1.57×109D.15.7×1086.如图,已知a ∥b,直角三角板的直角顶点在直线b 上,若∠1=60°,则下列结论错误的是( )A. ∠2=60°B. ∠3=60°C. ∠4=120°D. ∠5=40° 7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。
则第3小组被抽到的概率是( ) A.71 B. 31 C. 211D. 1018.下列命题正确是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及一角对应相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和69.施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。
设原计划每天施工x 米,则根据题意所列方程正确的是( )A.25020002000=+-x x B.22000502000=-+x x C.25020002000=--x x D.22000502000=--xx10.给出一种运算:对于函数nx y =,规定1-=n nxy 丿。
广东省深圳市2002年中考数学试题分类解析汇编专题10 圆
专题10:圆一、选择题1.(深圳2003年5分)如图,已知四边形ABCD是⊙O的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题错误的是【】A、△AED∽△BECB、∠AEB=90ºC、∠BDA=45ºD、图中全等的三角形共有2对【答案】 D。
【分析】A、根据圆周角定理的推论,可得到:∠ADE=∠BCE,∠DAE=∠CBE∴△AED∽BED,正确;,从而根据等弧所B、由四边形ABCD是⊙O的内接四边形,且AB=CD,有AB CD对圆周角相等的性质,得∠EBC=∠ECB,由等腰三角形等角对等边的性质,得BE=CE,∴BE=CE=3,AB=5,AE=AC-CE=4,根据勾股定理的逆定理,△ABE为直角三角形,即∠AEB=90°,正确;C、AE=DE,∴∠EAD=∠EDA=45°,正确;D、从已知条件不难得到△ABE≌△DCE、△ABC≌△DCB、△ABD≌DCA共3对,错误。
故选D。
2.(深圳2004年3分)已知⊙O1的半径是3,⊙O2的半径是4,O1O2=8,则这两圆的位置关系是【】A、相交B、相切C、内含D、外离【答案】D。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
∵⊙O1的半径是3,⊙O2的半径是4,O1O2=8,则3+4=7<8,∴两圆外离。
故选D。
3.(深圳2004年3分)如图,⊙O的两弦AB、CD相交于点M,AB=8cm,M是AB的中点,CM:MD=1:4,则CD=【 】A 、12cmB 、10cmC 、8cmD 、5cm 【答案】B 。
【考点】相交弦定理。
【分析】根据相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”进行计算:∵CM:DM=1:4,∴DM=4CM。
广东省中考数学专题测试四边形课件
16.如图,菱形ABCD的面积为120cm2,正方形 AECF的面积为50cm2,则菱形的边长为 13 cm.
三 解答题(一)(本大题3小题,每小题6分,共18分) 17.在四边形ABCD中,∠D=60°,∠B比∠A大 20°,∠C是∠A的2倍,求∠A,∠B,∠C的大 小.
解:设∠A=x,则∠B=x+20°,∠C=2x. 四边形内角和定理得 x+(x+20°)+2x+60°=360°, 解得x=70°. ∴∠A=70°,∠B=90°,∠C=140°.
3.如图,▱ABCD的对角线AC, BD交于点O,已知AD=8,BD=12, AC=6,则△OBC的周长为(B) A.13 B.17 C.20 D.26 4.下列性质中,菱形具有而矩形不一定具有的是 (C) A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.邻边互相垂直
5.如图,矩形ABCD的对角线AC、 BD相交于点O,CE∥BD,DE∥AC, 若AC=4,则四边形OCED的周长为(B) A.4 B.8C.10 D.12 6.小敏不慎将一块平行四边形玻璃打碎成如图的
9.如图,在矩形ABCD中(AD>AB),点E是 BC上一点,且DE=DA,AF⊥DE,垂足为点F,在 下列结论中,不一定正确的是( B) A.△AFD≌△DC B.AF= AD C.AB=AF D.BE=AD﹣DF 10.矩形OABC在平面直角坐标系 中的位置如图所示,点B的坐标为 (3,4),D是OA的中点,点E在 AB上,当△CDE的周长最小时, 点E的坐标为(B)
18.如图,四边形ABCD中,AD∥BC,AE⊥AD 交BD于点E,CF⊥BC交BD于点F,且AE=CF.求 证:四边形ABCD是平行四边形. 证明:∵AE⊥AD,CF⊥BC, ∴∠EAD=∠FCB=90°, ∵AD∥BC,∴∠ADE=∠CBF, 在Rt△AED和Rt△CFB中,
广东省深圳市中考数学试题分类解析 专题10 四边形
深圳市2002-2013年中考数学试题分类解析 专题10 四边形一、选择题1.(深圳2003年5分)一个等腰梯形的高恰好等于这个梯形的中位线,若分别以这个梯形的上底和下底为直径作圆,则这两个圆的位置关系是【 】A 、相离B 、相交C 、外切D 、内切2.(深圳2006年3分)如图,在ABCD 中,AB : AD = 3:2,∠AD B=60°,那么cos A的值等于【 】A.36 B.6C.36 D.63.(深圳2008年3分)下列命题中错误..的是【】A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形4.(深圳2010年招生3分)如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AO DO等于【】B . 13C . 23D . 12二、填空题1.(深圳2004年3分)在矩形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作OE⊥BC,垂足为E ,连结D E 交AC 于点P ,过P 作PF⊥BC,垂足为F ,则CBCF 的值是 ▲ .2.(深圳2006年3分)如图所示,在四边形ABCD 中,AB=BC=CD=DA ,对角线AC 与BD 相交于点O .若不增加任何字母与辅助线,要使得四边形ABCD 是正方形,则还需增加的一个条件是 ▲ .3.(深圳2009年3分)如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为▲ .4.(深圳2010年学业3分)如图,在ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=▲ .5. (2012广东深圳3分)如图,Rt△ABC中,C= 90o,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=62,则另一直角边BC的长为▲ .三、解答题1.(深圳2002年8分)已知:如图,在口ABCD中,E、F是对角线AC上的两点,且AF=CE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017版[中考15年]深圳市2002-2016年中考数学试题分项解析
专题10 四边形
1.(深圳2003年5分)一个等腰梯形的高恰好等于这个梯形的中位线,若分别以这个梯形的上底和下底为直径作圆,则这两个圆的位置关系是【】
A.相离
B.相交
C.外切
D.内切
2.(深圳2006年3分)如图,在ABCD中,AB: AD = 3:2,∠ADB=60°,那么cosA的值等于【】
3.(深圳2008年3分)下列命题中错误
..的是【】
A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形
4.(深圳2010年招生3分)如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AO
DO
等于【】
A .
B . 1
3
C .
2
3
D .
1
2
1.(深圳2004年3分)在矩形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作OE ⊥BC ,垂足为E , 连结DE 交AC 于点P ,过P 作PF ⊥BC ,垂足为F ,则CB
CF 的值是 .
2.(深圳2006年3分)如图所示,在四边形ABCD 中,AB=BC=CD=DA ,对角线AC 与BD 相交于点O .若不增加任何字母与辅助线,要使得四边形ABCD 是正方形,则还需增加的一个条件是 .
3.(深圳2009年3分)如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为.
4.(深圳2010年学业3分)如图,在ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=.
5. (2012广东深圳3分)如图,Rt△ABC中,C= 90o,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=62,则另一直角边BC的长为.
6. (2016年中考广东深圳3分)如图,在平行四边形ABCD 中,,5,3==BC AB 以点B 为圆心,以任意长为半径作弧,分别交BC BA 、于点Q P 、,再分别以Q P 、为圆心,以大于PQ 2
1的长为半径作弧,两弧在ABC ∠内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为____________.
【答案】2
【解析】
试题分析:依题意,可知,BE 为角平分线,所以,∠ABE =∠CBE , 又AD ∥BC ,所以,∠AEB =∠CBE , 所以,∠AEB =∠ABE ,AE =AB =3, AD =BC =5,所以,DE =5-3=2。
考点:(1)、角平分线的作法;(2)、等角对等边;(3)、平行四边形的性质
1.(深圳2002年8分)已知:如图,在口ABCD 中,E 、F 是对角线AC 上的两点,且AF=CE 。
求证:DE=BF
2.(深圳2002年10分)如图(1),等腰梯形ABCD 中,AD//BC ,AB=DC ,以HF 为直径的⊙O 与AB 、BC 、CD 、DA 相切,切点分别是E 、F 、G 、H ,其中H 为AD 的中点,F 为BC 的中点,连结HG 、GF 。
(1)若HG 和GF 的长是关于x 的方程x 2-6x +k=0的两个实数根,求⊙O 的直径HF (用含k 的代数式表示),并求出k 的取值范围。
(2)如图(2),连结EG 、DF ,EG 与HF 交于点M ,与DF 交于点N ,求NE
GN 的值。
3.(深圳2004年10分)等腰梯形ABCD 中,AB//CD ,AD=BC ,延长AB 到E ,使BE=CD ,连结CE
(1)求证:CE=CA ;(5分)
(2)上述条件下,若AF ⊥CE 于点F ,且AF 平分∠DAE ,5
2AE CD ,求sin ∠CAF 的值。
(5分)
4.(深圳2006年7分)如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠ADC=1200.(1)(3分)求证:BD⊥DC.
(2)(4分)若AB=4,求梯形ABCD的面积.
5.(深圳2007年6分)如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,∠BAE=∠MCE,∠MBE=450.
(1)求证:BE=ME.
(2)若AB=7,求MC的长.
6.(深圳2007年9分)如图,在平面直角坐标系中,正方形AOCB的边长为1,点D在x轴的正半轴上,且OD=OB,BD交OC于点E.
(1)求∠BEC的度数.
(2)求点E的坐标.
(3)求过B,O,D三点的抛物线的解析式.(计算结果要求分母有理化.参考资料:把分母中的根号化去,
==
55
==+;
1
==
7.(深圳2008年7分)如图,在梯形ABCD中,AB∥DC,DB平分∠ADC,过点A作AE∥BD,交CD 的延长线于点E,且∠C=2∠E.
(1)求证:梯形ABCD是等腰梯形.
(2)若∠BDC=30°,AD=5,求CD的长.
8.(2013年广东深圳8分)如图,在等腰梯形ABCD中,已知AD//BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE。
(1)求证:BD=DE。
(2)若AC⊥BD,AD=3,S ABCD=16,求AB的长。
9.(2014年广东深圳12分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;
(2)若AF=DF=5,AD=6,求AC的长.
【答案】(1)证明见解析;(2)48
5
.
【解析】
∴AC=2AE=48
5
.
考点:1.平行四边形、菱形的判定和性质;2.线段垂直平分线的性质;3.勾股定理.。