高考数学140分专项训练-30道压轴题及答案.doc
[高三数学]高考数学压轴题训练题含答案
高考数学综合题系列训练(一)【例1】已知函数241)(+=xx f )(R x ∈ (1)试证函数)(x f 的图象关于点)41,21(对称;(2)若数列}{n a 的通项公式为), ,2 ,1 ,( )(m n N m mnf a n =∈=+,求数列}{n a 的前m 项和m S(3)设数列}{n b 满足: 311=b ,n n n b b b +=+21, 设11111121++++++=n n b b b T ,若(2)中的n S 满足对任意不小于2的正整数n ,n n T S <恒成立, 试求m 的最大值解: (1)设点)y ,x (P 000 是函数)x (f 的图象上任意一点, 其关于点)41,21( 的对称点为)y ,x (P .由⎪⎪⎩⎪⎪⎨⎧=+=+412y y 212x x 00 得⎪⎩⎪⎨⎧-=-=.y 21y ,x 1x 00 所以, 点P 的坐标为P )y 21,x 1(00-- .………………(2分) 由点)y ,x (P 000 在函数)x (f 的图象上, 得241y 0x 0+=. ∵,)24(244244241)x 1(f 0000x x x x x 10+=⋅+=+=-- =+-=-24121y 210x 0,)24(2400x x + ∴点P )y 21,x 1(00-- 在函数)x (f 的图象上. ∴函数)x (f 的图象关于点)41,21( 对称. ………………(4分) (2)由(1)可知, 21)x 1(f )x (f =-+, 所以)1m k 1(21)m k 1(f )m k (f -≤≤=-+ ,即,21a a , 21)m k m (f )m k (f k m k =+∴=-+- ………………(6分)由m 1m 321m a a a a a S +++++=- , ……………… ① 得,a a a a a S m 13m 2m 1m m +++++=--- ………………② 由①+②, 得,612m 61221m a 221)1m (S 2m m -=⨯+-=+⨯-= ∴).1m 3(121S m -=………………(8分)(3) ∵,31b 1=)1b (b b b b n n n 2n 1n +=+=+, ………………③ ∴对任意的0b ,N n n >∈+ . ………………④ 由③、④, 得,1b 1b 1)1b (b 1b 1n n n n 1n +-=+=+即1n n n b 1b 11b 1+-=+.∴1n 1n 11n n 3221n b 13b 1b 1)b 1b 1()b 1b 1()b 1b 1(T +++-=-=-++-+-= .……………(10分) ∵,b b ,0b b b n 1n 2n n 1n >∴>=-++ ∴数列}b {n 是单调递增数列. ∴n T 关于n 递增. 当2n ≥, 且+∈N n 时, 2n T T ≥. ∵,8152)194(94b ,94)131(31b ,31b 321=+==+==∴.5275b 13T T 12n =-=≥………………(12分) ∴,5275S m <即,5275)1m 3(121<-∴,394639238m =< ∴m 的最大值为6. ……………(14分) 【例2】将圆:O 422=+y x 上各点的纵坐标变为原来的一半(横坐标不变)得到曲线C(1)求曲线C 的方程;(2)设O 为坐标原点, 过点)0 ,3(F 的直线l 与C 交于B A 、两点,N 为线段AB 的中点,延长线段ON 交C 于点E ,求证:ON OE 2=的充要条件是3=AB解:(1)设点),(y x P '',点),(y x M ,由题意⎩⎨⎧='='y y xx 2,又∵422='+'y x ∴14442222=+⇒=+y x y x ,故曲线C 的方程为1422=+y x (2)设点) ,(11y x A , ) ,(22y x B , 点N 的坐标为) ,(00y x当直线l 与x 轴重合时,线段AB 的中点N 就是原点O ,不合题意,舍去;设直线 3:+=my x l ,将直线l 的方程代入方程1422=+y x 整理得:0132)4(22=-++my y m ∴4320+-=m m y ,4343200+=+=m my x ,即点N )43 ,434(22+-+m mm ○1若ON OE 2=, 则点)432 ,438(22+-+m mm E , 由题意得1)4(12)4(4822222=+++m m m , 即032424=--m m ∴ 82=m (42-=m 舍去) ∴2121 y y m AB -+=34)1(44164121222222=++=+++⋅+=m m m m m m ○2若3=AB , 由○1得34)1(422=++m m ,∴82=m ∴点N 的坐标为)66 ,33(±, 射线ON 方程为)0( 22>±=x x y , 由⎪⎩⎪⎨⎧=+>±=44)0( 2222y x x x y 解得⎪⎪⎩⎪⎪⎨⎧±==36332y x ∴点E 的坐标为)36 ,332(±,故2= 综上,2=的充要条件是3=AB【例3】E 、F 是椭圆2224x y +=的左、右焦点,l 是椭圆的右准线,点P l ∈,过点E 的直线交椭圆于A 、B 两点.(1) 当AE AF ⊥时,求AEF ∆的面积; (2) 当3AB =时,求AF BF +的大小;(3) 求EPF ∠的最大值. 解:(1)2241282AEF m n S mn m n ∆+=⎧⇒==⎨+=⎩(2)因484AE AF AB AF BF BE BF ⎧+=⎪⇒++=⎨+=⎪⎩,则 5.AF BF +=(1)设)(0)P t t > ()tan EPF tan EPM FPM ∠=∠-∠221((1)663t t t t t t -=-÷+==≤++,当t =30tan EPF EPF ∠=⇒∠=【例1】已知焦点在x 轴上的抛物线C 点)2,1(M ,动直线l 过点)0,3(P ,交抛物线于B A 、两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:设抛物线方程为)0(22>=p px y ,将)2,1(M 代入方程得2=p , ∴抛物线方程为x y 42=(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)【例4】已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由;(Ⅲ)对任意正整数n,不等式1120111111n n n ab b b +≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。
2020年高考冲刺140分突破压轴题三十练(一)详细版解析
坑神出品
设三棱锥V − ABC 的侧棱长为 a, 底面边长为 b.
则V������−������������������
=
1 3
×
√3 ������2
4
×
√������2
−
1 ������2
3
=
3
×
1 3
×
1 ������
2
×
√������2
−
1 ������2
4
×
2
可得a2
A (√2 , √2) , ������ (√6 , √3) 两点, O 为坐标原点.
42
63
(1) 求曲线C的方程;
(2) 设M(x1, ������1), ������(������2, ������2)是曲线 C 上两点,且OM ⊥ ON, 求证:直线 MN 恒过一个定圆相切.
第五题.
已知函数f(x) = ������2−e������x������+1.
√12 − 4 ������2 + ������2 − 2������ + 1 = √− 1 ������2 − 2������ + 13 =
3
3
√− 1 (������ + 3)2 + 16 ≤ 4,当且仅当y = −3 时等号成立,
3
则||P⃗⃗B⃗⃗⃗⃗⃗⃗AC⃗⃗ ||
最大值为
4 2√3
=
2√3.
而且难度还不低,这种题的核心关键是:第一.快速利用条件推出尽可
能多的性质(这里奇函数&轴对称是显性的,周期性是隐藏 boss,需要挖
掘);第二.利用给的某一段区间的函数解析式画出图象,然后利用前面
高考数学选择填空压轴题45道(附答案)
,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a
的
取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考
2020年高考冲刺140分突破压轴题三十练(五)详细版解析
高考数学冲刺140分压轴题突破(五)学而思网校 邓诚第一题.已知函数f (x )的定义域为D,若对于任意a,b,c ∈D,f (a ),f (b ),f(c)分别为某个三角形的三边长,则称f (x )为“三角形函数”.给出下列四个函数:(1)f (x )=lnx (x >1),(2)f (x )=4+sinx,(3)f (x )=x 13(1≤x ≤8),(4)f (x )=2x +22x +1其中为“三角形函数”的个数是( )A.1B.2C.3D.4第二题.正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 间的距离为√2,此时四面体ABCD 外接球的表面积为______.第三题.已知抛物线C:x 2=4y 的焦点为F,过点F 且斜率为1的直线与抛物线相交于M,N 两点,设直线l 是抛物线C 的切线,且l ∥MN,P 为l 上一点,则PM ⃗⃗⃗⃗⃗⃗ ∙PN⃗⃗⃗⃗⃗ 的最小值为_____.已知集合A ={x|y =2},B ={x |y =ln (1−x )},则A⋃B =( )A.[0,1]B.[0,1)C.(−∞,1]D.(−∞,1)第五题.已知椭圆C:x 2a +y 2b =1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +2√2−1=0与以椭圆C 的右焦点为圆心,椭圆的长半轴长为半径的圆相切.(1) 求椭圆C 的方程;(2) 设点B,C,D 是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线CD,CB,OB,OC 的斜率分别为k 1,k 2,k 3,k 4,且k 1k 2=k 3k 4. (i)求k 1k 2的值;(ii)求|OB |2+|OC |2的值.第六题.已知函数f (x )=lnx +x 2−2ax +1(a 为常数)(1) 讨论函数f (x )的单调性;(2) 若存在x 0∈(0,1],使得对任意的a ∈(−2,0],不等式2me a (a +1)+f (x 0)>a 2+2a +4都成立,求实数m 的取值范围.第一题.由f(a),f(b),f(c)是某个三角形的三边长,则任意两个数之和大于第三个数,若f(x)为“三角形函数”,则2f(x)min>f(x)max对于(1),f(x)的值域为(0,+∞),不满足条件;对于(2),f(x)的值域为[3,5],由3+3>5,可得满足条件;对于(3),f(x)的值域为[1,2],由1+1=2,不满足条件;对于(4),f(x)=1+12+1,值域为(1,2),此时2f(x)min>2>f(x)max.满足条件.说五毛钱的话:这道题是一个升级版的恒成立问题,大家碰到恒成立存在性问题重点是去思考函数最大值最小值之间的关系,可能是同一个函数的最大值最小值,也可能是不同函数的最大值最小值.这类题目应该说比较常见,大家需要对各种不同的情况做好笔记.第二题.由AD⊥DB,AD⊥DC,可得AD⊥平面DBC,又DB=DC=1,BC=√2,则DB2+DC2=BC2,所以DB⊥DC.则DA,DB,DC两两垂直.可以将三棱锥补形成一个边长为1,1,√3的长方体,三棱锥的外接球半径和该长方体外接球半径一致.可得R=12√12+12+(√3)2=√52.所以表面积为4πR2=5π.说五毛钱的话:求解几何体外接球问题是很常见的一类立体几何小题,可以采用寻找球心的方法,也可以像这道题一样补形,一般来说补形的目标都是棱柱,大家以后遇到类似的可以尝试往这方面想.当然这道题也可以用找球心的方法,大家不妨一试~~第三题.由题意知F (0,1),所以过点F 且斜率为1的直线方程为y =x +1, 代入x 2=4y 可得x 2−4x −4=0,则x =2±2√2.设M(2−2√2,3−2√2),N(2+2√2,3+2√2).设直线l 和抛物线相切于点(x 0,y 0),由l ∥MN,可得切线斜率等于直线MN 斜率,由y =x 24,可得y =x 2,则x 02=1,所以x 0=2,则切点为(2,1).则直线l 方程为y =x −1.设P (m,m −1),则PM ⃗⃗⃗⃗⃗⃗ =(2−x −2√2,4−x −2√2),PN⃗⃗⃗⃗⃗ =(2−x +2√2,4−x +2√2),所以PM ⃗⃗⃗⃗⃗⃗ ∙PN⃗⃗⃗⃗⃗ =(2−x )2−8+(4−x )2−8=2x 2−12x +4 =2(x −3)2−14≥−14.说五毛钱的话:这道题比较综合,考察了抛物线,导数的几何含义,向量坐标表达和点乘,以及二次函数值域求解,算是一个比较正的题目,就是为了检验一下大家的基本功.第四题.由x −x 2≥0,可得0≤x ≤1,则A =[0,1]由1−x >0,可得x <1,则B =(−∞,1)所以A⋃B =(−∞,1].说五毛钱的话:集合运算应该说90%以上都会考交集,但是偶尔也会有并集出现,大家需要审题清楚.主要是我自己做的时候不小心看错造成了一万点伤害,我不想只有我一个人受伤…第五题.(1) 设椭圆C 的右焦点为F 2(c,0),则c 2=a 2−b 2(c >0).由题意可得,以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆的方程为(x −c )2+y 2=a 2,圆心到直线x +y +2√2−1=0的距离d =√2−1|√2=a.又椭圆C 的两个焦点与短轴的一个端点连线构成等边三角形,可得b =√3c,a =2c,带入√2−1|√2=a,可得a =2,c =1. 则椭圆方程为x 24+y 23=1.(2)(i)设B (x 1,y 1),C (x 2,y 2),则D (−x 1,−y 1).则k 1k 2=y 2+y 1x 2+x 1∙y 2−y 1x 2−x 1=y 22−y 12x 22−x 12 由点B,C 都在椭圆上,可得{x 224+y 223=1x 124+y 123=1 两式相减可得x 22−x 124+y 22−y 123=0,则y 22−y 12x 22−x 12=−34. 所以k 1k 2=−34.(ii)由k1k2=k3k4,可得k3k4=−34.将y=k3x和椭圆x24+y23=1联立可得x12=124k32+3,同理x22=124k42+3又k4=−34k3,可得x22=124(−34k3)2+3=16k324k32+3则x12+x22=16k32+124k32+3=4,所以|OB|2+|OC|2=x12+y12+x22+y22=(x12+x22)+34(4−x12)+3 4(4−x22)=6+14(x12+x22)=7.说五毛钱的话:这道题应该算比较常规的一道解析几何题,关键核心在于k1k2是个定值的证明上,也是后面求|OB|2+|OC|2的关键.对于双曲线也有一个类似的结论成立,大家不妨依葫芦画瓢去试试. 第六题.(1)f′(x)=1x +2x−2a=2x2−2ax+1x(x>0),令g(x)=2x2−2ax+1,当a≤0时,由x>0,可得g(x)>1>0恒成立,则函数f(x)在(0,+∞)上单调递增;当0<a≤√2时,由∆=4(a2−2)≤0,可得g(x)≥0恒成立,则函数f(x)在(0,+∞)上单调递增;当a>√2时,由{x>0g(x)<0,可得x∈(a−√a2−22,a+√a2+22),则函数f(x)在(a−√a2−22,a+√a2+22)上单调递减;由{x>0g(x)>0,可得x∈(0,a−√a2−22)或(a+√a2+22,+∞).则函数f(x)在(0,a−√a 2−22)和(a+√a 2+22,+∞)上分别单调递增.(2) 由(1)可得当a ∈(−2,0]时,函数f (x )在(0,1]上单调递增,所以当x ∈(0,1]时,函数f (x )的最大值是f (1)=2−2a,依题意可得2me a (a +1)+f (x 0)max >a 2+2a +4即对任意的a ∈(−2,0]都有2me a (a +1)−a 2−4a −2>0恒成立. 设h (a )=2me a (a +1)−a 2−4a −2,由h (0)=2m −2>0,可得m >1.且h ′(a )=2me a (a +1)+2me a −2a −4=2(a +2)(me a −1), 由h ′(a )=0可得a =−2或−lnm,因为a ∈(−2,0],只需考虑−lnm. 当−2<−lnm <0,即1<m <e 2时,可得a ∈(−2,−lnm )时,h ′(a )<0,a ∈(−lnm,0)时,h ′(a )>0,所以h (a )min =h (−lnm )=lnm (2−lnm )>0恒成立,满足条件. 当−lnm =−2,即m =e 2时,h ′(a )=2(a +2)(e a+2−1),由a ∈(−2,0]可得h ′(a )>0,可得h (a )在(−2,0]上单调递增,且h (−2)=2e 2e −2(−1)−4+8−2=0,所以a ∈(−2,0]时,h (a )>h (−2)=0成立;当−lnm <−2,即m >e 2时,h (−2)=−2me 2+2<0,ℎ(0)=2m −2>0,且此时存在x 0∈(−2,0]满足h (x 0)=0,与条件矛盾.综上可得m 的取值范围是(1,e 2].说五毛钱的话:这道题第一问比较常规,常见的求导分类讨论求解,第二问也比较常规,常见的恒成立和存在性并存,一步一步分析,但是这些都是基本功,需要全面掌握.。
高考数学压轴题汇总及答案
历届高考数学压轴题汇总及答案一、2019年高考数学上海卷:(本题满分18分)已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ;(2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.二、2019年高考数学浙江卷:(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +>(Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()f x ≤求a 的取值范围.注: 2.71828e =L 为自然对数的底数.设2*012(1),4,nnn x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1n a =+*,a b ∈N ,求223a b -的值.四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。
(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在2132201200,,,b b b b b b L ﹣﹣﹣中至少有100个为正数,求d 的取值范围.已知函数l (n )f x x -=.(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-;(Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018年高考数学江苏卷:(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列.(Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).七、2017年高考数学上海卷:(本小题满分18分)设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 是周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.八、2017年高考数学浙江卷:(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈.证明:当*N n ∈时,(I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤;(III )1-21122n n n x -≤.高考压轴题答案一、2019年上海卷:解:(1) 等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.∴当120,3a d π==,集合S ⎧⎪=⎨⎪⎪⎩⎭.(2)12a π= ,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=,综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴=当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,22S =⎨⎬⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件.当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件.当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意.综上,3,4,5,6T =.二、2019年浙江卷:解:(1)当34a =-时,()3ln 4f x x =-+,函数的定义域为()0,∞+,且:()3'4f x x -+=-+,因此函数()f x 的单调递增区间是12ω=,单调递减区间是()0,3.(2)由1(1)2f a ≤,得04a <≤,当204a <时,()f x ,等价于2ln 0x ≥,令1t a=,则t ≥,设()22ln g t t x =--,t ≥,则2()2ln g t t x=--,(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g x g x =-- ,记1()ln ,7p x x x =--≥,则1()p x x '==列表讨论:x17117⎛⎫ ⎪⎝⎭,1(1,)+∞()'p x ﹣0+()P x 17P ⎛⎫⎪⎝⎭单调递减极小值()1P 单调递增∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥=令211()(1),,7q x x x x e ⎡⎤=++∈⎢⎥⎣⎦,则()10q x'=+>,故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增,1()7q x q ⎛⎫∴≤ ⎪⎝⎭,由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,()0,()0q x g t g ∴<∴≥=-,由(i )(ii )知对任意21,,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a≤,综上所述,所求的a 的取值范围是4⎛ ⎝⎦.三、2019年江苏卷:解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥ ,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====,44(1)(2)(3)C 24nn n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n=+02233445555555C C C C C C =++++a =+因为*,ab ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.四、2018年上海卷:解:(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列,可得112n n a -=,11112n n nb a +=+=+,则011111111222n n n n b a ---=+-=-<,*n N ∈,可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列,可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =,可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,,M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(),①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>,则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈,可得11101n n b b n n +-=->+,则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意;④若2d - ,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+ ,11111n n n a b a +++-+ ,可得()111120n n n n b b a a d ++-+--=+ ,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意.综上可得,d 的范围是(2,)-+∞.五、2018年浙江卷:解:(Ⅰ)函数()f x的导函数1()f x x'=-,由12()()f x f x ''=1211x x -,因为12x x ≠,所以12+=.=+.因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=-+-=.设()ln g x x =-,则1()4)4g x x'=-,所以()g x 在[256,)+∞上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-.(Ⅱ)令()e a k m -+=,211a n k ⎛+⎫=+ ⎪⎝⎭,则()–0f m km a a k k a -->+-≥,(0)f n kn a a n k n ⎫----<⎪⎭<,所以,存在0(,)x m n ∈)使00()f x kx a =+,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点.由()f x kx a =+得k =.设ln ()x x a h x x --=,则22ln 1()12()x a g x a h x x x --+--+'==,其中()ln 2x g x x =-.由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤,故–11613420g x a g a ln a -+-+=-++()≤()-≤,所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018江苏卷:解:(Ⅰ)由题意得||1n n a b -≤对任意1,2,3,4n =均成立故当10a =,121q b ==时可得|01|1|2|1|24|1|38|1d d d -⎧⎪-⎪⎨-⎪⎪-⎩≤≤≤≤即1335227532d d d ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤≤≤所以7532d ≤≤(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+ ≤…,)化简后可得11111112(22)(222)0(2,3,1)111n n n m b q b b b q n n n m n n n ----=-+=-+=+--- ≤…,因为q ∈,所以122n m -≤,22(2,3,1)n n m -=+≤…,而110(2,3,,11n b q n m n ->=+- …)所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立当1m =时,112)b d ≤当2m ≥时,设111n n b q c n -=- ,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m n n n n --+---=-==-- …设()(1)f n q n q =--,因为10q ->,所以()f n单调递增,又因为q ∈所以11()(1)(1)(1)2111m m f m q m q m m m m ⎛⎫ ⎪⎫=---=-- ⎪⎪-⎭ ⎪-⎝⎭ ≤设111,0,2x x x m m ⎛⎤==∈ ⎥⎝⎦,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =--因为2ln 2ln 2x ,214(1)x -≥所以'21(x)2ln 20(1)x g x =-<- 在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,即()f x 单调递增。
2023-2024学年高考数学专项复习——压轴题(附答案)
决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。
高考必做的36道压轴题变式题答案
高考数学必做36道压轴题答案(解析几何部分)1-1 解:(Ⅰ)设双曲线的方程是12222=-by a x (0>a ,0>b ),则由于离心率2==ace ,所以a c 2=,223a b =. 从而双曲线的方程为132222=-ay a x ,且其右焦点为F (a 2,0). 把直线MN 的方程a x y 2-=代入双曲线的方程,消去y 并整理,得074222=-+a ax x .设M 11(,)x y ,N 22(,)x y ,则a x x 221-=+,22127a x x -=. 由弦长公式,得212214)(2||x x x x MN -+⋅=)27(4)2(222a a ---⋅==6.所以1=a ,3322==a b .从而双曲线的方程是1322=-y x . (Ⅱ)由m kx y +=和1322=-y x ,消去y ,得032)3(222=----m kmx x k . 根据条件,得0)3)(3(442222>----=∆m k m k 且032≠-k .所以 3322≠>+k m .设A ),(33y x ,B ),(44y x ,则24332k km x x -=+,332243-+=k m x x . 由于以线段AB 为直径的圆过原点,所以04343=+y y x x . 即 0)()1(243432=++++m x x km x x k .从而有03233)1(22222=+-⋅+-+⋅+m k km km k m k ,即22321m k =+. 所以 点Q 到直线l :m kx y +=的距离为|11|2632|1|1|1|22mm m k m d +=+=++=.由 13222-=m k ≥0,解得 36136≤≤-m 且01≠m . 由 13222-=m k 3≠,解得 ≠m 166±. 所以当26=m 时,d 取最大值226)361(26+=+,此时0=k . 因此d 的最大值为226+,此时直线l 的方程是26=y . 1-2 解:(Ⅰ)设焦距为2c ,由已知可得1F 到直线l=2c = 所以椭圆C 的焦距为4.(Ⅱ)设1122(,),(,)A x y B x y ,由题意知10y <,20y >,且直线l的方程为2).y x -联立22222),1y x x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y y b +--=,解得12y y ==. 因为222AF F B =,所以122y y -=,即222222(22)(22)233a a a b a b+-=⋅++,得3a =.而224a b -=,所以b =故椭圆C 的方程为221.95x y += 2-1 解:(Ⅰ)因为c e a ==所以 22222213c a b e a a -=== ,即2223b a =,又b == 所以22b =,23a =,即a =b =(Ⅱ)解法1:由(1)知12,F F 两点分别为(1,0)-,(1,0),由题意可设(1,)P t . 那么线段1PF 中点为(0,)2tN ,设(,)M x y .由于(,)2tMN x y =--,1(2,)PF t --, 则1,2(),2y t t MN PF x t y =⎧⎪⎨⋅=+-⎪⎩消去参数t ,得24y x =-,其轨迹为抛物线. 解法2:如图,因为M 是线段1PF 垂直平分线上的点,所以1||||MP MF =,即动点M 到定点1F 的距离与的定直线1l 的距离相等,1F ,由抛物线的定义知,动点M 的轨迹是以定点以定直线1l 为准线的抛物线,易得其方程是24y x =-.2-2 解:(Ⅰ)设动点E 的坐标为(,)x y ,依题意可知1222y y x x ⋅=-+-,整理得221(2)2x y x +=≠±. 所以动点E 的轨迹C 的方程为221(2)2x y x +=≠±. (II )当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2212x y +=并整理得, 2222(21)4220k x k x k +-+-=. 2880k ∆=+>.设11(,)M x y ,22(,)N x y ,则2122421k x x k +=+, 21222221k x x k -=+. 设MN 的中点为Q ,则22221Q k x k =+,2(1)21Q Q k y k x k =-=-+, 所以2222(,)2121k kQ k k -++.由题意可知0k ≠,又直线MN 的垂直平分线的方程为22212()2121kk y x k k k +=--++. 令0x =解得211212P k y k k k==++.当0k >时,因为12k k +≥0P y <≤=; 当0k <时,因为12k k +≤-0P y >≥= 综上所述,点P纵坐标的取值范围是[. 3-1 解:(Ⅰ)由椭圆的定义可知,动点P 的轨迹是以A ,B为焦点,长轴长为所以1c =,a =22b =. 所以W 的方程是22132x y +=.(Ⅱ)设C ,D 两点坐标分别为11(,)C x y 、22(,)D x y ,C ,D 中点为00(,)N x y .当0k =时,显然0m =; 当0k ≠时,由221,132y kx x y =+⎧⎪⎨+=⎪⎩ 得 22(32)630k x kx ++-=.所以122632k x x k +=-+, 所以12023232x x kx k +==-+, 从而0022132y kx k =+=+.所以MN 斜率2002232332MNy k k k x m m k +==---+. 又因为CM DM =, 所以CD MN ⊥,所以222132332k k k m k +=---+,即 212323k m k k k=-=-++6[,0)(0,]1212∈-. 故所求m 的取范围是[]1212-. 3-2 解:(Ⅰ)依题意,c =1b =,所以a .故椭圆C 的方程为2213x y +=. (Ⅱ)①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得1,x y ==.不妨设A ,(1,B ,因为132233222k k +=+=,又1322k k k +=,所以21k =,所以,m n 的关系式为213n m -=-,即10m n --=. ②当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简得,2222(31)6330k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+.又11(1)y k x =-,22(1)y k x =-. 所以12122113121222(2)(3)(2)(3)33(3)(3)y y y x y x k k x x x x ----+--+=+=---- 12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+---=-++121212122(42)()6123()9kx x k x x k x x x x -++++=-++222222223362(42)6123131336393131k k k k k k k k k k k -⨯-+⨯++++=--⨯+++ 222(126)2.126k k +==+所以222k =,所以2213n k m -==-,所以,m n 的关系式为10m n --=. 综上所述,,m n 的关系式为10m n --=.4-1 解:(Ⅰ)设椭圆长半轴长及分别为a ,c ,由已知得,1,7.a c a c -=⎧⎨+=⎩解得a =4,c =3.所以椭圆C 的方程为221.167x y += (Ⅱ)设M (x ,y ),P(x ,1y ),其中[]4,4.x ∈- 由已知得222122.x y e x y+=+ 因为 34e =, 所以 2222116()9().x y x y +=+由点P 在椭圆C 上得,221112716x y -=,化简得 29112y =. 所以点M的轨迹方程为(44)3y x =±-≤≤, 轨迹是两条平行于x 轴的线段.4-2(Ⅰ)解:因为A , B 两点关于x 轴对称,所以AB 边所在直线与y 轴平行. 设M (x , y ),由题意,得(),(,3)A x B x x ,所以||,||AM y MB y -=,因为||||3AM MB ,所以)()3y y -⨯=,即2213y x -=,所以点M 的轨迹W 的方程为221(0)3y x x -=>.(Ⅱ)证明:设000(,)(0)M x y x >,因为曲线221(0)3y x x -=>关于x 轴对称,所以只要证明“点M 在x 轴上方及x 轴上时,2MQP MPQ ∠=∠”成立即可. 以下给出“当00y ≥时,2MQP MPQ ∠=∠” 的证明过程.因为点M 在221(0)3y x x -=>上,所以01x ≥.当x 0=2时,由点M 在W 上,得点(2,3)M , 此时,||3,||3MQ PQ MQ PQ ⊥==, 所以,42MPQ MQP ππ∠=∠=,则2MQP MPQ ∠=∠;当02x 时,直线PM 、QM 的斜率分别为0000,12PM QM y y k k x x ==+-, 因为0001,2,0x x y ≥≠≥,所以0001PM y k x =≥+,且0011PM yk x =≠+, 又tan PM MPQ k ∠=,所以(0,)2MPQ π∠∈,且4MPQ π∠≠,所以22tan tan 21(tan )MPQ MPQ MPQ ∠∠=-∠00002220000212(1)(1)1()1y x y x y x y x ⨯++==+--+, 因为点M 在W 上,所以220013y x -=,即220033y x =-,所以tan 2MPQ ∠000220002(1)(1)(33)2y x y x x x +==-+---,因为tan QM MQP k ∠=-, 所以tan tan 2MQP MPQ ∠=∠, 在MPQ ∆中,因为(0,)2MPQ π∠∈,且4MPQ π∠≠,(0,)MQP π∠∈,所以2MQP MPQ ∠=∠.综上,得当00y ≥时,2MQP MPQ ∠=∠.所以对于轨迹W 的任意一点M ,2MQP MPQ ∠=∠成立.5-1 解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点(,2)M m 到焦点F 的距离与到准线距离相等, 即(,2)M m 到2py =-的距离为3; 所以 232p-+=,解得2p =. 所以 抛物线P 的方程为24x y =.(ⅱ)抛物线焦点(0,1)F ,抛物线准线与y 轴交点为(0,1)E -,显然过点E 的抛物线的切线斜率存在,设为k ,切线方程为1y kx =-.由241x y y kx ⎧=⎨=-⎩, 消y 得2440x kx -+=, 216160k ∆=-=,解得1k =±.所以切线方程为1y x =±-.(Ⅱ)直线l 的斜率显然存在,设l :2p y kx =+, 设11(,)A x y ,22(,)B x y ,由222x py p y kx ⎧=⎪⎨=+⎪⎩ 消y 得 2220x pkx p --=. 且0∆>. 所以 122x x pk +=,212x x p ⋅=-; 因为 11(,)A x y , 所以 直线OA :11y y x x =,与2p y =-联立可得11(,)22px p C y --, 同理得22(,)22px pD y --. 因为 焦点(0,)2pF , 所以 11(,)2px FC p y =--,22(,)2pxFD p y =--, 所以 1212(,)(,)22px px FC FD p p y y ⋅=--⋅--22212121212224px px p x x p p y y y y =+=+2442221222212120422p x x p p p p p x x x x p p p=+=+=+=- 所以 以CD 为直径的圆过焦点F .5-2 解:(Ⅰ)如图,由题意得,22b c ==.所以b c ==2a =.所以所求的椭圆方程为22142x y +=. (Ⅱ)由(Ⅰ)知,C (2-,0),D (2,0).由题意可设CM :(2)y k x =+,P (1x ,1y ).MD CD ⊥,∴M (2,4k ).由 22142(2)x y y k x ⎧+=⎪⎨⎪=+⎩,整理 得:2222(12)8840k x k x k +++-=.因为21284212k x k --=+, 所以2122412k x k-=+. 所以1124(2)12k y k x k =+=+,222244(,)1212k kP k k-++. 所以222222444(12)244121212k k k OM OP k k k k-+⋅=⋅+⋅==+++. 即OM OP ⋅为定值. (Ⅲ)设0(,0)Q x ,则02x ≠-.若以MP 为直径的圆恒过DP ,MQ 的交点,则MQ DP ⊥,∴0MQ DP ⋅=恒成立.由(Ⅱ)可知0(2,4)QM x k =-,22284(,)1212k kDP k k -=++. 所以202284(2)401212k kQM DP x k k k -⋅=-⋅+⋅=++. 即2028012k x k =+恒成立. 所以00x =.所以存在(0,0)Q 使得以MP 为直径的圆恒过直线DP ,MQ 的交点. 5-3 解:(I)直线l 的方程为210x y --=;(II) 由2222,21m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩消去x ,得222104m y my ++-=. (*)由2228(1)804m m m ∆=--=-+>,知28m <.设11(,)A x y ,22(,)B x y ,则由(*)式,有12212,21.82m y y m y y ⎧+=-⎪⎪⎨⎪=-⎪⎩由于1(,0)F c -,2(,0)F c ,且O 是12F F 的中点,依题意,由2AG GO =,2BH HO =,可知,11(,)33x y G ,22(,)33x yH . 若原点在以线段GH 为直径的圆内,则0OG OH ⋅<,即12120x x y y +<.而2222121212121()()(1)()2282m m m x x y y my my y y m +=+++=+-, 所以21082m -<,即24m <.又由已知1m >,所以12m <<. 即,实数m 的取值范围是(1,2).5-4 解:(Ⅰ)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足:1(0)x x =>,化简得24(0)y x x =>.(Ⅱ)设过点M (m ,0)(m >0)的直线l 与曲线C 的交点为A 12(,)x y ,B 22(,)x y . 设直线l 的方程为x =ty +m , 由2,4x ty m y x=+⎧⎨=⎩得2440y ty m --=,△=16(2t +m )>0,于是12124,4.y y t y y m +=⎧⎨=-⎩ ①又1122(1,),(1,)FA x y FB x y =-=-.0FA FB ⋅<1212(1)(1)x x y y ⇔--+=1212()x x x x -++1+120y y < ②又24y x =,于是不等式②等价于2222121212()104444y y y y y y ⋅+-++< 2212121212()1()210164y y y y y y y y ⎡⎤⇔+-+-+<⎣⎦ ③ 由①式,不等式③等价于22614m m t -+< ④对任意实数t ,24t 的最小值为0,所以不等式④对于一切t 成立等价于2610m m -+<, 即33m -<<+由此可知,存在正实数m ,对于过点M (m ,0)且与曲线C 有两个交点A ,B 的任一直线,都有0FA FB ⋅<,且m的取值范围(3-+.6-1 解:(Ⅰ)由题意,2221,,a c b a b c ⎧-=⎪⎪=⎨⎪=+⎪⎩解得1a c ==.即:椭圆方程为.12322=+y x (Ⅱ)当直线AB 与x轴垂直时,AB =,此时AOB S ∆不符合题意故舍掉;当直线AB 与x 轴不垂直时,设直线 AB 的方程为:)1(+=x k y , 代入消去y 得:2222(23)6(36)0k x k x k +++-=.设1122(,),(,)A x y B x y ,则212221226,2336.23k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩所以AB =. 原点到直线的AB距离d =,所以三角形的面积12S AB d ==由224S k k =⇒=⇒=所以直线0AB l y -=或0AB l y +=.6-2 解:(I )椭圆C 的方程为)0(12222>>=+b a b y a x,由已知得2222.c e a a a b c ⎧==⎪⎪⎪=⎨⎪=+⎪⎪⎩解得1,1a b c ===所以所求椭圆的方程为1222=+y x .(II)由题意知l 的斜率存在且不为零,设l 方程为2(0)x my m =+≠ ①,将①代入1222=+y x ,整理得 22(2)420m y my +++=,由0>∆得2 2.m >设),(11y x E ,),(22y x F ,则1221224222m y y m y y m -⎧+=⎪⎪+⎨⎪=⎪+⎩②由已知,12OBE OBF S S ∆∆=, 则||1||2BE BF = 由此可知,2BF BE =,即212y y =,代入②得,12212432222m y m y m -⎧=⎪⎪+⎨⎪=⎪+⎩,消去1y 得222221629(2)2m m m ⋅=++ 解得,2187m =,满足22.m >即7m =±. 所以,所求直线l的方程为71407140x x --=+-=或.7-1 解:(Ⅰ)设椭圆的方程为22221,(0)x y a b a b+=>>,由题意可得:椭圆C 两焦点坐标分别为1(1,0)F -,2(1,0)F .所以532422a ==+=. 所以2a =,又1c = 2413b =-=,故椭圆的方程为22143x y +=. (Ⅱ)当直线l x ⊥轴,计算得到:33(1,),(1,)22A B ---,21211||||32322AF B S AB F F ∆=⋅⋅=⨯⨯=,不符合题意.当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+,由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去y 得 2222(34)84120k x k x k +++-=,显然0∆>成立,设1122(,),(,)A x y B x y ,则221212228412,,3434k k x x x x k k -+=-⋅=++又||AB ==即2212(1)||34k AB k+==+, 又圆2F的半径r ==所以2221112(1)||,22347AF Bk S AB r k ∆+==⨯==+ 化简,得4217180k k +-=,即22(1)(1718)0k k -+=,解得1k =±,所以,r ==故圆2F 的方程为:22(1)2x y -+=. (Ⅱ)另解:设直线l 的方程为 1x ty =-,由221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x 得 22(43)690t y ty +--=,0∆>恒成立,设1122(,),(,)A x y B x y ,则12122269,,4343t y y y y t t+=⋅=-++ 所以12||y y -== 又圆2F的半径为r ==,所以21212121||||||27AF B S F F y y y y ∆=⋅⋅-=-==,解得21t =,所以r ==2F 的方程为:22(1)2x y -+=.7-2 (Ⅰ)解 设直线PQ 的方程为)3(-=x k y .由⎪⎩⎪⎨⎧-==+)3(,12622x k y y x 得,062718)13(2222=-+-+k x k x k , 依题意0)32(122>-=∆k ,得3636<<-k . 设),(),,(2211y x Q y x P ,则13182221+=+k k x x , ①136272221+-=k k x x . ②由直线PQ 的方程得 11(3)y k x =-,22(3)y k x =-.于是 ]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y . ③ 因为0OP OQ ⋅=,所以 02121=+y y x x . ④ 由①②③④得152=k ,从而)36,36(55-∈±=k . 所以直线PQ 的方程为035=--y x 或035=-+y x (Ⅱ)证法1 ),3(),,3(2211y x AQ y x AP -=-=. 由已知得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ注意1>λ,解得λλ2152-=x . 因),(),0,2(11y x M F -,故),1)3((),2(1211y x y x FM -+-=--=λ),21(),21(21y y λλλλ--=--=.而2221(2,)(,)2FQ x y y λλ-=-=,所以FM FQ λ=-. 证法2 (坐标法与几何证法结合)为使结论更具一般性,下面就椭圆方程为22221(0)x y a b a b +=>>,点A 的坐标为2(,0)a c进行证明(其中22c a b =+).如图,对三角形PHA ∆应用梅涅劳斯定理,得1AQ PM HEQP MH EA⋅⋅=,又2PM MH =, 所以,12AQ HE QP EA ⋅=, 作QD x ⊥轴于D ,则,12AD HE DH EA ⋅=, (二维问题一维化)设),(),,(2211y x Q y x P ,0(,0)E x , 将上式用坐标表示,得2201221012a x x x c a x x x c--⋅=--,整理得,2201212122[()]()2a a x x x x x x x c c-+=⋅+-. (这个过程虽然复杂,但却表现出强烈的目标意识!下面的目标是非常明确的,即用解析几何的常规方法,求出12x x +与12x x )显然,直线AP 不垂直x 轴,故可设直线AP 的方程为2()a y k x c=-,由22222(),1a y k x c x y ab ⎧=-⎪⎪⎨⎪+=⎪⎩消去y ,整理得,242622222222()0k a k a a k b x x a b c c +-+-=, 所以,24122222*********,()().()k a x x c a k b k a abc x x c a k b ⎧+=⎪+⎪⎨-⎪=⎪+⎩222422122222222222()()()a a k a ab x xc c c a k b c a k b -+=-=++ 22242622212122222222222222()2()2()()a a k a k a abc a b x x x x c c c a k b c a k b a k b-⋅+-=⋅-=+++ 所以,222220222222()2a b c a k b x c a k b a b+=⋅=+. 这说明,直线MQ 与x 轴的交点是椭圆的右焦点(,0)F c . 所以,若AP AQ λ=,即,AP AQλ=,则PH MH MFQD QD FQ λ===,即FM FQ λ=-.注:λ可以是一切正实数,当1λ=时,,P Q 重合. 8-1 解:(Ⅰ)由焦点F ( 1, 0 ) 在l 上, 得k = –21, 所以l : y = –21x +21. 设点N( m , n ) , 则有: 11()()1,12112 1.22n m m n -⎧-=-⎪-⎨++⎪+=⎩解得1,53.5m n ⎧=⎪⎨⎪=-⎩所以N (51, – 53), 因为54≠ ( –53)2 ,所以N 点不在抛物线C 上. (2) 把直线方程11--=kk y x 代入抛物线方程得: k 2y 2 + 4y + 4k +4 = 0 , 因为相交,所以△ = 16 (–k 2 – k + 1)≥ 0,解得251--≤ k ≤251+- 且k ≠ 0 . 由对称得⎪⎪⎩⎪⎪⎨⎧+++=+-=⋅--1221110000k a x k y k a x y ,解得 x 0 =12)1(222+--k k k a (2511+-≤ k ≤251+-,且k ≠ 0). 当P 与M 重合时, a = 1,所以 f ( k ) = x 0 =13122+-k k = – 3 +142+k (2511+-≤ k ≤251+-, 且k ≠ 0), 因为函数x 0 = f ( k )(k ∈R)是偶函数,且k > 0时单调递减. 所以当k =251--时, (x 0)min =5525+-, 1lim 00=→x k ,所以 x 0 ∈[5525+-,1). 8-2 解:(Ⅰ)由33=a b ,22232121b a b a +⋅⋅=⋅ ,得3=a ,1=b ,所以椭圆方程是:1322=+y x . (Ⅱ)设EF :1-=my x (0>m )代入1322=+y x ,得022)3(22=--+my y m , 设),(11y x E ,),(22y x F ,由DF ED 2=,得212y y -=.由322221+=-=+m m y y y ,32222221+-=-=m y y y , 得31)32(222+=+-m m m ,1=∴m ,1-=m (舍去),直线EF 的方程为:1-=y x 即01=+-y x .(Ⅲ)将2+=kx y 代入1322=+y x ,得0912)13(22=+++kx x k (*) 记),(11y x P ,),(22y x Q ,PQ 为直径的圆过)0,1(-D ,则QD PD ⊥,即0)1)(1(),1(),1(21212211=+++=+⋅+y y x x y x y x ,又211+=kx y ,222+=kx y ,得01314125))(12()1(221212=++-=+++++k k x x k x x k . 解得67=k ,此时(*)方程0>∆, 所以存在67=k ,满足题设条件. 9-1 解:(Ⅰ)由题意知12c e a ==, 所以22222214c a b e a a -===. 即2243a b =.又因为b == 所以24a =,23b =.故椭圆C 的方程为22143x y +=. (Ⅱ)由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.由22(4),1.43y k x x y =-⎧⎪⎨+=⎪⎩ 得2222(43)3264120k x k x k +-+-=. ①设点11(,)B x y ,22(,)E x y ,则11(,)A x y -. 直线AE 的方程为212221()y y y y x x x x +-=--.令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入, 整理,得12121224()8x x x x x x x -+=+-. ②由①得 21223243k x x k +=+,2122641243k x x k -=+代入② 整理,得1x =.所以直线AE 与x 轴相交于定点(1,0)Q .(Ⅲ)当过点Q 直线MN 的斜率存在时,设直线MN 的方程为(1)y m x =-,且(,)M M M x y ,(,)N N N x y 在椭圆C 上.由22(1),1.43y m x x y =-⎧⎪⎨+=⎪⎩ 得2222(43)84120m x m x m +-+-=.易知0∆>.所以22843M N m x x m +=+,2241243M N m x x m -=+, 22943M N m y y m =-+. 则M N M N OM ON x x y y ⋅=+2225125334344(43)m m m +=-=--++. 因为20m ≥,所以21133044(43)m -≤-<+. 所以5[4,)4OM ON ⋅∈--.当过点Q 直线MN 的斜率不存在时,其方程为1x =. 解得3(1,)2M -,3(1,)2N -.此时54OM ON ⋅=-. 所以OM ON ⋅的取值范围是5[4,]4--.9-2 (Ⅰ)解:由题意可设抛物线的方程为22x py =(0)p ≠.因为点(,4)A a 在抛物线上,所以0p >. 又点(,4)A a 到抛物线准线的距离是5,所以452p+=,可得2p =. 所以抛物线的标准方程为24x y =.(Ⅱ)解:点F 为抛物线的焦点,则(0,1)F .依题意可知直线MN 不与x 轴垂直,所以设直线MN 的方程为1y kx =+.由21,4.y kx x y =+⎧⎨=⎩ 得2440x kx --=.因为MN 过焦点F ,所以判别式大于零. 设11(,)M x y ,22(,)N x y . 则124x x k +=,124x x =-.2121(,)MN x x y y =--2121(,())x x k x x =--.由于24x y =,所以'12y x =. 切线MT 的方程为1111()2y y x x x -=-, ① 切线NT 的方程为2221()2y y x x x -=-. ② 由①,②,得1212(,)24x x x x T + 则1212(,1)(2,2)24x x x x FT k +=-=-. 所以21212()2()0FT MN k x x k x x ⋅=---=. (Ⅲ)证明:2222(2)(2)44FTk k =+-=+.由抛物线的定义知 11MF y =+,21NF y =+.则12(1)(1)MF NF y y ⋅=++2121212(2)(2)2()4kx kx k x x k x x =++=+++244k =+.所以2FTMF NF =⋅.即FT 是MF 和NF 的等比中项.10-1 (Ⅰ)解:设椭圆G 的标准方程为22221(0)x y a b a b+=>>.因为1(1,0)F -,145PFO ∠=︒, 所以1bc . 所以 2222ab c .所以 椭圆G 的标准方程为2212x y +=. (Ⅱ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y .(ⅰ)证明:由122,1.2y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得:22211(12)4220k x km x m +++-=. 则2218(21)0k m ∆=-+>,1122211224,1222.12km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩所以||AB ===同理||CD =因为 ||||AB CD =, 所以=因为 12m m ≠, 所以 120m m +=.(ⅱ)解:由题意得四边形ABCD 是平行四边形,设两平行线,AB CD 间的距离为d ,则1221m m dk.因为 120m m +=, 所以 1221m dk.所以||S AB d =⋅=2221121k m m -++=≤=.(或S ==≤ 所以 当221212k m +=时, 四边形ABCD 的面积S取得最大值为10-2 (Ⅰ)解:依题意(1,0)F ,设直线AB 方程为1x my =+. 将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=. 设11(,)A x y ,22(,)B x y ,所以 124y y m +=,124y y =-. ① 因为 2AF FB =, 所以 122y y =-. ②联立①和②,消去12,y y,得4m =±. 所以直线AB的斜率是±.(Ⅱ)解:由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S ∆. 因为 12122||||2AOB S OF y y ∆=⨯⋅⋅-==所以 0m =时,四边形OACB 的面积最小,最小值是4.11-1 解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① 又点3(1,)2M 在椭圆C 上,所以221914a b += ② 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. (Ⅱ) 当0k =时,(0,2)P m 在椭圆C上,解得m =||OP = 当0k ≠时,则由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ③设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则012012122286,()23434km m x x x y y y k x x m k k=+=-=+=++=++. 由于点P 在椭圆C 上,所以 2200143x y +=. 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式.又||OP =====因为102k <≤,得23434k <+≤,有2331443k ≤<+,2OP <≤. 综上,所求OP的取值范围是. (Ⅱ)另解:设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,由,A B 在椭圆上,可得2211222234123412x y x y ⎧+=⎨+=⎩①②①—②整理得121212123()()4()()0x x x x y y y y -++-+=③ 由已知可得OP OA OB =+,所以120120x x x y y y +=⎧⎨+=⎩④⑤由已知当1212y y k x x -=- ,即1212()y y k x x -=- ⑥把④⑤⑥代入③整理得0034x ky =- 与22003412x y +=联立消0x 整理得202943y k =+.由22003412x y +=得2200443x y =-, 所以222222000002413||4443343OP x y y y y k =+=-+=-=-+, 因为12k ≤,得23434k ≤+≤,有2331443k ≤≤+,OP ≤≤. 所求OP的取值范围是. 11-2 解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为246+, 所以24622+=+c a ,,即c a =,所以c =,所以3a =,c =所以1b =,椭圆M 的方程为1922=+y x . (Ⅱ)方法一:不妨设BC 的方程(3),(0)y n x n =->,则AC 的方程为)3(1--=x ny . 由22(3),19y n x x y =-⎧⎪⎨+=⎪⎩得0196)91(2222=-+-+n x n x n , 设),(11y x A ,),(22y x B ,因为222819391n x n -=+,所以19327222+-=n n x ,同理可得2219327n n x +-=,所以1961||22++=n n BC ,222961||nn n n AC ++=, 964)1()1(2||||212+++==∆n n n n AC BC S ABC, 设21≥+=nn t , 则22236464899t S t t t==≤++, 当且仅当38=t 时取等号, 所以ABC ∆面积的最大值为83. 方法二:不妨设直线AB 的方程x ky m =+.由22,1,9x ky m x y =+⎧⎪⎨+=⎪⎩ 消去x 得222(9)290k y kmy m +++-=, 设),(11y x A ,),(22y x B ,则有12229km y y k +=-+,212299m y y k -=+. ①因为以AB 为直径的圆过点C ,所以 0CA CB ⋅=. 由 1122(3,),(3,)CA x y CB x y =-=-, 得 1212(3)(3)0x x y y --+=. 将1122,x ky m x ky m =+=+代入上式,得 221212(1)(3)()(3)0k y y k m y y m ++-++-=.将 ① 代入上式,解得 125m =或3m =(舍). 所以125m =(此时直线AB 经过定点12(,0)5D ,与椭圆有两个交点), 所以121||||2ABC S DC y y ∆=-12== 设211,099t t k =<≤+,则ABC S ∆=所以当251(0,]2889t =∈时,ABC S ∆取得最大值83. 12-1 解:(Ⅰ)因为四边形AMBN 是平行四边形,周长为8,所以两点,A B 到,M N 的距离之和均为4,可知所求曲线为椭圆.由椭圆定义可知,2,a c ==1b =,所求曲线方程为1422=+y x . (Ⅱ)由已知可知直线l 的斜率存在,又直线l 过点(2,0)C -,设直线l 的方程为:(2)y k x =+,代入曲线方程221(0)4x y y +=≠,并整理得2222(14)161640k x k x k +++-=, 点(2,0)C -在曲线上,所以D (228214k k -++,2414kk +),(0,2)E k ,CD =2244(,)1414kk k++,(2,2)CE k =, 因为OA //l ,所以设OA 的方程为y kx =.代入曲线方程,并整理得22(14)4k x +=,所以(A .22222228814142441414k CD CE k k k OA k k+⋅++==+++,所以2CD CE OA ⋅为定值.12-2 解:(Ⅰ)由题意得2c a =① 因为椭圆经过点)21,26(P ,所以22221()221a b += ② 又222a b c =+ ③由①②③ 解得 22=a ,122==c b .所以椭圆方程为2212x y +=. (Ⅱ)以OM 为直径的圆的圆心为(1,)2t ,半径r =方程为222(1)()124t t xy -+-=+,因为以OM 为直径的圆被直线3450x y --=截得的弦长为2, 所以圆心到直线3450x y --=的距离d 2t=. 所以32552t t--=,解得4t =. 所求圆的方程为22(1)(2)5x y -+-=.(Ⅲ)方法一:过点F 作OM 的垂线,垂足设为K ,由平几知:2ONOK OM =.则直线OM :2t y x =,直线FN :2(1)y x t=--,由,22(1),t y x y x t ⎧=⎪⎪⎨⎪=--⎪⎩得244K x t =+.所以2M ONx x =22444422=⋅+⋅+=t t . 所以线段ON方法二:设00(,)N x y ,则 ),1(00y x FN -=,),2(t OM =,),2(00t y x MN --=,),(00y x ON =.因为 OM FN ⊥,所以 0)1(200=+-ty x .所以 2200=+ty x . 又因为 ON MN ⊥,所以0)()2(0000=-+-t y y x x , 所以22002020=+=+ty x y x . 所以22020=+=y x 为定值.12-3 解:(Ⅰ)(ⅰ)因为 圆O 过椭圆的焦点,圆O :222x y b +=,所以b c =,所以2222b ac c =-=, 所以222a c =,所以e =(ⅱ)由90APB ∠=及圆的性质,可得OP =,所以2222,OP b a =≤所以222a c ≤ 所以212e ≥,12e ≤<. (Ⅱ)设()()()001122,,,,,P x y A x y B x y ,则011011y y x x x y -=--整理得220011x x y y x y +=+ 因为22211x y b +=所以PA 方程为:211x x y y b +=,PB 方程为:222x x y y b +=.所以11x x y y +=22x x y y +, 所以021210x y y x x y -=--,直线AB 方程为 ()0110x y y x x y -=--,即 200x x y y b +=. 令0x =,得20b ON y y ==,令0y =,得2b OM x x ==,所以2222222220022442a y b x a b a b a b b bON OM ++===,所以2222a b ON OM+为定值,定值是22a b . 13-1 解:(Ⅰ)由题意可知:222,c c e a a b c ⎧=⎪⎪==⎨⎪=+⎪⎩解得 1,2==b a .所以椭圆的方程为:1422=+y x . (II )证明:由方程组⎪⎩⎪⎨⎧+==+m kx y y x 14220448)k 41222=-+++m kmx x 得(0)44)(41(4)8(222>-+-=∆m k km ,整理得01422>+-m k , 设),(),,(2221y x N x x M则22212214144,418km x x k km x x +-=+-=+. 由已知,AN AM ⊥且椭圆的右顶点为)0,2(A , 所以1212(2)(2)0x x y y --+=,2212122121)())((m x x km x x k m kx m kx y y +++=++=,即04))(2()1(221212=+++-++m x x km x x k ,也即04418)2(4144))1(22222=+++-•-++-•+m kkmkm k m k , 整理得:01216522=++k mk m , 解得562k m k m -=-=或均满足01422>+-m k . 当k m 2-=时,直线的l 方程为k kx y 2-=,过定点(2,0)与题意矛盾舍去; 当56k m -=时,直线的l 方程为)56(-=x k y ,过定点)0,56(. 故直线l 过定点,且定点的坐标为)0,56(. 13-2 解:(I )由题意可得OP OM ⊥, 所以0OP OM ⋅=,即(,)(,4)0x y x -=,即240x y -=,即动点P 的轨迹W 的方程为24x y =.(II )设直线l 的方程为4y kx =-,1122(,),(,)A x y B x y ,则11'(,)A x y -. 由244y kx x y=-⎧⎨=⎩消y 整理得24160x kx -+=, 则216640k ∆=->,即||2k >.12124,16x x k x x +==.直线212221':()y y A B y y x x x x --=-+,所以212221()y y y x x y x x -=-++,2222122121()4()4x x y x x x x x -=-++,222121221444x x x x x y x x --=-+,2112y 44x x x xx -=+,即2144x x y x -=+. 所以,直线'A B 恒过定点(0,4). 13-3 解:(Ⅰ)设动点M 的坐标为(,)x y ,|1|x =+,化简得24y x =,所以点M 的轨迹C 的方程为24y x =.(Ⅱ)设,A B 两点坐标分别为11(, )x y ,22(,)x y , 则点P 的坐标为1212(,)22x x y y ++. 由题意可设直线1l 的方程为(1)y k x =- (0)k ≠,由24, (1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=. 2242(24)416160k k k .因为直线1l 与曲线C 于,A B 两点, 所以12242x x k +=+,12124(2)y y k x x k+=+-=. 所以点P 的坐标为222(1, )k k+. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为2(12,2)k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为222(12)1k y k x k k+=---, 整理得2(3)0yk x k y +--=.于是,直线PQ 恒过定点(3, 0)E ;当1k =±时,直线PQ 的方程为3x =,也过点(3, 0)E . 综上所述,直线PQ 恒过定点(3, 0)E . (Ⅲ)可求的||2EF ,所以FPQ ∆面积121||(2||)2(||)42||||S FE k k k k =+=+≥. 当且仅当1k =±时,“=”成立,所以FPQ ∆面积的最小值为4. 14-1 解:(Ⅰ)由题意知:1c .根据椭圆的定义得:22222(11)()22a ,即2a .所以 2211b.所以 椭圆C 的标准方程为2212x y +=. (Ⅱ)假设在x 轴上存在点(,0)Q m ,使得716QA QB ⋅=-恒成立.当直线l 的斜率为0时,(A B .则 7,0)(2,0)16m m . 解得 54m.当直线l 的斜率不存在时,(1,22A B -. 由于52527(1,)(1,)424216,所以54m . 下面证明54m时,716QA QB ⋅=-恒成立. 显然 直线l 的斜率为0时,716QA QB ⋅=-. 当直线l 的斜率不为0时,设直线l 的方程为:1xty ,1122,,,A x y B x y .由221,21x y x ty 可得:22(2)210t y ty .显然0∆.1221222,21.2t y y t y y t因为 111x ty ,221x ty ,所以 112212125511(,)(,)()()4444x y x y ty ty y y2121211(1)()416t y y t y y2221121(1)24216t t t t t22222172(2)1616t t t . 综上所述:在x 轴上存在点5(,0)4Q ,使得716QA QB ⋅=-恒成立. 14-2解:(Ⅰ)由题意可知2)(136abe -==,得 223b a =. 因为1,1B()在椭圆上11122=+b a 解得:34422==b ,a .故椭圆M 的方程为:143422=+y x . (Ⅱ)由于PBQ ∠的平分线垂直于OA 即垂直于x 轴,故直线PB 的斜率存在设为k ,则QB 斜率为k -,因此PB ,QB 的直线方程分别为(1)1y k x =-+,(1)1y k x =--+.由⎪⎩⎪⎨⎧=++-=14341)1(22y x x k y 得01631631222=--+--+k k x )k (k x )k (①由0>∆ ,得31-≠k .因为点B 在椭圆上,x =1是方程①的一个根,设),(),,(Q Q p p y x Q y x P所以22361131P k k x k --⋅=+,即2236131P k k x k --=+,同理1316322+-+=k k k x Q .所以=PQk 311312213)13(22)(222=+--+-⋅=--+=--k k k k k k x x k x x k x x y y Q P Q P Q P Q P .因为(2,0),(1,1)A C --,所以13AC k =, 即 AC PQ k k =. 所以向量AC //PQ ,则总存在实数λ使AC PQ λ=成立.15-1 解:(Ⅰ)因为ace ==22, 12122=+a b ,222c b a +=所以2=a ,2=b ,2=c所以14222=+y x . (Ⅱ)设直线BD 的方程为b x y +=2所以⎩⎨⎧=++=42222y x bx y 0422422=-++⇒b bx x所以06482>+-=∆b 2222<<-⇒b,2221b x x -=+ ----① 44221-=b x x -----②因为12BD x =-===,设d 为点A 到直线BD :b x y +=2的距离, ∴3b d =所以2)8(422122≤-==∆b b d BD S ABD ,当且仅当2±=b 时取等号. 因为2±)22,22(-∈,所以当2±=b 时,ABD ∆的面积最大,最大值为2.(Ⅲ)设),(11y x D ,),(22y x B ,直线AB 、AD 的斜率分别为:AB k 、AD k ,则=+AB AD k k 122122121222112211--++--+=--+--x b x x b x x y x y=]1)(2[22212121++--++x x x x x x b ------*将(Ⅱ)中①、②式代入*式整理得]1)(2[22212121++--++x x x x x x b =0,即=+AB AD k k 0.15-2 解:(Ⅰ)设1122(,),(,)C x y D x y ,直线l 的方程为1(0)y kx k =+≠.由2244,1x y y kx ⎧+=⎨=+⎩得22(4)230k x kx ++-=, 222412(4)16480k k k ∆=++=+>,12224k x x k -+=+,12234x x k -=+, 由已知1(,0),(0,1)E F k-, 又CE FD =,所以11221(,)(,1)x y x y k---=- 所以121x x k --=,即211x x k+=-, 所以2214k k k-=-+,解得2k =±,符合题意, 所以,所求直线l 的方程为210x y -+=或210x y +-=. (Ⅱ)2121y k x =+,1211y k x =-,12:2:1k k =, 所以2112(1)2(1)1y x y x -=+,平方得 22212212(1)4(1)y x y x -=+, 又221114y x +=,所以22114(1)y x =-,同理22224(1)y x =-,代入上式, 计算得2112(1)(1)4(1)(1)x x x x --=++,即121235()30x x x x +++=.假设满足条件的实数k 存在,则由(Ⅰ)得12224k x x k -+=+,12234x x k-=+. 所以231030k k -+=,解得3k =或13k =, 因为2112(1)2(1)1y x y x -=+,12,(1,1)x x ∈-,所以12,y y 异号,故舍去13k =,所以存在实数k ,使得12:2:1k k =,且3k =.16- 1 解:(Ⅰ)设椭圆C 的方程为22221(0)x y a b a b +=>>,由题意得22222191,41,2.a b c a a b c ⎧+=⎪⎪⎨=⎪⎪=+⎩解得24a =,23b =,故椭圆C 的方程为22143x y +=. (Ⅱ)因为过点(2, 1)P 的直线l 与椭圆在第一象限相切,所以l 的斜率存在,故可设直线l 的方程为(2)1y k x =-+.由221,43(2)1,x y y k x ⎧+=⎪⎨⎪=-+⎩得222(34)8(21)161680k x k k x k k +--+--=. ① 因为直线l 与椭圆相切,所以222[8(21)]4(34)(16168)0k k k k k ∆=---+--=. 整理,得32(63)0k +=. 解得12k =-. 所以直线l 方程为11(2)1222y x x =--+=-+. 将12k =-代入①式,可以解得M 点横坐标为1,故切点M 坐标为3(1, )2. (Ⅲ)若存在直线1l 满足条件,设直线1l 的方程为1(2)1y k x =-+,代入椭圆C 的方程得22211111(34)8(21)161680k x k k x k k +--+--=.因为直线1l 与椭圆C 相交于不同的两点,A B ,设,A B 两点的坐标分别为1122(,),(,)x y x y , 所以222111111[8(21)]4(34)(16168)32(63)0k k k k k k ∆=---+--=+>.。
高考数学压轴题100题汇总(含答案)
高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
2020年高考冲刺140分突破压轴题三十练(十五)详细版解析
结合x1 + ������3 = 2������2,可得2x12 − 4������1������2 = 2������32 − 4������2������3,
且一般来说较难,大家要熟练掌握各种条件的转化和求解方法,比如
这 道 题 中 锁 定 x = π 会取到最值, 然 后 发 现 φ 有 两 个 解 , 需 要 利 用
6
f (π) > f(π)来舍掉一个解,然后再进行单调性的求解,这里涉及到的
2
复合函数单调性求解方法也要熟练掌握.
第二题. 设A(x1, ex1 + x1), B(x2, ex2 + x2), C(x3, ex3 + x3),且x1 + x3 = 2x2, 则 B⃗⃗⃗⃗A⃗ = (x1 − x2, ex1 − ex2 + x1 − x2), B⃗⃗⃗⃗C⃗ = (x3 − x2, ex3 − ex2 + x3 − x2), 所 以 B⃗⃗⃗⃗A⃗ ∙ B⃗⃗⃗⃗⃗C = (x1 − x2)(x3 − x2) + (ex1 − ex2 + x1 − x2)(ex3 − ex2 + x3 − x2), 假设x1 < x2 < x3, 则ex1 < ex2 < ex3, 所以x1 − ������2 < 0, ������3 − ������2 > 0, ������������1 − ������������2 < 0, ������������3 − ������������2 > 0,
kAB ������������������ ������������������
第五题. 定义在R 上的函数 f(x)在(−∞, −2)上单调递增,且f(x − 2)是偶函数, 若对一切实数x, 不等式 f(2sinx − 2) > f(sinx − 1 − m)恒成立,则实 数m的取值范围为______.
压轴题02 数列压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题02数列压轴题题型/考向一:多选、填空综合题型/考向二:数列通项公式与数列求和题型/考向三:数列与其他知识综合一、等差数列、等比数列的基本公式1.等差数列的通项公式:a n =a 1+(n -1)d ;2.等比数列的通项公式:a n =a 1·q n -1.3.等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;4.等比数列的求和公式:S na 1-a n q1-q ,q ≠1,二、等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列,有a m a n =a p a q =a 2k .2.前n 项和的性质(m ,n ∈N *):对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).三、数列求和的常用方法热点一分组求和与并项求和1.若数列{c n }的通项公式为c n =a n ±b n ,或c nn ,n 为奇数,n ,n 为偶数,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列的通项公式中有(-1)n 等特征,根据正负号分组求和.热点二裂项相消法求和裂项常见形式:(1)分母两项的差等于常数1(2n -1)(2n +1)=1n (n +k )=(2)分母两项的差与分子存在一定关系2n (2n -1)(2n +1-1)=12n -1-12n +1-1;n +1n 2(n +2)2=141n 2-1(n +2)2.(3)分母含无理式1n +n +1=n +1-n .热点三错位相减法求和如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用其法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.○热○点○题○型一多选题综合一、多选题1.已知等差数列{}n a 的前n 项和为n S ,满足12321a a a ++=,525S =,下列说法正确的是()A .23n a n =+B .210n S n n=-+C .{}n S 的最大值为5S D .11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为1099-【答案】BCD【详解】根据等差中项,1232213a a a a ++==,解得27a =,()()512345315243255S a a a a a a a a a a a ==++++=++++=,解得35a =,设等差数列{}n a 的公差为d ,则322d a a =-=-,于是等差数列的通项公式为:2(2)112n a a n d n =+-=-,故A 选项错误;2.数列n 是等差数列,8,则下列说法正确的是()A .36a a +为定值B .若1272a =,则5n =时n S 最大C .若12d =,使n S 为负值的n 值有3个D .若46S =,则1212S =111的对角线向相邻的某个顶点移动,且向每个相邻顶点移动的概率相同,设蚂蚁移动n次后还在底面ABC的概率为n P,则下列说法正确的是()A.11 2P=B.213 25P=C.12nP⎧-⎫⎨⎬⎩⎭为等比数列D.11111052nnP-⎛⎫=-⨯-+⎪⎝⎭4.已知函数()f x 的定义域为()1,1-,对任意的(),1,1x y ∈-,都有()()1f x f y f xy --= ⎪-⎝⎭,且112f ⎛⎫= ⎪⎝⎭,当()0,1x ∈时,()0f x >,则()A .()f x 是偶函数B .()00f =C .当A ,B 是锐角ABC 的内角时,()()cos sin f B f A <D .当0n x >,且21112n n n x x x ++=,112x =时,()12n n f x -=5.已知定义在[]0,1上的函数()0,010,1,1,,,,f x p p x p q q q q ⎧==⎪=⎛⎫⎨= ⎪⎪⎝⎭⎩或或为内的无理数为正整数为既约真分数该函数称为黎曼函数.若数列{}n a 满足1n n a f n ⎛⎫= ⎪+⎝⎭,则下列说法正确的是()A .0n a >B .1n na a +>C .11nn i a =<∑D .1112nn n i a a +=<∑二、填空题6.艾萨克牛顿是英国皇家学会会长,著名物理学家,他在数学上也有杰出贡献.牛顿用“作切线”的方法求函数()f x 零点时给出一个数列{}()()1:n n n n n f x x x x f x +-'=,我们把该数列称为牛顿数列.如果函数()2(0)f x ax bx c a =++>有两个零点1和2,数列{}n x 为牛顿数列.设2ln 1nn nx a x -=-,已知11a =,2n x >,{}n a 的前n 项和为n S ,则2023S =__________.【答案】202321-##202312-+7.对任意*n ∈N ,任意[1,2]a ∈,都有2112e 3ax x a n ⎛⎫+≤-+- ⎪⎝⎭恒成立(注:e 为自然对数的底数),则实数x 的取值范围是__________.123新编辑,编辑新序列为*234123,,,a a a A a a a ⎧⎫=⎨⎬⎩⎭,它的第n 项为1n na a +,若序列()**A 的所有项都是2,且41a =,532a =,则1a =__________.9.黎曼猜想由数学家波恩哈德·黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想涉及到很多领域的应用,有些数学家将黎曼猜想的攻坚之路趣称为:“各大行长躲在银行保险柜前瑟瑟发抖,不少黑客则潜伏敲着键盘蓄势待发”.黎曼猜想研究的是无穷级数()1111123ss s s n s n ξ∞-===+++∑ ,我们经常从无穷级数的部分和1111123s s s sn ++++ 入手.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则12400111S S S ⎡⎤+++=⎢⎥⎣⎦ ______(其中[]x 表示不超过x 的最大整数).10.南宋数学家杨辉善于把已知形状、大小的几何图形的求面积、体积的连续量问题转化为求离散量的垛积问题,在他的专著《详解九章算法·商功》中给出了著名的三角垛公式()()()()()1112123123126n n n n ++++++⋅⋅⋅++++⋅⋅⋅+=++,则数列{}22n n +的前n项和为____________.○热○点○题○型二数列通项公式与数列求和11.已知数列{}n a 满足1322a a a +=,13,2,n n na n a a n +⎧=⎨+⎩为奇数为偶数,数列{}n c 满足21n n c a -=.(1)求数列{}n c 和{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .【详解】(1)13,2,n n n a n a a n +⎧=⎨+⎩为奇数为偶数,得213213,232a a a a a ==+=+,因为1322a a a +=,即111326a a a ++=,解得11a =,由21n n c a -=,得111211,n n c a c a ++===,12.在①n b =②11n n n b a a +=;③2nn n b a =,这三个条件中任选一个补充在下面横线上,并解答问题.已知数列{}n a 的前n 项和23322n n S na n n =-+.(1)证明:数列{}n a 是等差数列;(2)若12a =,设___________,求数列{}n b 的前n 项和n T .13.在数列n a 中,19a =,2313912n n n n a n a ++⋅+=+.(1)求{}n a 的通项公式;(2)设{}n a 的前n 项和为n S ,证明:525443n nn S +<-⋅.○热○点○题○型三数列与其他知识综合14.已知函数()y f x =是定义在()(),00,∞-+∞U 上的偶函数,当0x >时,()()121,0212,22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩,()n a f n =(n 为正整数).(1)当20x -≤<时,求()y f x =的解析式;(2)若函数()()g x f x m =-存在零点,且零点个数不超过10,求实数m 的取值范围;(3)求数列{}n a 的前n 项和为,n n S S 是否存在极限?若存在,求出这个极限;若不存在,请说明理由【详解】(1)当20x -≤<时,()02,x y f x <-≤= 是偶函数,()()11|2121x x f x f x --+∴=-=-=-∣(2)0x >,当()222N,1k x k k k -<≤∈≥时,()0212x k <--≤,()()()()()()2321111112222322211212122x k k k f x f x f x f x f x k -+--∴=-=-⨯=-⨯=⎡⎤=--=-⎣⎦ ,∴当02x <≤时,()[]1|210,1x f x -=-∈∣,当24x <≤时,()()()|31112210,222x f x f x -⎡⎤=-=-∈⎢⎥⎣⎦∣,当24x <≤时,()()()521114210,244x f x f x -⎡⎤=-=-∈⎢⎥⎣⎦,图像如图所示:若1m =,函数()()g x f x m =-有1个零点2x =;若112m <<,函数()()g x f x m =-有2个零点;若12m =,函数()()g x f x m =-有3个零点;15.若无穷数列n 的各项均为整数.且对于,,i j i j *∀∈<N ,都存在,使得k j i j i a a a a a =--,则称数列{}n a 满足性质P .(1)判断下列数列是否满足性质P ,并说明理由.①n a n =,1n =,2,3,…;②2n b n =+,1n =,2,3,….(2)若数列{}n a 满足性质P ,且11a =,求证:集合{}3∣n n a *∈=N 为无限集;(3)若周期数列{}n a 满足性质P ,请写出数列{}n a 的通项公式(不需要证明).【详解】(1)对①,取1i =,对,1j j *∀∈>N ,则11,j i j a a a ===,可得11j j i i j a a a j a =---=--,显然不存在,k j k *>∈N ,使得1k a =-,所以数列{}n a 不满足性质P ;对②,对于,,i j i j *∀∈<N ,则2i b i =+,2j b j =+,故()()()()2222j i i j i j i j i j i j b b b b --=++-+-+=⋅++()22i j i j =⋅++-+,因为,,1,2i j i j *∈≥≥N ,则()2i j i j *⋅++-∈N ,且()()2123i j i j i j j ⋅++-=++-≥,所以存在()2k i j i j *=⋅++-∈N ,k j >,使得()22j k i j i b b i b j i j b b =⋅++-=--+,故数列{}n b 满足性质P ;(2)若数列{}n a 满足性质P ,且11a =,则有:取111,1,i j j j *==>∈N ,均存在111,k j k *>∈N ,使得111111k j j a a a a a =--=-,取2121,,i j j k j *==>∈N ,均存在2212,k j k k *>>∈N ,使得222111k j j a a a a a =--=-,取121,i k j k k ==>,均存在1211,m k m *>>∈N ,使得112123m k k k k a a a a a =--=,故数列{}n a 中存在n *∈N ,使得3n a =,即{}3∣n n a *∈=≠∅N ,反证:假设{}3∣n n a *∈=N 为有限集,其元素由小到大依次为()12,,,1l l n n n n >L ,取1,1l l i j n n ==+>,均存在1,L l L k n k *>+∈N ,使得11111Lllk n n a a a a a ++=--=-,取1,1L i j k ==+,均存在111,L L L k k k *++>+∈N ,使得111111L L L kk k a a a a a +++=--=-,取1,L L i k j k +==,均存在111,l L l l n k n n *+++>>∈N ,使得1113l LL LL n k k k ka a a a a +++=--=,即{}13∣l n n n a *+∈∈=N 这与假设相矛盾,故集合{}3∣n n a *∈=N 为无限集.(3)设周期数列{}n a 的周期为1,T T *≥∈N ,则对n *∀∈N ,均有n n T a a +=,设周期数列{}n a 的最大项为,,1M a M M T *∈≤≤N ,最小项为,,1N a N N T *∈≤≤N ,即对n *∀∈N ,均有N n M a a a ≤≤,若数列{}n a 满足性质P :反证:假设4M a ≥时,取,i M j M T ==+,则,k M T k *∃>+∈N ,使得22k M M T M M T M M a a a a a a a ++=--=-,则()2330k M M M M M a a a a a a -=-=->,即k M a a >,这对n *∀∈N ,均有N n M a a a ≤≤矛盾,假设不成立;则对n *∀∈N ,均有3n a ≤;反证:假设2N a ≤-时,取,i N j N T ==+,则,k N T k *∃>+∈N ,使得224k N N T N N T N N a a a a a a a ++=--=-≥,这与对n *∀∈N ,均有3n a ≤矛盾,假设不成立,即对n *∀∈N ,均有1n a ≥-;综上所述:对n *∀∈N ,均有13n a -≤≤,反证:假设1为数列{}n a 中的项,由(2)可得:1,3-为数列{}n a 中的项,∵()13135-⨯---=-,即5-为数列{}n a 中的项,这与对n *∀∈N ,均有13n a -≤≤相矛盾,即对n *∀∈N ,均有1n a ≠,同理可证:1n a ≠-,∵n a ∈Z ,则{}0,2,3n a ∈,当1T =时,即数列{}n a 为常数列时,设n a a =,故对,,i j i j *∀∈<N ,都存在k j >,使得22i k i j j a a a a a a a a =--=-=,解得0a =或3a =,即0n a =或3n a =符合题意;当2T ≥时,即数列{}n a 至少有两个不同项,则有:①当0,2为数列{}n a 中的项,则02022⨯--=-,即2-为数列{}n a 中的项,但{}20,2,3-∉,不成立;②当0,3为数列{}n a 中的项,则03033⨯--=-,即3-为数列{}n a 中的项,但{}30,2,3-∉,不成立;③当2,3为数列{}n a 中的项,则23231⨯--=,即1为数列{}n a 中的项,但{}10,2,3∉,不成立;综上所述:0n a =或3n a =.16.如果数列{}n a 对任意的*N n ∈,211n n n n a a a a +++->-,则称{}n a 为“速增数列”.(1)判断数列{}2n是否为“速增数列”?说明理由;(2)若数列{}n a 为“速增数列”.且任意项Z n a ∈,121,3,2023k a a a ===,求正整数k 的最大值;(3)已知项数为2k (2,Z k k ≥∈)的数列{}n b 是“速增数列”,且{}n b 的所有项的和等于k ,若2n bn c =,1,2,3,,2n k = ,证明:12k k c c +<.即32121k k k k k k b b b b b b +--+++>+>+,同理可得:211k m m k k b b b b -+++>+,*N m ∈,11m k ≤≤-,故()()()()1221222111k k k k k k k k b b b b b b b b b k b b -++=+++=++++++>+ ,故11k k b b ++<,1112222kk kk b b b bk k c c ++++=⨯=<,得证.。
高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)
1、函数与导数(1)2、三角函数与解三角形3、函数与导数(2)4、立体几何5、数列(1)6、应用题7、解析几何8、数列(2)9、矩阵与变换10、坐标系与参数方程11、空间向量与立体几何12、曲线与方程、抛物线13、计数原理与二项式分布14、随机变量及其概率分布15、数学归纳法高考压轴大题突破练 (一)函数与导数(1)1.已知函数f (x )=a e xx+x .(1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2,∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1e.(2)若a <0,f ′(x )=a e x (x -1)+x 2x 2,当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则⎩⎪⎨⎪⎧x 0>1,f (x 0)>0,f ′(x 0)=0,则0000200201,e 0,e (1)0,x x x a x x a x x x ⎛> +> -+ = ⎝①②③由③得0e x a =-x 20x 0-1,代入②得-x 0x 0-1+x 0>0,结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x ,设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x ,当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4e2.又a <0,故当极大值为正数时,a ∈⎝⎛⎭⎫-4e 2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2, 则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞), ∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e , ∴a e x +2<0,∴H ′(x )<0, ∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0, ∴∃x 0∈(1,2),使得H (x 0)=0, 且当1<x <x 0时,H (x )>0,即f ′(x )>0; 当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极大值f (x 0)=0e x a x +x 0.(*)又H (x 0)=0e x a (x 0-1)+x 20=0, ∴00e x a x =-x 0x 0-1,代入(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0, ∴不存在负整数a 满足条件.2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且∃x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围. 解 (1)∵函数f (x )=ax 3-3x 2+1, ∴f ′(x )=3ax 2-6x =3x (ax -2), 令f ′(x )=0,得x 1=0或x 2=2a ,∵a >0,∴x 1<x 2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极大值为f (0)=1,极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2, ∵∃x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解, 即不等式2a ≤1x 3+3x在[1,2]上有解,设y =1x 3+3x =3x 2+1x3(x ∈[1,2]),∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∴y =1x 3+3x 在[1,2]上单调递减,∴当x =1时,y =1x 3+3x 的最大值为4,∴2a ≤4,即a ≤2.高考中档大题规范练 (一)三角函数与解三角形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4,x ∈R . (1)求f (x )的最小正周期和值域;(2)若x =x 0⎝⎛⎭⎫0≤x 0≤π2为f (x )的一个零点,求sin 2x 0的值. 解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x )=1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为π,值域为⎣⎡⎦⎤-32,52. (2)由f (x 0)=2sin ⎝⎛⎭⎫2x 0-π6+12=0,得 sin ⎝⎛⎭⎫2x 0-π6=-14<0, 又由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6,所以-π6≤2x 0-π6<0,故cos ⎝⎛⎭⎫2x 0-π6=154, 此时sin 2x 0=sin ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π6+π6 =sin ⎝⎛⎭⎫2x 0-π6cos π6+cos ⎝⎛⎭⎫2x 0-π6sin π6 =-14×32+154×12=15-38.2.(2017·江苏南通四模)已知向量m =⎝⎛⎭⎫sin x 2,1,n =⎝⎛⎭⎫1,3cos x2,函数f (x )=m ·n . (1)求函数f (x )的最小正周期;(2)若f ⎝⎛⎭⎫α-2π3=23,求f ⎝⎛⎭⎫2α+π3的值. 解 (1)f (x )=m ·n =sin x 2+3cos x2=2⎝⎛⎭⎫12sin x 2+32cos x 2=2⎝⎛⎭⎫sin x 2cos π3+cos x 2sin π3 =2sin ⎝⎛⎭⎫x 2+π3,所以函数f (x )的最小正周期为T =2π12=4π.(2)由f ⎝⎛⎭⎫α-2π3=23,得2sin α2=23,即sin α2=13. 所以f ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π2=2cos α =2⎝⎛⎭⎫1-2sin 2α2=149. 3.(2017·江苏南师大考前模拟)已知△ABC 为锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),并且m ⊥n . (1)求A -B ;(2)若cos B =35,AC =8,求BC 的长.解 (1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B =cos ⎝⎛⎭⎫A +π3-B =0. 因为0<A ,B <π2,所以-π6<A +π3-B <5π6,所以A +π3-B =π2,即A -B =π6.(2)因为cos B =35,B ∈⎝⎛⎭⎫0,π2,所以sin B =45, 所以sin A =sin ⎝⎛⎭⎫B +π6=sin B cos π6+cos B sin π6 =45×32+35×12=43+310, 由正弦定理可得BC =sin A sin B×AC =43+3.4.(2017·江苏镇江三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B . (1)求角A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间. 解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理, 得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32, 因为0<A <π,所以A =π6.(2)f (x )=cos 2(x +A )-sin 2(x -A ) =cos 2⎝⎛⎭⎫x +π6-sin 2⎝⎛⎭⎫x -π6 =1+cos ⎝⎛⎭⎫2x +π32-1-cos ⎝⎛⎭⎫2x -π32=12cos 2x , 令π+2k π≤2x ≤2π+2k π,k ∈Z , 得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为⎣⎡⎦⎤π2+k π,π+k π,k ∈Z .(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线. (1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2. ①试求b 的取值范围; ②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12.解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0), 则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0.(2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点. h ′(x )=1x -1x-b =-bx +x -1x ,令h ′(x )=0,得bx -x +1=0(x >0). 令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎨⎧Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14.当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2,则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2).当x ∈(0,x 1)时,h ′(x )<0; 当x ∈(x 1,x 2)时,h ′(x )>0; 当x ∈(x 2,+∞)时,h ′(x )<0.所以x 1,x 2是h (x )=f (x )-g (x )的极值点, ∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b ,所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b .记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14,且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减, 且当b =1e 2时,k (b )取最大值1e 2+12,所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12.2.设函数f (x )=2ax +bx+c ln x .(1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围; ②求f (x 2)的取值范围.解 (1)f (x )=2ax +bx+c ln x ,x >0,f ′(x )=2a -b x 2+c x =2ax 2+cx -bx 2.当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x >0恒成立,所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a ;令f ′(x )=2ax +1x <0,解得x >-12a,所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6, 所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3,所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-ax 2,函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解,⎩⎪⎨⎪⎧Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3.所以a 的取值范围是⎝⎛⎭⎫83,3. ②2ax 22-ax 2+3-a =0, x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+9-24a ,由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1.f (x 2)=2ax 2+a -3x 2-a ln x 2=a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2 =-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2=-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2.当t ∈⎝⎛⎭⎫14,12时,2t +1t -ln t >0,4t -1>0,φ′(t )>0, 所以φ(t )在⎝⎛⎭⎫14,12上单调递增, φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2. (二)立体几何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐角△P AD 所在平面⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平面QBD ; (2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB ∥CD ,AB =2CD ,所以AO =2OC . 又PQ =2QC ,所以P A ∥OQ . 又OQ ⊂平面QBD ,P A ⊄平面QBD , 所以P A ∥平面QBD .(2)在平面P AD 内过P 作PH ⊥AD 于点H ,因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PH ⊂平面P AD ,所以PH ⊥平面ABCD .又BD ⊂平面ABCD ,所以PH ⊥BD .又P A⊥BD,P A∩PH=P,所以BD⊥平面P AD.又AD⊂平面P AD,所以BD⊥AD.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO的中点.(1)若PD∥平面ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平面PBD.证明(1)连结OE,由四边形ABCD是正方形知,O为BD的中点,因为PD∥平面ACE,PD⊂平面PBD,平面PBD∩平面ACE=OE,所以PD∥OE.因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正方形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.又因为PC⊥底面ABCD,BD⊂底面ABCD,所以PC⊥BD.而四边形ABCD是正方形,所以AC⊥BD,因为AC,PC⊂平面P AC,AC∩PC=C,所以BD⊥平面P AC,因为CG⊂平面P AC,所以BD⊥CG.因为PO,BD⊂平面PBD,PO∩BD=O,所以CG⊥平面PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三角形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.又CO∩EO=O,CO,EO⊂平面EOC,∴BD⊥平面EOC.又EC⊂平面EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三角形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.又BC⊂平面BCE,DN⊄平面BCE,∴DN∥平面BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,又MN⊄平面BCE,BE⊂平面BCE,∴MN∥平面BCE.∵MN∩DN=N,∴平面DMN∥平面BCE.4.(2017·江苏楚水中学质检)如图,在三棱锥P -ABC 中,点E ,F 分别是棱PC ,AC 的中点.(1)求证:P A ∥平面BEF ;(2)若平面P AB ⊥平面ABC ,PB ⊥BC ,求证:BC ⊥P A . 证明 (1)在△P AC 中,E ,F 分别是棱PC ,AC 的中点, 所以P A ∥EF .又P A ⊄平面BEF ,EF ⊂平面BEF , 所以P A ∥平面BEF .(2)在平面P AB 内过点P 作PD ⊥AB ,垂足为D .因为平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,PD ⊂平面P AB ,所以PD ⊥平面ABC , 因为BC ⊂平面ABC ,所以PD ⊥BC ,又PB ⊥BC ,PD ∩PB =P ,PD ⊂平面P AB ,PB ⊂平面P AB ,所以BC ⊥平面P AB , 又P A ⊂平面P AB ,所以BC ⊥P A .(三)数 列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝⎛⎭⎫12n -n +22成立,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4, 两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n (n ∈N *). (2)解 由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数, 则2-log C 2=0, 解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =⎝⎛⎭⎫12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝⎛⎭⎫12n -1-n +12,②②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝⎛⎭⎫12n -n +14,③由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,又b 1=-12=-18-38,所以数列{b n }是以-12为首项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列?若存在,求出p ,q ,r 的值;若不存在,说明理由.(1)证明 因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2. 又因为a 1=13,所以31·a 1=1,所以{3n a n }是首项为1,公差为-2的等差数列. (2)解 由(1)知3n a n =1+(n -1)·(-2)=3-2n , 所以a n =(3-2n )⎝⎛⎭⎫13n,所以S n =1·⎝⎛⎭⎫131+(-1)·⎝⎛⎭⎫132+(-3)·⎝⎛⎭⎫133+…+(3-2n )·⎝⎛⎭⎫13n , 所以13S n =1·⎝⎛⎭⎫132+(-1)·⎝⎛⎭⎫133+…+(5-2n )·⎝⎛⎭⎫13n +(3-2n )·⎝⎛⎭⎫13n +1, 两式相减,得23S n =13-2⎣⎡⎦⎤⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -(3-2n )·⎝⎛⎭⎫13n +1=13-2⎣⎢⎡⎦⎥⎤19×1-⎝⎛⎭⎫13n -11-13+(2n -3)·⎝⎛⎭⎫13n +1 =2n ·⎝⎛⎭⎫13n +1, 所以S n =n 3n .(3)解 假设存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )⎝⎛⎭⎫13n<0,所以数列{S n }单调递减. 又p <q ,所以p ≤q -1且q 至少为2,所以p 3p ≥q -13q -1,q -13q -1-2q 3q =q -33q .①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r 3r >0,所以p 3p +r 3r >2q3q ,等式不成立. ②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟一确定). 综上可知,p ,q ,r 的值为1,2,3.(三)应用题1.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少? 解 (1)当9天购买一次时,该厂用于配料的保管费用 P =70+0.03×200×(1+2)=88(元).(2)①当x ≤7时,y =360x +10x +236=370x +236,②当x >7时,y =360x +236+70+6[(x -7)+(x -6)+…+2+1]=3x 2+321x +432,∴y =⎩⎪⎨⎪⎧370x +236,x ≤7,3x 2+321x +432,x >7,∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元.f (x )=⎩⎪⎨⎪⎧370x +236x ,x ≤7,3x 2+321x +432x,x >7.当x ≤7时,f (x )=370+236x ,当且仅当x =7时,f (x )有最小值2 8267≈404(元);当x >7时,f (x )=3x 2+321x +432x =3⎝⎛⎭⎫x +144x +321≥393.当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.2.南半球某地区冰川的体积每年中随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年的数据,冰川的体积(亿立方米)关于t 的近似函数的关系式为V (t )=⎩⎪⎨⎪⎧-t 3+11t 2-24t +100,0<t ≤10,4(t -10)(3t -41)+100,10<t ≤12.(1)该冰川的体积小于100亿立方米的时期称为衰退期.以i -1<t <i 表示第i 月份(i =1,2,…,12),问一年内哪几个月是衰退期? (2)求一年内该地区冰川的最大体积.解 (1)当0<t ≤10时,V (t )=-t 3+11t 2-24t +100<100,化简得t 2-11t +24>0,解得t <3或t >8.又0<t ≤10,故0<t <3或8<t ≤10,当10<t ≤12时,V (t )=4(t -10)(3t -41)+100<100, 解得10<t <413,又10<t ≤12,故10<t ≤12.综上得0<t <3或8<t ≤12.所以衰退期为1月,2月,3月,9月,10月,11月,12月共7个月. (2)由(1)知,V (t )的最大值只能在(3,9)内取到.由V ′(t )=(-t 3+11t 2-24t +100)′=-3t 2+22t -24, 令V ′(t )=0,解得t =6或t =43(舍去).当t 变化时,V ′(t )与V (t )的变化情况如下表:由上表,V (t )在t =6时取得最大值V (6)=136(亿立方米). 故该冰川的最大体积为136亿立方米.3.如图,某城市有一条公路从正西方AO 通过市中心O 后转向东偏北α角方向的OB .位于该市的某大学M 与市中心O 的距离OM =313 km ,且∠AOM =β.现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,且经过大学M .其中tan α=2,cos β=313,AO =15 km.(1)求大学M 与站A 的距离AM ; (2)求铁路AB 段的长AB .解 (1)在△AOM 中,AO =15,∠AOM =β且cos β=313,OM =313, 由余弦定理,得AM 2=OA 2+OM 2-2OA ·OM ·cos ∠AOM =152+(313)2-2×15×313×313=13×9+15×15-2×3×15×3=72.∴AM =62,即大学M 与站A 的距离AM 为6 2 km. (2)∵cos β=313,且β为锐角,∴sin β=213, 在△AOM中,由正弦定理,得AM sin β=OMsin ∠MAO ,即62213=313sin ∠MAO ,sin ∠MAO =22, ∴∠MAO =π4,∴∠ABO =α-π4,∵tan α=2,∴sin α=25,cos α=15, ∴sin ∠ABO =sin ⎝⎛⎭⎫α-π4=110, 又∠AOB =π-α,∴sin ∠AOB =sin(π-α)=25. 在△AOB 中,OA =15,由正弦定理,得 AB sin ∠AOB =OA sin ∠ABO,即AB 25=15110,∴AB =302,即铁路AB 段的长为30 2 km.4.(2017·江苏苏州大学指导卷)如图,某地区有一块长方形植物园ABCD ,AB =8(百米),BC =4(百米).植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG ,满足下列要求:E 在CD 的延长线上,H 在BA 的延长线上,DE =0.5(百米),AH =4(百米),N 为AH 的中点,FN ⊥AH ,EF 为曲线段,它上面的任意一点到AD 与AH 的距离的乘积为定值,FG ,GH 均为线段,GH ⊥HA ,GH =0.5(百米).(1)求四边形FGHN 的面积;(2)已知音乐广场M 在AB 上,AM =2(百米),若计划在EFG 的某一处P 开一个植物园大门,在原植物园ABCD 内选一点Q 为中心建一个休息区,使得QM =PM ,且∠QMP =90°,问点P 在何处时,AQ 最小.解 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系如图所示.则E ⎝⎛⎭⎫-12,4,因为E 到AD 与AH 距离的乘积为2, 所以曲线EF 上的任意一点都在函数y =-2x 的图象上.由题意,N (-2,0),所以F (-2,1).四边形FGHN 的面积为12×⎝⎛⎭⎫12+1×2=32(平方百米). (2)设P (x ,y ),则MP →=(x -2,y ),MQ →=(y ,-x +2),AQ →=(y +2,-x +2),因为点Q 在原植物园内,所以⎩⎪⎨⎪⎧0≤y +2≤8,0≤2-x ≤4,即-2≤x ≤2.又点P 在曲线EFG 上,x ∈⎣⎡⎦⎤-4,-12, 所以-2≤x ≤-12,则点P 在曲线段EF 上, AQ =(y +2)2+(2-x )2, 因为y =-2x,所以AQ = ⎝⎛⎭⎫-2x +22+(2-x )2 = x 2+4x 2-4x -8x +8 = ⎝⎛⎭⎫x +2x 2-4⎝⎛⎭⎫x +2x +4 = ⎝⎛⎭⎫x +2x -22=-x +2-x +2≥22+2. 当且仅当-x =-2x,即x =-2时等号成立. 此时点P (-2,2),即点P 在距离AD 与AH 均为2百米时,AQ 最小.(四)解析几何1.已知点A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),O 是坐标原点,P 是线段AB 的中点,若C 是点A 关于原点的对称点,Q 是线段BC 的中点,且OP =OQ ,设圆P 的方程为x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.(1)证明:线段AB 是圆P 的直径;(2)若存在正数p 使得2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2成立,当圆P 的圆心到直线x -2y =0的距离的最小值为255时,求p 的值. (1)证明 由题意知,点P 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,点A (x 1,y 1)关于原点的对称点为C (-x 1,-y 1),那么点Q 的坐标为⎝⎛⎭⎪⎫-x 1+x 22,-y 1+y 22, 由OP =OQ ,得OP 2=OQ 2,即⎝ ⎛⎭⎪⎫x 1+x 222+⎝ ⎛⎭⎪⎫y 1+y 222=⎝ ⎛⎭⎪⎫-x 1+x 222+⎝ ⎛⎭⎪⎫-y 1+y 222, 得(x 1+x 2)2+(y 1+y 2)2=(x 1-x 2)2+(y 1-y 2)2,从而x 1x 2+y 1y 2=0,由此得OA ⊥OB ,由方程x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0知,圆P 过原点,且点A ,B 在圆P 上,故线段AB 是圆P 的直径.(2)解 由2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2,得x 1+x 2=12p[(y 1+y 2)2+8p 2], 又圆心P ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22到直线x -2y =0的距离为 d =⎪⎪⎪⎪⎪⎪x 1+x 22-(y 1+y 2)5 =⎪⎪⎪⎪14p [(y 1+y 2)2+8p 2]-(y 1+y 2)5=[(y 1+y 2)-2p ]2+4p 245p ≥4p 245p, 当且仅当y 1+y 2=2p 时,等号成立,所以4p 245p=255, 从而得p =2.2.如图,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,O 是坐标原点,OF =5,过点F 作OF 的垂线交椭圆C 于P 0,Q 0两点,△OP 0Q 0的面积为453.(1)求椭圆的标准方程;(2)若过点M (-5,0)的直线l 与上、下半椭圆分别交于点P ,Q ,且PM =2MQ ,求直线l 的方程.解 (1)由题设条件,P 0F =00OP Q S OF ∆=4535=43. 易知P 0F =b 2a ,所以b 2a =43. 又c =OF =5,即a 2-b 2=5,因此a 2-43a -5=0,解得a =3或a =-53, 又a >0,所以a =3,从而b =2.故所求椭圆的标准方程为x 29+y 24=1. (2)设P (x 1,y 1),Q (x 2,y 2),由题意y 1>0,y 2<0,并可设直线l :x =ty -5, 代入椭圆方程得(ty -5)29+y 24=1, 即(4t 2+9)y 2-85ty -16=0.从而y 1+y 2=85t 4t 2+9,y 1y 2=-164t 2+9. 又由PM =2MQ ,得y 1-y 2=PM MQ=2,即y 1=-2y 2. 因此y 1+y 2=-y 2,y 1y 2=-2y 22, 故-164t 2+9=-2⎝ ⎛⎭⎪⎫-85t 4t 2+92,可解得t 2=14. 注意到y 2=-85t 4t 2+9且y 2<0,知t >0,因此t =12. 故满足题意的直线l 的方程为2x -y +25=0.3.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线l :y =-12x 与椭圆E 相交于A ,B 两点,AB =210,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点P ,直线AD ,BC 相交于点Q .(1)求椭圆E 的标准方程;(2)求证:直线PQ 的斜率为定值.(1)解 因为e =c a =32, 所以c 2=34a 2,即a 2-b 2=34a 2, 所以a =2b .所以椭圆方程为x 24b 2+y 2b2=1. 由题意不妨设点A 在第二象限,点B 在第四象限,由⎩⎨⎧ y =-12x ,x 24b 2+y 2b 2=1,得A (-2b ,22b ). 又AB =210,所以OA =10,则2b 2+12b 2=52b 2=10, 得b =2,a =4.所以椭圆E 的标准方程为x 216+y 24=1. (2)证明 由(1)知,椭圆E 的方程为x 216+y 24=1, A (-22,2),B (22,-2).①当直线CA ,CB ,DA ,DB 的斜率都存在,且不为零时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =y 0-2x 0+22·y 0+2x 0-22=y 20-2x 20-8=4⎝⎛⎭⎫1-x 2016-2x 20-8=2-x 204x 20-8=-14,所以k CB =-14k 1.同理k DB =-14k 2. 所以直线AD 的方程为y -2=k 2(x +22),直线BC 的方程为y +2=-14k 1(x -22), 由⎩⎪⎨⎪⎧y +2=-14k 1(x -22),y -2=k 2(x +22), 解得⎩⎪⎨⎪⎧ x =22(-4k 1k 2-4k 1+1)4k 1k 2+1,y =2(-4k 1k 2+4k 2+1)4k 1k 2+1,从而点Q 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 1+1)4k 1k 2+1,2(-4k 1k 2+4k 2+1)4k 1k 2+1. 用k 2代替k 1,k 1代替k 2得点P 的坐标为⎝ ⎛22(-4k 1k 2-4k 2+1)4k 1k 2+1,所以k PQ =2(-4k 1k 2+4k 2+1)4k 1k 2+1-2(-4k 1k 2+4k 1+1)4k 1k 2+122(-4k 1k 2-4k 1+1)4k 1k 2+1-22(-4k 1k 2-4k 2+1)4k 1k 2+1=42(k 2-k 1)82(k 2-k 1)=12. 即直线PQ 的斜率为定值,其定值为12. ②当直线CA ,CB ,DA ,DB 中,有直线的斜率不存在时,由题意得,至多有一条直线的斜率不存在,不妨设直线CA 的斜率不存在,从而C (-22,-2).设DA 的斜率为k ,由①知,k DB =-14k. 因为直线CA :x =-22,直线DB :y +2=-14k(x -22), 得P ⎝⎛⎭⎫-22,-2+2k .又直线BC :y =-2,直线AD :y -2=k (x +22),得Q ⎝⎛⎭⎫-22-22k ,-2, 所以k PQ =12. 由①②可知,直线PQ 的斜率为定值,其定值为12. 4.(2017·江苏预测卷)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,右准线的方程为x =433.(1)求椭圆C 的方程;(2)已知点P ⎝⎛⎭⎫12,2,过x 轴上的一个定点M 作直线l 与椭圆C 交于A ,B 两点,若三条直线P A ,PM ,PB 的斜率成等差数列,求点M 的坐标.解 (1)因为椭圆的离心率为32,右准线的方程为x =433, 所以e =c a =32,a 2c =433,则a =2,c =3,b =1, 椭圆C 的方程为x 24+y 2=1. (2)设M (m,0),当直线l 为y =0时,A (-2,0),B (2,0),P A ,PM ,PB 的斜率分别为 k P A =45,k PM =41-2m,k PB =-43, 因为直线P A ,PM ,PB 的斜率成等差数列,所以81-2m =45-43,m =8. 证明如下:当M (8,0)时,直线P A ,PM ,PB 的斜率构成等差数列,设AB :y =k (x -8),代入椭圆方程x 2+4y 2-4=0,得x 2+4k 2(x -8)2-4=0,即(1+4k 2)x 2-64k 2x +256k 2-4=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=64k 21+4k 2,x 1x 2=256k 2-41+4k 2, 又k PM =0-28-12=-415, 所以k P A +k PB =y 1-2x 1-12+y 2-2x 2-12=kx 1-8k -2x 1-12+kx 2-8k -2x 2-12=2k +⎝⎛⎭⎫-152k -2⎝⎛⎭⎪⎫1x 1-12+1x 2-12 =2k +⎝⎛⎭⎫-152k -2(x 1+x 2)-1x 1x 2-12(x 1+x 2)+14=2k +⎝⎛⎭⎫-152k -264k 21+4k 2-1256k 2-41+4k 2-12×64k 21+4k 2+14=2k +⎝⎛⎭⎫-152k -260k 2-1154(60k 2-1)=-815=2k PM ,即证. (四)数 列(2)1.已知{a n },{b n },{c n }都是各项不为零的数列,且满足a 1b 1+a 2b 2+…+a n b n =c n S n ,n ∈N *,其中S n 是数列{a n }的前n 项和,{c n }是公差为d (d ≠0)的等差数列.(1)若数列{a n }是常数列,d =2,c 2=3,求数列{b n }的通项公式;(2)若a n =λn (λ是不为零的常数),求证:数列{b n }是等差数列;(3)若a 1=c 1=d =k (k 为常数,k ∈N *),b n =c n +k (n ≥2,n ∈N *),求证:对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减. (1)解 因为d =2,c 2=3,所以c n =2n -1.因为数列{a n }是各项不为零的常数列,所以a 1=a 2=…=a n ,S n =na 1.则由c n S n =a 1b 1+a 2b 2+…+a n b n 及c n =2n -1,得n (2n -1)=b 1+b 2+…+b n ,当n ≥2时,(n -1)(2n -3)=b 1+b 2+…+b n -1,两式相减得b n =4n -3.当n =1时,b 1=1也满足b n =4n -3.故b n =4n -3(n ∈N *).(2)证明 因为a 1b 1+a 2b 2+…+a n b n =c n S n ,当n ≥2时,c n -1S n -1=a 1b 1+a 2b 2+…+a n -1b n -1,两式相减得c n S n -c n -1S n -1=a n b n ,即(S n -1+a n )c n -S n -1c n -1=a n b n ,S n -1(c n -c n -1)+a n c n =a n b n ,所以S n -1d +λnc n =λnb n .又S n -1=λ+λ(n -1)2(n -1)=λn (n -1)2, 所以λn (n -1)2d +λnc n =λnb n , 即(n -1)2d +c n =b n ,(*) 所以当n ≥3时,(n -2)2d +c n -1=b n -1, 两式相减得b n -b n -1=32d (n ≥3), 所以数列{b n }从第二项起是公差为32d 的等差数列. 又当n =1时,由c 1S 1=a 1b 1,得c 1=b 1.当n =2时,由(*)得b 2=(2-1)2d +c 2=12d +(c 1+d )=b 1+32d , 得b 2-b 1=32d . 故数列{b n }是公差为32d 的等差数列. (3)证明 由(2)得当n ≥2时,S n -1(c n -c n -1)+a n c n =a n b n ,即S n -1d =a n (b n -c n ). 因为b n =c n +k ,所以b n =c n +kd ,即b n -c n =kd ,所以S n -1d =a n ·kd ,即S n -1=ka n ,所以S n =S n -1+a n =(k +1)a n .当n ≥3时,S n -1=(k +1)a n -1,两式相减得a n =(k +1)a n -(k +1)a n -1,即a n =k +1k a n -1, 故从第二项起数列{a n }是等比数列,所以当n ≥2时,a n =a 2⎝ ⎛⎭⎪⎫k +1k n -2, b n =c n +k =c n +kd =c 1+(n -1)k +k 2=k +(n -1)k +k 2=k (n +k ),另外由已知条件得(a 1+a 2)c 2=a 1b 1+a 2b 2.又c 2=2k ,b 1=k ,b 2=k (2+k ),所以a 2=1,因而a n =⎝ ⎛⎭⎪⎫k +1k n -2. 令d n =b n a n ,则d n +1d n =b n +1a n a n +1b n =(n +k +1)k (n +k )(k +1). 因为(n +k +1)k -(n +k )(k +1)=-n <0,所以d n +1d n<1,所以对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减. 2.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,设b n =a n +a n +1,c n =a n ·a n +1(n ∈N *).(1)若数列{b 2n -1}是公比为3的等比数列,求S 2n ;(2)若数列{b n }是公差为3的等差数列,求S n ;(3)是否存在这样的数列{a n },使得{b n }成等差数列和{c n }成等比数列同时成立,若存在,求出{a n }的通项公式;若不存在,请说明理由.解 (1)b 1=a 1+a 2=1+2=3,S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 3+…+b 2n -1=3(1-3n )1-3=3n +1-32. (2)∵b n +1-b n =a n +2-a n =3,∴{a 2k -1},{a 2k }均是公差为3的等差数列,a 2k -1=a 1+(k -1)·3=3k -2,a 2k =a 2+(k -1)·3=3k -1,当n =2k (k ∈N *)时,S n =S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=k (1+3k -2)2+k (2+3k -1)2=3k 2=3n 24; 当n =2k -1(k ∈N *)时,S n =S 2k -1=S 2k -a 2k =3k 2-3k +1=3×⎝ ⎛⎭⎪⎫n +122-3·n +12+1=3n 2+14. 综上可知,S n =⎩⎪⎨⎪⎧ 3n 24,n =2k ,k ∈N *,3n 2+14,n =2k -1,k ∈N *.(3)∵{b n }成等差数列,∴2b 2=b 1+b 3,即2(a 2+a 3)=(a 1+a 2)+(a 3+a 4),a 2+a 3=a 1+a 4,①∵{c n }成等比数列,∴c 22=c 1c 3.即(a 2a 3)2=(a 1a 2)·(a 3a 4),∵c 2=a 2a 3≠0,∴a 2a 3=a 1a 4,②由①②及a 1=1,a 2=2,得a 3=1,a 4=2,设{b n }的公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=d ,即a n +2-a n =d ,即数列{a n }的奇数项和偶数项都构成公差为d 的等差数列,又d =a 3-a 1=a 4-a 2=0, ∴数列{a n }=1,2,1,2,1,2,…,即a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *.此时c n =2,{c n }是公比为1的等比数列,满足题意.∴存在数列{a n },a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *,使得{b n }成等差数列和{c n }成等比数列同时成立.高考附加题加分练 1.矩阵与变换1.已知矩阵M =⎣⎢⎡⎦⎥⎤a 1b0,点A (1,0)在矩阵M 对应的变换作用下变为A ′(1,2),求矩阵M 的逆矩阵M -1. 解 ∵⎣⎢⎡⎦⎥⎤a 1b 0 ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤12,∴a =1,b =2.∴M =⎣⎢⎡⎦⎥⎤1 12 0,∴M -1=⎣⎢⎡⎦⎥⎤0121 -12. 2.(2017·江苏徐州一中检测)已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0,设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x .又点P (x ′,y ′)在曲线C :y 2=12x 上,∴⎝⎛⎭⎫-12x 2=12y ,即x 2=2y . 3.已知矩阵M =⎣⎢⎡⎦⎥⎤122x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量. 解 矩阵M 的特征多项式为f (λ)=⎣⎢⎢⎡⎦⎥⎥⎤λ-1 -2-2 λ-x =(λ-1)(λ-x )-4. 因为λ1=3是方程f (λ)=0的一根,所以x =1. 由(λ-1)(λ-1)-4=0,得λ2=-1.设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y ,则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,得x =-y . 令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.4.(2017·江苏江阴中学质检)若点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解 M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎢⎡⎦⎥⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.由M -1M =⎣⎢⎡⎦⎥⎤1 00 1,得M -1=⎣⎢⎡⎦⎥⎤0 1-1 0.2.坐标系与参数方程1.(2017·江苏兴化中学调研)已知曲线C 1的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4,判断两曲线的位置关系. 解 将曲线C 1,C 2化为直角坐标方程,得 C 1:x +3y +2=0,C 2:x 2+y 2-2x -2y =0, 即C 2:(x -1)2+(y -1)2=2. 圆心到直线的距离d =|1+3+2|12+(3)2=3+32>2,∴曲线C 1与C 2相离.2.(2017·江苏金坛一中期中)已知在极坐标系下,圆C :ρ=2cos ⎝⎛⎭⎫θ+π2与直线l :ρsin ⎝⎛⎭⎫θ+π4=2,点M 为圆C 上的动点,求点M 到直线l 的距离的最大值. 解 圆C 化为直角坐标方程,得x 2+(y +1)2=1. 直线l 化为直角坐标方程,得x +y =2. 圆心C 到直线l 的距离d =|-1-2|2=322,所以点M 到直线l 的距离的最大值为1+322.3.已知直线l :⎩⎪⎨⎪⎧ x =1+t ,y =-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值. 解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4,圆心到直线的距离d =12, 故AB =2r 2-d 2=14.(2)圆C 的直角坐标方程为x 2+(y -m )2=4, 直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2.4.(2017·江苏昆山中学质检)已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为⎩⎨⎧x =-3t ,y =1+t(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解 曲线C 的普通方程是x 23+y 2=1,直线l 的普通方程是x +3y -3=0.设点M 的直角坐标是(3cos θ,sin θ),则点M 到直线l 的距离是d =|3cos θ+3sin θ-3|2=3⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π4-12.因为-2≤2sin ⎝⎛⎭⎫θ+π4≤2, 所以当sin ⎝⎛⎭⎫ θ+π4=-1,即θ=2k π-3π4(k ∈Z )时,d 取得最大值.此时3cos θ=-62,sin θ=-22. 设点M 的极角为φ,则⎩⎨⎧ρcos φ=-62,ρsin φ=-22,所以⎩⎪⎨⎪⎧ρ=2,φ=7π6.综上,当点M 的极坐标为⎝⎛⎭⎫2,7π6时,该点到直线l 的距离最大.3.空间向量与立体几何1.(2017·江苏南通中学月考)如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角A -BE -C 的正弦值.解 (1)以O 为原点,分别以OB ,OC ,OA 为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). EB →=(2,-1,0),AC →=(0,2,-1), ∴cos 〈EB →,AC →〉=-25,即异面直线BE 与AC 所成角的余弦值为25.(2)AB →=(2,0,-1),AE →=(0,1,-1), 设平面ABE 的法向量为n 1=(x ,y ,z ), 则由n 1⊥AB →,n 1⊥AE →,得⎩⎪⎨⎪⎧2x -z =0,y -z =0,取n 1=(1,2,2), 平面BEC 的法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23,∴二面角A -BE -C 的余弦值cos θ=23,∴sin θ=53,即二面角A -BE -C 的正弦值为53.2.(2017·江苏宜兴中学质检)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,AA 1=3,D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的正弦值.解 (1)由题意知,B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),则A 1D →=(1,2,-3),A 1C 1→=(0,4,0),DB 1→=(1,-2,3). 设平面A 1C 1D 的一个法向量为n =(x ,y ,z ). 由n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0, 得y =0,x =3z ,令z =1,得x =3,n =(3,0,1).设直线DB 1与平面A 1C 1D 所成的角为θ, 则sin θ=|cos 〈DB 1→,n 〉|=|3+3|10×14=33535.(2)设平面A 1B 1D 的一个法向量为m =(a ,b ,c ),A 1B 1→=(2,0,0). 由m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, 得a =0,2b =3c ,令c =2,得b =3,m =(0,3,2). 设二面角B 1-A 1D -C 1的大小为α, |cos α|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=265, sin α=3765=345565.所以二面角B 1-A 1D -C 1的正弦值为345565.3.(2017·江苏运河中学质检)在四棱锥P -ABCD 中,侧面PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =π2,AB =AD =PD =1,CD =2.设Q 为侧棱PC 上一点,PQ →=λPC →.试确定λ的值,使得二面角Q -BD -P 为π4.解 因为侧面PCD ⊥底面ABCD , 平面PCD ∩平面ABCD =CD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD , 又∠ADC =π2,故DA ,DC ,DP 两两互相垂直.如图,以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立直角坐标系,A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),则平面PBD 的一个法向量为n =(-1,1,0), PC →=(0,2,-1),PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ).设平面QBD 的一个法向量为m =(a ,b ,c ), 由m ·BD →=0,m ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0,所以取b =1,得m =⎝ ⎛⎭⎪⎫-1,1,2λλ-1,所以cos π4=|m ·n ||m ||n |,即22·2+⎝ ⎛⎭⎪⎫2λλ-12=22. 注意到λ∈(0,1),解得λ=2-1.4.在三棱锥S -ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 是AC 的中点,侧棱SB 和底面成45°角.(1)若D 为棱SB 上一点,当SDDB为何值时,CD ⊥AB ; (2)求二面角S -BC -A 的余弦值的大小.解 以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系. 由题意知∠SBO =45°,SO =3.所以O (0,0,0),C (0,3,0),A (0,-3,0),S (0,0,3),B (3,0,0). (1)设BD →=λBS →(0≤λ≤1),则OD →=(1-λ)OB →+λOS →=(3(1-λ),0,3λ), 所以CD →=(3(1-λ),-3,3λ). 因为AB →=(3,3,0),CD ⊥AB , 所以CD →·AB →=9(1-λ)-3=0,解得λ=23.故SD DB =12时,CD ⊥AB .。
高考数学压轴题精选100题汇总(含答案)
7. 已知动圆过定点 P(1,0),且与定直线 L:x=-1 相切,点 C 在 l 上. (1)求动圆圆心的轨迹 M 的方 程; (2)设过点 P,且斜率为 3 的直线与曲线 M 相交于 A, B 两点. (i)问:△ABC 能否为正三角形?若能,求点 C 的坐标;若不能,说明理由 (ii)当△ABC 为钝角三角形时,求这种点 C 的纵坐标的取值范围.
1
1
n 1 1
(Ⅱ)已知各项不为零的数列an 满足 4Sn f ( ) 1 ,求证: ln
;
an
an1
n
an
(Ⅲ)设 bn 1 , Tn 为数列bn 的前 n 项和,求证: T2008 1 ln 2008 T2007 .
ba b a
2
(1)求椭圆的方程;
(2)若直线 AB 过椭圆的焦点 F(0,c),(c 为半焦距),求直线 AB 的斜率 k 的值;
(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
5.已知数列{an}中各项为: 12、1122、111222、……、111 22 2 ……
n
T 2n 1 .
n
3
26. 对于函数 f (x) ,若存在 x0 R ,使 f (x0 ) x0 成立,则称 x0 为 f (x) 的不动点.如果函数
f (x) x2 a (b, c N*) 有且仅有两个不动点 0 、 2 ,且 f (2) 1 .
bx c
2
(Ⅰ)试求函数 f (x) 的单调区间;
a2 a3
an1 3
14.已知函数gx a2 x3 a x 2 cxa 0,
32
(I)当a 1 时,若函数 gx在区间1,1上是增函数,求实数c的取值范围;
2020年高考冲刺140分突破压轴题三十练(二十二)详细版解析
当t > e 时, f ′(t) < 0,当1 < t < e时,f ′(t) > 0.
所以f(t)在(e, +∞)上单调递减, 在(1, e)上单调递增. 所以f(t) ≤ f(e) = 2e,
且当1 < t < e 时, f(t) > 0,当t → +∞时, f(t) → −∞,
所以要使1 = 2(2e − t)lnt存在两个不同的根,
当x ≥ 1 时, 由x3 + ������ ≥ 2, 可得不存在 x 满足x3 + ������ < 1.
综上可得x ∈ (−∞, 1 − ln2).
说五毛钱的话:面对复合问题,无论是复合方程还是复合不等式,一定
要牢记一层一层去求解,先求外层再求内层.
第二题.
做PQ ⊥ BC 于 Q, 做 QR ⊥ BD 于 R, 连接 PR,
关注微信公众号:kenglaoshi
坑神出品
第四题.
(1)由题意可得|PH| = |PF|,
由点P 到直线 l: x = −1 的距离等于它到定点 F(1,0)的距离,
点P 的轨迹是以 l 为准线, F 为焦点的抛物线,
所以点P 的轨迹 C 的方程为y2 = 4x.
(2)由题意知切线l1的斜率必然存在, 设为 k,则l1: y − y0 = k(x − x0),
2
当x ≥ 0 时, ln(1 + x) − 1 x2 ≤ x,
2
证明如下:
令F(x) = ln(1 + x) − 1 x2 − x,
2
则F′(x) = 1 − x − 1 = 1−(x+1)2 = −x2−2x = −x(x+2),
数学高考压轴题含答案
数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。
高考数学140分专项训练-30道压轴题及答案
1.椭圆的中心是原点O,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。
(1)求椭圆的方程及离心率;(2)若0OP OQ ⋅=,求直线PQ 的方程;(3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FM FQ λ=-. (14分)2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。
(1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。
(2) 证明)(x f 是偶函数。
(3) 试问方程01log )(4=+xx f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。
当3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(22=-+y x 。
(1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g(3) 过轨迹E 上一点P 求点P 的坐标及S4.以椭圆222y ax+=1试判断并推证能作出多少个符合条件的三角形.5 已知,二次函数f (x )=ax 2+bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0.(Ⅰ)求证:f (x )及g (x (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围.6 已知过函数f (x )=123++ax x 的图象上一点B (1,b )的切线的斜率为-3。
(1) 求a 、b 的值;(2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立;(3) 令()()132++--=tx x x f x g 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.椭圆的中心是原点O,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。
(1)求椭圆的方程及离心率;(2)若0OP OQ ⋅=,求直线PQ 的方程;(3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FM FQ λ=-. (14分)2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。
(1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。
(2) 证明)(x f 是偶函数。
(3) 试问方程01log )(4=+xx f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。
当3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(22=-+y x 。
(1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g(3) 过轨迹E 上一点P 求点P 的坐标及S4.以椭圆222y ax+=1试判断并推证能作出多少个符合条件的三角形.5 已知,二次函数f (x )=ax 2+bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0.(Ⅰ)求证:f (x )及g (x (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围.6 已知过函数f (x )=123++ax x 的图象上一点B (1,b )的切线的斜率为-3。
(1) 求a 、b 的值;(2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立;(3) 令()()132++--=tx x x f x g 。
是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有最大值1?7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱︱是2和→→⋅PN PM 的等比中项。
(1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。
8.已知数列{a n }满足aa aa b a a a a a a a n nn n n n +-=+=>=+设,2),0(32211 (1)求数列{b n }的通项公式;(2)设数列{b n }的前项和为S n ,试比较S n 与87的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称.(Ⅰ)求双曲线C 的方程;(Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围;(Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程.10. )(x f 对任意R x ∈都有.21)1()(=-+x f x f (Ⅰ)求)21(f 和)( )1()1(N n nn f nf ∉-+的值. (Ⅱ)数列{}n a 满足:n a =)0(f +)1()1()2()1(f nn f n f n f +-+++ ,数列}{n a 是等差数列吗?请给予证明;(Ⅲ)令.1632,,1442232221nS b b b b T a b n n n n n -=++++=-=试比较n T 与n S 的大小.11. :如图,设OA 、OB 是过抛物线y 2=2px 顶点O 的两条弦,且OA →·OB →=0,求以OA 、OB 为直径的两圆的另一个交点P 的轨迹.(13分)12.知函数f (x )=log 3(x 2-2mx +2m 2+9m 2-3)的定义域为R(1)求实数m 的取值集合M ;(2)求证:对m ∈M 所确定的所有函数f (x )中,其函数值最小的一个是2,并求使函数值等于2的m 的值和x 的值.13.设关于x 的方程2x 2-tx-2=0的两根为),(,βαβα<函数f(x)=.142+-x tx (1). 求f()()βαf 和的值。
(2)。
证明:f(x)在[],βα上是增函数。
(3)。
对任意正数x 1、x 2,求证:βααββα-<++-++2)()(21212121x x x x f x x x x f14.已知数列{a n }各项均为正数,S n 为其前n 项的和.对于任意的*n N ∈,都有()241n n S a =+.I 、求数列{}n a 的通项公式.II 、若2n n tS ≥对于任意的*n N ∈恒成立,求实数t 的最大值.15.( 12分)已知点H (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ上,且满足·PM =0,PM =-23, (1)当点P 在y 轴上移动时,求点M 的轨迹C ;(2)过点T (-1,0)作直线l 与轨迹C 交于A 、B 两点,若在x 轴上存在一点E (x 0,0),使得△ABE 为等边三角形,求x 0的值.16.(14分)设f 1(x )=x+12,定义f n +1 (x )=f 1[f n (x )],a n =2)0(1)0(+-n n f f ,其中n ∈N *.(1) 求数列{a n }的通项公式;(2)若T 2n =a 1+2a 2+3a 3+…+2na 2n ,Q n =144422+++n n nn ,其中n ∈N *,试比较9T 2n 与Q n 的大小.17. 已知→a =(x,0),→b =(1,y ),(→a +3→b )⊥(→a –3→b ).(I ) 求点P (x ,y )的轨迹C 的方程;(II ) 若直线L :y=kx+m(m ≠0)与曲线C 交于A 、B 两点,D (0,–1),且有 |AD|=|BD|,试求m 的取值范围.18.已知函数)(x f 对任意实数p 、q 都满足()()(),f p q f p f q +=⋅1(1).3f =且(1)当n N +∈时,求)(n f 的表达式;(2)设),()(+∈=N n n nf a n 求证:13;4nk k a =<∑(3)设1(1)(),,()nn n k k nf n b n N S b f n +=+=∈=∑试比较11nk kS =∑与6的大小. 19.已知函数),10(log )(≠>=a a x x f a 且若数列:),(),(,221a f a f …,)(42),(*∈+N n n a f n 成等差数列.(1)求数列}{n a 的通项n a ;(2)若}{,10n a a 数列<<的前n 项和为S n ,求n n S ∞→lim ;(3)若)(,2n n n a f a b a ⋅==令,对任意)(,1t fb N n n -*>∈都有,求实数t 的取值范围.20.已知△OFQ 的面积为.,62m =⋅且(1)设θ的夹角与求向量FQ OF m ,646<<正切值的取值范围; (2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),2)146(,||c m c OF -==, 当||取得最小值时,求此双曲线的方程.(3)设F 1为(2)中所求双曲线的左焦点,若A 、B 分别为此双曲线渐近线l 1、l 2上的动点,且2|AB|=5|F 1F|,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线.21、已知函数13)(2++=bx x x f 是偶函数,c x x g +=5)(是奇函数,正数数列{}n a 满足11211=+-+=++)a a a (g )a a (f ,a n n n n n n① 求{}n a 的通项公式;②若{}n a 的前n 项和为n S ,求n n S ∞→lim .22、直角梯形ABCD 中∠DAB =90°,AD ∥BC ,AB =2,AD =23,BC =21.椭圆C 以A 、B 为焦点且经过点D .(1)建立适当坐标系,求椭圆C 的方程; (2)若点E 满足21=,问是否存在不平行AB 的直线l 与椭圆C 交于M 、N 两点且||||NE ME =,若存在,求出直线l 与AB 夹角的范围,若不存在,说明理由. 23、.设函数,241)(+=xx f (1)求证:对一切)1()(,x f x f R x -+∈为定值; (2)记*),()1()1()2()1()0(N n f nn f n f n f f a n ∈+-++++= 求数列}{n a 的通项公式及前n 项和.24. 已知函数)(x f 是定义在R 上的偶函数.当X ≥0时, )(x f =172++-x x x.(I) 求当X<0时, )(x f 的解析式;(II)试确定函数y =)(x f (X ≥0)在[)+∞,1的单调性,并证明你的结论.(III) 若21≥x 且22≥x ,证明:|)(1x f -)(2x f|<2.25、已知抛物线x y 42=的准线与x 轴交于M 点,过M 作直线与抛物线交于A 、B 两点,若线段AB 的垂直平分线与X 轴交于D (X 0,0) ⑴求X 0的取值范围。
⑵△ABD 能否是正三角形?若能求出X 0的值,若不能,说明理由。
26、已知□ABCD ,A (-2,0),B (2,0),且∣AD ∣=2 ⑴求□ABCD 对角线交点E 的轨迹方程。
⑵过A 作直线交以A 、B 为焦点的椭圆于M 、N 两点,且∣MN ∣=238,MN 的中点到Y 轴的距离为34,求椭圆的方程。
⑶与E 点轨迹相切的直线l 交椭圆于P 、Q 两点,求∣PQ ∣的最大值及此时l 的方程。
27.(14分)(理)已知椭圆)1(1222>=+a y ax ,直线l 过点A (-a ,0)和点B (a ,ta )(t >0)交椭圆于M.直线MO 交椭圆于N.(1)用a ,t 表示△AMN 的面积S ; (2)若t ∈[1,2],a 为定值,求S 的最大值.x28.已知函数f (x )=bx +cx +1的图象过原点,且关于点(-1,1)成中心对称. (1)求函数f (x )的解析式;(2)若数列{a n }(n ∈N*)满足:a n >0,a 1=1,a n +1= [f (a n )]2,求数列{a n}的通项公式a n ,并证明你的结论.30、已知点集},|),{(n m y y x L ⋅==其中),1,1(),1,2(+=-=b n b x m 点列),(n n n b a P 在L 中,1P 为L 与y 轴的交点,等差数列}{n a 的公差为1,+∈N n 。