2.1离散型随机变量及其分布列]

合集下载

2.1《离散型随机变量及其分布列》课件(北师大版选修2-3)(2)

2.1《离散型随机变量及其分布列》课件(北师大版选修2-3)(2)

(D)第4次击中目标
【解析】选C.“X=5”表示射击次数为5次,依题意击中时就 停止射击,故前4次均未击中目标.
3.一产品分为一、二、三级,其中一级品是二级品的2倍,三 级品是二级品的 , 从这批产品中随机抽取一个检验质量,其 级别为随机变量X,则P(X>1)的值是( )
1 2
(A) 4
7
(B)
3 7
【解析】选D.由于抛掷一颗骰子,可能出现的点数是1,2,3,
4,5,6这6种情况之一,而X表示抛掷两颗骰子所得点数之和, 所以X=4=1+3=2+2,表示的随机试验结果是:一颗是1点,另一
颗是3点,或者两颗都是2点.
2.某人进行射击,共有5发子弹,击中目标或子弹打完就停止
射击,射击次数为X,则“X=5”表示的试验结果是( (A)第5次击中目标 (B)第5次未击中目标 (C)前4次均未击中目标 )
4 24 24
7.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6, 现从中随机取出3个球,用X表示取出球的最大号码,求X的分 布列. 【解题提示】随机取出3个球的最大号码X的所有可能取值 为3,4,5,6.而要求其概率则要利用等可能事件的概率公式 和排列组合知识来解,从而获得X的分布列.
(2)求P(X≥
【解题提示】(1)先求出X的分布列,再根据分布列的性 质确定a.(2)、(3)中的概率利用互斥事件的概率公式结合 分布列求解.
【解析】依题意,随机变量X的分布列为
(1)由a+2a+3a+4a+5a=1,得 a=
1 . 15
1,2,3,4,5号球中的2个”.
从袋中随机地取3个球,包含的基本事件总数为 C3 ,事件 6 “X=3”包含的基本事件总数为 C3 , 事件“X=4”包含的基本 3

第2章 1 离散型随机变量及其分布列

第2章  1 离散型随机变量及其分布列

§1 离散型随机变量及其分布列学习目标 1.理解随机变量及离散型随机变量的含义.2.掌握离散型随机变量的表示方法和性质.3.会求简单的离散型随机变量的分布列.知识点一 离散型随机变量 思考1 以上两个现象有何特点? ①掷一枚均匀的骰子,出现的点数; ②在一块地里种下8颗树苗,成活的棵数. 答案 各现象的结果都可以用数表示.思考2 抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果,这种试验结果能用数字表示吗?答案 可以,可用数字1和0分别表示正面向上和反面向上. 梳理 (1)随机变量将随机现象中试验(或观测)的每一个可能的结果都对应于一个数,这种对应称为一个随机变量,通常用大写的英文字母如X ,Y 来表示. (2)离散型随机变量如果随机变量X 的所有可能的取值都能够一一列举出来,这样的随机变量称为离散型随机变量.知识点二 离散型随机变量的分布列思考 掷一枚骰子,所得点数为X ,则X 可取哪些数字?X 取不同的值时,其概率分别是多少?你能用表格表示X 与P 的对应关系吗? 答案 x =1,2,3,4,5,6,概率均为16.梳理(1)离散型随机变量的分布列的定义设离散型随机变量X的取值为a1,a2,…,随机变量X取a i的概率为p i(i=1,2,…),记作:P(X=a i)=p i(i=1,2,…),①或把上式列成表为上表或①式称为离散型随机变量X的分布列.(2)离散型随机变量的性质①p i>0;②p1+p2+ (1)1.随机变量的取值可以是有限个,也可以是无限个.(√)2.离散型随机变量是指某一区间内的任意值.(×)3.在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.(×)4.在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.(×)5.在离散型随机变量分布列中,所有概率之和为1.(√)类型一离散型随机变量的概念例1写出下列各随机变量可能的取值,并说明随机变量所取的值所表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,被取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;(3)投掷两枚骰子,所得点数之和为X.考点离散型随机变量的可能取值题点离散型随机变量的结果解(1)X的可能取值为1,2,3,…,10,X=k(k=1,2,…,10)表示取出第k号球.(2)X的可能取值为0,1,2,3,4.X=k表示取出k个红球,(4-k)个白球,其中k=0,1,2,3,4.(3)X的可能取值为2,3,4,…,12.若以(i,j)表示投掷甲、乙两枚骰子后,骰子甲得i点,且骰子乙得j点,则X=2表示(1,1);X=3表示(1,2),(2,1);X=4表示(1,3),(2,2),(3,1);…;X=12表示(6,6).引申探究若将本例(3)的条件改为抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为X,试求X的集合,并说明“X>4”表示的试验结果.解设第一枚骰子掷出的点数为x,第二枚骰子掷出的点数为y,其中x,y=1,2,3,4,5,6.依题意得X=x-y.则-5≤X≤5,即X的集合为{-5,-4,-3,-2,-1,0,1,2,3,4,5}.则X>4⇔X=5,表示x=6,y=1,即第一枚骰子掷出6点,第二枚骰子掷出1点.反思与感悟解答此类问题的关键在于明确随机变量所有可能的取值,以及取每一个值时对应的意义,即随机变量的一个取值可能对应一个或多个随机试验的结果,解答过程不要漏掉某些试验结果.跟踪训练1①某座大桥一天经过的某品牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③体积为1 000 cm3的球的半径长;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是()A.①②③④B.①②④C.①③④D.②③④考点随机变量及离散型随机变量的概念题点离散型随机变量的概念答案 B解析由题意知③中的球的半径是固定的,可以求出来,所以不是随机变量,而①②④是离散型随机变量.类型二离散型随机变量分布列的性质例2 设随机变量X 的分布列为P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率解 (1)由a +2a +3a +4a +5a =1,得a =115.(2)∵P ⎝⎛⎭⎫X =k 5=115k (k =1,2,3,4,5), ∴P ⎝⎛⎭⎫X ≥35=P ⎝⎛⎭⎫X =35+P ⎝⎛⎭⎫X =45+P (X =1)=315+415+515=45. (3)当110<X <710时,只有X =15,25,35时满足,故P ⎝⎛⎭⎫110<X <710 =P ⎝⎛⎭⎫X =15+P ⎝⎛⎭⎫X =25+P ⎝⎛⎭⎫X =35 =115+215+315=25. 反思与感悟 利用分布列及其性质解题时要注意以下两个问题 (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练2 (1)袋内有5个白球,6个红球,从中摸出两球,记X =⎩⎪⎨⎪⎧0,两球全红,1,两球非全红,则X的分布列为________.(2)若离散型随机变量X 的分布列为:则常数c =________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率答案 (1)(2)13解析 (1)显然,P (X =0)=C 26C 211=311,所以P (X =1)=1-311=811,所以X 的分布列是(2)由随机变量分布列的性质可知:⎩⎪⎨⎪⎧9c 2-c +3-8c =1,0<9c 2-c <1,0<3-8c <1,整理得⎩⎪⎨⎪⎧9c 2-9c +2=0,1-3718<c <0或19<c <1+3718,14<c <38,解得c =13.类型三 求离散型随机变量的分布列命题角度1 求离散型随机变量y =f (ξ)的分布列 例3 设离散型随机变量X 的分布列如下表所示:求:(1)2X +1(2)|X -1|的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关的随机变量分布列的求法 解 由条件中的分布列得:(1)2X +1的分布列为(2)|X -1|的分布列为反思与感悟 (1)若ξ是一个随机变量,a ,b 是常数,则η=aξ+b 也是一个随机变量,推广到一般情况有:若ξ是随机变量,f (x )是连续函数或单调函数,则η=f (ξ)也是随机变量,也就是说,随机变量的某些函数值也是随机变量,并且若ξ为离散型随机变量,则η=f (ξ)也为离散型随机变量.(2)已知离散型随机变量ξ的分布列,求离散型随机变量η=f (ξ)的分布列的关键是弄清楚ξ取每一个值时对应的η的值,再把η取相同的值时所对应的事件的概率相加,列出概率分布列即可.跟踪训练3 已知随机变量X 的分布列为求随机变量Y =sin ⎝⎛⎭⎫π2X 的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关的随机变量分布列的求法 解 由Y =sin ⎝⎛⎭⎫π2X ,得Y =⎩⎪⎨⎪⎧-1(X =4k +3,k ∈N ),0(X =2k ,k ∈N +),1(X =4k +1,k ∈N ).P (Y =-1)=P (X =3)+P (X =7)+P (X =11)+...=123+127+1211+ (215)P (Y =0)=P (X =2)+P (X =4)+P (X =6)+…=122+124+126+…=13,P (Y =1)=P (X =1)+P (X =5)+P (X =9)+…=12+125+129+…=815.所以随机变量Y 的分布列为命题角度2 利用排列组合求分布例4 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数; (2)求随机变量ξ的分布列; (3)求甲取到白球的概率.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)设袋中原有n 个白球,由题意知 17=C 2nC 27=n (n -1)27×62=n (n -1)7×6, 可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列的步骤(1)明确随机变量的所有可能取值以及取每个值所表示的意义. (2)利用概率的有关知识,求出随机变量取每个值的概率. (3)按规范形式写出分布列,并用分布列的性质验证.跟踪训练4 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整的“奥运会吉祥物”的概率;(2)若完整的选取奥运会吉祥物记100分;选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用解 (1)选取的5只恰好组成完整的“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.所以X 的分布列为1.给出下列随机变量:①某机场候机室中一天的旅客数量为X ; ②某人投篮10次投中的次数X ;③某水文站观测到一天中长江的水位为X ; ④某立交桥一天内经过的车辆数为X . 其中是离散型随机变量的是( ) A .①②③ B .①②④ C .②③④D .①③④考点 随机变量及离散型随机变量的概念 题点 离散型随机变量的概念 答案 B解析 ③中,某水文站观测到一天中长江的水位X 的取值不可列出,所以③不是离散型随机变量.2.已知随机变量X 的分布列如下表所示,其中a ,b ,c 成等差数列,则P (|X |=1)等于( )A.13B.14C.12D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 由分布列的性质得a +b +c =3b =1,∴b =13.∴P (|X |=1)=P (X =1)+P (X =-1) =1-P (X =0)=1-13=23.3.已知随机变量X 的分布列如下表(其中a 为常数):则下列计算结果错误的是( ) A .a =0.1 B .P (X ≥2)=0.7 C .P (X ≥3)=0.4D .P (X ≤1)=0.3 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 易得a =0.1,P (X ≥3)=0.3,故C 错误.4.某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P (ξ=1)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 23解析 设试验成功的概率为p , 则p +p 2=1,∴p =23,∴P (ξ=1)=23.5.将一枚骰子掷两次,求两次掷出的最大点数ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解由题意知ξ=i(i=1,2,3,4,5,6),则P(ξ=1)=1C16C16=1 36;P(ξ=2)=3C16C16=336=112;P(ξ=3)=5C16C16=5 36;P(ξ=4)=7C16C16=7 36;P(ξ=5)=9C16C16=936=14;P(ξ=6)=11C16C16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.随机变量X是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量X的线性组合Y=aX+b(a,b是常数)也是随机变量.2.离散型随机变量X的分布列实质上就是随机变量X与这一变量所对应的概率P的分布表,它从整体上反映了随机变量各个值的可能性的大小,反映了随机变量取值的规律.一、选择题1.下列变量中,不是离散型随机变量的是()A.某教学资源网1小时内被点击的次数B.连续不断射击,首次命中目标所需要的射击次数YC.某饮料公司出品的饮料,每瓶标量与实际量之差X1D.北京“鸟巢”在某一天的游客数量X考点随机变量及离散型随机变量的概念题点离散型随机变量的概念2.抛掷两枚骰子一次,X 为第一枚骰子掷出的点数与第二枚掷出的点数之差,则X 的所有可能的取值为( ) A .0≤X ≤5,x ∈N B .-5≤X ≤0,x ∈Z C .-1≤X ≤6,x ∈N D .-5≤X ≤5,x ∈Z考点 离散型随机变量的可能取值 题点 离散型随机变量的取值 答案 D解析 两次掷出点数均可取1~6所有整数, 所以X ∈[-5,5],x ∈Z .3.若随机变量η的分布列如下:则当P (η<x )=0.8时,实数x 的取值范围是( ) A .x ≤1 B .1≤x ≤2 C .1<x ≤2D .1≤x <2考点 离散型随机变量分布列的性质及应用 题点 由分布列的性质求参数 答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2.4.若随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1, ∴a =54.∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 5.设离散型随机变量X 的分布列为若随机变量Y =X -2,则P (Y =2)等于( ) A .0.3 B .0.4 C .0.6D .0.7 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 由0.2+0.1+0.1+0.3+m =1,得m =0.3. 所以P (Y =2)=P (X =4)=0.3.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12 D.23考点 离散型随机变量分布列的性质及应用 题点 由分布列的性质求概率 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2). 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.7.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列的公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C .[-3,3]D .[0,1]考点 离散型随机变量分布列的性质及应用 题点 由分布列的性质求参数 答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质,得(a -d )+a +(a +d )=1,故a =13.由⎩⎨⎧13-d ≥0,13+d ≥0,解得-13≤d ≤13.二、填空题8.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 47解析 设二级品有k 个,则一级品有2k 个,三级品有k 2个,总数为72k 个.∴ξ的分布列为∴P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 9.已知离散型随机变量X 的分布列为则m 的值为________. 答案139解析 m =P (X =10)=1-[P (X =1)+P (X =2)+…+P (X =9)]=1-⎝⎛⎭⎫23+232+…+239=1-23×⎣⎡⎦⎤1-⎝⎛⎭⎫1391-13=⎝⎛⎭⎫139=139. 10.把3枚骰子全部掷出,设出现6点的骰子个数是X ,则有P (X <2)=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2527解析 P (X <2)=P (X =0)+P (X =1)=5363+C 13×5263=2527. 11.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________.考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 (1)由x 2-x -6≤0,得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0, 所以事件A 包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为13.随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获利分别为6 万元、2 万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:万元)为X .求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 依题意得,X 的所有可能取值为6,2,1,-2.X =6,2,1,-2分别对应1件产品为一等品、二等品、三等品、次品这四个事件, 所以P (X =6)=126200=0.63,P (X =2)=50200=0.25,P (X =1)=20200=0.1,P (X =-2)=4200=0.02.所以X 的分布列为四、探究与拓展14.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半,现从该盒中随机取出一个球.若取出红球得1分,取出黄球得0分,取出绿球得-1分,则从该盒中随机取出一球所得分数X 的分布列为________. 考点 题点 答案解析 设黄球的个数为n ,则绿球个数为2n ,红球个数为4n ,球的总数为7n .X =1,0,-1. 所以P (X =1)=4n 7n =47,P (X =0)=n 7n =17,P (X =-1)=2n 7n =27.15.设ξ为随机变量,从棱长为1的正方体的12条棱中任取2条.当2条棱相交时,ξ=0;当2条棱平行时,ξ的值为2条棱之间的距离;当2条棱异面时,ξ=1. (1)求概率P (ξ=0); (2)求ξ的分布列.考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 (1)若2条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱, ∴共有8C 23对相交棱,∴P (ξ=0)=8C 23C 212=8×366=411.(2)若2条棱平行,则它们之间的距离为1或2,其中距离为2的共有6对, ∴P (ξ=2)=6C 212=666=111, P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=611,∴随机变量ξ的分布列为。

数学选修2-3讲义:第2章2.12.1.1 离散型随机变量含答案

数学选修2-3讲义:第2章2.12.1.1 离散型随机变量含答案

2.1离散型随机变量及其分布列2.1.1离散型随机变量学习目标:1.理解随机变量及离散型随机变量的含义.(重点)2.了解随机变量与函数的区别与联系.(易混点)3.会用离散型随机变量描述随机现象.(难点)教材整理离散型随机变量阅读教材P40练习以上部分,完成下列问题.1.随机变量(1)定义:在试验中,试验可能出现的结果可以用一个变量X来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量.(2)表示:随机变量常用大写字母X,Y,…表示.2.离散型随机变量如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.()(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.()(3)随机变量是用来表示不同试验结果的量.()(4)试验之前可以判断离散型随机变量的所有值.()(5)在掷一枚质地均匀的骰子试验中,“出现的点数”是一个随机变量,它有6个取值.()【解析】(1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)√因为掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.(3)√因为由随机变量的定义可知,该说法正确.(4)√因为随机试验所有可能的结果是明确并且不只一个,只不过在试验之前不能确定试验结果会出现哪一个,故该说法正确.(5)√因为掷一枚质地均匀的骰子试验中,所有可能结果有6个,故“出现的点数”这一随机变量的取值为6个.【答案】(1)√(2)√(3)√(4)√(5)√随机变量的概念【例1】判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2019年5月1日的旅客数量;(2)2019年5月1日至10月1日期间所查酒驾的人数;(3)2019年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球的半径长.【精彩点拨】利用随机变量的定义判断.【解】(1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法1.随机试验的结果具有可变性,即每次试验对应的结果不尽相同.2.随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数(2)10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率【解析】(1)B项中水沸腾时的温度是一个确定值.(2)A中取到产品的件数是一个常量不是变量,B,D也是一个定值,而C中取到次品的件数可能是0,1,2,是随机变量.【答案】(1)B(2)C离散型随机变量的判定【例2】指出下列随机变量是否是离散型随机变量,并说明理由.(1)某座大桥一天经过的车辆数X;(2)某超市5月份每天的销售额;(3)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(4)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ.【精彩点拨】随机变量的实际背景→判断取值是否具有可列性→得出结论【解】(1)车辆数X的取值可以一一列出,故X为离散型随机变量.(2)某超市5月份每天销售额可以一一列出,故为离散型随机变量.(3)实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量.(4)不是离散型随机变量,水位在(0,29]这一范围内变化,不能按次序一一列举.“三步法”判定离散型随机变量1.依据具体情境分析变量是否为随机变量.2.由条件求解随机变量的值域.3.判断变量的取值能否被一一列举出来,若能,则是离散型随机变量;否则,不是离散型随机变量.2.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ.(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后结果都加上6分,求最终得分η的可能取值,并判定η是否为离散型随机变量.【解】(1)(2)由题意可得:η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},所以η对应的各值是:5×0+6,5×1+6,5×2+6,5×3+6.故η的可能取值为6,11,16,21.显然,η为离散型随机变量.随机变量的可能取值及试验结果[探究问题]1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?【提示】 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字?【提示】 X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?【提示】 “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.【精彩点拨】分析题意→写出X可能取的值→分别写出取值所表示的结果【解】(1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两张卡片”;X=4,表示“取出标有1,3的两张卡片”;X=5,表示“取出标有2,3或标有1,4的两张卡片”;X=6,表示“取出标有2,4或1,5的两张卡片”;X=7,表示“取出标有3,4或2,5或1,6的两张卡片”;X=8,表示“取出标有2,6或3,5的两张卡片”;X=9,表示“取出标有3,6或4,5的两张卡片”;X=10,表示“取出标有4,6的两张卡片”;X=11,表示“取出标有5,6的两张卡片”.用随机变量表示随机试验的结果问题的关键点和注意点1.关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.2.注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.【解】(1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量;②在一段时间内,某候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.其中正确的个数是()A.1B.2C.3D.4【解析】由随机变量定义可以直接判断①②③④都是正确的.故选D.【答案】 D2.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则{ξ=5}表示的试验结果是()A第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标【解析】{ξ=5}表示前4次均未击中,而第5次可能击中,也可能未击中,故选C.【答案】 C3.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是________.【解析】由于抽球是在有放回条件下进行的,所以每次抽取的球号均可能是1,2,3,4,5中某个.故两次抽取球号码之和可能为2,3,4,5,6,7,8,9,10,共9种.【答案】94.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为ξ,则ξ的可能取值为________.【解析】甲可能在3次射击中,一次也未中,也可能中1次,2次,3次.【答案】0,1,2,35.写出下列各随机变量可能的取值,并说明这些值所表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;(3)投掷两枚骰子,所得点数之和是偶数X.【解】(1)X的可能取值为1,2,3, (10)X=k(k=1,2,…,10)表示取出第k号球.(2)X的可能取值为0,1,2,3,4.X=k表示取出k个红球,4-k个白球,其中k=0,1,2,3,4.(3)X的可能取值为2,4,6,8,10,12.X=2表示(1,1);X=4表示(1,3),(2,2),(3,1);…;X=12表示(6,6).X的可能取值为2,4,6,8,10,12.。

高中数学选修2-3 第二章随机变量及其分布 2-1-1离散型随机变量

高中数学选修2-3 第二章随机变量及其分布 2-1-1离散型随机变量

一区间内的一切值,无法一一列出,故不是离散型随机变
量.
答案: B
2.某人练习射击,共有5发子弹,击中目标或子弹打完 则停止射击,射击次数为X,则“X=5”表示的试验结果为 ()
A.第5次击中目标 B.第5次未击中目标 C.前4次均未击中目标 D.前5次均未击中目标 解析: 射击次数X是一随机变量,“X=5”表示试验 结果“前4次均未击中目标”. 答案: C
(4)体积为64 cm3的正方体的棱长. [思路点拨] 要根据随机变量的定义考虑所有情况.
(1)接到咨询电话的个数可能是0,1,2,…出现 哪一个结果都是随机的,因此是随机变量.
(2)该运动员在某场比赛的上场时间在[0,48]内,是随机 的,故是随机变量.
(3)获得的奖次可能是1,2,3,出现哪一个结果都是随机 的,因此是随机变量.
人教版高中数学选修2-3 第二章 随机变量及其分布
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量
课前预习
1.在一块地里种下10颗树苗,成活的树苗棵树为X. [问题1] X取什么数字? [提示] X=0,1,2…10.
2.掷一枚硬币,可能出现正面向上,反面向上两种结 果.
3.一个袋中装有5个白球和5个红球,从中任取3个.其 中所含白球的个数记为ξ,则随机变量ξ的值域为________.
解析: 依题意知,ξ的所有可能取值为0,1,2,3,故ξ的 值域为{0,1,2,3}.
答案: {0,1,2,3}
4.写出下列随机变量ξ可能取的值,并说明随机变量ξ =4所表示的随机试验的结果.
[问题2] 这种试验的结果能用数字表示吗? [提示] 可以,用数1和0分别表示正面向上和反面向 上. [问题3] 10件产品中有3件次品,从中任取2件,所含次 品个数为x,试写出x的值. [提示] x=0,1,2.

高中数学选修2(新课标)课件2.1.1离散型随机变量及其分布列

高中数学选修2(新课标)课件2.1.1离散型随机变量及其分布列
2.1 离散型随机变量及其分布列
知识导图
学法指导
1.随机变量表示随机试验的结果. 2.类比函数来学习随机变量,它们之间既有联系又有区别.事 实上,本章的内容与《数学 1》中函数的内容具有一致性,都是先 一般性了解随机变量(函数)的概念和性质,然后将其具体化为两点 分布、超几何分布、二项分布、连续的正态分布(指数、对数、幂 函数、三角函数、数列),这样的学习有利于更好地认识随机变量.
【解析】 (1)A 的取值不具有随机性,C 是一个事件而非随机 变量,D 中概率值是一个定值而非随机变量,只有 B 满足要求.
【答案】 (1)B
(2)下列变量中,哪些是随机变量,哪些不是随机变量?并说明 理由.
①北京机场一年中每天运送乘客的数量; ②北京某中学办公室一天中接待家长来访人数; ③2018 年除夕收看春节联欢晚会的人数; ④2018 年 3 月 15 号,收看两会开幕式的人数.
A.①②③ B.①②④ C.①③④ D.②③④
解析:根据离散型随机变量的定义,判断一个随机变量是否是 离散型随机变量,就是看这一变量的所有取值是否可以一一列 出.①②④中的 X 可能取的值,可以一一列举出来,而③中的 X 可 以取某一区间内的一切值,属于连续型的.
答案:B
3.一木箱中装有 8 个同样大小的篮球,编号为 1,2,3,4,5,6,7,8, 现从中随机取出 3 个篮球,以 ξ 表示取出的篮球的最大号码,则 ξ =8 表示的试验结果有________种.
{Y=3}表示掷出的两枚骰子的点数相差 3,其包含的基本事件 有(1,4),(4,1)Y=4}表示掷出的两枚骰子的点数相差 4,其包含的基本事件 有(1,5),(5,1),(2,6),(6,2).
{Y=5}表示掷出的两枚骰子的点数相差 5,其包含的基本事件 有(1,6),(6,1).

高中数学必修2-3第二章2.1 2.1.1离散型随机变量

高中数学必修2-3第二章2.1 2.1.1离散型随机变量

第二章随机变量及其分布2.1离散型随机变量及其分布列2.1.1离散型随机变量问题导航(1)随机变量和离散型随机变量的概念是什么?随机变量是如何表示的?(2)随机变量与函数有什么区别与联系?1.随机变量(1)定义:在随机试验中,确定了一个对应关系,使得每一个________试验结果都用一个________确定的数字表示.在这个对应关系下,________数字随着________试验结果的变化而变化.像这种随着________试验结果变化而变化的变量称为随机变量.(2)表示:随机变量常用字母________X,Y,ξ,η,…表示.2.离散型随机变量所有取值可以________一一列出的随机变量,称为离散型随机变量.1.判断(对的打“√”,错的打“×”)(1)离散型随机变量的取值是任意的实数.()(2)随机变量的取值可以是有限个,也可以是无限个.()(3)离散型随机变量是指某一区间内的任意值.()答案:(1)×(2)√(3)×2.下列变量中,不是随机变量的是()A.掷一枚骰子,所得的点数B.一射手射击一次的环数C.某日上证收盘指数D.标准状态下,水在100 ℃时会沸腾答案:D3.抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ≥5”表示的试验结果是()A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点C.第一枚1点,第二枚6点D.第一枚6点,第二枚1点答案:D4.在8件产品中,有3件次品,5件正品,从中任取一件取到次品就停止,抽取次数为X,则X=3表示的试验是________.答案:共抽取3次,前两次均是正品,第3次是次品1.对随机变量的再认识(1)随机变量是用来表示不同试验结果的量.(2)试验结果和实数之间的对应关系产生了随机变量,随机变量每取一个确定的值对应着试验的不同结果,试验的结果对应着随机变量的值,即随机变量的取值实质上是试验结果所对应的数.2.离散型随机变量的特征(1)可用数值表示.(2)试验之前可以判断其出现的所有值.(3)在试验之前不能确定取何值.(4)试验结果能一一列出.随机变量的概念判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2016年5月1日的旅客数量;(2)2016年1月1日到6月1日期间所查酒驾的人数;(3)2016年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球半径长.[解](1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.解答此类题目的关键在于分析变量是否满足随机试验的结果,随机变量从本质上讲就是以随机试验的每一个可能结果为一个映射,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能取的值,而不知道在一次试验中哪一个结果发生,随机变量取哪一个值.1.(1)10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率解析:选C.对于A中取到产品的件数是一个常量不是变量,B、D也是一个定值,而C 中取到次品的件数可能是0,1,2,是随机变量.(2)指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.①任意掷一枚质地均匀的硬币5次,出现正面向上的次数;②掷一枚质地均匀的正方体骰子出现的点数(最上面的数字);③某个人的属相随年龄的变化关系.解:①任意掷一枚质地均匀的硬币1次,可能出现正面向上也可能出现反面向上,因此掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪一个结果是随机的,因此是随机变量.②掷一枚质地均匀的骰子出现的结果是1点,2点,3点,4点,5点,6点中的一个,而且出现哪一个结果是随机的,因此是随机变量.③属相是人出生时便确定的,不随年龄的变化而变化,不是随机变量.离散型随机变量的判定指出下列随机变量是否是离散型随机变量,并说明理由.(1)湖南矮寨大桥桥面一侧每隔30 m有一路灯,将所有路灯进行编号,其中某一路灯的编号X;(2)在一次数学竞赛中,设一、二、三等奖,小明同学参加竞赛获奖等次X;(3)一天内气温的变化值X.[解](1)桥面上的路灯是可数的,编号X可以一一列出,是离散型随机变量.(2)小明获奖等次X可以一一列出,是离散型随机变量.(3)一天内的气温变化值X,可以在某区间内连续取值,不能一一列出,不是离散型随机变量.判断一个变量是否为离散型随机变量,首先看它是不是随机变量,其次看可能取值是否能一一列出,也就是说变量的取值若是有限的,或者是可以列举出来的,就可以视为离散型随机变量,否则就不是离散型随机变量.2.下面给出四个随机变量:①某高速公路上某收费站在未来1小时内经过的车辆数X是一个随机变量;②一个沿直线y=x进行随机运动的质点,它在该直线上的位置Y是一个随机变量;③某网站未来1小时内的点击量;④一天内的温度η.其中是离散型随机变量的为()A.①②B.③④C.①③D.②④解析:选C.①是,因为1小时内经过该收费站的车辆可一一列出.②不是,质点在直线y=x上运动时的位置无法一一列出.③是,1小时内网站的访问次数可一一列出.④不是,1天内的温度η是该天最低温度和最高温度这一范围内的任意实数,无法一一列出.用随机变量描述随机现象写出下列随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数ξ;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.[解](1)ξ可取0,1,2.ξ=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2.(2)设所取卡片上的数字之和为X,则X=3,4,5, (11)X=3,表示取出标有1,2的两张卡片;X=4,表示取出标有1,3的两张卡片;…X =11,表示取出标有5,6的两张卡片.解答此类问题的关键在于明确随机变量的所有可能的取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.3.(1)抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是( ) A .2枚都是4点B .1枚是1点,另1枚是3点C .2枚都是2点D .1枚是1点,另1枚是3点,或者2枚都是2点解析:选D.抛掷2枚骰子,其中1枚是x 点,另1枚是y 点,其中x ,y =1,2, (6)而ξ=x +y ,ξ=4⇔⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =2,y =2. (2)写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.①在2016年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X ; ②射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.解:①X 可能取值0,1,2,3,4,5,X =i 表示面试通过的有i 人,其中i =0,1,2,3,4,5. ②ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标; 当ξ=1时,表明该射手在本次射击中击中目标.(2015·南充高二检测)一个木箱中装有6个大小相同的篮球,编号为1,2,3,4,5,6,现随机抽取3个篮球,以ξ表示取出的篮球的最大号码,则ξ的试验结果有________种.[解析] 从6个球中选出3个球,当ξ=3时,另两个球从1,2中选取,有一种抽法; 当ξ=4时,另两个球从1,2,3中任取两个球,有C 23=3种; 当ξ=5时,另两个球从1,2,3,4中任取两个球,有C 24=6种; 当ξ=6时,另两个球从1,2,3,4,5中任取两个球,有C 25=10种. 所以,ξ的试验结果共有1+3+6+10=20种. [答案] 20[错因与防范] 本题易遗漏ξ=3,4,5的情况;对题目中给出的条件作出正确判断是解决数学问题的关键,如本例中“以ξ表示取出的篮球的最大号码”指的是“随机抽取3个篮球”中的最大号码,而不是ξ=6.4.袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,取后不放回,直到取出的球是白球为止,求随机变量的取值.解:设所需要的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)1.一个袋子中有质量相等的红、黄、绿、白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是()A.小球滚出的最大距离B.倒出小球所需的时间C.倒出的三个小球的质量之和D.倒出的三个小球的颜色的种数解析:选 D.A.小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B.倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C.三个小球的质量之和是一个定值,不是随机变量,就更不是离散型随机变量了;D.颜色的种数是一个离散型随机变量.2.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,取后不放回直到取出的球是白球为止,所需要的取球次数为随机变量X,则X的可能取值为() A.1,2,3,…,6 B.1,2,3,…,7C.0,1,2,…,5 D.1,2,…,5解析:选B.因红球共有6个,在取到白球前可取6次,第7次取球只能取白球停止,所以X可能取值有1,2,3, (7)3.下列随机变量中是离散型随机变量的是________.①某鱼塘所养的鲤鱼中,重量在2.5千克以上的条数X;②任意取直线y=x上的整点的个数X;③放学后,小明同学离开学校大门的距离X;④网站中,歌曲《爱我中华》一天内被点击的次数X.解析:③中距离X可取某区间内的任意值,∴③中X不是离散型随机变量.①②④的X 可以一一列举,且②中的X是无限的.答案:①②④4.某篮球运动员在罚球时,罚中1球得2分,罚不中得0分,该队员在5次罚球中命中的次数ξ是一个随机变量.(1)写出ξ的所有取值及每一个取值所表示的结果;(2)若记该队员在5次罚球后的得分为η,写出所有η的取值及每一个取值所表示的结果.解:(1)ξ可取0,1,2,3,4,5.表示在5次罚球中分别罚中0次,1次,2次,3次,4次,5次.(2)η可取0,2,4,6,8,10.表示5次罚球后分别得0分,2分,4分,6分,8分,10分.[A.基础达标]1.给出下列四个命题:①某次数学期中考试中,其中一个考场30名考生中做对选择题第12题的人数是随机变量;②黄河每年的最大流量是随机变量;③某体育馆共有6个出口,散场后从某一出口退场的人数是随机变量;④方程x 2-2x -3=0根的个数是随机变量.其中正确的个数是( )A .1B .2C .3D .4解析:选C.①②③是正确的,④中方程x 2-2x -3=0的根有2个是确定的,不是随机变量.2.抛掷两枚骰子一次,X 为第一枚骰子掷出的点数与第二枚掷出的点数之差,则X 的所有可能的取值为( )A .0≤X ≤5,X ∈NB .-5≤X ≤0,X ∈ZC .1≤X ≤6,X ∈ND .-5≤X ≤5,X ∈Z解析:选D.两次掷出点数均可取1~6所有整数, ∴X ∈[-5,5],X ∈Z .3.袋中有2个黑球和6个红球,从中任取两个,可以作为随机变量的是( ) A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球D .至少取到一个红球的概率解析:选B.袋中有2个黑球和6个红球,从中任取两个,取到球的个数是一个固定的数字,不是随机变量,故不选A ,取到红球的个数是一个随机变量,它的可能取值是0,1,2,故B 正确;至少取到一个红球表示取到一个红球,或取到两个红球,表示一个事件,故C 不正确;至少取到一个红球的概率是一个古典概型的概率问题,不是随机变量,故D 不正确,故选B.4.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取到黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X ,则表示“放回5个球”的事件为( )A .X =4B .X =5C .X =6D .X ≤4解析:选C.第一次取到黑球,则放回1个球;第二次取到黑球,则放回2个球……共放了五回,第六次取到了红球,试验终止,故X =6.5.袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个球上的数字之积为X ,则X 所有可能值的个数是( )A .6B .7C .10D .25解析:选C.X 的所有可能值有1×2,1×3,1×4,1×5,2×3,2×4,2×5,3×4,3×5,4×5,共计10个.6.(2015·济南高二检测)已知Y =2X 为离散型随机变量,Y 的取值为1,2,3,4,…,10,则X 的取值为______________________.解析:由题意可知X =12Y .又Y ∈{1,2,3,4,5,6,7,8,9,10}, 故X ∈⎩⎨⎧⎭⎬⎫12,1,32,2,52,3,72,4,92,5.答案:12,1,32,2,52,3,72,4,92,57.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.解析:若答对0个问题得分-300; 若答对1个问题得分-100; 若答对2个问题得分100; 若问题全答对得分300.答案:-300,-100,100,300 8.某射手射击一次所击中的环数为ξ(取整数),则“ξ>7”表示的试验结果是________. 解析:射击一次所中环数ξ的所有可能取值为0,1,2,…,10,故“ξ>7”表示的试验结果为“该射手射击一次所中环数为8环、9环或10环”.答案:射击一次所中环数为8环或9环或10环 9.(2015·南京高二检测)小王钱夹中只剩有20元、10元、5元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X 表示这两张金额之和.写出X 的可能取值,并说明所取值表示的随机试验结果.解:X 的可能取值为6,11,15,21,25,30. 其中,X =6,表示抽到的是1元和5元; X =11,表示抽到的是1元和10元; X =15,表示抽到的是5元和10元; X =21,表示抽到的是1元和20元; X =25,表示抽到的是5元和20元; X =30,表示抽到的是10元和20元.10.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ. (1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分.求最终得分η的可能取值,并判定η的随机变量类型.解:(1)(2)由题意可得η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},∴η对应的各值是:5×0+6,5×1+6,5×2+6,5×3+6.故η的可能取值为{6,11,16,21},显然η为离散型随机变量.[B.能力提升]1.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( )A .第5次击中目标B .第5次未击中目标C.前4次均未击中目标D.第4次击中目标解析:选C.ξ=5表示射击5次,即前4次均未击中,否则不可能射击第5次,但第5次是否击中目标,就不一定,因为他只有5发子弹.2.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时已拨的次数为ξ,则随机变量ξ的所有可能取值的种数为()A.20 B.24C.4 D.18解析:选B.由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A44=24种.3.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是________.解析:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”.所以,“ξ>4”表示两枚骰子中第一枚为6点,第二枚为1点.答案:第一枚为6点,第二枚为1点4.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.解析:ξ=8表示3个篮球中一个编号是8,另外两个从剩余7个号中选2个,有C27种方法,即21种.答案:215.手机上网安全、方便,某地移动公司推出一款上网卡,月租费10元,上网时每分钟0.04元(不足一分钟的按一分钟计算).小张在一个月内上网的时间(分)为随机变量ξ,求小张在一个月内上网的费用η,则ξ和η是否为离散型随机变量.解:由于上网时间不足1分钟按1分钟计算,因此变量ξ的取值为1,2,3,….∴ξ是一个离散型随机变量.又η=0.04ξ+10,ξ∈N*,故η也是离散型随机变量.6.写出下面随机变量可能的取值,并说明随机变量所表示的随机试验的结果.在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记ξ=|x-2|+|y-x|.解:因为x,y可能取的值为1,2,3,所以0≤|x-2|≤1,0≤|x-y|≤2,所以0≤ξ≤3,所以ξ可能的取值为0,1,2,3,用(x,y)表示第一次抽到卡片号码为x,第二次抽得号码为y,则随机变量ξ取各值的意义为:ξ=0表示两次抽到卡片编号都是2,即(2,2).ξ=1表示(1,1),(2,1),(2,3),(3,3).ξ=2表示(1,2),(3,2).ξ=3表示(1,3),(3,1).。

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列1.离散型随机变量的分布列(1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:(2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ②11=∑=ni ip2.两个特殊分布列 (1)两点分布列如果随机变量X 的分布列是P (X =1)为成功概率. (2)超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=nNkn MN k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布列如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.(3)公式P (X =k )=C k M C n -k N -MC n N的推导由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有nN C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有kn M N k M C C --个基本事件,由古典概型的概率公式可知P (X =k )=C k M C n -kN -MC n N.[知识点拨]1.离散型随机变量分布列表格形式的结构特征分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点(1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.3.两点分布的适用范围(1)研究只有两个结果的随机试验的概率分布规律. (2)研究某一随机事件是否发生的概率分布规律.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.4.对超几何分布的三点说明 (1)超几何分布的模型是不放回抽样. (2)超几何分布中的参数是M ,N ,n.(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.题型一、离散型随机变量的分布列例1、一袋中装有6个同样大小的小球,编号分别为1、2、3、4、5、6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列.[解析] 随机变量X 的可能取值为3、4、5、6.从袋中随机地取出3个球,包含的基本事件总数为C 36,事件“X =3”包含的基本事件总数为C 33;事件“X =4”包含的基本事件总数为C 23;事件“X =5”包含的基本事件总数为C 24;事件“X =6”包含的基本事件总数为C 25.从而有P (X =3)=C 33C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X =6)=C 25C 36=12.所以随机变量X 的分布列如下表:例[解析] 将一颗骰子连掷两次共出现6×6=36种等可能的基本事件,其最大点数ξ可能取的值为1、2、3、4、5、6.P (ξ=1)=136,ξ=2包含三个基本事件(1,2)、(2,1)、(2,2),(x ,y )表示第一枚骰子点数为x ,第二枚骰子点数为y .∴P (ξ=2)=336=112.同理可求P (ξ=3)=536,P (ξ=4)=736,P (ξ=5)=14,P (ξ=6)=1136,∴ξ的分布列为例3、设随机变量ξ的分布列为P (ξ=k )=a (13)k .(k =1,2,…,n ),求实数a 的值.[解析] 依题意,有P (ξ=1)=13a ,P (ξ=2)=(13)2a ,…,P (ξ=n )=(13)n a ,由P (ξ=1)+P (ξ=2)+…+P (ξ=n )=1知,a (13+132+…+13n )=1.则a ·13(1-13n )1-13=1.∴a =2×3n 3n -1.例4、(1)设随机变量X 的分布列P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.(2)设随机变量X 的概率分布列为,则P (|X -3|=1)=________.[答案] (1)37 (2)512题型三、两点分布例5、袋内有10个白球,5个红球,从中摸出2个球,记X =⎩⎨⎧0,两球全红;1,两球非全红.求X 的分布列.[解析] 由题设可知X 服从两点分布P (X =0)=C 25C 215=221,P (X =1)=1-P (X =0)=1921.∴X 的分布列为例6η,才能使η满足两点分布,并求其分布列.[解析] 随机变量η可以定义为:η=⎩⎨⎧1 掷出点数小于4,0 掷出点数不小于4.显然η只取0,1两个值.且P (η=1)=P (掷出点数小于4)=36=12,故η的分布列为题型四、超几何分布列例7、盒中有16个白球和4个黑球,从中任意取出3个,设ξ表示其中黑球的个数,求出ξ的分布列.(精确到0.001)[解析] ξ可能取的值为0、1、2、3,P (ξ=0)=C 04C 316C 320≈0.491,P (ξ=1)=C 14C 216C 320≈0.421,P (ξ=2)=C 24C 116C 320≈0.084,P (ξ=3)=C 34C 016C 320≈0.004.∴ξ的分布列为箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.求X 的分布列.[解析] 由题意得X 取3、4、5、6,且P (X =3)=C 35C 39=542;P (X =4)=C 14·C 25C 39=1021;P (X =5)=C 24·C 15C 39=514;P (X =6)=C 34C 39=121. 所以X 的分布列为题型五、综合应用例9、已知A 盒中有2个红球和2个黑球;B 盒中有2个红球和3个黑球,现从A 盒与B 盒中同时各取出一个球再放入对方盒中.(1)求A 盒中有2个红球的概率;(2)求A 盒中红球数ξ的分布列.[解析] (1)A 盒与B 盒中各取出一个球来再放入对方盒中后,A 盒中还有2个红球有下面两种情况:①互换的是红球,将该事件记为A 1,则P (A 1)=C 12·C 12C 14·C 15=15. ②互换的是黑球,将该事件记为A 2,则P (A 2)=C 12·C 13C 14·C 15=310.故A 盒中有2个红球的概率为P =P (A 1)+P (A 2)=15+310=12.(2)A 盒中红球数ξ的所有可能取值为1,2,3.而P (ξ=1)=C 12·C 13C 14·C 15=310;P (ξ=2)=12; P (ξ=3)=C 12·C 12C 14·C 15=15,因而ξ的分布列为抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率; (2)甲、乙两单位之间的演出单位个数X 的分布列.[解析] (1)设A 表示“甲、乙的演出序号至少有一个为奇数”,则A -表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式,得P (A )=1-P (A -)=1-C 23C 26=1-15=45.(2)X 的所有可能值为0、1、2、3、4,且P (X =0)=5C 26=13;P (X =1)=4C 26=415;P (X =2)=3C 26=15;P (X =3)=2C 26=215;P (X =4)=1C 26=115.从而知X 的分布列为:用完后装回盒中,此时盒中旧球个数ξ是一个随机变量,求ξ的分布列.[正解] ξ的所有可能取值为3,4,5,6.P (ξ=3)=C 33C 312=1220;P (ξ=4)=C 19C 23C 312=27220;P (ξ=5)=C 29C 13C 312=2755;P (ξ=6)=C 39C 312=2155.所以ξ的分布列为例12在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和; (2)若胜场次数为X ,求X 的分布列.[解析] (1)若胜一场,则其余为平,共有C 14=4种情况;若胜两场,则其余两场为一负一平或两平,共有C 24C 12+C 24=18种情况;若胜三场,则其余一场为负或平,共有C 34×2=8种情况;若胜四场,则只有一种情况.综上,共有31种情况.(2)X 的可能取值为1,2,3,4,P (X =1)=431,P (X =2)=1831,P (X =3)=831,P (X =4)=131,所以X 的分布列为课后作业1.已知随机变量X 的分布列为:P (X =k )=12k ,k =1、2、…,则P (2<X ≤4)=( )A .316B .14C .116D .516[答案] A[解析] P (2<X ≤4)=P (X =3)+P (X =4) =123+124=316. 2.已知随机变量ξ的概率分布如下:则P (ξ=10)=( A .239 B .2310 C .139D .1310[答案] C[解析] P (ξ=10)=m =1-⎝⎛⎭⎫23+232+…+239=1-23⎣⎡⎦⎤1-⎝⎛⎭⎫1391-13=139.3.已知随机变量ξ的分布列为P (ξ=i )=i2a(i =1,2,3),则P (ξ=2)=( )A .19B .16C .13D .14[答案] C[解析] 由离散型随机变量分布列的性质知12a +22a +32a =1,∴62a =1,即a =3,∴P (ξ=2)=1a =13.4.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P (ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为( )A .10%B .20%C .30%D .40%[答案] B[解析] 设10件产品中有x 件次品,则P (ξ=1)=C 1x ·C 110-xC 210=x (10-x )45=1645,∴x =2或8. ∵次品率不超过40%,∴x =2, ∴次品率为210=20%.5.设随机变量ξ的概率分布为P (ξ=k )=ck +1,k =0、1、2、3,则c =________.[答案]1225[解析] c +c 2+c 3+c 4=1,∴c =1225.6.已知离散型随机变量X 的分布列P (X =k )=k15,k =1、2、3、4、5,令Y =2X -2,则P (Y >0)=________.[答案]1415[解析] 由已知Y 取值为0、2、4、6、8,且P (Y =0)=115,P (Y =2)=215,P (Y =4)=315=15,P (Y =6)=415,P (Y =8)=515.则P (Y >0)=P (Y =2)+P (Y =4)+P (Y =6)+P (Y =8)=1415. 7.某学院为了调查本校学生2015年9月“健康上网”(健康上网是指每天上网不超过两个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.导学号 03960365(1)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数;(2)现从这40名学生中任取2名,设Y 为取出的2名学生中健康上网天数超过20天的人数,求Y 的分布列.[解析] (1)由图可知,健康上网天数未超过20天的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以健康上网天数超过20天的学生人数是40×(1-0.75)=40×0.25=10. (2)随机变量Y 的所有可能取值为0、1、2.P (Y =0)=C 230C 240=2952;P (Y =1)=C 110C 130C 240=513;P (Y =2)=C 210C 240=352.所以Y 的分布列为:8.将一骰子抛掷两次,所得向上的点数分别为m 和n ,则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是( )A .12B .56C .34D .23[答案] B[解析] 由题可知,函数y =23mx 3-nx +1在[1,+∞)上单调递增,所以y ′=2mx 2-n ≥0在[1,+∞)上恒成立,所以2m ≥n ,则不满足条件的(m ,n )有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6种情况,所以满足条件的共有30种情况,则函数y =23mx 3-nx +1在[1,+∞)上单调递增的概率为P =3036=56,故选B .9.从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,则在选出的3名同学中,至少有一名女同学的概率是______.[答案] 56[解析] 从10名同学中选出3名同学有C 310种不同选法,在3名同学中没有女同学的选法有C 36种,∴所求概率为P =1-C 36C 310=56.10.某校2015~2016学年高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中男生的人数.(1)请列出X 的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率. [解析] (1)依题意得,随机变量X 服从超几何分布, ∵随机变量X 表示其中男生的人数,∴X 可能取的值为0,1,2,3,4.∴P (X =k )=C k 6·C 4-k4C 410,k =0,1,2,3,4.∴X 的分布列为:(2)即P (X ≥3)=P (X =3)+P (x =4)=821+114=1942.11.盒子中装着标有数字1、2、3、4、5的卡片各2张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用ξ表示取出的3张卡片上的最大数字,求: (1)取出的3张卡片上的数字互不相同的概率; (2)随机变量ξ的概率分布.[解析] (1)记“一次取出的3张卡片上的数字互不相同的事件”为A ,则P (A )=C 35C 12C 12C 12C 310=23. (2)由题意ξ可能的取值为2、3、4、5,P (ξ=2)=C 22C 12+C 12C 22C 310=130, P (ξ=3)=C 24C 12+C 14C 22C 310=215,P (ξ=4)=C 26C 12+C 16C 22C 310=310, P (ξ=5)=C 28C 12+C 18C 22C 310=815.所以随机变量ξ的分布列为:。

高中数学必修2-3第二章2.1 2.1.2离散型随机变量的分布列

高中数学必修2-3第二章2.1 2.1.2离散型随机变量的分布列

2.1.2 离散型随机变量的分布列1.问题导航(1)离散型随机变量的分布列的定义是什么?两点分布和超几何分布的定义是什么? (2)离散型随机变量分布列的性质有什么作用?两点分布与超几何分布的联系和区别是什么?2.例题导读(1)例1是求两点分布列,请试做教材P 49练习1题.(2)例2、例3是求超几何分布,请试做教材P 49练习3、4题.1.离散型随机变量的分布列(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n ,以表格的形式表示如下:这个表格称为离散型随机变量X 的________概率分布列,简称为X 的________分布列. (2)离散型随机变量的分布列的性质: ①________p i ≥0,i =1,2,…,n ; ② i =1np i =1.2.两个特殊分布 (1)两点分布若随机变量X p =P (X =1)为成功概率.(2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -M C n N,k =0,1,2,…,m ,即其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N .如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.1.判断(对的打“√”,错的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.()(2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.()(3)在离散型随机变量分布列中,所有概率之和为1.()答案:(1)×(2)×(3)√2.下列表中能成为随机变量ξ的分布列的是()A.B.C.D.答案:C3A.0.28 B.0.88C.0.79 D.0.51答案:C4.若随机变量X服从两点分布,且P(X=0)=0.8,P(X=1)=0.2.令Y=3X-2,则P(Y =-2)=________.答案:0.8离散型随机变量分布列的三点说明(1)离散型随机变量的分布列不仅能清楚地反映其所取的一切可能的值,而且也能看出取每一个值的概率的大小,从而反映出随机变量在随机试验中取值的分布情况,是进一步研究随机试验数量特征的基础.(2)离散型随机变量在某一范围内取值的概率等于它取这个范围内各值的概率之和.(3)离散型随机变量可以用分布列、解析式、图象表示.离散型随机变量的分布列 [学生用书P 32]从装有6个白球、4个黑球和2个黄球的箱中随机取出两个球,规定每取出一个黑球赢2元,而每取出一个白球输1元,取出黄球无输赢,以X 表示赢得的钱数,随机变量X 可以取哪些值呢?求X 的分布列.[解] 从箱中取两个球的情形有以下6种:{2白球},{1白球1黄球},{1白球1黑球},{2黄球},{1黑球1黄球},{2黑球}. 当取到2白球时,随机变量X =-2;当取到1白球1黄球时,随机变量X =-1; 当取到1白球1黑球时,随机变量X =1; 当取到2黄球时,随机变量X =0;当取到1黑球1黄球时,随机变量X =2; 当取到2黑球时,随机变量X =4.所以随机变量X 的可能取值为-2,-1,0,1,2,4.P (X =-2)=C 26C 212=522,P (X =-1)=C 16C 12C 212=211,P (X =0)=C 22C 212=166,P (X =1)=C 16C 14C 212=411,P (X =2)=C 14C 12C 212=433,P (X =4)=C 24C 212=111.所以X 的分布列如下:[解:P (X >0)=P (X =1)+P (X =2)+P (X =4)=411+433+111=1933.∴赢钱的概率为1933.求分布列的一般步骤为:(1)找出随机变量X 的所有可能取值x i (i =1,2,3,…,n );(2)P (X =x i )的确定;(3)列出X 的分布列或概率分布表;(4)检验X 的分布列或概率分布表(用随机变量的分布列的两条性质验算).1求随机变量η=12ξ的分布列.解:由η=12ξ,对于ξ取不同的值-2,-1,0,1,2,3时,η的值分别为-1,-12,0,12,1,32.所以η的分布列为:离散型随机变量的分布列的性质 [学生用书P 32]设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35);(3)求P (110<X <710).[解] (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1, 解得a =115.(2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),∴P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45.(3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量的分布列的两个性质主要解决以下两类问题:①通过性质建立关系,求得参数的取值或范围,进一步求出概率,得出分布列.②求对立事件的概率或判断某概率是否成立.2.已知离散型随机变量则q 的值为________. 解析:∵14+1-q +q 2=1,∴q 2-q +14=0.∴q =12.答案:12两点分布与超几何分布在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列; (2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值为Y 元,求Y 的分布列.[解] (1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况.P (X =1)=C 14C 110=410=25,则P (X =0)=1-P (X =1)=1-25=35.因此X 的分布列为(2)①顾客乙中奖可分为互斥的两类事件:所抽取的2张奖券中有1张中奖或2张都中奖.故所求概率P =C 14C 16+C 24C 06C 210=3045=23. ②Y 的所有可能取值为0,10,20,50,60,且P (Y =0)=C 04C 26C 210=1545=13,P (Y =10)=C 13C 16C 210=1845=25,P (Y =20)=C 23C 06C 210=345=115,P (Y =50)=C 11C 16C 210=645=215,P (Y =60)=C 11C 13C 210=345=115.因此随机变量Y 的分布列为1.两点分布的几个特点:(1)两点分布中只有两个对应结果,且两个结果是对立的.(2)由对立事件的概率求法可知,已知P (X =0)(或P (X =1)),便可求出P (X =1)(或P (X =0)).2.解决超几何分布问题的两个关键点:(1)超几何分布是概率分布的一种形式,一定要注意公式中字母的范围及其意义,解决问题时可以直接利用公式求解,但不能机械地记忆.(2)超几何分布中,只要知道M ,N ,n ,就可以利用公式求出X 取不同k 的概率P (X =k ),从而求出X 的分布列.3.(1)篮球运动员在比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球一次得分的分布列为________.解析:用随机变量X 表示“每次罚球所得分值”,根据题意,X 可能的取值为0,1,且取这两个值的概率分别为0.3,0.7,因此所求的分布列为答案:(2)某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P (ξ<2).解:由题意可知,ξ的可能取值为0,1,2,3.则P (ξ=0)=C 04C 33C 37=135,P (ξ=1)=C 14C 23C 37=1235,P (ξ=2)=C 24C 13C 37=1835,P (ξ=3)=C 34C 03C 37=435.所以随机变量ξ的分布列为P (ξ<2)=P (ξ=0)+P (ξ=1)=135+1235=1335.(本题满分12分)(2014·高考天津卷节选)某大学志愿者协会有6名男同学,4名女同学. 在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院. 现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.[解] (1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以,选出的3名同学是来自互不相同学院的概率为4960.6分 (2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k 4·C 3-k6C 310(k =0,1,2,3).9分 所以,随机变量X12分[规范与警示] (1)解答本例的3个关键步骤:①首先确定随机变量X 的取值,是正确作答的关键.②要明确X 取不同值的意义,才能正确求X 所对应值的概率.③解答本题时易文字叙述严重缺失,如第(1)问只写出P (A )=C 13C 27+C 03C 37C 310=4960. (2)解答本类问题一是要正确理解题意,将实际问题转化为数学问题,二是在明确随机变量取每一个值所对应的随机事件外,还必须准确求出每个随机事件的概率.1.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23.故P (ξ=0)=1-p =13.2.设随机变量XA.P (X =1.5)=0 B .P (X >-1)=1 C .P (X <3)=0.5 D .P (X <0)=0解析:选A.由分布列知X =1.5不能取到,故P (X =1.5)=0,正确;而P (X >-1)=0.9,P (X <3)=0.6,P (X <0)=0.1.故A 正确.3.随机变量η则x =________,P (η≤3)=________. 解析:由分布列的性质得0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55. 答案:0 0.554.一个口袋里有5个同样大小的球,编号为1,2,3,4,5,从中同时取出3个球,以X 表示取出的球的最小编号,求随机变量X 的概率分布.解:X 所有可能的取值为1,2,3.当X =1时,其余两球可在余下的4个球中任意选取.∴P (X =1)=C 24C 35=35.当X =2时,其余两球在编号为3,4,5的球中任意选取, ∴P (X =1)=C 23C 35=310.当X =3时,取出的球只能是编号为3,4,5的球. ∴P (X =3)=1C 35=110.∴随机变量X 的概率分布为:[A.基础达标]1.(2015·东营高二检测)已知随机变量ξ的分布列为P (ξ=k )=12k ,k =1,2,…,则P (2<ξ≤4)等于( )A.316B.14C.116D.15解析:选A.2<ξ≤4时,ξ=3,4, ∴P (2<ξ≤4)=P (ξ=3)+P (ξ=4)=123+124=316.2.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球的个数X 是一个随机变量,则P (X =4)的值为( )A.27220B.27110C.111D.211解析:选A.由题意取出的3个球必为2个旧球,1个新球.故P (X =4)=C 23C 19C 312=27220.3.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12D.23解析:选A.根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2),故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.4.某一随机变量X则mn 的最大值为( A .0.8 B .0.2 C .0.08 D .0.6解析:选C.由分布列的性质知m ∈(0,1),2n ∈(0,1),且0.1+m +2n +0.1=1, 即m +2n =0.8.mn =(0.8-2n )×n =0.8n -2n 2=-2(n -0.2)2+0.08, ∴当n =0.2时,mn 有最大值为0.08.5.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品解析:选D.P (都不是一等品)=C 22C 25=110,P (恰有一件一等品)=C 13·C 12C 25=610, P (至少有一件一等品)=1-110=910, P (至多有一件一等品)=1-C 23C 25=710.6.则ξ为奇数的概率为________.解析:P (ξ=1)+P (ξ=3)+P (ξ=5)=215+845+29=815.答案:8157则(1)x =(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.558.某学校从4名男生和2名女生中任选3人作为参加两会的志愿者,设随机变量ξ表示所选3人中男生的人数,则P (ξ≤2)=________.解析:由题意可知ξ的可能取值为1,2,3,且ξ服从超几何分布,即P (ξ=k )=C 3-k 2C k 4C 36,k =1,2,3,故P (ξ≤2)=P (ξ=1)+P (ξ=2)=C 14C 22C 36+C 24C 12C 36=15+35=45. 答案:459试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m =1, ∴m =0.3.列表为:(1)2X +1(2)|X -1|10.,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.解:分别用x 1,x 2,x 3表示“小于5”的情况,“等于5”的情况,“大于5”的情况. 设ξ是随机变量,其可能取值分别为x 1、x 2、x 3,则P (ξ=x 1)=510=12,P (ξ=x 2)=110,P (ξ=x 3)=410=25.故ξ的分布列为1.一个盒子里装有相同大小的黑球10个,红球12个,白球4个,从中任取两个,其中白球的个数记为ξ,则下列概率中等于C 122C 14+C 222C 226的是( )A .P (0<ξ≤2)B .P (ξ≤1)C .P (ξ=2)D .P (ξ=1)解析:选B.由已知得ξ的可能取值为0,1,2.P (ξ=0)=C 222C 226,P (ξ=1)=C 122C 14C 226,P (ξ=2)=C 24C 226,故P (ξ≤1)=P (ξ=0)+P (ξ=1)=C 122C 14+C 222C 226.2.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎡⎦⎤0,13B.⎣⎡⎤-13,13 C .[-3,3] D .[0,1]解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎨⎧13-d ≥013+d ≥0,解得-13≤d ≤13.3.设随机变量ξ的分布列为P (ξ=k )=c k (k +1),k =1,2,3,c 为常数,则P (0.5<ξ<2.5)=________.解析:由概率和为1,得1=c (11×2+12×3+13×4)=34c ,∴c =43,∴P (ξ=1)=23,P (ξ=2)=29,∴P (0.5<ξ<2.5)=P (ξ=1)+P (ξ=2)=89.答案:894.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机取一个检验,其级别为随机变量ξ,则P (13≤ξ≤53)=________.解析:设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为7k2个.∴分布列为P (13≤ξ≤53)=P (ξ=1)=47. 答案:475.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求“所选3人中女生人数ξ≤1”的概率. 解:(1)ξ可能取的值为0,1,2.P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2. 所以,ξ的分布列为(2)由(1)知“所选3P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.6.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量X 表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率;(2)求X 的分布列.解:(1)由题意知,设基本事件空间为Ω,记“方程x 2+bx +c =0没有实根”为事件A ,“方程x 2+bx +c =0有且仅有一个实根”为事件B ,“方程x 2+bx +c =0有两个相异实根”为事件C ,则Ω={(b ,c )|b ,c =1,2,…,6},A ={(b ,c )|b 2-4c <0,b ,c =1,2,…,6},B ={(b ,c )|b 2-4c =0,b ,c =1,2,…,6},C ={(b ,c )|b 2-4c >0,b ,c =1,2,…,6},∴Ω中的基本事件总数为36,A 中的基本事件总数为17,B 中的基本事件总数为2,C 中的基本事件总数为17.又∵B ,C 是互斥事件,故所求概率P =P (B )+P (C )=236+1736=1936.(2)由题意,X 可能的取值为0,1,2,则 P (X =0)=1736,P (X =1)=118,P (X =2)=1736,故X 的分布列为。

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列

ξ
2
3
4
5
6
7
8
1 1 3 1 3 1 1 P(ξ) 16 8 16 4 16 8 16
变 式 训 练
2.将一颗骰子掷两次,求两 次掷出的最大点数ξ的分布列.
变 式 训 练
解:将一颗骰子连掷两次共出现 6×6=36(种)等可能 的基本事件,其最大点数 ξ 可能取的值为 1 1,2,3,4,5,6.P(ξ=1)= ,用(x,y)表示第一枚骰子点数 36 为 x,第二枚骰子点数为 y,则 ξ=2 包含三个基本事 3 1 件 (1,2),(2,1), (2,2),则 P(ξ= 2)= = .同理可求 36 12 5 7 9 1 P(ξ= 3)= , P(ξ= 4)= , P(ξ= 5)= = ,P(ξ= 36 36 36 4 11 6)= . 36
自 测 自 评
2.如果 ξ 是一个离散型随机变量,那么下 列命题中假命题是( D )
A. ξ 取每个可能值的概率是非负实数 B. ξ 取所有可能值的概率之和为 1 C.ξ 取某 2 个可能值的概率等于分别取其 中每个值的概率之和 D. ξ 取某 2 个可能值
的概率大于分别取其中每个值的概率之和
自 测 自 评
c c c c 解析:由 P(ξ=k)= ,k=1,2,3,可知 + + 2 6 12 k1+k 4 1 4 c =1, 解得 c= .故 P(ξ≥2)=1-P(ξ=1)=1- =1- × = 3 2 2 3 1 ,故选 C. 3 答案:C
题型二 求离散型随机变量的分布列
例2
一个正四面体玩具的四个面分
别标有数字1,2,3,4,将这个玩具连续抛掷 两次,记与桌面接触的面的数字之和为ξ,
求ξ的分布列.
解: ξ 的可取的值为 2,3,4,5,6,7,8. 将这个玩具连续抛掷两次, 所以可能事件总 数有 4×4=16 个,根据古典概率的计算公 1 2 1 式得 P(ξ= 2)= , P(ξ= 3)= = ,P(ξ= 16 16 8 3 4 1 3 4)= ,P(ξ=5)= = ,P(ξ=6)= ,P(ξ 16 16 4 16 2 1 1 =7)= = , P(ξ=8)= . 16 8 16 所以,所求的 ξ 的分布列为:

2.1离散型随机变量及其分布列

2.1离散型随机变量及其分布列
Байду номын сангаас
写出下列各随机变量可能的取值,并说明它们各自 所表示的随机试验的结果:
(1)从10张已编号的卡片(从1号到10号)中任取1张,
被取出的卡片的号数x ;(x=1、2、3、···、10)
(2)抛掷两个骰子,所得点数之和Y;(Y=2、3、···、12) (3)某城市1天之中发生的火警次数X(;X=0、1、2、3、···)
解:X的取值范围是{0,1,2,3} ,其中 {X=0}表示的事件是“取出0个白球,3个黑球”; {X=1}表示的事件是“取出1个白球,2个黑球”; {X=2}表示的事件是“取出2个白球,1个黑球”; {X=3}表示的事件是“取出3个白球,0个黑球”;
变题:{X < 3}在这里又表示什么事件呢?
“取出的3个球中,白球不超过2个”
例2、在掷一枚图钉的随机试验中,令
1,针尖向上 X 0,针尖向下
如果针尖向上的概率为p,试写出随机变量X的分布列。
解:根据分布列的性质,针尖向下的概率是(1-p),于是, 随机变量X的分布列是
X
0
1
P
1-p
p
像上面这样的分布列称为两点分布列。
如果随机变量X的分布列为两点分布列,就称 X服从两点分布,而称p=P(X=1)为成功概率。
下列试验的结果能否用离散型随机变量表示? (1)已知在从汕头到广州的铁道线上,每隔50米有一个
电线铁站,这些电线铁站的编号; (2)任意抽取一瓶某种标有2500ml的饮料,其实际量
与规定量之差; (3)某城市1天之内的温度; (4)某车站1小时内旅客流动的人数; (5)连续不断地投篮,第一次投中需要的投篮次数. (6)在优、良、中、及格、不及格5个等级的测试中,

数学:2.1《离散型随机变量及其分布列-离散型随机变量分布列》课件(新人教A版-选修2-3)

数学:2.1《离散型随机变量及其分布列-离散型随机变量分布列》课件(新人教A版-选修2-3)
P 1 p, P 0 q, 0 p, q 1,
p q 1.
想一想
X 2 5 是两点分布吗? P 0.3 0.7 提示:不是.两点分布的X的取值只能是0,1. 分布列
什么是超几何分布? 先思考一个例子: 思考 1.在含有 5 件次品的 100 件产品中,任取 3 件,求:(1)取到的次品数 X 的分布列.
例1
甲、乙两人参加一次数学知识竞赛 , 已知在备
选的 10 道试题中 , 甲能答对其中的 6 道试题 , 乙能答
对其中的8道试题.规定每次考试都从备选试题中
随机抽出3题进行测试,答对一题得5分,答错一题得 0分.求: (1)甲答对试题数X的分布列; (2)乙所得分数Y的分布列.
【解】
(1)X 的可能取值为 0,1,2,3. C3 4 1 4 P(X=0)= 3 = = ,2 分 C10 120 30 1 C2 36 3 4C6 P(X=1)= 3 = = 3分 C10 120 10 2 C1 60 1 4C6 P(X=2)= 3 = = ,4 分 C10 120 2 C3 20 1 6 P(X=3)= 3 = = .5 分 C10 120 6 所以甲答对试题数 X 的分布列为 X 0 1 1 3 P 30 10 6分
设摸出的红球的个数为 X k n k CM CN M 则 P( X k ) (k 0,1, 2 , m), m min M , n n CN
C
1分
2 1 2
3 1 6
(2)乙答对试题数可能为 1,2,3,所以乙所得分数 Y=5,10,15. 1 C2 C 8 1 2 8 P(Y=5)= 3 = = ,9 分 C10 120 15 2 C1 C 56 7 2 8 P(Y=10)= 3 = = ,10 分 C10 120 15 C3 56 7 8 P(Y=15)= 3 = = .11 分 C10 120 15 所以乙所得分数 Y 的分布列为 Y 5 10 15 1 7 7 P 15 15 15 12 分

2.1.2 离散型随机变量的分布列

2.1.2  离散型随机变量的分布列
6
23
11 32
一般地,若离散型随机变量X的所有可能取值
为x1,x2,…,xi,…, xn,X取每一个值xi(i= 1,2,…,n)的概率P(X=xi)=pi,以表格的形式
表示如下:
X x1 x2 … xi … xn P p1 p2 … pi … pn
上表称为离散型随机变量X的概率分布列,简称为X 的分布列.
P(X≥3)=P(X=3)+P(X=4)+P(X=5)
=
C C 3 53 10 3010
C140
C≈350041.0191C150
C55 30 10
C530
C350
C350
思考:若将这个游戏的中奖概率控制在55%左右,那 么应该如何设计中奖规则?
游戏规则可定为至少摸到2个红球就中奖.
【提升总结】 两点分布与超几何分布
(1)两点分布又称为0-1分布或伯努利分布,它反映 了随机试验的结果只有两种可能,如抽取的奖券是 否中奖;买回的一件产品是否为正品;一次投篮是 否命中等.在两点分布中,随机变量的取值必须是0 和1,否则就不是两点分布; (2)超几何分布列给出了一类用数字模型解决的问 题,对该类问题直接套用公式即可.但在解决相关
变量X的分布列具有上表的形式,则称随机变量X服
从超几何分布.
例3 在某年级的联欢会上设计了一个摸奖游戏, 在一个口袋中装有10个红球和20个白球,这些球除 颜色外完全相同.一次从中摸出5个球,至少摸到3 个红球就中奖,求中奖的概率.
解:设摸出红球的个数为X,则X服从超几何分布,
其中N=30,M=10,n=5.于是中奖的概率
X∈{1,2,3,4,5,6}, P(X i) 1 ,(i 1,2,3,4,5,6)
6

2.1.1 离散型随机变量

2.1.1 离散型随机变量

2.1离散型随机变量及其分布列2.1.1离散型随机变量问题导学一.随机变量的概念阅读教材44p活动与探究1:判断下列各量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2015年5月1日的旅客数量;(2)2015年5月1日到10月1日期间所查酒驾的人数;(3)体积为1 000 cm3的球半径长.迁移与应用:下列变量中,不是随机变量的是()A.2016年奥运会上中国取得的金牌数B.每一年从地球上消失的动物种数C.2008年奥运会上中国取得的金牌数D.某人投篮6次投中的次数在一次随机试验中,随机变量的取值实质是随机试验的结果所对应的数,且这个数所有可能的取值是预先知道的,但不知道究竟会出现哪一个值,这便是“随机”的本源.二、离散型随机变量的判定阅读教材45p活动与探究2:指出下列随机变量是否是离散型随机变量,并说明理由.(1)湖南矮寨大桥桥面一侧每隔30米有一路灯,将所有路灯进行编号,其中某一路灯的编号X;(2)在一次数学竞赛中,设一、二、三等奖,小明同学参加竞赛获得的奖次X;(3)一天内气温的变化值X;(4)丁俊辉在2012世锦赛中每局所得的分数X;(5) 任意抽取一瓶某种标有2500ml的饮料, 其实际量与规定量之差.迁移与应用1.下面给出四个随机变量:①高速公路上某收费站在未来1小时内经过的车辆数X;②一个沿直线y=x进行随机运动的质点,它在该直线上的位置Y;③某网站未来1小时的点击量;④某人一生中的身高X.其中是离散型随机变量的序号为()A.①② B.③④C.①③D.②④2.下列随机变量中不是离散型随机变量的是__________.①某地车展中,预订各类汽车的总人数X;②北京故宫某周内每天接待的游客人数;③正弦曲线上的点P到x轴的距离X;④小麦的亩产量X;⑤王老师在一次英语课提问的学生人数X;⑥抛掷两枚骰子, 所得点数之和.判断一个变量是否为离散型随机变量,首先看它是不是随机变量,其次看可能取值是否能一一列出,也就是说变量的取值若是有限的,或者是可以列举出来的,就可以视为离散型随机变量,否则就不是离散型随机变量.三、离散型随机变量的取值活动与探究3: 写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果:(1)在2018年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数X;(3)一袋中装有5只同样大小的球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数X;(4)某足球队在5次点球中射进的球数X.迁移与应用1.抛掷两枚骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是() A.一枚是3点,一枚是1点B.两枚都是2点C.两枚都是4点D.一枚是3点,一枚是1点或两枚都是2点2.写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果:(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,取后不放回,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.当堂检测1.给出下列四个命题:①某次数学期中考试中,其中一个考场30名考生中做对选择题第12题的人数是随机变量;②黄河每年的最大流量是随机变量;③某体育馆共有6个出口,散场后从某一出口退场的人数是随机变量;④方程x2-2x-3=0根的个数是随机变量.其中正确的是()A.1 B.2 C.3 D.4 2.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是()A.5 B.9 C.10 D.253.某班有学生45人,其中O型血的有10人,A型血的有12人,B型血的有8人,AB型血的有15人,用0,1,2,3分别表示O 型,A型,B型,AB型,现任抽一人,其血型是随机变量ξ,则ξ的可能取值为__________.4.写出下列各随机变量可能取的值,并说明随机变量所取的值所表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,被取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X.动手试试练1.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有3个红球和5个白球,这些球除颜色外完全相同.一次从中摸出3个球,至少摸到2个红球就中奖.(1)求摸到红球个数ξ的分布列;(2)求中奖的概率.练2.从一副不含大小王的52张扑克牌中任意抽出5张,求至少有3张A的概率.四、自测1.若随机变量ξ 的概率分布如下表所示,3. 已知随机变量ξ的分布列为则ξ为奇数的概率为.4. 在第4题的条件下,若32-=ξη,则η的分布列为:5学校要从30名候选人中选10名同学组成学生会,其中某班有4名候选人. 假设每名候选人都有相同的机会被选到,求该班恰有2名同学被选到的概率.6.老师要从10篇课文中随机抽3篇让同学背诵, 规定至少要背出其中2篇才能及格. 某同学只能背诵其中的6篇, 求:(1)抽到他能背诵的课文的数量的分布列;(2)他能及格的概率.2.2 二项分布及其应用 2.2.1 条件概率阅读教材P51-52自主完成P51的探究与思考 问题导学一、条件概率的概念与计算活动与探究11.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A .18B .14C .25D .12新知条件概率的的定义:一般地,设A ,B 为两个事件,且________.称________为在事件A 发生的条件下,.事件B 发生的条件概率.条件概率具有概率的性质,任何事件的概率都在0和1之间,即________。

数学:2.1离散型随机变量及其分布列

数学:2.1离散型随机变量及其分布列
若用η表示所含次品数,η有哪些取值? η可取 0件、1件、2件、3件、4件,共5种结果
思考:把一枚硬币向上抛,可能会出现哪几种结果?能 否用数字来刻划这种随机试验的结果呢?
ε=0,表示正面向上; ε=1,表示反面向上 说明:
(1)任何一个随机试验的结果我们可以进行数量化; (2)同一个随机试验的结果,可以赋不同的数值.
则 P(1) 1
6
P(4) 1
6
P(2) 1
6
P(5) 1
6
P(3) 1
6
P(6) 1
6

12
34
5
6
1
1
1
1
1
1
P6
6
6
6
6
6
⑴列出了随机变量 的所有取值. ⑵求出了 的每一个取值的概率.
二、离散型随机变量的分布列
1、设随机变量 的所有可能的取值为 x 1,x2,x 3,,x i,,xn 的每一个取值 x i (i1,2,,n)的概率为 P(xi)pi,则称表格
表示 的分布列
2.概率分布还经常用图象来表示. 可以看出 的取值
p
范围是{1,2,3,4,5,6},
0.2
它率取都每 是一1 个。值的概
0.1
6

O 1 2 3 4 5 6 78
1、离散型随机变量的分布列完全描述了由这个随机 变量所刻画的随机现象。
2、函数可以用解析式、表格或图象表示,离散型随 机变量可以用分布列、等式或图象来表示。
3
4
12
例 5、在掷一枚图钉的随机试验中,令
1,针尖向上 X 0,针尖向下 如果会尖向上的概率为p,试写出随机变量X的分布列 解:根据分布列的性质,针尖向下的概率是(1—p),于是, 随机变量X的分布列是:

人教版高中数学选修2-3课件:2.1 离散型随机变量及其分布列(共52张PPT)

人教版高中数学选修2-3课件:2.1 离散型随机变量及其分布列(共52张PPT)

预习探究
[探究] 以下随机变量是离散型随机变
量的是
.
①某部手机一小时内收到短信的次数
ξ;
②电灯泡的寿命ξ; ③某超市一天中的顾客量ξ; ④将一颗骰子掷两次出现的点数之和
ξ.
⑤连续不断地射击,首次命中目标所需
要的射击次数ξ.
④将一颗骰子掷两次出现点数之和ξ的取
值为2,3,…,12,是离散型随机变量;
三维目标
3.情感、态度与价值观 使学生感悟数学与生活的和谐之美,学会合作探讨,体验成功,提 高学习数学的兴趣.
重点难点
[重点] (1)随机变量、离散型随机变量的意义; (2)离散型随机变量的分布列的概念.
[难点] (1)随机变量、离散型随机变量的意义; (2)求简单的离散型随机变量的分布列.
教学建议
例1 指出下列变量中,哪些是随机变量, 哪些不是随机变量,并说明理由. (1)任意掷一枚质地均匀的硬币5次,出 现正面向上的次数; (2)投一颗质地均匀的骰子出现的点数 (最上面的数字); (3)某个人的属相随年龄的变化; (4)在标准状况下,水在0℃时结冰.
(3)属相是出生时便确定的,不随年龄的变化 而变化,不是随机变量. (4)标准状况下,水在0℃时结冰是必然事件, 不是随机变量.
P
分别求出随机变量η1=2ξ1,η2=ξ2的分布列.
当ξ取-1与1时,η2=ξ2取相同的值,故η2的分布 列为 η2 0 1 4 9
考点类析
例2 指出下列随机变量是不是离散型 随机变量,并说明理由. (1)从10张已编好号码的卡片(从1号到 10号)中任取1张,被取出的卡片的号数; (2)一个袋中装有5个白球和5个黑球,从 中任取3个,其中所含白球的个数; (3)某林场树木最高达30 m,则此林场中 树木的高度; (4)某加工厂加工的某种铜管的外径与 规定的外径尺寸之差.

高中数学人教A版选修2-3教案-2.1 离散型随机变量及其分布列_教学设计_教案_1

高中数学人教A版选修2-3教案-2.1 离散型随机变量及其分布列_教学设计_教案_1

教学准备
1. 教学目标
离散型随机变量的分布列
2. 教学重点/难点
离散型随机变量的分布列
3. 教学用具
4. 标签
教学过程
一、基本知识概要:
1. 随机变量:随机试验的结果可以用一个变量来表示,这样的变量的随机变量,记作;
说明:若是随机变量,,其中是常数,则也是随机变量。

2. 离散型随机变量:随机变量可能取的值,可以按一定顺序一一列出
连续型随机变量:随机变量可以取某一区间内的一切值。

说明:①分类依据:按离散取值还是连续取值。

②离散型随机变量的研究内容:随机变量取什么值、取这些值的多与少、所取值的平均值、稳定性等。

说明:放回抽样时,抽到的次品数为独立重复试验事件,即。

例2:一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以表示取出的三只球中的最小号码,写出随机变量的分布列。

剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即可以取1,2,3。

三、课堂小结
1会根据实际问题用随机变量正确表示某些随机试验的结果与随机事件;2熟练应用分布列的两个基本性质;
3能熟练运用二项分布计算有关随机事件的概率。

四、作业布置:教材P193页闯关训练。

2.1离散型随机变量及其分布列课后练习题

2.1离散型随机变量及其分布列课后练习题

离散型随机变量及其分布列课后练习题一、选择题1.下列表格中,不是某个随机变量的分布列的是( ) A.X -2 0 2 4 P0.50.20.3B.X 0 1 2 P0.70.150.15C.X 1 2 3 P-131223D.X 1 2 3 Plg 1lg 2lg 52.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么( ) A .n =3 B .n =4 C .n =10 D .n =93.若随机变量X 的概率分布列为:P (X =n )=an n +1(n =1,2,3,4),其中a 是常数,则P ⎝ ⎛⎭⎪⎫12<X <52的值为( )A.23B.34C.45D.56 4.设X 是一个离散型随机变量,其分布列为:X -1 0 1P0.51-2qq 2则q =( ) A.12 B. 22 C. 14D. 212-5.若随机变量X 的分布列如下表所示,则a 2+b 2的最小值为( )A.124B.16C.8D.4 二、填空题6.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 7.从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的分布列为________.8.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝ ⎛⎭⎪⎫13≤ξ≤53=________.三、解答题9.设随机变量X 的分布列为P (X =k5)=ak ,(k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35); (3)P (110<X <710).10.一个盒子里装有4张大小形状完全相同的卡片,分别标有数字2,3,4,5;另一个盒子里也装有4张大小形状完全相同的卡片,分别标有数字3,4,5,6.现从一个盒子里任取一张卡片,其上面的数记为x ,再从另一个盒子里任取一张卡片,其上面的数记为y ,记随机变量η=x +y ,求η的分布列.复数乘法和除法课后练习题答案一、选择题1.解析:C 选项中,P (X =1)<0不符合P (X =x i )≥0的特点,也不符合P (X =1)+P (X =2)+P (X =3)=1的特点,故C 选项不是分布列. 答案:C2.解析:由X <4知X =1,2,3,所以P (X =1)+P (X =2)+P (X =3)=0.3=3n,解得n =10.答案:C3.解析:∵P (X =1)+P (X =2)+P (X =3)+P (X =4)=a ⎝ ⎛⎭⎪⎫1-15=1,∴a =54. ∴P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝ ⎛⎭⎪⎫1-13=54×23=56.4.解析:由分布列的性质得0.5+1-2q +q 2=1,整理得q 2-2q +0.5=0,解得q =1±22,又0≤1-2q ≤1,0≤q 2≤1,所以q =1-22. 答案:D5.解析:由分布列的性质可知12a b +=,而222()128a b a b ++≥=.故选C. 答案:C 二、填空题6.解析:由离散型随机变量的分布列的性质可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6. 答案:0.67.解析:当有0个红球时,P (X =0)=C 22C 25=0.1;当有1个红球时,P (X =1)=C 13C 12C 25=0.6;当有2个红球时,P (X =2)=C 23C 25=0.3.答案:8.解析:设二级品有k 个,∴一级品有2k 个,三级品有2个,总数为72k 个.∴分布列为P ⎝ ⎛⎭⎪⎫13≤ξ≤53=P (ξ=1)=47.答案:47三、解答题9.解:(1)由a ·1+a ·2+a ·3+a ·4+a ·5=1得a =115.(2)因为分布列为P (X =k 5)=115k (k =1、2、3、4、5)解法一:P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45.解法二:P (X ≥35)=1-[P (X =15)+P (X =25)]=1-[115+215]=45.(3)因为110<X <710,只有X =15、25、35时满足,故P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25. 10.解:依题意,η的可能取值是5,6,7,8,9,10,11. 则有P (η=5)=14×4=116,P (η=6)=216=18,P (η=7)=316, P (η=8)=416=14,P (η=9)=316, P (η=10)=216=18,P (η=11)=116.所以η的分布列为。

高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分

高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分

所以P(X=0)=CC06C13034=310,P(X=1)=CC16C13024=330, P(X=2)=CC26C13014=12,P(X=3)=CC36C13004=130. 所以X的概率分布为:
X
0
1
2
3
P
1 30
3 10
1
1
2
6
(2)由(1)知他能及格的概率为P(X=2)+P(X=3)=
4.从4名男生和2名女生中选3人参加演讲比赛,则 所选3人中女生人数不超过1人的概率是________.
解析:设所选女生人数为X,则X服从超几何分布, 其中N=6,M=2,n=3,
则P(X≤1)=P(X=0)+P(X=1)=CC02C36 34+CC12C36 24=45. 答案:45
5.在掷一枚图钉的随机试验中,令X=
复习课件
高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分布与超几何分布同步课件 新人教A版选修2-3
1
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.2 离散型随机变量的分布列 第 2 课时 两点分布与超几何分布
[学习目标] 1.理解两点分布,并能进行简单的应用 (重点). 2.理解超几何分布及其推导过程,并能进行简 单的应用(重点、难点).
X0
1 …M
P
C0MCnN--0M CnN
C1MCnN--1M CnN

CmMCnN--mM CnN
如果随机变量 X 的分布列为超几何分布列,则称随
机变量 X 服从超几何分布.
温馨提示 两点分布的随机变量 X 只能取 0 和 1,否 则,只取两个值的分布不是两点分布.

高中数学人教版选修2-3同步练习:2.1.1《离散型随机变量及其分布列》

高中数学人教版选修2-3同步练习:2.1.1《离散型随机变量及其分布列》

高中数学人教版选修2-3同步练习:2.1.1《离散型随机变量及其分布列》第二章随机变量及其分布2.1离散型随机变量及其分布列2.1.1离散型随机变量课时训练6 离散型随机变量一、选择题1.抛掷一枚质地均匀的硬币一次,随机变量为().A.掷硬币的次数B.出现正面向上的次数C.出现正面向上或反面向上的次数D.出现正面向上与反面向上的次数之和答案:B解析:出现正面向上的次数为0或1,是随机变量.2.下列随机变量是离散型随机变量的是().①抛5颗骰子得到的点数和;②某人一天内接收到的电话次数;③某地一年内下雨的天数;④某机器生产零件的误差数.A.①②③B.④C.①④D.②③答案:A解析:由离散型随机变量的定义知①②③均是离散型随机变量,而④不是,由于这个误差数几乎都是在0附近的实数,无法一一列出.3.已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;③刘翔在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是().A.①②③B.②③④C.①②④D.③④答案:C解析:③中X的值可在某一区间内取值,不能一一列出,故不是离散型随机变量.4.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为().A.X=4B.X=5C.X=6D.X≤4答案:C解析:第一次取到黑球,则放回1个球,第二次取到黑球,则放回2个球……共放了五回,第六次取到了红球,试验终止,故X=6.5.对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为ξ,则ξ=k表示的试验结果为().A.第k-1次检测到正品,而第k次检测到次品B.第k次检测到正品,而第k+1次检测到次品C.前k-1次检测到正品,而第k次检测到次品D.前k次检测到正品,而第k+1次检测到次品答案:D6.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时已拨的次数为ξ,则随机变量ξ的所有可能取值的种数为().A.20B.24C.4D.18答案:B解析:由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有=24(种).二、填空题7.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是.答案:-300,-100,100,300解析:若答对0个问题得分-300;若答对1个问题得分-100;若答对2个问题得分100;若问题全答对得分300.8.一袋中装有5个同样的球,编号依次为1,2,3,4,5,从该袋中随机取出3个球.记三个球中最小编号为ξ,则“ξ=3”表示的试验结果是.答案:取出编号为3,4,5的三个球9.在8件产品中,有3件次品,5件正品,从中任取一件,取到次品就停止,取后不放回,抽取次数为X,则“X=3”表示的试验结果是.答案:前两次均取到正品,第三次取到次品三、解答题10.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果:(1)盒中装有6支白粉笔和8支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ;(2)从4张已编号(1~4号)的卡片中任意取出2张,被取出的卡片号数之和ξ.解:(1)ξ可取0,1,2,3.ξ=i表示取出i支白粉笔,3-i支红粉笔,其中i=0,1,2,3.(2)ξ可取3,4,5,6,7.其中ξ=3表示取出编号为1,2的两张卡片.ξ=4表示取出编号为1,3的两张卡片.ξ=5表示取出编号为2,3或1,4的两张卡片.ξ=6表示取出编号为2,4的两张卡片.ξ=7表示取出编号为3,4的两张卡片.11.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ.(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.解:(1)ξ0 1 2 3结果取得3个黑球取得1个白球2个黑球取得2个白球1个黑球取得3个白球(2)由题意可得η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},则η对应的各值是5×0+6,5×1+6,5×2+6,5×3+6,故η的可能取值为{6,11,16,21},显然η为离散型随机变量.12.下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)离开天安门的距离η;(2)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ.解:(1)η可取[0,+∞)中的数.η=k表示离开天安门的距离为k(km).不是离散型随机变量.(2)ξ可取所有的正整数.{ξ=i}表示前i-1次取出红球,而第i次取出白球,这里i∈N*.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学系列2—3单元测试题(2.1)
一、选择题:
1、如果X 是一个离散型随机变量,则假命题是( )
A. X 取每一个可能值的概率都是非负数;
B. X 取所有可能值的概率之和为1;
C. X 取某几个值的概率等于分别取其中每个值的概率之和;
D. X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和
2①某寻呼台一小时内收到的寻呼次数X ;②在(0,1)区间内随机的取一个数X ;③某超市一天中的顾客量X 其中的X 是离散型随机变量的是( )
A .①;
B .②;
C .③;
D .①③
3、设离散型随机变量ξ的概率分布如下,则a 的值为( )
A .12
B .6
C .3
D .4
4、设随机变量X 的分布列为()()1,2,3,,,k P X k k n λ===⋯⋯,则λ的值为( )
A .1;
B .12;
C .13;
D .1
4
5、已知随机变量X 的分布列为:()1
2k p X k ==, ,3,2,1=k ,则()24p X <≤=(
) A.163 B. 41
C. 161
D. 165
6、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( )
A. 4
B. 6
C. 10
D. 无法确定
7、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( )
A. 一枚是3点,一枚是1点
B. 两枚都是2点
C. 两枚都是4点
D. 一枚是3点,一枚是1点或两枚都是2点
8、设随机变量X 的分布列为()()21,2,3,,,k P X k k n λ==⋅=⋯⋯,则λ的值为( )
A .1;
B .1
2; C .1
3; D .1
4
二、填空题:
9 、下列表中能成为随机变量X 的分布列的是 (把全部正确的答案序号填上)
()1
2
,1,2,3,,21k n P X k k n -===-
② ()1
,2,3,4,5,P X k k k ===
④ ⑤
10、已知2Y X =为离散型随机变量,Y 的取值为1,2,3,,10,则X 的取值为
11、一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数X 可能取值为
三、解答题:
12、某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量
(1)求租车费η关于行车路程ξ的关系式;
(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?
13、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.
分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率.
14、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n 2
1(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X ≤.。

相关文档
最新文档