电网距离保护

合集下载

电网距离保护第1讲(西安交通大学电力系统继电保护课件)

电网距离保护第1讲(西安交通大学电力系统继电保护课件)

随着智能电网的普及,距离保护将依托于新型智 能保护系统,逐步实现人机交互,提高保护系统 的智能化。
电网距离保护的挑战与机遇
1
挑战
距离保护系统复杂,需要改变以往的保护方式和技术,同时面临着保护灵敏度不 足等问题。
2
机遇
距离保护是未来不可或缺的重要技术之一,有着广阔的应用前景,通过继续探索 和创新,使技术更加完善,并实现智能化保护。
电网距离保护工程实务中的问题与解 决策略
问题
在实际工程应用中,距离保护常常会出现误动和误通的情况,这需要进一步加强参数的精度 和保护系统的可靠性。
解决策略
可以采用数字化、智能化等先进技术,并对距离保护进行不断改进和升级,提高系统的稳定 性和可靠性。
3 经济性
4 可扩展性
在电网的规划和运行中,它提供了一种廉 价而可靠的保护方案。
在电网发生变化时容易进行调整和扩展, 具有可塑性。
电网距离保护的分类
按工作原理
• 电压型距离保护 • 阻抗型距离保护 • 复合型距离保护
按使用场合
• 预警型距离保护 • 失灵型距离保护
电压型距离保护
测量电压和电流
电压型距离保护通过电压互感器和电流互感器测 量元件中的电压和电流。
判断距离
根据距离保护的原理,通过测量出元件的阻抗, 判断距离是否超过设定值。
阻抗型距离保护
1 工作原理
2 运行方式
通过比较元件内的阻抗值与设定值,来确 定元件故障的位置和类型。
采用定值保护及时与后备保护配合工作, 完成故障的判断和处理。
复合型距离保护
1
优点
采用多种距离保护原理,并采用定值、变值等相结合的方式,提高了保护的可靠性和 准确度。

第三章距离保护

第三章距离保护

第三章距离保护第三章:电网距离保护1.距离保护的定义和基本原理:距离保护:是利用短路时电压、电流同时变化的特征,测量电压与电流的壁纸,反映故障点到保护安装处的距离而工作的保护。

基本原理:按照继电保选择性的要求,安装在线路两端的距离保护仅在下路MN内部故障时,保护装置才应该立即动作,将相应的断路器跳开,而在保护区的反方向或本线路之外正方向短路时,保护装置不应动作。

与电流速断保护一样,为了保证在下级线路的出口处短路时保护不误动作,在保护区的正方向(对于线路MN的M侧保护来说,正方向就是由M指向N的方向)上设定一个小于本线路全长的保护范围,用整定距离Lset来表示。

当系统发生短路故障时,首先判断故障的方向,若故障位于保护区的正方向上,则设法测出故障点到保护安装处的距离Lk,并将Lk与Lset相比较,若Lk小于Lset,说明故障发生在保护范围之内,这时保护应立即动作,跳开相应的断路器;若LK大于Lset,说明故障发生在保护范围之外,保护不应动作,对应的断路器不会跳开。

若故障位于保护区的反方向上,则无需进行比较和测量,直接判断为区外故障而不动作。

}通常情况下,距离保护可以通过测量短路阻抗的方法来间接地测量和判断故障距离。

2.几种继电器的方式:苹果特性:有较高的耐受过渡电阻的能力,耐受过负荷的能力比较差;橄榄特性正好相反。

电抗特性:动作情况至于测量阻抗中的电抗分量有关,与电阻无关,因而它有很强的耐过渡电阻的能力。

但是它本身不具有方向性,且在负荷阻抗情况下也可能动作,所以通常它不能独立应用,而是与其他特性复合,形成具有复合特性的阻抗原件。

电阻特性:通常也与其他特性复合,形成具有复合特性的阻抗原件。

多边形特性:能同时兼顾耐受过渡电阻的能力和躲负荷的能力。

3测量阻抗:Zm定义为保护安装处测量电压Um&与测量电流Im&之比,即Um&/Im& 动作阻抗:使阻抗原件处于临界动作状态对应的阻抗(Zop)。

电力系统继电保护-3 电网距离保护

电力系统继电保护-3 电网距离保护

3.1.1 距离保护的概念
测量阻抗和故障距离的关系 测量阻抗的定义(以单相系统为例)
Zm
U
m
zl
z为线路单位长度的阻抗
Im
试图找到与系统运行方式、短路类型无关,只与短路点到 保护安装处有关的测量参量
3.1.1 距离保护的概念

距离保护-利用短路发生时电压、电流同时变化的特征,测量电压与 电流的比值,反应故障点到保护安装处的距离而工作的保护。 整定距离Lset-与距离保护的范围相对应的距离。 工作原理大致如下:
3.1.3 三相系统中测量电压和测量电流的选取

不同故障类型电流、电压和测量阻抗的关系:
CASE3:两相短路接地故障 ABG故障边界条件 (I K 3I )z L 0 U U A A 0 1 k kA K 3I )z L U kB 0 U B ( I B 0 1 k I z L 0 U U I kAB A B 1 k kAB
3 电网距离保护
3.1 距离保护的基本原理与构成
电流保护的缺陷 缺点 灵敏度不足 运行方式对保护影响大 配合困难 问题 无法满足更高电压等级电网对保护的速动性、选择性、灵 敏性的要求
3.1 距离保护的基本原理与构成
故障特征分析 特征 故障时电流增大 故障时电压降低 思路 综合利用电流、电压可以提高灵敏度,所以就有了阻抗保 护,利用电流电压比值作为故障特征量
总结
只有采用与故障回路相关的电流、电压才能实现距离的测量。继电器接 入不同电压、电流仪,称为不同的接线方式。 存在相间故障回路时,采用保护安装处的故障相间电压和故障相间电流 差可以反应故障距离,称为相间距离保护。 存在接地故障回路时,采用保护安装处的相电压和经零序补偿的相电流 可以反应故障距离,称为接地距离保护。 为了保护接地故障和相间故障,需要配备接地距离保护和相间距离保 护,短路形成几个故障回路。就有几个阻抗继电器可以实现阻抗测量。

线路距离保护

线路距离保护

IJ
Zzd R
2. 方向阻抗继电器:以Zzd阻抗为直径过原点的圆 1)比幅值
A
1 2
Z zd
IJ
B
Z J IJ
1 2
Z
zd
IJ
UJ
1 2
Z
zd
IJ
1 2
Z
zd
IJ
2)比相位
C B A U J D U J Z zd IJ
270
tg 1
C D
90
ZKJ具有明确的方向性
jX Zzd
o
R
3. 偏移特性ZKJ:向第四象限偏移α=0.1~0.2 的圆
180 ctg 2
0 ZJ
Z 2
ZM
360
ctg 2
ZJ
( Z 2
ZM
)
j
Z 2
.
系统振荡时测量阻抗的变化规律
ZN N
M
ZM
Zj
系统振荡时测量阻抗的变化规律
ZJ.m
( Z 2
ZM
)
j
Z 2
ctg 2
令Zx代替ZM ,设m Zx / Z
ZJ.m
(1 2
m)
Z 2
j Z 2
ctg 2
1.基本要求:
1) Z J Z D
2)ZJ与故障类型无关
2.类型
继电器 接线方式
0°接线
+30°接线
-30°接线 相电压和具有 3KI0补偿的相 电流接线
J1
UJ U AB U AB U AB
U A
IJ IA IB
IA IB
IA K3I0
J2
J3
UJ
IJ
UJ

电力系统继电保护电网距离保护原理

电力系统继电保护电网距离保护原理
9
三相系统中测量电压和测量电流的选取
. 两相接地短路故障

或者
. 两相不接地短路故障 有
. 三相对称短路 此时故障点处的各相电压相等,且三相系统对称 时均为0。这种情况下,选用任意一相的电压、电 流或任意两相间的电压、电流差作为距离保护的 测量电压和电流均可。
10
故障环路的概念及测量电压、电流的选取
. 一种是首先精确地测量出Zm ,然后再将它与事先确 定的动作特性进行比较。当Zm落在动作区域之内 时,判为区内故障,给出动作信号;当Zm落在动作 区域之外时,继电器不动作。
. 另一种方法无需精确地测出Zm ,只需间接地判断 它是处在动作边界之内还是处在动作边界之外,即 可确定继电器动作或不动作。
18
偏移圆特性
正向整定阻抗与反向整定阻抗相量末端的连线,就是 圆特性的直径,它将圆分成两部分,即右下部分和左 上部分,当测量阻抗落在右下部分圆周的任一点上 时,有
当测量阻抗落在左上部分 圆周的任一点上时,有
测量元件的动作条件可表示为
19
偏移圆特性
• 使阻抗元件处于临界动作状态对应的阻抗称为动作阻 抗,通常用Zop 表示。对于具有偏移圆特性的阻抗继 电器而言,当测量阻抗Zm 的阻抗角不同时,对应的动 作阻抗是不同的。
. 在系统中性点直接接地系统中,发生单相接地时, 故障电流在故障相与大地之间流通;两相接地短路 时,故障电流既可在两故障相与大地间流通,也可 在两故障相间流通;两相不接地短路时,故障电流 在果把故障电流可以流通的通路称为故障环路,则
在单相接地短路时,存在一个故障相与大地之间的
20
方向圆特性
. 在偏移圆特性中,令Zset2 = 0, Zset1 = Zset ,则动作 特性就变成方向圆特性,特性圆经过坐标原点。

第三章距离保护

第三章距离保护

第三章:电网距离保护1.距离保护的定义和基本原理:距离保护:是利用短路时电压、电流同时变化的特征,测量电压与电流的壁纸,反映故障点到保护安装处的距离而工作的保护。

基本原理:按照继电保选择性的要求,安装在线路两端的距离保护仅在下路MN内部故障时,保护装置才应该立即动作,将相应的断路器跳开,而在保护区的反方向或本线路之外正方向短路时,保护装置不应动作。

与电流速断保护一样,为了保证在下级线路的出口处短路时保护不误动作,在保护区的正方向(对于线路MN的M侧保护来说,正方向就是由M指向N的方向)上设定一个小于本线路全长的保护范围,用整定距离Lset来表示。

当系统发生短路故障时,首先判断故障的方向,若故障位于保护区的正方向上,则设法测出故障点到保护安装处的距离Lk,并将Lk与Lset相比较,若Lk小于Lset,说明故障发生在保护范围之内,这时保护应立即动作,跳开相应的断路器;若LK大于Lset,说明故障发生在保护范围之外,保护不应动作,对应的断路器不会跳开。

若故障位于保护区的反方向上,则无需进行比较和测量,直接判断为区外故障而不动作。

}通常情况下,距离保护可以通过测量短路阻抗的方法来间接地测量和判断故障距离。

2.几种继电器的方式:苹果特性:有较高的耐受过渡电阻的能力,耐受过负荷的能力比较差;橄榄特性正好相反。

电抗特性:动作情况至于测量阻抗中的电抗分量有关,与电阻无关,因而它有很强的耐过渡电阻的能力。

但是它本身不具有方向性,且在负荷阻抗情况下也可能动作,所以通常它不能独立应用,而是与其他特性复合,形成具有复合特性的阻抗原件。

电阻特性:通常也与其他特性复合,形成具有复合特性的阻抗原件。

多边形特性:能同时兼顾耐受过渡电阻的能力和躲负荷的能力。

3测量阻抗:Zm定义为保护安装处测量电压Um&与测量电流Im&之比,即Um&/Im&动作阻抗:使阻抗原件处于临界动作状态对应的阻抗(Zop)。

距离保护的基本原理及应用举例

距离保护的基本原理及应用举例


Krel Z12

Krel
K ZI br.min set 2
Krel =0.8 ~ 0.85, Krel 0.8
(2)与相邻变压器的快速保护相配合。
Z II set

Krel Z12

Krel Kbr.min Zt
Krel =0.8 ~ 0.85, Krel 0.7 ~ 0.75
3.2 阻抗继电器及其动作特性
阻抗继电器是距离保护装置的核心元件,其主要作 用是测量短路点到保护安装处之间的距离,并与整 定阻抗值进行比较,以确定保护是否应该动作。
Um 和 Im的比值称为继电器的测量阻抗 Zm 。
由于 Zm 可以写成 R jX 的复数形式,所以可以 利用复数平面来分析这种继电器的动作特性,并用 一定的几何图形把它表示出来。
两者取较小者作为整定阻抗。
★ 保护安装处和故障点间分支线对距离保护影响
1、助增电流的影响:
AZ
IAB
B
IK
KC
D
IDB
lK
Zm

IK Z1lK
IAB Z1lAB IAB
Z1lAB

IK IAB
Z1lK
Z1l AB Kb Z1lK
结论1
助增电流的存在,使AB线路A侧 阻抗继电器的测量阻抗增大,这 意味着其保护范围将会缩短,相 当于灵敏度下降
M 1 N 2 TA
P3
TV
Im
jX P
Zm
ZI se t
U m
2
R
3
M
1
3.2.1 园特性阻抗继电器——两种不同的表达形式,
绝对值(或幅值)比较动作方程:比较两个量大小的绝对值比 较原理表达式;

电网的距离保护

电网的距离保护

阻抗继电器
阻抗继电器是距离保护的核心元件,它的作
用是用来测量保护安装处到故障点的阻抗 (距离),并与整定值进行比较,以确定是 保护区内部故障还是保护区外故障。
阻抗继电器分类

(1)阻抗继电器分类根据阻抗继电器的比较原理, 阻抗继电器可以分为幅值比较式和相位比较式。 (2)根据阻抗继电器的输入量不同,阻抗继电器 可以分为单相式(第I型)和多相补偿式(第II型) 两种。 (3)根据阻抗继电器的动作边界(动作特性)的 形状不同,阻抗继电器可以分为圆特性阻抗继电器 和多边形特性阻抗继电器(包括直线特性阻抗继电 器)两种。
动作不具有方向性。
动作方程两边同乘以测量电流,则方程为
U m I m Z set
若令整定阻抗为:
Z set K ur / K uv
圆的动作方程也可用下式表示:
K uvU m K ur I m
Z m Z set
方程的物理意义为:正常运行时,由于电压为 额定电压、电流是负荷电流,方程不满足条件, 即继电器不动作;当在保护区内发生短路故障 时,电压降低,电流增大,方程满足条件,保 护起动。
动作阻抗概念:
jX
Z set
set
Zm
Z op
R
m
定义
使阻抗继电器起动的 最大测量阻抗。
动作 阻抗 特点
当加入继电器电压与电流之间 的相位差为不同数值时,动作 阻抗也随之而变。 动作阻抗具有最大值, 保护区最长。
灵 敏 角
当测量阻抗角等于整定阻抗 角时,此时动作阻抗具有最大 值,将此角度称为灵敏角。
Z m 0.5(1 ) Z set 0.5(1 ) Z set
当 1时 ,方程为;

电力系统继电保护第六章 距离保护

电力系统继电保护第六章 距离保护

中国电力出版社
第二节 阻抗继电器
一、阻抗继电器的动作特性 可以是相电压或线电压) 单相式阻抗继电器是指加入继电器只有一个电压 (可以是相电压或线电压 可以是相电流或两相电流差) 的阻抗继电器, Um和一个电流 Im(可以是相电流或两相电流差 的阻抗继电器,加入继 电器的电压与电流比值称为继电器的测量阻抗。 电器的电压与电流比值称为继电器的测量阻抗。 & U
Z
U&
m
m
中国电力出版社
当线路正方向0.85 Z NP 处发生短路时,阻抗继电器的测量阻抗为: 处发生短路时,阻抗继电器的测量阻抗为: 当线路正方向
UN U n U n n Z m = m = TV = N TA = 0.85Z NP TA I NP I NP nTV Im nTV nTA
I段阻抗继电器的整定值为 Z 段阻抗继电器的整定值为
中国电力出版社
第六章学习主要内容及学习要点
1、要求了解距离保护的工作原理,主要组成元件及动作时限特性 2、重点掌握下述内容: (1)常用阻抗继电器名称、特点及动作参数(动作阻抗、返回阻 抗、测量阻抗和整定阻抗)的基本概念。 (2)熟练掌握用幅值比较原理和相位比较原理,在复平面上分析 单相阻抗继电器的动态特性。以及用这两种原理构成常用单相 式阻抗继电器的方法。 (3)掌握阻抗继电器用于相间短路的基本接线方式;用于接地保 护的基本接线方式。 (4)掌握方向阻抗继电器产生死区原因及消除死区的措施,并了 解由于引入极化电压对阻抗继电器暂态特性的影响。 (5)了解过渡电阻、电力系统振荡、电压回路断线,分支电流对 距离保护工作的影响及其防止措施。 (6)熟练掌握三段式距离保护的整定计算。
TA
• •
动作量: U 1 = I m Z set 制动量: U = U 2 m

继电保护之距离保护

继电保护之距离保护

范围,或反向。
距离保护的保护范围和灵敏度受运行方式的影响较小, 尤其是距离保护Ⅰ段的保护范围比较稳定,同时,还具备 判别短路点方向的功能。
5/59
Um 测量阻抗Z m 通常为复数,还可以表示为: Im
Um Zm Z m m Rm jX m Im Z m — 测量阻抗的幅值;
18/59
通用式 : Um UK Z1 Im K 3 I 0 m
U K U K 0 3 I0 0
U UK Z1 I K 3 I 0 Z1 I
因此,接地测量阻抗为: U Zm Z1 I K 3 I 0
3/59
3.1.1
距离保护基本原理
利用保护安装处测量电压和测量电流(适当选择接
线方式)的比值 U m / I m 所构成的继电保护方式-----称为阻抗保护。
对于输电线路,由于
U m / I m z1lm

U m / I m 能反映短路点到保护安装处的距离 l m ,
因此,通常也称为距离保护。其中,
U m U 1m U 2 m U 0 m
U 1 K U 2 K U 0 K Z1 I1m Z 2 I 2m Z 0 I 0m
Z1 Z 2时

U K Z1 I1 m Z1 I 2 m Z 0 I 0 m
接地距离接线方式 A相 B相 C相
UC UA UB I A k 3I 0 I B k 3I 0 I C k 3I 0
相间距离接线方式 AB相 BC相 CA相
U AB I A IB

第三章距离保护-1解析

第三章距离保护-1解析

B
C
1
2
ZT
D
1. 距离保护I段: 按躲过线路末端短路整定
ZsIet1 KIrel ZAB
其中 KIrel 0.8 ~ 0.85
一、距离保护的整定计算
2. 距离保护II段:
A
B
C
1
2
ZT
D
(1)定值计算: ① 与相邻线路的距离I段配合
ZsIeIt1 KIreI l(ZAB Kb.minZsIet2)
EA A Z K3 1
Ik K1
K2
B EB
2
Zk1
Zset
jX
Zk2
Zset
Zk1
k
ZL
A
L
R
Zk3
3.1 距离保护的基本原理与构成
由三段构成
Ⅰ段 主保护
Ⅱ段
Ⅲ段 后备保护
二、距离保护的时限特性
指距离保护的动作时间 t与保护安装点至短
路点之间的距离 的l关k 系。
3.1 距离保护的基本原理与构成
jX
B A
C
Zset
Zm Zset
Zm
R
3.2 阻抗继电器及其动作特性
二、利用复数平面分析圆特性阻抗继电器
2、方向阻抗继电器
jX
Zset C
B R
Zm A
方向阻抗继电器的特点:
(1)有死区 (2) Zo随p 变m化而不同 (3)有明确的方向性
3.3 阻抗继电器的接线方式
一、基本要求和接线方式
基本要求: (1) 测量阻抗正比于保护安装处到短路点之间
的距离; (2) 继电器的测量阻抗与故障类型无关;
3.3 阻抗继电器的接线方式

继电保护原理基础_第三章

继电保护原理基础_第三章

3、极化回路记忆作用对继电器 动作特性的影响
当采用记忆回路后,极化电压将短时记 忆短路前负荷状态厂母线电压: 保护正方向短路时, 在记忆回路作用下的动态特性圆,扩大 了动作范围,而又不失去方向性,因此, 对消除死区和减小过渡电阻的影响都是 有利的。
保护反方向短路
初态特性为上抛阻抗特性圆:
有明确的方向性; 有明确的方向性;
实际测量阻抗在III 象限, 远离上抛 阻抗特性圆。
3、构成继电器的框图

4关于继电器的整定阻抗
当保护范围末端AB两相短路时, 当保护范围末端AB两相短路时,
五、阻抗继电器的精确工作电流 五、阻抗继电器的精确工作电流
以上分析阻抗继电器的动作特性时从理 想的条件出发 – 执行元件的灵敏度很高 – 继电器的动作特性与工作电流的大小 无关 实际工作非理想的条件, 实际工作非理想的条件, 继电器的整定 阻抗与工作电流具有非线性关系
UJ− 2 I J Z zd ≤
.
2
I J Z zd
相位比较原理:
− 90 o ≤ arg
UJ I J Z zd − U J
. .
≤ 90 o
偏移特性阻抗继电器
jX Zzd
jX Zzd Z0 ZJ
R
ZJ-Z0
Z0
-αZ -αZzd
R -αZzd
jX Zzd
Zzd-ZJ
ZJ R -αZzd ZJ+αZzd
Ψlm
ZJ R
jX Z zd Z zd -Z J ZJ R
方向阻抗继电器
以Zzd为直径,通过坐标原点的圆。圆内为动 Zzd为直径,通过坐标原点的圆。圆内为动 作区。Zdz.J随ΨJ改变而改变,当 作区。Zdz.J随ΨJ改变而改变,当 ΨJ等于Zzd的阻抗角时,Zdz.J最大,即保护范 ΨJ等于Zzd的阻抗角时,Zdz.J最大,即保护范 Zzd Zdz.J 围最大,工作最灵敏。 Ψlm——最大灵敏角,它本身具有方向性。 Ψlm——最大灵敏角,它本身具有方向性。 幅值比较原理: . 1 . 1.

继电保护原理第3章电网距离保护

继电保护原理第3章电网距离保护

U
U Uk (I K 3I0 ) Z1 l



U A U kA (I A K 3I0 ) Z1l


Zm
Um Im
UA

I A K 3I0
Z1l
U kA

I A K 3I0

U kA 0
Zm Z1l l
4) 两相相间短路
M 1 Ik
k
2N
假设AB 相间短路:
U
1)测量阻抗正比于短路点到保护安装点之间的距离;
Zm l ,l 是故障距离。 Zm z1 l
2)测量阻抗应该与故障类型无关,即在故障位置确定 情况下,测量阻抗不随故障类型的变化而变化。
三相系统中测量电压和测量电流的选取(距离保护的接线方式)
阻抗继电器的接线方式主要有两种: 1、相间距离继电器接线( 0° 接线方式),反应相间故障; 2、接地距离继电器接线方式(相电压和具有K3I0补偿的相电 流接线),反应接地短路故障。
5. 动作角度范围变化对继电器特性的影响
橄榄形(透镜型)继电器: arg Zset Zm
90 Zm
苹果型继电器: arg Zset Zm
Zm
折线型继电器:
60
arg
U J IJ Z0
60
, 90
第三节 阻抗继电器的实现方法
阻抗继电器的两种实现方法:
(1)精确测量出测量阻抗Zm,然后把它与事先确定的动作 特性进行比较。如果Zm在动作区域内,判为内部故障,发出 动作信号。
jX
Z0 Zset2
2N
Zset1 Zm
R
圆的半径:
R1 2
Zset1 Zset2

电力系统继电保护-3 电网距离保护

电力系统继电保护-3 电网距离保护
( Z set1 Z set 2 ) 处,半径为 ( Z set1 Z set 2 ) 。 特性圆不包括坐标原点,圆心位于 Z Zm 2 (3-22) 2 90o arg set 90o Z set Z m 偏移圆特性阻抗继电器的绝对值比较动作方程 Z set 2 0 , Z set1 Z set 代入式(3-18) 将 ,可得到方 偏移圆特性阻抗继电器的相位比较动作方程 1 1 (3-13) Z m ( Z set1 Z set ( Z set1全阻抗圆特性 Z set 2 ) 2) 阻抗元件本身不具方向性 —— Z set 抛圆阻抗特性的动作方程与偏移圆阻抗特性 o o 1 Z m 向园特性的相位比较动作方程: 2 2 (3-18) 90 arg 90 Z m Z set 2 在各个方向上的动作阻抗都相同,它在正向
3.1.5 距离保护的构成
• 启动部分要求——当作为远后备保护范围末端发生故障时,启动部分 应灵敏、快速(几毫秒)动作,使整套保护迅速投入工作。 • 测量部分要求--在系统故障的情况下,快速、准确地测定出故障方向 和距离,并与预先设定的方向和距离相比较,区内故障时给出动作信 号,区外故障时不动作。
3.2.2 动作特性和动作方程
• 动作特性——阻抗继电器动作区域的 形状,称为动作特性。 • 圆特性——动作区域为圆形; • 四边形特性——动作区域为四边形。 • 动作方程——描述动作特性的复数的 数学方程。 • 绝对值(或幅值)比较动作方程—— 比较两个量大小的绝对值比较原理表 达式。 • 相位比较动作方程:比较两个量相位 的相位比较原理表达式。
电力系统继电保护
3 电网距离保护
3.1 距离保护的基本原理与构成
ቤተ መጻሕፍቲ ባይዱ

电网距离保护

电网距离保护
各种短路故障只有符合:
才能得到正确的故障阻抗
在三相短路时,三个继电器的测量阻抗均等于短路点到保护安装地点的 线路正序阻抗。三个继电器均能正确动作。
在两相短路时,只有接于故障环路的阻抗继电器的测量阻抗等于短路点 到保护安装地点的线路正序阻抗。其余两只阻抗继电器的测量阻抗较大, 不会误动作。这也就是为什么要用三个阻抗继电器并分别接于不同相间 的原因
在两相接地短路时,只有接于故障环路的阻抗继电器的测 量阻抗等于短路点到保护安装地点的线路正序阻抗。其余 两只阻抗继电器的测量阻抗较大,不会误动作。
相间距离保护:0°接线方式可以正确反应三相短路、两相 短路、两相接地短路,不能正确反应单相接地短路。
具有零序电流补偿的0°接线方式的分析
1 .单相接地短路 以 A 相单相接地短路故障为例
(2)方向圆特性 令Zset2=0,Zset1=Zset2 则动作特性变化成方向圆特性
绝对值比较动作方程为
相位比较动作方程为
方向圆特点: 在整定阻抗的方向上,动作阻抗最大,正好等于整定阻抗;其他方向的动作阻抗 都小于整定阻抗;在整定阻抗的相反方向,动作阻抗降为0.反向故障时不会动作, 阻抗元件本身具有方向性。方向圆特性的阻抗元件一般用于距离保护的主保护段 (1段和 2段)中。
=180°
在实际的系统中,由于互感器误差、过渡电阻等因素的存在,相位差在 180°左右 的一个范围内,测量元件就应该动作
多个负号,两边减180° 方向圆特性
阻抗继电器的死区


Um称为参考电压或极化电压作为判断口 Uop 相位的参考
当在保护安装处正方向出口发生金属性相间短路时,母线电压降到零或很 小,加到继电器的电压(Um)为零或者小于继电器动作所需的最小电压 时,方向继电器会出现死区。测量阻抗 Zm 的阻抗值都很小,正好处于阻 抗元件临界动作的边沿上,有可能出现正向出口短路时拒动或反向出口短 路时误动的情况。

第三章 电网距离保护

第三章 电网距离保护

K se n( 2)
Z III set.1
Z AB K Z b.max next(BC)
1.2
二、对距离保护的评价
1. 选择性
在多电源的复杂网络中能保证动作的选择性。
2. 速动性
距离保护的第一段能保护线路全长的85%,对双侧电 源的线路,至少有30%的范围保护要以II段时间切除 故障。
3. 灵敏性
-αZzd
Zzd Zzd-ZJ
ZJ R
ZJ+α Zzd
总结三种阻抗的意义:
—测量阻抗Zm:由加入继电器的电压Um与电流Im的比值确 定。
Zm
Um Im
—路整阻定抗阻。抗Zset:一般取继电器安装点到保护范围末端的线 全阻抗继电器:圆的半径 方向阻抗继电器:在最大灵敏角方向上圆的直径 偏移特性阻抗继电器:在最大灵敏角方向上由原点 到圆周的长度。
当 ︱ EM︱= ︱EN ︱ 且系统中各元件阻抗角相等 时,振荡中心的位置在全系统纵向阻抗的中点 ( 即 Z ∑ /2处)。
.
U
m
1 2
.
I
m
Z set
1 2
.
I
m
Z set
3、比相式方向阻抗继电器
jX Zzd
Zzd-ZJ
ZJ R
90o arg Zset zm 90o Zm
.
90o
arg
I m Z set
.
U m
90o
Um
(三)偏移特性阻抗继电器
1、 偏移特性阻抗继电器的动作特
性:
jX
正方向: :整定阻抗Zset
一、构成阻抗继电器的动作特性
单相式阻抗继电器:指加入继电器的只有一个电压 Um和一个电流Im的阻抗继电器。其中电压Um与电流 Im的比值称为测量阻抗。

电网距离保护的基本原理及构成

电网距离保护的基本原理及构成

90 arg Zm jZ set 90 jZ set
(3.27)
特点:电抗特性的动作情况只与测量阻抗中的电抗分量有关,与电阻无
关,因而它有很强的耐过渡电阻能力。但它本身不具有方向性,且负荷
阻抗下也可能动作,所以通常不能独立应用,而是复合,形成具有复合
特性的阻抗元件。
3.2.2 阻抗继电器的动作特性和动作方程
时,特性圆向右偏转,反之,当α为负角时,特性圆左偏。
3.2.2 阻抗继电器的动作特性和动作方程
2、苹果形和橄榄形阻抗元件
如果各相位比较方程中动作的范围不等于180°,对应的动作特性就不再是 一个圆。以方向圆特性为例,将式(3.20)中的动作边界改为-β和β,对应的 动作方程变为:
arg Zset Zm Zm
3.1.5距离保护的构成
启动部分 要求:当作为远后备保护范围末端 发生故障时,启动部分应灵敏、快 速(几毫秒)动作,使整套保护迅 速投入工作。
测量部分 要求:在系统故障的情况下,快速、准确地 测定出故障方向和距离,并与预先设定的保 护范围相比较,区内故障时给出动作信号, 区外故障时不动作。
3.2.1阻抗继电器及其动作特性
(3.29) 直线2,相应的特性称为准电阻特性或 修正电阻特性,它与直线1的夹角为θ,
特点:电阻特性通常也是与其它特性 对应的相位比较式的动作方程为:
复合,形成具有复合特性的阻抗元件

90 arg Zm Rset 90 Rset
(3.30)
3.2.2 阻抗继电器的动作特性和动作方程
B-电阻特性
电阻特性的动作边界如图3-13所示。动作边 界直线平行于jX,它到jX的距离为Rset,直 线的左侧为动作区。电阻特性阻抗形式的绝 对值方程为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 电网距离保护
3.1距离保护的基本原理与构成
电网距离保护
3.1.1 距离保护的概念 距离保护是系统利用短路发生故障测量点的电
压、电流同时变化的特征,测量电压与电流的比值, 该比值反应故障点到保护安装处的距离,如果短路 点距离小于整定值则动作的保护。
通过判断故障方向,测量故障距离,判断出故 障是否位于保护区内,从而决定否需要跳闸,实现 线路保护。距离保护可以通过测量短路阻抗的方法 来测量故障距离和判断故障方向,以确定故障点位 置。
电网距离保护
Zm ――测量阻抗的幅值;
m ――测量阻抗的阻抗角;
R―m ―― 测量阻抗的实部,称为测量电阻;
X m ――测量阻抗的虚部,称为测量电抗。
ห้องสมุดไป่ตู้m
电网距离保护
在电力系统正常运行时,U m 近似为额
定电压, Im为负荷电流, Zm为负荷阻抗。
负荷阻抗的幅值较大,其阻抗角为数值较小 的功率因数角(一般功率因数为不低于0.9, 对应的阻抗角不大于25. 8°),阻抗性质 以电阻性为主,如图所示。
电网距离保护
z r1、x1式分中别,为1单为位单长位度长线度路线的路正的序复电阻阻抗和;电抗, Q/km。
短路阻抗的阻抗角就等于输电线路的阻抗角, 数值较大(对于220kV及以上电压等级的线路, 阻抗角一般不低于75°),阻抗性质以电感性 为主。
电网距离保护
A
k3
1 Im
Lk1 Um
B
k1
k2
2
电网距离保护
2 测量阻抗
在距离保护中,测量阻抗用Zm来表示, 它定义为保护安装处测量电压Um与测量电 流Im之比,即
Zm
U m Im
式中,Zm为一复数,在复平面上既可以用极坐标
形式表示,也可以用直角坐标的形式来表示,即
Zm Zm m Rm jX m
电网距离保护
电力系统发生金属性短路时,U m 降低, Im
增大,在采用正确的接线方式下可使正比于短路 点与保护安装处之间的线路阻抗Zk。对于具有均 匀参数的输电线路来说,如果忽略影响较小的分 布电容和电导,Zk与短路距离Lk成线性正比关系 ,即
Z m Z k z1Lk (r1 jx1 )Lk
相关文档
最新文档