北师大8年级行程一次函数习题集

合集下载

北师大版八年级数学(上册)《一次函数》综合练习题

北师大版八年级数学(上册)《一次函数》综合练习题

北师大版八年级数学(上册)《一次函数》综合练习题一、填空题:1.(-3;4)关于x 轴对称的点的坐标为_________;关于y 轴对称的点的坐标为__________;关于原点对称的坐标为__________.2.点B (-5;-2)到x 轴的距离是____;到y 轴的距离是____;到原点的距离是____.3.以点(3;0)为圆心;半径为5的圆与x 轴交点坐标为_________;与y 轴交点坐标为_______.4.点P (a -3;5-a )在第一象限内;则a 的取值范围是____________.5.小华用500元去购买单价为3元的一种商品;剩余的钱y (元)与购买这种商品的件数x (件)之间的函数关 系是______________; x 的取值范围是__________.6.函数y=3+x x的自变量x 的取值范围是________.7.当a=____时;函数y=x 23-a 是正比例函数。

8.函数y=-2x +4的图象经过_______象限;它与两坐标轴围成的三角形面积为_________;周长为_______.9.一次函数y=kx +b 的图象经过点(1;5);交y 轴于3;则k=____;b=____.10.若点(m ;m +3)在函数y=-21x +2的图象上;则m=____. 11.y 与3x 成正比例;当x=8时;y=-12;则y 与x 的函数解析式为___________.12.函数y=-23x 的图象是一条过原点及(2;___)的直线;这条直线经过第____象限;当x 增大时;y 随之________. 13.函数y=2x -4;当x_______;y<0.41.若函数y=4x +b 的图象与两坐标轴围成的三角形面积为6;那么b=_____.二、选择题:1.下列说法正确的是( )A 、正比例函数是一次函数;B 、一次函数是正比例函数;C 、正比例函数不是一次函数;D 、不是正比例函数就不是一次函数.2.下面两个变量是成正比例变化的是( )A 、正方形的面积和它的面积;B 、变量x 增加;变量y 也随之增加;C 、矩形的一组对边的边长固定;它的周长和另一组对边的边长;D 、圆的周长与它的半径.3.直线y=kx +b 经过一、二、四象限;则k 、b 应满足( )A 、k>0; b<0;B 、k>0;b>0;C 、k<0; b<0;D 、k<0; b>0.4.已知正比例函数y=kx (k ≠0);当x=-1时; y=-2;则它的图象大致是( ) y y y yx x x xA B C D5.一次函数y=kx -b 的图象(其中k<0;b>0)大致是( )y y y yx x x xA B C D6.已知一次函数y=(m +2)x +m 2-m -4的图象经过点(0;2);则m 的值是( )A 、2B 、-2C 、 -2或3D 、37.直线y=kx +b 在坐标系中的位置如图所示;这直线的函数解析式为( )A 、y=2x +1B 、y=-2x +1C 、y=2x +2D 、y=-2x +28.若点A (2-a ;1-2a )关于y 轴的对称点在第三象限;则a 的取值范围是( )A 、a<21B 、a>2C 、21<a<2D 、a<21或a>2 9.下列关系式中;表示y 是x 的正比例函数的是( )A 、y=x 6B 、y=6x C 、y=x +1 D 、y=2x 2 10.函数y= 4x -2与y=-4x -2的交点坐标为( )A 、(-2;0)B 、(0;-2)C 、(0;2)D (2; 0)三、解答题:1.已知一次函数的图象经过点A (-1;3)和点B (2;-3);(1)求一次函数的解析式;(2)判断点C (-2;5)是否在该函数图象上。

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。

北师大版八年级数学上册第四章《一次函数》 同步练习题

北师大版八年级数学上册第四章《一次函数》 同步练习题

第四章《一次函数》同步练习题一.选择题1.若一次函数y=kx+2的函数值y随x的增大而增大,则()A.k<0 B.k>0 C.k<﹣2 D.k>﹣22.下列选项中,坐标所表示的点在直线y=2x上的是()A.(1,1)B.(2,1)C.(1,2)D.(2,2)3.在函数y=+x﹣2中,自变量x的取值范围是()A.x≥﹣4 B.x≠0 C.x≥﹣4且x≠0 D.x>﹣4且x≠0 4.在平面直角坐标系中,若将一次函数y=﹣2x+6的图象向下平移n(n>0)个单位长度后恰好经过点(﹣1,﹣2),则n的值为()A.10 B.8 C.5 D.35.已知一次函数y=﹣x+5的图象,绕y轴上一点P(0,a)旋转180°,所得的图象经过点(0,﹣3),则a的值为()A.3 B.1 C.﹣3 D.66.直线y=kx+1沿着y轴向上平移b个单位后,经过点A(﹣2,0)和y轴上的一点B,若△ABO(O为坐标原点)的面积为4,则b的值为()A.4 B.2 C.3 D.17.正比例函数y=﹣(k+2)x(k常数,且k≠﹣2),当x的值减少1时,函数y的值减少3,则k的值为()A.5 B.3 C.﹣3 D.﹣58.按照如图所示的程序计算函数y的值时,若输入x的值是3,则输出y的值是﹣7,若输入x的值是1,则输出y的值是()A.﹣3 B.﹣2 C.0 D.29.已知a,b,c分别是Rt△ABC的三条边长,c为斜边长,∠C=90°,我们把关于x的形如y=x+的一次函数称为“勾股一次函数”.若点P(﹣1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是4,则c的值是()A.2B.24 C.2D.1210.如图所示的函数图象反映的过程是:小明从家去书店选购学习资料,又到体育馆去锻炼身体,然后回家.其中x表示时间,y表示小明离他家的距离.下列结论中:①体育馆离小明家的距离是2千米;②小明从家里到书店的平均速度与从书店到体育馆的平均速度相等;③小明在体育馆锻炼身体的时间是18分;④小明从体育馆返回家的平均速度是0.08千米/小时.正确的结论有()A.①②B.②④C.①③D.①③④二.填空题11.一直线y=﹣x+2关于y轴对称的直线函数表达式是.12.购买单价为每支2元的圆珠笔,总金额y(元)与铅笔数n(支)的关系式可表示为,其中,是变量.13.若函数y=(3m﹣1)x|3m﹣2|是y关于x的正比例函数,则m=.14.当直线y=(2﹣2k)x+k﹣3经过第一、三、四象限时,则k的取值范围是.15.已知点P(x0,y)到直线y=kx+b的距离可表示为,例如:点(0,1)到直线y=2x+6的距离.据此进一步可得点(2,﹣1)到直线y =x﹣4之间的距离为.三.解答题16.画出直线y=﹣2x+3的图象,根据图象解决下列问题:(1)直线上找出横坐标是+2的点的坐标;(2)写出y>0时,x的取值范围;(3)写出直线上到x轴的距离等于4的点的坐标.17.琳琳通过新闻了解到,近来意大利“新冠肺炎”疫情愈发严重,决定给意大利的网友Carlo邮寄一批防疫用品.已知琳琳家、药店、邮局在同一直线上,琳琳从家出发,跑步去药店买了酒精和口罩,又步行到邮局把物品寄出,然后再走回家.琳琳离家的距离y 与时间x之间的关系如图所示,请根据图象解决下列问题:(1)琳琳家离药店的距离为km.(2)琳琳邮寄物品用了min.(3)琳琳两段步行的速度分别是多少?(4)图中点P的意义是.18.已知:如图,直线y=x+3与x轴,y轴分别交于点A和点B.(1)点A坐标是,点B的坐标是;(2)△AOB的面积=;(3)当y>0时,x的取值范围是.19.在平面直角坐标系xOy中,已知点A(0,4)、点B(2,0),函数y=2x+m的图象与直线AB交于点M,与y轴交于点C.(1)求直线AB的函数解析式;(2)当△ABC为直角三角形时,求m的值;(3)当点M在线段AB上时,求m的取值范围.20.用充电器给某手机充电时,其屏幕的起始画面如图①.经测试,在用快速充电器和普通充电器对该手机充电时,其电量E(单位:%)与充电时间t(单位:h)的函数图象分别为图②中的线段AB、AC.(1)求线段AB、AC对应的函数表达式;(2)已知该手机正常使用时耗电量为10%/h,在用快速充电器将其充满电后,正常使用ah,接着再用普通充电器将其充满电,其“充电﹣耗电﹣充电”的时间恰好是6h,求a 的值.参考答案一.选择题1.解:∵一次函数y=kx+2的函数值y随x的增大而增大,∴k>0.故选:B.2.解:当x=1时,y=2×1=2,∴点(1,1)不在直线y=2x上,点(1,2)在直线y=2x上;当x=2时,y=2×2=4,∴点(2,1)不在直线y=2x上,点(2,2)不在直线y=2x上.故选:C.3.解:由题意得,x+4≥0,x≠0,解得,x≥﹣4且x≠0,故选:C.4.解:∵若将一次函数y=﹣2x+6的图象向下平移n(n>0)个单位长度,∴平移后的函数解析式为:y=﹣2x+6﹣n,∵函数解y=﹣2x+6﹣n的图象经过点(﹣1,﹣2),∴﹣2=﹣2×(﹣1)+6﹣n,解得:n=10,故选:A.5.解:在一次函数y=﹣x+5中,令x=0,则y=5,即一次函数y=﹣x+5与y轴交点为(0,5).∵旋转后所得的图象经过点(0,﹣3),∴旋转后的函数与y轴交点为(0,﹣3),∵一次函数y=﹣x+5的图象,绕y轴上一点P(0,a)旋转180°,∴(0,5)和(0,﹣3)关于点(0,a)对称,∴a==1,故选:B.6.解:直线y=kx+1沿着y轴向上平移b个单位后,得到y=kx+b+1,∵直线y=kx+b+1经过点A(﹣2,0)和y轴正半轴上的一点B,∴B(0,b+1),∵△ABO的面积是:×2×(b+1)=4,解得b=3.故选:C.7.解:根据题意得y﹣3=﹣(k+2)(x﹣1),即y﹣3=﹣(k+2)x+k+2,而y=﹣(k+2)x,所以k+2=﹣3,解得k=﹣5.故选:D.8.解:∵输入x的值是3,则输出y的值是﹣7,∴﹣7=﹣2×3+b,解得:b=﹣1,∴当x<2时,y=﹣x﹣1,∴当x=1时,y=﹣1﹣1=﹣2,故选:B.9.解:∵点P(﹣1,)在“勾股一次函数”y=x+的图象上,∴=﹣+的一次函数,即a﹣b=﹣c,又∵a,b,c分别是Rt△ABC的三条变长,∠C=90°,Rt△ABC的面积是4,∴ab=4,即ab=8,又∵a2+b2=c2,∴(a﹣b)2+2ab=c2,即∴(﹣c)2+2×8=c2,解得c=2,故选:A.10.解:由图象可知:体育馆离小明家的距离是2千米,故①说法正确;小明从家里到书店的平均速度为:(千米/分), 从书店到体育馆的平均速度为:(千米/分),所以小明从家里到书店的平均速度与从书店到体育馆的平均速度不相等,故②说法错误; 小明在体育馆锻炼身体的时间是:55﹣37=18(分钟),故③说法正确;小明从体育馆返回家的平均速度是:2÷=(千米/小时),故④说法错误.所以正确的结论有①③.故选:C .二.填空题(共5小题)11.解:∵关于y 轴对称的点纵坐标不变横坐标互为相反数,∴直线y =﹣x +2关于y 轴对称的直线函数表达式为y =x +2.故答案为y =x +2.12.解:总金额y (元)与铅笔数n (支)的关系式可表示为y =2n ,其中y ,n 为变量,故答案为:y =2n ;n ,y .13.解:∵函数y =(3m ﹣1)x |3m ﹣2|是y 关于x 的正比例函数,∴, 解得:m =1.故答案为:1.14.解:∵y =(2﹣2k )x +k ﹣3经过第一、三、四象限,∴. 解得k <1.故答案是:k <1.15.解:∵已知点P (x 0,y 0)到直线y =kx +b 的距离可表示为, ∴点(2,﹣1)到直线y =x ﹣4之间的距离为:|2﹣4+1|÷=,故答案为:.三.解答题(共5小题)16.解:直线y=﹣2x+3过点(0,3)、(1.5,0),函数图象如右图所示;(1)当x=2时,y=﹣2×2+3=﹣1,即直线上横坐标是+2的点的坐标是(2,﹣1);(2)由图象可得,y>0时,x的取值范围是x<1.5;(3)当y=4时,4=﹣2x+3,解得,x=﹣0.5,当y=﹣4时,﹣4=﹣2x+3,解得,x=3.5,即直线上到x轴的距离等于4的点的坐标是(﹣0.5,4)或(3.5,﹣4).17.解:(1)由图象可知,琳琳家离药店的距离为2.5km.故答案为:2.5;(2)由图象可知,琳琳邮寄物品用了:65﹣45=20(分钟),故答案为:20;(3)从药店步行到邮局的路程为1km,时间为15min,所以速度为km/min;从邮局步行回家的路程为1.5km,时间为25min,所以速度为:(km/min);(4)图中点P的意义是:离家45min时,琳琳到达邮局,此时她离家的距离为1.5km.故答案为:离家45min时,琳琳到达邮局,此时她离家的距离为1.5km.18.解:(1)当y=0时,x+3=0,解得x=﹣6,则A(﹣6,0);当x=0时,y=x+3=3,则B(0,3);故答案为(﹣6,0),(0,3);(2)△AOB的面积=×6×3=9,故答案为9;(3)由图象得:当y>0时,x的取值范围是x>﹣6,故答案为x>﹣6.19.解:(1)∵点A(0,4)、点B(2,0),设直线AB的解析式为:y=kx+b则,解得∴直线AB的解析式为y=﹣2x+4;(2)当△ABC为直角三角形时,存在两种情况:①如图1,C与原点O重合,∠ACB=90°,此时m=0;②如图2,当∠ABC=90°时,C(0,m),由勾股定理得:AB2+BC2=AC2,∵点A(0,4),点B(2,0),∴22+42+22+m2=(4﹣m)2,解得:m=﹣1;综上,m的值是0或﹣1;(3)当直线y=2x+m经过点A时,m=4;当直线y=2x+m经过点B时,如图3,∴2×2+m=0,则m=﹣4,∴当点M在线段AB上时,m的取值范围是﹣4≤m≤4.word 版 初中数学11 / 11 20.解:(1)设线段AB 的函数表达式为E 1=k 1t +b 1,将(0,20),(2,100)代入E 1=k 1t +b 1,可得,∴线段AB 的函数表达式为:E 1=40t +20;设线段AC 的函数表达式为E 2=k 2t +b 2,将(0,20),(6,100)代入E 2=k 2t +b 2, 可得,∴线段AC 的函数表达式为:E 2=t +20; (2)根据题意,得×(6﹣2﹣a )=10a , 解得a =.答:a 的值为.。

北师大版八年级数学上册第四章一次函数专题练习

北师大版八年级数学上册第四章一次函数专题练习

一次函数专题练习题型一:判断一次函数的图象1 •正比例函数y=kx (k≠0)函数值y 随X 的增大而增大,则y=kx - k 的图象大致是()2•已知正比例函数y=kx 的图象经过第二.四象限,则一次函数y=kχ∙k 的图彖可能是图中的()3•在同一坐标系中,正比例函数y=kx 与一次函数y=x~k 的图象为()4・如图,一次函数y 1=ax+b 与y2=3bx+a 在同一坐标系内的图象正确的是()5.两个一次函数H="M + ", 它们在同一坐标系中的图象可能是图中的()A. B.D.C. Vl6.如图,在同一直角坐标系中,直线l1≡y = kx和Sy=(k —2)x + k的位置不可能是()题型二:根据一次凿数解析式判断其经过象限1.函数>'=χ-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.—次函数=3λ^5的图彖经过()扎第一、二、三象限B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限3.已知直线y=kx+b,若k+b= - 5, kb二5,那该直线不经过的象限是()扎第一象限B.第二象限C.第三象限D.第四象限4.一次函数y= - 5x+b的图象一泄经过的象限是()扎第一、三彖限B.第二、三象限C.第二、四彖限D.第一、四象限5.函数^=V的图象与>' = 2x + l的图象的交点在()扎第一象限B.第二象限C.第三象限D.第四彖限6.已知一次函数>' = b' + l,)'随X的增大而增大,则该函数的图象一泄经过()A.第一.二.三象限B.第一、二、四象限C.第一、三.四象限D.第二.三、四象限题型三:已知函数经过的象限,求参数的取值范围1.已知一次函数y= (k-2) x+k不经过第三象限,则k的取值范围是()A∙k≠2 B.k>2 C.0<k<2 D.0≤k<22.已知一次函数>'= H-W~2λ的图象经过第一、三、四象限,则下列结论正确的是()A k > 0.m <0B «>2,加>0C k >2, tn < 0D £<2,〃?>03.函数尸(m-4) x+2m-3的图象经过一、二、四象限,那么In的取值范囤是()A. 〃7V4B. 1.5<∕H<4C.一1∙5VW7<4D.〃?〉44.若一次函数y = (2-加)x + "7的图像经过第一,二,三象限,则m的取值范围是()A e0<m<2B 0<∕n≤2C e m>2 D.θ≤<25.已知一次函数y=^+h的图象不经过第三象限,则R. 〃的符号是()A.k<O, b>0 B k >0 9 /?>0 Q k < 01b≥0 D k >0 b≤0题型四:一次函数图象与坐标轴交点问题1 •一次函数〉'=一2尤一3的图象与y轴的交点坐标是()A (3,0)B (0,3)C (-3,0) De (0,-3)2.直线y=x+l与X轴交于点A,则点A的坐标为()A. (2, 1)B. (-1,0)C. (1,-5)D. (2,-1)3.如图,一次函数y=2x+l的图象与坐标轴分别交于A, B两点,0为坐标原点,则AAOB的面积为()£丄A. 4B. 2 c. 2 D・ 44.已知一次函数y = kx~4(kvθ)的图像与两坐标轴所围成的三角形的而积等于4,则该一次函数表达式为()y = -x-4B y = -2x-4 C y = _3x_4 D y = Yx_4A5.一次函数y二-2 (χ-3)在y轴上的截距是()A. 2B. -3C. 6D. 66.已知直线y=kx+8与X轴和y轴所围成的三角形的面积是4,则k的值是()A. -8B. 8 C•土8 D. 4题型五:一次函数图象平移问题1.把函数>,=X向上平移3个单位,下列在该平移后的直线上的点是()A. N)B.(2'3)C. (2*4)d. (2,5)2.将直线y = 3x- 1向上平移1个单位长度,得到的一次函数解析式为()A. y = 3xB. y = 3x + 1C. y = 3x + 2 D・ y = 3x + 33.已知直线y= - 2x+l通过平移后得到直线y= - 2x+7,则下列说法正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移7个单位D.向下平移6个单位4.把直线y=kx向上平移3个单位,经过点(IJ),则R值为()A. ~1B. 2C. 3・ D・ 5题型六:判断一次函数的增减性1・已知点(-L刃)、(3, y2)都在直线y=-2x+l ±,则y】、y?大小关系是()A. X>)SB. >ι = >2 c. XVy2 D・不能比较2.已知-次函数yi+2上有两点McWJ, N(X2,儿),若西 >花,则X 、儿的关系是()扎V. >儿B. >'«=〉'2 C. >« <儿D.无法判断£3.ι2知点(-2, y i), (-1» y:), (1. y3)都在直线y=- x+b上,贝∣] y“ y?, y3的值的大小关系是()•A. yι>y2>y3B. y1<y2<y3C. y3>yι>yzD. y3>y1>y24•一次函数yι=kx+b与y2=x+3的图彖如图所示,则下列结论中正确的个数是(①yz随X的增大而减小:②3k+b = 3+a;③当x<3时,y1Vy2;④当x>3时,y1Vy2・A. 3B. 2C. 1 D・ O题型七:根据一次函数增减性求参数1.已知一次函数y=(3-a) x+3,如果y随自变量X的增大而增大,那么a的取值范围为()A. a<3 B・ a>3 C・ a< - 3 D・ a> - 32.某一次函数的图象经过点(1, 2),且y随X的增大而减小,则这个函数的表达式可能是()A y = 2x + 4B y = 3x_lC y = -3x + lD y = _2x+4题型八:根据一次函数增减性判断自变量的变化1 •如图是一次函数y=kx+b的图象,当y Vl时,X的取值范围是(A. x<2B. x>2C. x<3D. x>3题型九:求一次函数解析式1•已知函数y = -3χ + ",当3时,円,则方=2•直线-V = ^+ /?与y = -5x + l平行,且经过(2, 1),则二________________题型十:一次函数与一元一次方程1.若点(m, n)在函数y=2x+l的图象上,则2m - n的值是()A. 2B. -2 C・ 1 D・-12.—次函数y=k-^+h(k, b为常数,^≠0)的图象如图所示,根据图象信息可得到关于X的方程kx+h = 4的解为 _______ ・3•在平而直角坐标系中,一次函数y=zb(k、。

北师大版八年级数学上册 第四章 《一次函数》 综合提升练习题(含答案)

北师大版八年级数学上册 第四章 《一次函数》 综合提升练习题(含答案)

北师大版八年级数学上册第四章《一次函数》综合提升练习题1.一辆快递车从长春出发,走高速公路,途经伊通,前往靖宇镇送快递,到达后卸货和休息共用1h,然后开车按原速原路返回长春.这辆快递车在长春到伊通、伊通到靖宇的路段上分别保持匀速前进,这辆快递车距离长春的路程y(km)与它行驶的时间x(h)之间的函数图象如图所示.(1)快递车从伊通到长春的速度是km/h,往返长春和靖宇两地一共用时h.(2)当这辆快递车在靖宇到伊通的路段上行驶时,求y与x之间的函数关系式,并写出自变量x的取值范围.(3)如果这辆快递车两次经过同一个服务区的时间间隔为4h,直接写出这个服务区距离伊通的路程.2.如图,已知直线l1:y=2x+4与坐标轴y轴交于点A,与x轴交于点B,以OA为边在y 轴右侧作正方形OACD.将直线l1向下平移5个单位得到直线l2.(1)求直线l2的解析式,以及A、B两点的坐标;(2)已知点M在第一象限,且是直线l2上的点,点P是边CD上的一动点,设M(m,2m﹣1),若△APM是等腰直角三角形,求点M的坐标;(3)点Q是边OD上一动点,连接AQ,过B作AQ的垂线,垂足为N,求线段DN的最小值.3.如图,两个一次函数y=kx+b与y=mx+n的图象分别为直线l1和l2,l1与l2交于点A(1,p),l1与x轴交于点B(﹣2,0),l2与x轴交于点C(4,0)(1)填空:不等式组0<mx+n<kx+b的解集为;(2)若点D和点E分别是y轴和直线l2上的动点,当p=时,是否存在以点A、B、D、E为顶点的四边形是平行四边形?若存在,请求出点E的坐标;若不存在,请说明理由.4.小明和小强在同一直线跑道AB上进行往返跑,小明从起点A出发,小强在小明前方C 处与小明同时出发,当小明到达终点B处时,休息了100秒才又以原速返回A地,而小强到达终点B处后马上以原来速度的3.2倍往回跑,最后两人同时到达A地,两人距B 地的路程记为y(米),小强跑步的时间记为x(秒),y和x的关系如图所示.(1)A,C两地相距米;(2)小强原来的速度为米/秒;(3)小明和小强第一次相遇时他们距A地米;(4)小明到B地后再经过秒与小强相距100米?5.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.6.周未,小丽骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小丽离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小丽离家时间x(h)的函数图象.(1)小丽骑车的速度为km/h,H点坐标为;(2)求小丽游玩一段时间后前往乙地的过程中y与x的函数关系;(3)小丽从家出发多少小时后被妈妈追上?此时距家的路程多远.7.如图,A(0,2),M(4,3),N(5,6),动点P从点A出发,沿y轴以每秒1个单位速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时、点M关于l的对称点落在坐标轴上.8.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y=﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.(1)直接写出直线BD的解析式为,S=;△ABC(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠P AO,求点P的坐标.9.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.10.如图所示,平面直角坐标系中,直线y=kx+b与x轴交于点A,与y轴交于点B,且AB=2,AO:BO=2:;(1)求直线AB解析式;(2)点C为射线AB上一点,点D为AC中点,连接DO,设点C的横坐标为t,△BDO 的面积为S,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当点C在第一象限时,连接CO,过D作DE⊥CO于E,在DE 的延长线上取点F,连接OF、AF,且OF=OD,当∠DF A=30°时,求S的值.11.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车在零点同时出发,相遇后快车继续行驶,中午12点到达丙地,两车之间的距离为y(km),图中的折线表示两车之间的距离y(km)与时间x(时)之间的关系.根据图象进行以下探究:(直接填空)(1)甲、乙两地之间的距离为m;(2)两车之间的最大距离是km,是在时?(3)从一开始两车相距900km到两车再次相距900km,共用了小时?(4)请写出0时至4时,y与x的关系式.12.某校为学生装一台直饮水器,课间学生到直饮水器打水.他们先同时打开全部的水笼头放水,后来又关闭了部分水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,直饮水器的余水量y(升)与接水时间x(分)的函数图象如图,请结合图象回答下列问题:(1)求当x>5时,y与x之间的函数关系式;(2)假定每人水杯接水0.7升,要使40名学生接水完毕,课间10分钟是否够用?请计算回答.13.甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买60元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘60x千克,在甲、乙采摘园所需总费用为y1、y2元,y1、y2与x之间的函数关系的图象如图所示.(1)分别求出y1、y2与x之间的函数关系式;(2)求出图中点A、B的坐标;(3)若该游客打算采摘10kg圣女果,根据函数图象,直接写出该游客选择哪个采摘园更合算.14.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她骑车速度最快是在什么时候?车速多少?(3)玲玲自离家到返回的平均速度是多少?15.小亮家距离学校8千米,一天早晨小亮骑车上学,途中恰好遇到交警叔叔在十字路口带领小朋友过马路,小亮停下车协助交警叔叔,几分钟后为了不迟到,他加快了骑车到校的速度到校后,小亮根据这段经历画出了过程图象如图该图象描绘了小亮骑行的路程y (千米)与他所用的时间x(分钟)之间的关系请根据图象,解答下列问题(1)小亮骑车行驶了多少千米时,协助交警叔叔?协助交警叔叔用了几分钟?(2)小亮从家出发到学校共用了多少时间?(3)如果没有协助交警叔叔,仍保持出发时的速度行驶,那么他比实际情况早到或晚到学校多少分钟?参考答案1.解:(1)快递车从伊通到长春的速度是:66÷0.6=110km/h;往返长春和靖宇两地一共用时间为:2.6×2+1=6.2小时;故答案为:110;6.2;(2)当这辆快递车在靖宇到伊通的路段上行驶时,设y与x之间的函数关系式为y=kx+b,由点A(3.6,246),B(5.6,66)得,解得,∴y=﹣90x+570(3.6≤x≤5.6);(3)(246﹣66)÷(2.6﹣0.6)×(4﹣1135(km).2.解:(1)由题意可得y=2x﹣1,∴A(0,4),B(﹣2,0);(2)①当M在正方形内部时,过点M作EF∥OD,AM=MP,∠AEM=∠PFM=90°,∠EAM=∠PMF,易证Rt△AEM≌Rt△MFP(AAS),∴AE=MF,∵M(m,2m﹣1),∴AE=4﹣(2m﹣1)=5﹣2m,MF=4﹣m,∴5﹣2m=4﹣m,∴m=1,∴M(1,1);②当M在正方形外部时,作GH∥AC,AM=MP,∠MGA=∠MHP=90°,∠GMA=∠HPM,易证Rt△AGM≌Rt△MPH(AAS),∴AG=MH,∵M(m,2m﹣1),∴AG=2m﹣1﹣4=2m﹣5,MH=4﹣m,∴2m﹣5=4﹣m,∴m=3,∴M(3,5);(3)取AB的中点为K,则K(﹣1,2),在Rt△ABN中,KN=AB∵D(4,0),∴KD在△KND中,∵KN+ND>KD,∴ND>KD﹣KN,若N在直线KD上,则ND=KD﹣KN,综上,ND≥KD﹣KN=﹣,∴ND的最小值为﹣.3.解:(1)由图象可知满足0<mx+n<kx+b的部分为A点与C点之间的部分,∴1<x<4;(2)∵p=,∴A(1,),将点A与B代入y=kx+b,得,∴,∴y=x+1,将点A与点C代入y=mx+n,得,∴,∴y=﹣x+2,①如图1:当四边形ABDE为平行四边形时,∵E在直线l2上,此时,BD∥AC,∴BD所在直线解析式为y=﹣x﹣1,∴D(0,﹣1),∵DE∥AB,∴DE所在直线解析式为y=x﹣,∵﹣x+2=x﹣,可得x=,∴E(,);②如图2:当四边形EBDA是平行四边形时,则有BD∥AC,∴BD所在直线解析式为y=﹣x﹣1,∴D(0,﹣1),∴AD的直线解析为y=x+1,∵AD∥BE,∴BE所在直线解析为y=x+5,∵﹣x+2=x+5,解得x=﹣1,∴E(﹣1,);③如图3:当四边形EBAD为平行四边形时,设D(0,a),E(m,﹣m+2),此时AE的中点M的横坐标为,BD中点M的横坐标为﹣1,∴﹣1=,∴m=﹣3,∴E(﹣3,);综上所述:满足条件的E点为(,),(﹣1,),(﹣3,).4.解:(1)由图可得,A,C两地相距800﹣500=300(米),故答案为:300;(2)小强原来的速度为a米/秒,,解得,a=1.5,故答案为:1.5;(3)设小明的速度为b米/秒,(300﹣100)b=800,解得,b=4米/秒,小明和小强第一次相遇时的所用的时间为m秒,4m=(800﹣500)+1.5m,解得m=120,小明和小强第一次相遇时他们距A地为:4×120=480(米),故答案为:480;(4)设小明到B地后再经过b秒,与小强相距100米,500﹣100=1.5b,解得,b=,故答案为:.5.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;=×6×4=12;(2)S△OAC(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).6.解:(1)由函数图可以得出,小丽家距离甲地的路程为10km,花费时间为0.5h,故小丽骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H的纵坐标为20,横坐标为:,故点H的坐标为(,20);故答案为:20;(,20);(2)设直线AB的解析式为:y1=k1x+b1,将点A(0,30),B(0.5,20)代入得:y1=﹣20x+30,∵AB∥CD,∴设直线CD的解析式为:y2=﹣20x+b2,将点C(1,20)代入得:b2=40,故y2=﹣20x+40;(3)设直线EF的解析式为:y3=k3x+b3,将点E(,30),H(,20)代入得:k3=﹣60,b3=110,∴y3=﹣60x+110,解方程组,解得,∴点D坐标为(1.75,5),30﹣5=25(km),所以小丽出发1.75小时后被妈妈追上,此时距家25km;7.解:(1)当t=3时,点P的坐标为(0,5),则直线l的表达式为:y=﹣x+5;(2)当直线l过点M时,将点M的坐标代入直线l的表达式:y=﹣x+b得:3=﹣4+b,解得:b=7,t=5;当直线l过点N时,同理可得:t=9,故t的取值范围为:5<t<9;(3)直线l随P沿y轴向上移动时,点M关于直线l的对称轴不可能落在y轴上,只能落在x轴上,如图,当点M关于l的对称点E′落在坐标轴上时,直线M′M交l于点H,设直线l交x轴于点G,则M′M⊥l,∠HM′G=45°=∠M′GH=∠HGM,即MG⊥x轴,故M′G=MG=3,则点G(3,0),则t=2.8.解:(1)直线y=﹣2x﹣7沿x轴向右平移2个单位长度后,所得直线方程为y=﹣2(x ﹣2)﹣7=﹣2x﹣3.则直线BD的解析式为y=﹣2x﹣3.解方程组,得,∴C(﹣4,5).在中,令x=0,得y=8,∴A(0,8).在y=﹣2x﹣3中,令x=0,得y=﹣3,∴B(0,﹣3).∴AB=11,∴S=×11×4=22.△ABC故答案是:y=﹣2x﹣3,22.(2)如图1,作CG⊥y轴于G,FH⊥y轴于H,∴CG=4,∠CGA=∠FHA=90°,∵BA为△BCF的中线,∴CA=F A,∵∠CAG=∠F AH,∴△CAG≌△F AH(AAS),∴FH=CG=4,在中,当x=4时,y=11,∴F(4,11).(3)由(1)知A(0,8),B(0,﹣3),∴OA=8,OB=3.如图2,在y轴正半轴上取一点Q,使OQ=OB=3,∵∠POB=90°,∴PQ=PB,∴∠PBO=∠PQO=∠P AO+∠APQ,∵∠PBO=2∠P AO,∴∠P AO=∠APQ,∴PQ=AQ=5,∴OP=4,∴P(4,0).9.解:(1)把A(4,0)代入y=kx+4,得0=4k+4.解得k=﹣1.故答案是:﹣1;(2)∵在直线y=﹣x+4中,令x=0,得y=4,∴B(0,4),∵A(4,0),∴线段AB的中点P的坐标为(2,2),代入,得n=1,∴直线l2为,∵QM⊥x轴分别交直线l1、l2于M、N,Q(t,0),∴M(t,﹣t+4),,∴,MQ=|﹣t+4|=|t﹣4|,∵MN=2MQ,∴,分情况讨论:①当t≥4时,,解得:t=10.②当2≤t<4时,,解得:.③当t<2时,,解得:t=10>2,舍去.综上所述:或t=10.(3)在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(﹣1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为,将N(5m,3m+2)代入,得3m+2=﹣×5m+4解得,∴.10.解:(1)∵AO:BO=2:,∴设AO=2a,BO=a,∵AO2+BO2=AB2,∴4a2+3a2=28∴a=2,∴AO=4,BO=2,∴点A(﹣4,0),点B(0,2)设直线AB解析式为:y=kx+b,解得∴直线AB解析式为:y=x+2,(2)当﹣4<t<4时,S=×2×(﹣)=2﹣t,当t>4时,S=×2×()=t﹣2(3)作AH⊥DE于H,OG⊥AB于G,如图,∵OD=OF,OE⊥DF,∴DE=FE,∵D点为AC的中点,AH⊥HE,CE⊥HE,∴AD=CD,AH∥CE,在△AHD和△CED中,∴△AHD≌△CED(AAS),∴DH=DE,∴HF=3DH,在Rt△AFH中,∵∠HF A=30°,∴FH=AH,∴3HD=AH,∴AH=DH,在△ADH中,tan∠DAH==,∴∠DAH=30°,∴∠DCE=30°,∵OG•AB=OA•OB,∴OG==,在Rt△COG中,OC=2OG=,设C(t,t+2),∴t2+(t+2)2=()2,整理得49t2+168t﹣432=0,解得t1=﹣(舍去),t2=,把t=代入S=﹣t+2得S=×+2=.11.解:(1)图象过(0,900),表示时间为0时,即未出发,两车相距900km,即900000m,就是甲乙两地的距离.故答案为:900000,(2)点D(12,1200),表示12时,两车的距离达到1200千米,故答案为:1200,12,(3)点A(0,900),C(8,900),因此从一开始两车相距900km到两车再次相距900km,共用8﹣0=8小时,故答案为:8,(4)设关系式为y=kx+b,把(0,900),(4,0)代入得,,解得,k=﹣225,b=900,∴y=﹣225x+900,答:y与x的关系式为y=﹣225x+900 (0≤x≤4).12.解:(1)设x>5时,y与x之间的函数关系式为y=kx+b,由题意得,解得,所以x>5时,y与x之间的函数关系式为y=﹣1.5x+16.5;(2)够用.理由如下:接水总量为0.7×40=28(升),饮水机内余水量为30﹣28=2(升),当y=2时,有2=﹣1.5x+16.5,解得:x=.所以要使40名学生接水完毕,课间10分钟够用.13.解:(1)由图得单价为300÷10=30(元),据题意,得y1=30×0.6x+60=18x+60当0≤x<10时,y2=30x,当x≥10时由题意可设y2=kx+b,将(10,300)和(20,450)分别代入y2=kx+b中,得,解得,故y2与x之间的函数关系式为y2=;(2)联立y2=18x+60,y2=30x,得,解得:,故A(5,150).联立y1=18x+60,y2=15x+150x,得解得,故B(30,600).(3)由(2)结合图象得,当5<x<30时,甲采摘园所需总费用较少.14.解:观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)玲玲郊游过程中,各时间段的速度分别为:9~10时,速度为10÷(10﹣9)=10千米/时;10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15千米/小时;10.5~11时,速度为0;11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5千米/小时;12~13时,速度为0;13~15时,在返回的途中,速度为:30÷(15﹣13)=15千米/小时;可见骑行最快有两段时间:10~10.5时;13~15时.两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15千米/小时;(3)玲玲自离家到返回的平均速度是:(30+30)÷(15﹣9)=10千米/小时.15.解:(1)由图可知,小亮骑车行驶了3千米时,协助交警叔叔,协助交警叔叔用,5分钟;(2)由图可知,小亮从家出发到学校共用了27分钟;(3),27﹣24=3.∴小亮比实际情况早到学校3分钟.。

北师大版八年级上册数学第四章 一次函数 含答案

北师大版八年级上册数学第四章 一次函数 含答案

北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、如图, 甲乙两城市相距千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市,已知货车出发小时后客车再出发,先到终点的车辆原地休息,在汽车行驶过程中,设两车之间的距离为(千米),客车出发的时间为(小时),它们之间的关系如图所示,则下列结论:①货车的速度是千米/小时;②离开出发地后,两车第一次相遇时,距离出发地千米;③货车从出发地到终点共用时小时;④客车到达终点时,两车相距千米.正确有()A. B. C. D.2、如图,已知矩形ABCD中,R是边CD的中点,P是边BC上一动点,E、F分别是AP、RP的中点,设BP的长为x,EF的长为y,当P在BC上从B向C移动时,y与x的大致图象是()A. B. C. D.3、如图,火车匀速通过隧道(隧道长大于火车长)时,火车在隧道内的长度随着火车进入隧道的时间的变化而变化的大致图象是()A. B. C. D.4、对于函数y=﹣3x+1,下列结论正确的是( )A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限 C.当x>1时,y<0 D.y的值随x值的增大而增大5、函数y= 中,自变量x的取值范围()A.x>﹣4B.x>1C.x≥﹣4D.x≥16、若点M(﹣3,y1),N(﹣4,y2)都在正比例函数y=﹣k2x(k≠0)的图象上,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定7、一次函数的图象如图所示,则下列结论正确的是()A. B. C. 随的增大而减小 D.当时,8、已知点和点都在正比例函数图象上,则的值为()A. B. C. D.9、如图,中,,正方形的顶点别在边上,设的长度为,与正方形重叠部分的面积为,则下列图象中能表示与之间的函数关系的是()A. B. C. D.10、骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是()A.沙漠B.体温C.时间D.骆驼11、某超市在晚间优惠销售橘子,购买2kg以下按原价,购买2kg以上按优惠价.购买橘子的总价钱y(元)与购买橘子的总质量x(kg)之间的函数关系的图象如图所示,则一次性购买5kg橘子比分五次购买1kg橘子可节省()A.12元B.10元C.8元D.6元12、下列四个点中,在函数的图象上的是()A. B. C. D.13、关于正比例函数y=﹣2x,下列结论中正确的是()A.函数图象经过点(﹣2,1)B.y随x的增大而减小C..函数图象经过第一、三象限D.不论x取何值,总有y<014、下列函数:① y = -2x + 1;②;③;④ y =6x+2;⑤y = 2x2 + 1,其中y是x的一次函数有()A.4个B.3个C.2个D.1个15、若一个正比例函数的图像经过P(4,-8),Q(m,n)两点,则n 的值为()A.1B.8C.-2D.4二、填空题(共10题,共计30分)16、如图所示,直线 y=x+2 与两坐标轴分别交于 A、B 两点,点 C 是 OB 的中点,D、E 分别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________.17、直线与坐标轴围成的图形的面积为________.18、若函数y=4x+b的图象与两坐标轴围成的三角形面积为2,则b=________19、若反比例函数的图象位于第一、三象限内,正比例函数的图象过第二、四象限,则的整数值是________.20、将一次函数y=-2x+4的图象向左平移 ________个单位长度,所得图象的函数关系式为y=-2x.21、设0<a<1,关于x的一次函数y=ax+(1-x),当1≤x≤2时的最大值是________.(用含a的代数式表示)22、正比例函数的图象是________,当k>0时,直线y=kx过第________象限,y随x的增大而________.23、已知函数,当x=________时,函数的值为0.24、如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y= 在第一象限经过点D.则k=________.25、已知等腰三角形的周长为20,写出底边长关于腰长的函数解析式为________(写出自变量的取值范围)三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、某苹果生产基地组织20辆汽车装运A,B,C三种苹果42吨到外地销售.按规定每辆车只装一种苹果,且必须装满,每种苹果不少于2车.苹果品种 A B C每辆汽车的装载重量(吨)2.2 2.1 2每吨苹果获利(百元) 6 8 5(1)设用x辆车装运A种苹果,用y辆车装运B种苹果.根据上表提供的信息,求y与x之间的函数关系式,并求出x的取值范围;(2)设此次外销活动的利润为W(百元),求W与x之间的函数关系式及最大利润,并制定相应的车辆分配方案.28、已知一次函数y=kx+b的自变量的取值范围是﹣3≤x≤6,相应的函数值的取值范围是﹣5≤y≤﹣2,求这个一次函数的解析式.29、一次函数的图像经过(1,2),求反比例函数的解析式。

(完整版)北师大版初二(八年级上册)数学一次函数练习题

(完整版)北师大版初二(八年级上册)数学一次函数练习题

北师版初二一次函数专题一、选择题1.一次函数y=kx+2经过点(1,1),那么这个一次函数( ). A 、y 随x 的增大而增大 B 、y 随x 的增大而减小 C 、图像经过原点 D 、图像不经过第二象限2.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( ) A 、 P(2,0) B 、 P(-2,0) C 、 P(0,2) D 、 P(0,-2)3.直线 y=43x +4与 x 轴交于 A,与y 轴交于B, O 为原点,则△AOB 的面积4.直线y =-43x +4和x 轴、y 轴分别相交于点A 、B ,在平面直角坐标系内,A 、B 两点到直线a 的距离均为2,则满足条件的直线a 的条数为( ) A .1 B .2 C. 3 D .45.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )6.已知x 满足-5≤x ≤5,y1=x+1,y2=-2x+4对任意一个x ,m 都取y1,y2中的较小值,则m 的最大值是( ) A 、1 B 、2 C 、24 D 、-97.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A.0k >,0b > B.0k >,0b < C.0k <,0b > D.0k <xyO32y x a =+1y kx b =+8.一次函数y1=kx+b 与y2=x+a 的图象如图,则下列结论 ①0k <;②0a >;③当3x <时,12y y <中,正确的个数 是( )A .0B .1C .2D .39.甲、乙两辆摩托车分别从A 、B 两地出发相向而行,右图中12l l 、分别表示甲、乙两辆摩 托车与A 地的距离s(千米)与行驶时间t(小时)之 间的函数关系.则下列说法: ①A 、B 两地相距24千米;②甲车比乙车行完全程多用了0.1小时; ③甲车的速度比乙车慢8千米/小时; ④两车出发后,经过311小时两车相遇.其中正确的有( ) A .1个 B . 2个 C . 3个 D .4个 二、填空题10. 一次函数y=-2x+4的图象经过的象限是____,它与x 轴的交点坐标是____,与y 轴的交点坐标是____.11.直线b kx y +=与15+-=x y 平行,且经过(2,1),则k= ,b= .。

一次函数的应用——行程问题-解析及答案(北师大版-八年级数学)

一次函数的应用——行程问题-解析及答案(北师大版-八年级数学)

-----专业资料----WORD格式--可编辑一次函数的应用——行程问题分,在原地休息5400米/分的速度匀速骑车1.小刚以下列函数分的速度骑回出发地.500米/了6分,然后以)图象能表达这一过程的是(B..AD.C..星期天,小明参加南沙自行车协会组织的“南沙横琴228:00出发骑车从南沙前往珠海横琴.骑行游”活动,早上他爸爸骑摩托车沿同一线路也从南沙前往横琴,小时后,(小时)之们的行驶路程(千米)与小明的行驶时间x y)间的函数关系如图所示,下列说法不正确的是(...千米A.南沙与横琴两地相距60 B.11:00时,爸爸和小明在途中相遇小时千米/.爸爸骑摩托车的平均速度是C60 小时1D.爸爸比小明早到横琴的关系如.甲、乙两人在一次赛跑中,路程3s与时间t 图所示.下列关于此次赛跑说法正确的是().----学习资料分享 -------可编辑--专业资料格式--WORD--米赛100 B.这是一次A.乙比甲跑的路程多跑8m/s D.甲的速度为C.甲乙同时到达终点千A,B两地相距400千米,章老师驾车以804.已知地.汽车出发前油箱中有油地到B米/小时的速度从A(升)升,途中加油若干升,已知油箱中剩余油量y25(小时)之间的关系如下图所示.假设汽车与行驶时间t ).每小时耗油量保持不变,以下说法错误的是((小时)A.加油前油箱中剩余油量ty(升)与行驶时间﹣8t+25 的函数关系是y= 升.途中加油21B .汽车加油后还可行驶4小时 C 6D.汽车到达B地时油箱中还余油升(米)与赛跑5.甲、乙两人在一次百米赛跑中,路程s 则下列说法正确的是()(秒)时间t的关系如图所示,B.甲先到达终点A.甲、乙两人的速度相同D. C.乙用的时间短乙比甲跑的路程多----学习资料分享 ---------专业资料--WORD格式--可编辑6.如图所示.有下列说法:小时内,甲在乙的前面;①起跑后1 千米;②第1小时两人都跑了10 ③甲比乙先到达终点;)20④两人都跑了千米.其中正确的说法有(个3 B 个A.1 .2个C.4.个D米.某天小文上学时忘了带.小文家与学校相距10007一本书,走了一段时间才想起,于是返回家拿书,然后加(米)关于时快速度赶到学校.下图是小文与家的距离y(分钟)的函数图象.请你根据图象中给出的信息,间x 解答下列问题:)小文走了多远才返回家拿书?1(所在直线的函数解析式;(2)求线段AB 分钟时,求小文与家的距离.3)当x=8(8.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为(km),快车离y1----学习资料分享 ---------专业资料--WORD格式--可编辑乙地的距离为,两车之h)km),慢车行驶时间为x((y2,km)间的距离为S()1,与x的函数关系图象如图(yy21)所示:的函数关系图象如图(2所示,S与x;,b= )图中的(1a=的函数关系式;S关于x(2)求,两个加油站,相距200km、3)甲、乙两地间依次有EF(EF站加油.求若慢车进入E站加油时,快车恰好进入加油站到甲地的距离.和货车同时从甲地出发,以各自9.某物流公司的快递车快递车到达乙地后缷完物品再另的速度匀速向乙地行驶,分钟,立即按原路以另一速度匀速返回,装货物共用45时,两车直至与货车相遇.已知货车的速度为60千米/(小时)之间的之间的距离y(千米)与货车行驶时间x 个结论:函数图象如图所示,现有以下4时;/①快递车从甲地到乙地的速度为100千米千米;②甲、乙两地之间的距离为1203,75的坐标为()B③图中点;34个4/时,以上90④快递车从乙地返回时的速度为千米结论正确的是.所示,某乘客乘高速列车从甲地经过乙地到110.如图(千米)y为列车离乙地路程丙地,列车匀速行驶,图2 与行驶时间(小时)时间的函数关系图象.x----学习资料分享 ---------专业资料--WORD格式--可编辑千米.)填空:甲、丙两地距离(1之间的函与行驶时间2)求高速列车离乙地的路程yx(数关系式,并写出x的取值范围.,一辆货车和一辆轿车先后11.甲、乙两地相距300km 从甲地出发去乙地.如图,线段OA表)之间的函数关x(hy示货车离甲地距离(km)与时间(km)系,折线BCDE表示轿车离甲地距离y)之间的函数关系.请根据图象,解答下列(h与时间x 问题:小时;(1)线段CD表示轿车在途中停留了对应的函数解析式;(2)求线段DE )求轿车从甲地出发后经过多长时间追上货车.(3的函与时间t(分钟) 12.如图是某汽车行驶的路程S(km) 观察图中所提供的信息,解答下列问题数关系图.km/分;9(1)汽车在前分钟内的平均速度是;? (2)汽车在中途停了多长时间.与求时)当(316≤t≤30,St的函数关系式----学习资料分享 ---------专业资料--WORD格式--可编辑分)星期天,玲玲骑自行车到郊外游玩,她离(1213.请根据图象回答下列问家的距离与时间的关系如图所示,题.)玲玲到达离家最远的地方需要多长时间?离家多(1 远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?4)玲玲全程骑车的平均速度是多少?(的中点地,甲车行至AB14.甲、乙两车从A地前往B倍继续行驶,在整个行程中,1.5处后,以原来速度的C汽车离开A地的距离y与时刻t的对应关系如图所示,求:(1)甲车何时到达C地;(2)甲车离开A地的距离y与时刻t的函数解析式;(3)乙车出发后何时与甲车相距20km.15.一队学生从学校出发去劳动基地军训,行进的路程与时间的图象如图所示,队伍走了0.9小时后,队伍中的通讯员按原路加快速度返回学校拿材料,通讯员经过0.5小时后回到学校,然后随即按原来加快的速度追赶队伍,恰好在劳动基地追上学生队伍.设学生队伍与学校的距离为d,通讯员与学校的距离为d,试根据图象解21决下列问题:----学习资料分享 ---------专业资料--WORD格式--可编辑小/ 千米(1)填空:学生队伍的行进速度v=时;d与t的函数关系式;)当(20.9≤t≤3.15时,求2千米时,能(3)已知学生队伍与通讯员的距离不超过3试求在上述过程中通讯员离开队用无线对讲机保持联系,伍后他们能用无线对讲机保持联系时t的取值范围..小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,16已知小亮行走到缆车终两人相约在山顶的缆车终点会合.小颖在小亮出发点的路程是缆车到山顶的线路长的2倍.为速度,缆车的平均才后50min 乘上缆车,y mx min180m/min.设小亮出发后行走的路程为的函数关系.与x图中的折线表示小亮在整个行走过程中y,他途中休息了1()小亮行走的总路程是mmin;的函数关系式;与x≤≤x80时,求y)①当(250②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?地出发沿A(分)2015?牡丹江)甲、乙两车从.17(8分钟地.40B同一路线驶向B地,甲车先出发匀速驶向后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了A地.甲乙两车距B/50千米时,结果与甲车同时到达----学习资料分享 -------专业资料--可编辑----WORD格式(小时)之间的函(千米)与乙车行驶时间地的路程yx 数图象如图所示.请结合图象信息解答下列问题:(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米?直接写出答案.18.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD 表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数表达式;(2)求E点的坐标,并解释E点的实际意义;(3)若已知轿车比货车晚出发2分钟,且到达乙地后在原地等待货车,则当x= 小时,货车和轿车相距30千米.----学习资料分享 ----WORD格式--可编辑--专业资料-----参考答案1.C.【解析】试题分析:由题意,得:以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选C.考点:函数的图象.2.C.【解析】试题分析:观察图象可得,小明和他爸爸都行驶了60千米,所以南沙与横琴两地相距60千米;小明出发3小时后爸爸追上了小明,所以11:00时,爸爸和小明在途中相遇;爸爸比小明早到横琴1小时;爸爸1.5个小时行驶了60千米,所以爸爸骑摩托车的平均速度是40千米/小时,故答案选C.考点:一次函数的应用.3.B.【解析】试题分析:利用图象可得出,甲,乙的速度,以及所行路程等,利用所给数据结合图形逐个分析.∵如图所示,甲、乙的终点坐标纵坐标为100m,∴这是一次100m赛跑,故B 正确;∵如图所示,甲、乙的终点坐标纵坐标为100m,∴乙和甲跑的路程一样多,故A错误;∵如图所示,甲到达终点所用的时间是12s,乙到达终点所用的时间是12.5s,∴甲、乙两人中先到达终点的是甲,故C错误;∵如图所示,甲到达终点所用的时间是12s,乙到达终点所用的时间是1001,∴甲的速度为:12.5s,故D错误.8?123故选:B.考点:函数的图象.4.C.----学习资料分享 -------专业资料--WORD格式--可编辑--【解析】与行驶时间(升)试题分析:A、设加油前油箱中剩余油量y),(2,9t(小时)的函数关系式为y=kt+b.将(0,25)8?k?25?b??选Ay=﹣8t+25,解得代入,得,故.所以??25?b9??b2k??,故(升)30﹣9=21项正确;B、由图象可知,途中加油:25﹣、由图可知汽车每小时用油(9)÷2=8B 选项正确;C(升),所以汽车加油后还可行驶:30÷8=3<4(小时),故C选项错误;D、∵汽车从甲地到达乙地,所需时间为:400÷80=5(小时),∴5小时耗油量为:8×5=40(升),又∵汽车出发前油箱有油25升,途中加油21升,∴汽车到达乙地时油箱中还余油:25+21﹣40=6(升),故D选项正确.故选:C.考点:一次函数的应用.5.B.【解析】试题分析:结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.考点:函数的图象.6.C.【解析】试题分析:根据图象得:起跑后1小时内,甲在乙的前面;故①正确;在跑了1小时时,乙追上甲,此时都跑了10千米,故②正确;乙比甲先到达终点,故③错误;设乙跑的直线解析式为:y=kx,将点(1,10)代入得:k=10,∴解析式为:y=10x,∴当x=2时,y=20,∴两人都跑了20千米,故④正确.所以①②④三项正确.----学习资料分享 ---------专业资料格式--可编辑--WORDC.故选考点:函数的图象.600米.;(3) 小文离家7.(1)200米.(2) y=200x-1000 【解析】分钟时小文返回家,在家一试题分析:从图象可以知道,2 分钟到达学校.5分钟又开始回学校,10段时间后,米1)200试题解析:(y=kx+b 的解析式为:2)设直线AB()10,10000),B(由图可知:A(5,5k?b?0?∴?1000??b10k?200?k?解得?1000?b??∴直线AB的解析式为:y=200x-1000;(3)当x=8时,y=200×8-1000=600(米)即x=8分钟时,小文离家600米.考点:一次函数的应用.15??160x?600(0?x?)?4?1515?(3)450km;(2);8.(1)a=6,b=6)x?600(S?160x???44?60x(6?x?10)???或300km.【解析】试题分析:(1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;(2)根据函数的图象可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可.(3)分两车相遇前和两车相遇后两种情况讨论,当相遇前----学习资料分享 -------格式--可编辑--专业资料--WORD令s=200即可求得x的值.之间的函数的图象可知:当位)由S与x试题解析:解:(1,点时,两车之间的距离增加变缓,∴由此可以得到a=6于C千米,两∴快车每小时行驶100千米,慢车每小时行驶6015;=地之间的距离为600,∴b=600÷(100+60)4点的坐标分DC、(2)∵从函数的图象上可以得到A、B、15,∴600)、6,360)(,别为:(0600)、10(,,0)、(4600?b??,解所在直线解析式为:S=kx+b,∴设线段AB?150b?k??4?,∴﹣160,b=600;得:k=600???160xS360b?k6???BC,所在的直线的解析式为:S=kx+b,∴设线段?150k??b?4?,∴,b=﹣600;解得:k=160600?160x?S6k?b?360?,∴解得:k=60的解析式为:S=kx+b,,设直线CD?600k??b10?;b=0,∴x60s?15?)x??x?160?600(0?4?15?∴;6)?600(x?S?160x??4?10)x??60x(6???(3)当两车相遇前分别进入两个不同的加油站,此时:S=5,当两车相遇后分别进入两x=﹣160x+600=200,解得:2个不同的加油站,此时:S=160x﹣600=200,解得:x=5,5或5时,此时E加油站到甲地的距离为450km∴当或x=2300km.考点:1.一次函数的应用;2.综合题;3.分类讨论;4.分段函数.9.①③④.----学习资料分享 ---------专业资料格式--可编辑--WORD【解析】时,千米/试题分析:①设快递车从甲地到乙地的速度为x (故①正确);,x=100.(x﹣60)=120则3不是千米是快递车到达乙地后两车之间的距离,②因为120 ;甲、乙两地之间的距离,(故②错误)分钟,45③因为快递车到达乙地后缷完物品再另装货物共用333﹣60×=1203+,所以图中点B的横坐标为纵坐标为3444;=75,(故③正确))y+60/时,则(④设快递车从乙地返回时的速度为y千米31(.,(故④正确))=75,y=9034 44故答案为:①③④.考点:一次函数的应用.?300x?900(0?x?3)?.2y=).10(1)1050;(?)3.5<x?300x?900(3?【解析】试题分析:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米);(2)分两种情况:当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得到方程组,即可解答;根据确定高速列出的速度为300(千米/小时),从而确定点A的坐标为(3.5,150),当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(3,0),11(3.5,150)代入得到方程组,即可解答.试题解析:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米),(2)当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,----学习资料分享 -------专业资料可编辑----WORD格式--900b??,)代入得:900把(0,),(3,0?0k?b?3?900b??,解得:?300?k??∴y=-300x+900,高速列出的速度为:900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时)),点A的坐标为(3.5,150如图2x与行驶时间当3<x≤3.5时,设高速列车离乙地的路程y ,之间的函数关系式为:y=kx+b110b??3k?,150)代入得:,0),(3.5把(3,11?3.5k?b?150?11300k??,解得:1?900?b??1∴y=300x-900,?300x?900(0?x?3)?∴y=.?300x?900(3<x?3.5)?考点:一次函数的应用.11.(1)0.5.(2)y=110x-195(2.5≤x≤4.5)(3)3.9小时【解析】试题分析:(1)2.5-2=0.5 (2)设线段DE对应的函数解析式为y=kx+b(2.5≤x≤4.5),代入D点坐标为(2.5,80),E点坐标为(4.5,300),解方程组即可求出解析式.(3)求出OA的函数解析式后与线段DE的解析式组成方程,解方程即可求出x的取值.----学习资料分享 -------专业资料可编辑----WORD格式--0.5. 1)试题解析:解:(≤≤x对应的函数解析式为(2)设线段DEy=kx+b(2.5 ),4.5 ),),E点坐标为(4.5,30080∵D点坐标为(2.5,110k?80?2.5k?b ??,解得:y=kx+b,得:. ,∴代入??195b??300?4.5k?b??x2.5≤-∴线段DE对应的函数解析式为:y=110x195(). ≤4.5 ),0≤x≤5y=mx(3)设线段OA对应的函数解析式为(,300=5m),∴代入解析式y=mx得,300∵A点坐标为(5,m=60.解得:)0≤x≤5∴线段OA对应的函数解析式为y=60x (x=3.9. 60x=110x-195,解得:由小时与轿车相遇,即轿车从甲地3.9∴货车从甲地出发经过出发后经过2.9小时追上货车.考点:一次函数的应用4(3)(2)7.12(1分钟)202x?y?3【解析】路程÷时1)本题可根据图中的信息,用速度=试题分析:(间来求出;,也就是水平的2)汽车在中途停留时,走的路程应是0(7分钟;那一段线段,由图可知那段时间是,(3012)、,,(3)设这直线的解析式是∵点(16)(0k?kts??b 40)在直线上代入函数解析式的方程组,解方程组即可求出函数解析式.4 1)试题解析:(3分钟)7(2)设这直线的解析式是,(3)?0kkts??b(∵点(16,12)、(30,40)在直线上----学习资料分享 ---------专业资料--WORD格式--可编辑2k??12?b16k??∴,解得??40?b?30k20b????∴这条直线的解析式为20x?y?2考点:函数的图象,待定系数法求函数解析式15千米;10点休息、半小时;返回途中、13.3小时、30. /小时千米/小时;10千米【解析】试题分析:本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是考查同学们的识图能力.图中的点的横坐标表横坐标表示距家最远的时E点距离家最远,示时间,所以点间,纵坐标表示离家的距离;休息是路程不在随时间的增加而增加;往返全程中回来时候速度最快,用距离除以所用时间即可;用玲玲全程所行的路程除以所用的时间即可.)玲玲到离家最远的地方需要(1试题解析:观察图象可知:30千米;3小时,此时离家点半时开始第一次休息;休息了半小时;2()10=15)(15﹣13(3)玲玲在返回的途中最快,速度为:30÷小时;千米/)9)÷(15﹣(4)玲玲全程骑车的平均速度为:(30+30 千米/小时.=10 考点:函数的图象)10t?t?420(7?60?;(2)地;甲车10:00到达C.14(1) ?y?甲)?120<t190t?720(?.10:00(3) 第一次在8:00,第二次在【解析】的地,根据甲车行至AB)设甲车1t时到达C试题分析:(结合图象列出倍继续行驶,处后,以原来速度的1.5C中点180180,解方程即可;方程?1.5?t?t712?----学习资料分享 ---------专业资料--WORD格式--可编辑)分两种情况:①7≤t≤10;②10<t≤12;利用待定(2 系数法即可求出;与时刻地的距离y(3)先利用待定系数法求出乙车离开A的函数解析式,再分甲车在乙车的前面与乙车在甲车的前t 面两种情况列出方程,解方程即可.C地,由题意得,1)设甲车t时到达试题解析:(180180,?1.5?t?712?t t=10,解得是原方程的根,经检验,t=10 地;:00到达C故甲车10,)(10,180由图象过点(7,0)和7≤t≤10(2)当时,;可得y=60t-420,)12,360(10,180)和(当10<t≤12时,由图象过点;可得y=90t-720 的函数解析式为:y与时刻t故甲车离开A地的距离)10?t?60t?420(7?;?y?甲)12<t??720(1090t?,120)和()当7.5≤t≤12时,由图象过点(7.5,3(,,可得y=80t-600360)y的函数解析式为:与时刻t所以乙车离开A地的距离y乙.=80t-600(7.5≤t≤12)t=8;)=20,解得,则(60t-420)-(80t-600≥y若y乙甲;,解得t=10=2080t-600)-(60t-420)则若y<y,(乙甲.=20,解得t=1080t-600)-(90t-720)或(,008:故乙车出发后共有两次与甲车相距20km,第一次在.:00第二次在10 考点:一次函数的应用.?9t?12.6(0.9?t?1.4)?39).(32,(15.1)5()或?d?0.9<t?2(?61.4tt9).15?312?.35? 2.15.4≤t≤3.----学习资料分享 ---------专业资料--WORD格式--可编辑【解析】时,学生.9h试题分析:(1)根据函数图象可得:当t=0 5km,即可解答;队伍走的路程s=4.,4.9+0.5=1.0(2)通讯员经过0.5小时后回到学校,时,150),当0.9≤t≤3.所以B点的坐标为(1.4,的解析式,即可解答;分别求线段AB和线段BC的解析式,分两种情况进行讨论即可解OC(3)求出线段答.时,学生9h1)根据函数图象可得:当t=0.试题解析:(,队伍走的路程s=4.5km ,9=5(km/h)∴学生队伍行进的速度为:4.5÷0.,.5=1.45)∵通讯员经过0.小时后回到学校,0.9+0(2 4,0)∴B点的坐标为(1.9≤t≤1.4),d=kt+b(k≠0),(0.设线段AB的解析式为:2 0),、B(1.4,又过点A(0.9,4.5)9k???0.9k?b4.5??∴,解得,??12.60b?1.4k?b???.4),(0.9≤t≤1.6∴线段AB的解析式为:d=-9t+12.2为度∴速赶队伍,来员按原的速度随即追∵通讯/小时..5÷0.45=9千米),(1.4≤t≤3.15设线段BC的解析式为:d=9t+m,2),4,0又过点B(1.,4+m∴0=9×1.,m=-12.6解得:,15),(1.4≤t ≤3.6∴线段BC的解析式为:d=9t-12.2?9t?12.6(0.9?t?1.4)?.∴?d?2(12.??3.15)9tt61.4??(3)设线段OC的解析式为:d=nt (n≠0),又过点A(0.9,14.5),∴4.5N=0.9,----学习资料分享 -------专业资料格式--可编辑----WORD.∴n=5 ,的解析式为:d=5t∴线段OC1千米,下3设时间为t小时,学生队伍与通讯员相距不超过面分两种情况讨论:)-9t+12(.64时,d-d≤3,即5t-①当0.9≤t≤1.21≤3,39解得:,?t3539∴.?0.9<t35)≤3,5t-(9t-12.6≤3②当1.4≤t≤3.15时,d-d即21 4,解得:t≥2.15.∴2.4≤t≤3.的取故通讯员离开队伍后他们能用无线对讲机保持联系时t39值范围为.2或.4≤t≤3.15?t0.9<35考点:一次函数的应用.;)3600,2016.(1 .y=55x﹣800)①当50≤x≤80时,(21100②当小颖到达缆车终点时,小亮离缆车终点的路程是米.【解析】)纵坐标为小亮行走的路程,其休息的时间为试题分析:(1 纵坐标不随x的值的增加而增加;时函数图象经过的两点的坐标,利≤80)根据当(250≤x 用待定系数法求得函数的解析式即可.20;1)3600,试题解析:(的函数关系式为xy=kx+b,x≤≤80时,设y与)(2①当50,y=3600x=80时,根据题意,当y=1950x=50时,;当55k?50k?b?1950??y=55x∴函数关系式为:,解得:,∴??b??800?803600?kb??----学习资料分享 ----WORD格式--可编辑--专业资料-----﹣800.②缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,把x=60代入y=55x﹣800,得y=55×60﹣800=2500.∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.考点:一次函数的应用.17.(1)a=4.5,60(千米/小时);(2)y=40x+180(4.525511小时,乙与甲小时或)乙车出发小时或≤x≤7);(3466车相距15千米.【解析】试题分析:(1)根据图像,由乙在途中的货站装货耗时半小时易得a=4+0.5=4.5,甲车先出发40分钟后,乙车出发,2+7)小时,行驶了B460共用了(千米,然∴甲从A到3后利用速度公式计算甲的速度;(2)求出D,E点的纵坐标是解题的关键,可设乙开始的速度为v千米/小时,则乙4.5小时后的速度是(v-50)千米/小时,利用乙两段时间内的路程和为460列方程解出v,再乘以4就是D,E点的纵坐标,然后用待定系数法利用E,F两点坐标求线段EF 所表示的y与x的函数关系式,由图像直接可以写出自变量x的取值范2=40千米,∴C(甲车前)40分钟的路程为600×,围;(3340),然后利用待定系数法求出直线CF的解析式和直线OD的解析式,根据乙车的不同位置,利用函数值相差15列方程讨论求解.试题解析:(1)∵乙在途中的货站装货耗时半小时,∴a=4+0.5=4.5小时,a值为4.5;由题意可知:甲从A2+7)小时,行驶了460千米,∴甲车的速到B共用了(3----学习资料分享 -------专业资料--WORD格式--可编辑--2)设乙开始的2(千米/小时)度是:460÷(+7)=63)v-50小时,则乙4.5小时后的速度是(速度为v千米/,v﹣50)=460根据题意列方程:4v+(7﹣4.5)(/千米小时,E4,360),v=90(千米/小时),∴4v=360,∴D(解得,(4.5),设直线EF的解析式为y=kx+b,把E(4.5,36040?360?k4.5k?b??,,解得:360),F(7,460)代入得:??180b?460??b7k??y=40x+180的函数关系式为所表示的y与x 所以线段EF2=4060×);(3)甲车前40分钟的路程为(4.5≤x≤73,把CF的解析式为y=mx+n,设直线C(0,40)千米,∴m??4060n??,46040),F(7,)解得:代入得:,,C(0??40?n460?n?7m??所以直线CF的解析式为y=60x+40,用点(4,360)易求出直线OD的解析式为y=90x(0≤x≤4),设甲乙两车中4小时,即乙车x=G,由60x+40=90x,解得途相遇点为34小时后,甲乙两车相遇根据乙车的不同位置,利用函出发3数值相差15列方程讨论:①当乙车在OG 段时,甲车在乙5,介于0,解得~x=车前15千米,得60x+40﹣90x=1564小时之间,符合题意;②当乙车在GD段时,乙车在甲车3411~,解得,x=介于(前15千米,得90x﹣60x+40)=15364小时之间,符合题意;③当乙车在DE段时,由图像知,61,x=60x+40)=15,解得乙车在甲车前,所以360﹣(12不介于4~4.5之间,不符合题意;④当乙车在EF段时,由图像知乙车在甲车前,所以40x+180﹣(60x+40)=15,25,介于4.5~7解得之间,符合题意.x= 425511小时,乙与甲车相小时或综上所述:乙车出发小时或466距15千米.----学习资料分享 ---------专业资料--WORD格式--可编辑一次函数的实际应用.考点:点的坐标为)E;(2≤x≤4.5)y=120x-14018.(1)(2小时时货车和轿车.5),即表示当货车出发3(3.5,2801711137、、.相遇;(3)、4428【解析】,y=kx+b)设线段CD对应的函数解析式为试题分析:(1 由待定系数法求出其解即可;)根据两图象相交的交点指的是两车相遇解答即可.(2 千米列出方程解答即可.)先由货车和轿车相距30(3 ,对应的函数解析式为y=kx+b试题解析:(1)设线段CD100?2k?b?可得:,?400?4.5k?b?k?120?.解得:?b??140?所以线段CD对应的函数表达式为:y=120x-140(2≤x≤4.5);(2)由图象可得:直线OA的解析式为:y=80x,根据两图象相交的交点指的是两车相遇,可得:80x=120x-140,解得:x=3.5,把x=3.5代入y=80x,得:y=280;所以E点的坐标为(3.5,280),即表示当货车出发3.5小时时货车和轿车相遇;(3)设货车出发xh后,可得:120x-140-30=80x,解得:x=4.25.故答案为:4.25.1,0),(3()由题意知,B31≤x≤2)(段解析式为∴BCy=60x-20,3----学习资料分享 ----WORD格式--可编辑--专业资料-----货车与轿车相距30km有四种情况:;,解得x=时,80x-(60x-20)1=3)当≤x2321x= ,解得(120x-1402)当2<x)=3时,80x-247917;120x-140-80x=30,解得3)当x=<x≤时,224 937;x= 5时,400-80x=30,解得4)当<x≤281711137、、.、∴x=4428考点:一次函数的应用.----学习资料分享 --。

北师大版八年级数学上册《4.3一次函数的图象》练习题(附带参考答案)

北师大版八年级数学上册《4.3一次函数的图象》练习题(附带参考答案)

北师大版八年级数学上册《4.3一次函数的图象》练习题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.一次函数y =3x +1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2.如图为正比例函数y =kx (k ≠0)的图象,则一次函数y =x +k 的大致图象是( )A .B .C .D .3.已知点P(1,4)在直线y =kx −2k 上,则k 的值为( )A .43B .−43C .4D .-44.如图,已知一次函数的图象与正比例函数y=12x 的图象交于点A ,则一次函数的表达式为()A .y=2x+2B .y=-12x+2C .y=-2x+2D .y=12x+25.将一次函数y =2x +5的图象沿y 轴向下平移4个单位长度,所得直线的解析式为( )A .y =2x −5B .y =x +5C .y =2x +1D .y =x +16.如图所示,点A (﹣1,m ),B (3,n )在一次函数y =kx+b 的图象上,则( )A .m =nB .m >nC.m<n D.m、n的大小关系不确定7.已知一次函数y=kx−k过点(−1,4),则下列结论正确的是()A.y随x增大而增大B.k=2C.一次函数的图象过点(1,0)D.一次函数的图象与坐标轴围成的三角形面积为28.如图,在平面直角坐标系中,已知A(2,0),B(1,3)在y轴上有一动点C,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,−2)C.(0,2)D.(−2,0)二、填空题9.直线y=2x+m−3经过点(2,3),则m=;10.已知y与x−2成正比例,且当x=1时y=1,则y与x之间的函数关系式为.11.如果正比例函数y=(3k+1)x的图像经过第二、四象限,那么k的取值范围是.12.若点P(m,n)在直线y=−2x+3上,则2m+n−3=.13.如果不论k为何值,一次函数y= 2k−1k+3x−k−11k+3的图象都经过一定点,则该定点的坐标是.三、解答题14.直线y=kx+1沿着y轴向上平移b个单位后,经过点A(−2,0)和y轴正半轴上的一点B,若△ABO(O为坐标原点)的面积为4,求b的值.15.已知y−2与x−3成正比例,且x=4时y=8.(1)求y与x之间的函数关系式;(2)当y=−6时,求x的值.16.已知y与3x−2成正比例,且当x=2时y=8.(1)求y与x的函数关系式;(2)画出这个函数的图象;(3)当x>0时, y的取值范围是.17.在直角坐标系内,一次函数y=kx+b的图象经过三点A(4,0),B(0,2)C(m,−3). (1)求这个一次函数解析式(2)求m的值.(3)若点P在直线y=kx+b上且到y轴的距离是3,求点P的坐标.参考答案1.D2.B3.D4.B5.C6.C7.C8.C9.210.y=-x+211.k<−1312.013.(2,3)14.解:直线y=kx+1沿着y轴向上平移b个单位后,得到y=kx+b+1 ∵直线y=kx+b+1经过点A(-2,0)和y轴正半轴上的一点B∴B(0,b+1)∵△ABO的面积是:1×2×(b+1)=42解得b=3.15.(1)解:∵y−2与x−3成正比例∴设y−2=k(x−3)∵x=4时∴8−2=k(4−3)∴k=6∴y=6x−16;(2)解:把y=−6代入y=6x−16,可得:−6=6x−16解得:x=5.316.(1)解:设y=k(3x−2)∵当x=2时x=2∴8=k(3×2−2)解得:k=2∴y与x的函数关系式为y=6x−4(2)解:令x =0,则y =−4,令x =1 过点(0,−4),(1,2)作直线如图所示:(3)y >-417.(1)解:∵一次函数y =kx +b 的图象经过三点A(4,0) B(0,2)则:{4k +b =0b =2,解得:{k =−12b =2∴这个一次函数解析式为:y =−12x +2(2)解:把C(m ,−3)代入:y =−12x +2中得:−3=−12m +2,解得:m =10(3)解:设P(x ,y)∵点P 在直线y =−12x +2上且到y 轴的距离是3 ∴x =±3当x =3时y =−12×3+2=12当x =−3时y =−12×(−3)+2=72∴点P 的坐标是(3,12)或(−3,72)。

(完整版)新北师大版八年级上册动点与一次函数专题练习(含答案),推荐文档

(完整版)新北师大版八年级上册动点与一次函数专题练习(含答案),推荐文档
y
A M
OC
x
B
2、在边长为 2 的正方形 ABCD 的边 BC 上,点 P 从 B 点运动到 C 点,设 PB=x,四边形 APCD 的面积为 y
,(1)写出 y 与自变量 x 的函数关系式,并画出它的图象。
3
(2)当 x 为何值时,四边形 APCD 的面积等于 。
2
D
C
P
A
B
3、如图,在矩形 ABCD 中,动点 P 从点 B 出发,沿 BC、CD、DA 运动至点 A 停止,设点 P 运动的路程 为
2
2
3.解:(1).由图 2 可知,x 从 4 到 9 的过程中,三角形的面积不变,
1
所以,矩形的边 AB=9-4=5,边 BC=4,所以 s△ABC= ×5×4=10
2
1
15
(2).①点 P 在 BC 上时,0≤x≤4,点 P 到 AB 的距离为 PB 的长度 x, y= AB•PB= ×5x= x ,
所以,动点 P 运动的总路程为 AB+BC+CD=2+2+2 3 =4+2 3 ,
∵动点 P 的运动速度是 1cm/s, ∴点 P 从开始移动到停止移动一共用了(4+2 3 )÷1=4+2 3 (秒).
5.(1)作 PE⊥y 轴于 E, ∵P 的横坐标是 2,则 PE=2.
1
1
∴S△COP= OC•PE= ×2×2=2;
的方向不停移动,直到点 P 到达点 D 后才停止.已知△PAD 的面积 S(单位:cm2)与点 P 移动的时间 (单位:s)的函数如图②所示,则点 P 从开始移动到停止移动一共用了多少秒(结果保留根号).
5、如图,A、B 分别是 x 轴上位于原点左右两侧的点,点 P(2,p)在第一象限,直线 PA 交 y 轴于点 C(0,2)

北师大版八年级数学上册第五章《二元一次方程与一次函数》课时练习题(含答案)

北师大版八年级数学上册第五章《二元一次方程与一次函数》课时练习题(含答案)

北师大版八年级数学上册第五章《6.二元一次方程与一次函数》课时练习题(含答案)一、单选题1.直线2y x =与直线5y x =-+的交点为( )A .()5,10B .510,33⎛⎫ ⎪⎝⎭C .()4,8D .47,33⎛⎫ ⎪⎝⎭ 2.一次函数26y x =-+的图象与两坐标轴围成的三角形的面积是( )A .6B .9C .12D .183.已知关于x ,y 的方程组32y x b y x =-+⎧⎨=-+⎩的解是1x y m=-⎧⎨=⎩,则直线y x b =-+与32y x =-+的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n-=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩; ③方程0mx n +=的解为2x =;④当0x =时,1ax b +=-.其中结论正确的个数是( )A .1B .2C .3D .45.若直线21y x =+与y x b =-+的交点在第一象限,则b 的值可以是( )A .2B .1C .0D .1-6.如图所示,在直角坐标系中的两条直线分别是1y x =-+和25y x =-,那么方程组251y x y x =-⎧⎨=-+⎩的解是( )A .21x y =⎧⎨=-⎩B .12x y =-⎧⎨=⎩C .01x y =⎧⎨=⎩D .10x y =⎧⎨=⎩7.若直线1l 经过点()0,4,2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )A .()2,0-B .()2,0C .()6,0-D .()6,08.如图,在平面直角坐标系中,点()3,A a 是直线2y x =与直线y x b =+的交点,点B 是直线y x b =+与y 轴的交点,点P 是x 轴上的一个动点,连接P A ,PB ,则PA PB +的最小值是( )A .6B .35C .9D .310二、填空题9.在平面直角坐标系中,O 为坐标原点,若直线y =x +3分别与x 轴,直线y =-2x 交于点A ,B ,则△AOB 的面积为 _____.10.在平面直角坐标系中,一次函数y =kx +b 和y =mx +n 相交于点(2,﹣1),则关于x ,y的方程组y kx b y mx n =+⎧⎨=+⎩的解是______. 11.如果直线y =12x +n 与直线y =mx -1的交点坐标为(1,-2),那么m =________,n =________.12.如图,在同一平面直角坐标系中,直线l 1:y 14=x 12+与直线l 2:y =kx +3相交于点A ,则方程组11423y x y kx ⎧=+⎪⎨⎪=+⎩的解为 ___.13.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为____.三、解答题14.在同一平面直角坐标系中画出正比例函数y =x 和一次函数y =﹣x +2的图象,并求出这两个函数图象与x 轴围成的三角形面积.x+2,且l1与x轴交于点A,直线l2经过定点B(4,15.如图,直线l1的函数表达式为y=120),C(﹣1,5),直线l1与l2交于点D.(1)求直线l2的函数表达式;(2)求△ADB的面积;(3)在x轴上是否存在一点E,使△CDE的周长最短?若存在,请直接写出点E的坐标;若不存在,请说明理由.16.如图,一次函数y=x+2的图象经过点A(2,4),B(n,﹣1).(1)求n的值;(2)请判断点P(﹣2,4)在不在该直线上.(3)连接OA,OB,求△OAB的面积.x+1,与x轴、y轴分别交于A,B两点,以线段17.如图,已知直线m的解析式为y=﹣12AB为直角边在第一象限内作等腰Rt△ABC,且∠BAC=90°,点P为直线x=1上的动点,且△ABP的面积与△ABC的面积相等.(1)求△ABC 的面积;(2)求点P 的坐标.18.如图1,在平面直角坐标xOy 中,直线1l :1y x =+与x 抽交于点A ,直线2l :33y x =-与x 轴交于点B ,与1l 相交于C 点.(1)请直接写出点A ,点B ,点C 的坐标:A _________,B ________,C _______. (2)如图2,动直线x t =分别与直线1l 、2l 交于P 、Q 两点.①若2PQ =,求t 的值;②若存在2AQC ABC S S =△△,求出此时点Q 的坐标;若不存在,请说明理由.19.如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,求:①求点C的坐标;②求△OAC的面积.(2)在(1)的条件下,若P是x轴上的一个动点,直接写出当△POC是等腰三角形时P的坐标.(3)如图2,作∠AOC的平分线OF,若AB OF⊥,垂足为E,OA=4,P是线段AC上的动点,过点P作OC,OA的垂线,垂足分别为M,N,试问PM+PN的值是否变化,若不变,求出PM+PN的值;若变化,请说明理由。

北师大版八年级上册数学第四章 一次函数含答案

北师大版八年级上册数学第四章 一次函数含答案

北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/hB.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h2、某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. B. C.y=-2x D.y=2x3、出生1﹣6个月的婴儿生长发育得非常快,他们的体重y(g)与月龄x(月)间的关系可以用y=a+700x来表示,其中a是婴儿出生时的体重,一个婴儿出生时的体重是3000g,这个婴儿第4个月的体重为( )A.6000gB.5800gC.5000gD.5100g4、如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是()A. B. C. D.5、一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20 LB.25 LC.27LD.30 L6、已知一次函数的图象,如图所示,当时,的取值范围是()A. B. C. D.7、正比例函数如图所示,则这个函数的解析式为( )A.y=xB.y=-xC.y=-2xD.y=8、弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm9、如图,点、、、是正方形四条边(不含端点)上的点,设线段的长为,四边形的面积为,则能够反映与之间函数关系的图象大致是()A. B. C. D.10、已知点都在直线上,则大小关系是()A. B. C. D.不能比较11、若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0B.1C.±1D.-112、如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t (月)之间的关系,则对这种产品来说,该厂()A.1月至3月每月产量逐月增加,4、5两月产量逐月减小B.1月至3月每月产量逐月增加,4、5两月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月产量均停止生产 D.1月至3月每月产量不变, 4、5两月均停止生产13、某种出租车收费标准是:起步价7元(即行驶距离不超过3千米需付7元车费),超过了3千米以后,每增加1千米加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费19元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是A.11B.8C.7D.514、如图,韩老师早晨出门散步时离家的距离(y)与时间(x)之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()A. B. C. D.15、直线y=﹣x+1不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、已知是一次函数,则________.17、如图,在平面直角坐标系中,函数和的图象分别为直线,过上的点A1(1,)作x轴的垂线交于点A2,过点A2作y轴的垂线交于点A3,过点A3作x轴的垂线交于点A4…,一次进行下去,则点的横坐标为________ .18、某水果店五一期间开展促销活动,卖出苹果数量x(kg)与售价y(kg/元)的关系如下表:数量x(kg) 1 2 3 4 5 …售价y(kg/元)9 15 21 27 33 …则售价y(kg/元)与数量x(kg)之间的关系式是________.19、正方形,,,…按如图所示的方式放置.点,,,…和点,,,…分别在直线和轴上,则点的坐标是________.20、在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M 的坐标为________ .(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16<y′≤16,则实数a的取值范围是________ .21、若函数y=2x+b(b为常数)的图象经过点A(0,﹣2),则b=________.22、如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为________.23、已知一次函数的图象经过点和,那么的值为________.24、直线y=-3x+m经过点A(-1,a)、B(4,b),则a________b(填“>”或“<”)25、已知一次函数的图像经过点,则________.三、解答题(共5题,共计25分)26、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.27、将若干张长为20里面、宽为10里面的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求2张白纸贴合后的总长度;那么3张白纸粘合后的总长度呢?4张呢?(2)设a张白纸粘合后的总长度为b里面,写出b与a之间的关系式,并求当a=100时,b的值.28、某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.29、某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4kg,乙种材料1kg;生产一件B产品需甲、乙两种材料各3kg.经测算,购买甲、乙两种材料各1kg共需资金60元;购买甲种材料2kg 和乙种材料3kg共需资金155元.(1)甲、乙两种材料每kg分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.30、某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12kg,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2kg,但耗水量是甲车间的一半.已知A产品售价为30元/kg,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价﹣购买原材料成本﹣水费)参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、B5、B6、7、B8、B9、A10、C11、B12、B13、B14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。

八年级(上)北师大版一次函数练习题1-图文

八年级(上)北师大版一次函数练习题1-图文

八年级(上)北师大版一次函数练习题1-图文八年级(上)北师大版一次函数练习题1.已知一次函数y=k某+b的图象如图1-6-1所示,当某<0时,y的取值范围是()A、y>0B、y<0C、-2<y<0D、y<-22.下列关于某的函数中,是一次函数的是()A.y=3(某-1)2B.y=某+C.y=1某9(-,1)28.在下列函数中是一次函数且图象过原点的是()1A.y=-32某B.y=-5某+1C.y=4某+8D.y=-5某49.直线y=3某+4与某轴交于A,与y轴交于B,O为原点,则△AOB的面积为()A.12B.24C.6D.1010.已知函数:①y=-某,②y=7-3某,③y=3某-1,④y=3某2,1-某D.y=(某+3)2-某22某3.如果直线y=k某+b经过一、二、四象限,那么有()某3⑤y=3,⑥y=某中,正比例函数有()A.k>0,b>0B.k>0,b<0A.①⑤B.①④C.①③D.③⑥C.k<0,b<0D.k<0,b>011.如果每盒圆珠笔有12支,售价6元,那么圆ac4.若ab>0,bc<0,则直线y=-某-不通过珠笔的售价y(元)与圆珠笔的支数某(支)bb()之间的关系式是()1A.第一象限B.第一象限C.第三象限A.y=2某B.y=2某C.y=6某D.y=12某D.第四象限315.已知一次函数y=2某+m和y=-2某+n的图象都经过点A(-2,0)且与y轴分别交于B、C两点,那么△ABC的面积是()A.2B.3C.4D.66..在下列函数中,满足某是自变量,y是因变量,b是不等于0的常数,且是一次函数的是()5A.y=2某B.y=-某C.y=-25某+2D.y=某12.一次函数y=3某-2的图象不经过的象限是()A.第一象限B第二象限C.第三象限D.第四象限13.一次函数的图象如图l-6-42所示,那么这个一次函数的表达式是()A.y=-2某+2B.y=-2某-2C.y=2某+2D.y=2某-214.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()7.直线y=2某+6与某轴交点的坐标是()A.(0,-3)B.(0,3)C.(-3,0)D.A.Q=0.2tB.Q=20-0.2tC.t=0.2QD.t=20—0.2Q15.下列函数中,图象经过原点和二、四象限的为()某A.y=5某B.y=-5C.y=5某+1D.y某=-5+116.次函数y=k某+b,当-3≤某≤1时,对应的y值为1≤y≤9,则k·b的值为()A.14B.-6C.-4或21D.-6或1417.幸福村办工厂,今年前五个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图l-6-43所示,则该工厂对这种产品来说()A.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减小B.l月至3月生产总量逐月增加,4、5两月生产总量与3月持平C.l月至3月每月生产总量逐月增加,4、5两月均停止生产D.l月至3月每月生产总量不变,4、5两月均停止生产18.已知方程组y=2某+3与13y=2某+2的交点坐标为()A.(l,5)B.(-1,1)C.(l,2)D.(4,l)19.一天,小军和爸爸去登山,已知山脚到山顶ì2某-y=-3í某-2y=-3的路程为300米.小军先走了一段路程,爸爸才开始出发.图l-6-44中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t(分)的关系(从爸爸开始登山时计时).根据图象,下列说法错误的是()A.爸爸登山时,小军已走了50米B.爸爸走了5分钟,小军仍在爸爸的前面C.小军比爸爸晚到山顶D.爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快20.在函数y=2某+3中当自变量某满足______时,图象在第一象限.21.若函数y=(m—2)某+5-m是一次函数,则m满足的条件是__________.22.一次函数y=2某—6中,y值随某值的增大而23.若正比例函数的图象经过(-l,5)那么这个函数的表达式为__________,y的值随某的减小而____________24.若一次函数y=k某—3经过点(3,0),则k=,该图象还经过点(0,)和(,-2)25.一某市市内出租车行程在4km以内(含则m的取值范围是()1A、m<0B.m>0C.m<2D.m>1228.两个一次函数y1=m某+n,y2=n某+m,它们在同一坐标系中的图象可能是图l-6-2中的()232.已知直线y=某+2与直线y=3某+2交于C29.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图l-6-3所示,那么小李赚了()A.32元B.36元C.38元D.44元30.已知一次函数y=(3a+2)某-(4-b),求字母a、b为何值时:(1)y随某的增大而增大;(2)图象不经过第一象限;(3)图象经过原点;(4)图象平行于直线y=-4某+3;(5)图象与y轴交点在某轴下方.31.如图l-6-39,直线l1、l2相交于点A,l1与某轴的交点坐标为(-1,0),l2与y轴的交点坐标为(0,-2),结合图象解答下列问题:⑴求出直线l2表示的一次函数的表达式;⑵当某为何值时,l1、l2表示的两个一次函数的函数值都大于0?点,直线y=-某+2与某轴交点为A,直线2y=3某+2与某轴交点为B。

初中数学北师大版八年级上册3.4一次函数的应用练习题

初中数学北师大版八年级上册3.4一次函数的应用练习题

初中数学北师大版八年级上册第四章4一次函数的应用练习题一、选择题1.甲,乙两车在笔直的公路AB上行驶,乙车从AB之间的C地出发,到达终点B地停止行驶,车从起点A地与乙车同时出发到达B地休息半小时后立即以另一速度返回C地并停止行驶,在行驶过程中,两车均保持匀速,甲、乙两车相距的路程y(千米)与乙车行驶的时间x(小时)之间的关系如图所示,下列说法错误的是()A. 乙车行驶的速度为每小时40千米B. 甲车到达B地的时间为7小时C. 甲车返回C地比乙车到B地时间晚3小时D. 甲车全程共行驶了840千米2.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(ℎ)之间的函数关系如图所示.下列说法错误的是()A. A,B两城相距300千米B. 乙车比甲车晚出发1小时,却早到1小时C. 乙车出发后1.5小时追上甲车D. 在一车追上另一车之前,当两车相距40千米时,t=323.一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(ℎ)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25ℎ后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个4.如图,表示一艘轮船和一艘快艇沿相同路线从甲港岀发到乙港行驶路程随时间变化的图象.则下列结论错误的是()A. 轮船的速度为20千米/时B. 快艇的速度为40千米/时C. 轮船比快艇先出发2小时D. 快艇到达乙港用了6小时5.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为xkg,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是()A. 甲园的门票费用是60元B. 草莓优惠前的销售价格是40元/kgC. 乙园超过5kg 后,超过的部分价格优惠是打五折D. 若顾客采摘12kg 草莓,那么到甲园或乙园的总费用相同6. 甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A. 1个 B. 2个 C. 3个 D. 4个7. 甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A. 甲车的平均速度为60km/ℎB. 乙车的平均速度为100km/ℎC. 乙车比甲车先到B城D. 乙车比甲车先出发1h8.甲、乙两名运动员同时从A地出发前往B地,在笔直的公路上进行骑自行车训练.如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t=0.5或t=2.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个9.在一条公路上每隔100千米有一个仓库(如图),共有五个仓库.1号仓库存有10吨货物,2号仓库存有20吨货物,5号仓库存有40吨货物,其余两个仓库是空的.现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要0.5元的运费,那么最少要花()元运费才行.A. 5000B. 5500C. 6000D. 650010.如图,购买一种苹果所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省()A. 4元B. 3元C. 2元D. 1元11.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A. 32B. 34C. 36D. 38二、填空题12.一条笔直的公路上顺次有A、B、C三地,小明驾车从B地出发匀速行驶前往A地,到达A地后停止,在小明出发的同时,小李驾车从B地出发匀速行驶前往A地,到达A地停留2小时后,调头按原速向C地行驶,若AB两地相距200千米,在行驶的过程中,两人之间的距离y(千米)与小李驾驶时间x(小时)之间的函数图象如图所示,则在他们出发后经过______小时相遇.13.一艘轮船和一艘快艇分别从甲、乙两个港口同时出发(水流速度不计)相向而行,快艇匀速航行到达甲港后,立即原速返回乙港(掉头时间忽略不计),在返回途中追上轮船时刚好到达一个景点,轮船靠岸1小时供游客观赏游玩,然后继续以原速航行到乙港,两船到达乙港均停止航行,轮船和快艇之间的距离y(千米)与轮船出发时间x(小时)之间的函数图象如图所示,当快艇返回到乙港时,轮船距乙港还有______千米.14.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y(m)与小宁离开出发地的时间x(min)之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为______米.15.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后______秒与甲相遇.三、解答题x+4与16.如图,在平面直角坐标系xOy中,直线l:y=−43x轴、y轴分别相交于B、A两点,点C是AB的中点,点E、F分别为线段AB、OB上的动点,将△BEF沿EF折叠,使点B的对称点D恰好落在线段OA上(不与端点重合).连接OC分别交DE、DF于点M、N,连接FM.(1)求tan∠ABO的值;(2)试判断DE与FM的位置关系,并加以证明;(3)若MD=MN,求点D的坐标.17.一条笔直的公路上有甲、乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1)李越骑车的速度为______米/分钟;F点的坐标为______;(2)求李越从乙地骑往甲地时,s与t之间的函数表达式;(3)求王明从甲地到乙地时,s与t之间的函数表达式;(4)求李越与王明第二次相遇时t的值.18.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.19.小明、小军是同班同学.某日,两人放学后去体育中心游泳,小明16:00从学校出发,小军16:03也从学校出发,沿相同的路线追赶小明.设小明出发x分钟后,与体育中心的距离为y米.如图,线段AB表示y与x之间的函数关系.(1)求y与x之间的函数解析式;(不要求写出定义域)(2)如果小军的速度是小明的1.5倍,那么小军用了多少分钟追上小明?此时他们距离体育中心多少米?答案和解析1.【答案】D【解析】解:图象过(0,60)点,因此AC的距离为60千米,过(3,0),说明经过3小时,甲追上乙,可求出速度的差为20千米/时,两辆的最大距离为80千米,说明甲到达B地,而乙还在途中,可得甲从追上乙到B地由用了80÷20=4小时,因此甲行全程用3+4=7小时,故B选项正确的;当甲在B地休息半小时,两车的距离减少80−60=20千米,说明乙车用半小时行20千米,求得乙的速度为40千米/小时,故A选项是正确的;再根据速度差为20千米/小时,可求出甲的速度为40+20=60千米/小时,故全程为60×7=420千米;C地到B地的距离为360千米,甲从A地到B地然后返回到C共行驶360+420=780千米.故D选项是不正确的;故选:D.图象过(0,60)点,因此AC的距离为60千米,过(3,0),说明经过3小时,甲追上乙,可求出速度的差为20千米/时,两辆的最大距离为80千米,说明甲到达B地,而乙还在途中,可得甲从追上乙到B地由用了80÷20=4小时,因此甲行全程用3+4=7小时,当甲在B地休息半小时,两车的距离减少80−60=20千米,说明乙车用半小时行20千米,求得乙的速度为40千米/小时,根据速度差为20千米/小时,可求出甲的速度为40+20=60千米/小时,故全程为60×7=420千米;C地到B地的距离为240千米,甲从A地到B地然后返回到C共行驶240+420=660千米.考查对函数意义的理解以及从图象获取知识的能力,进一步结合实际问题体会自变量、因变量的变化关系,熟练掌握行程类应用题的数量关系是解决问题的重中之重.2.【答案】D【解析】解:由图象可知A、B两城市之间的距离为300km,故A正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,=60t,∴y甲设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得{m +n =04m +n =300,解得{m =100n =−100,∴y 乙=100t −100,令y 甲=y 乙可得:60t =100t −100,解得t =2.5, 即甲、乙两直线的交点横坐标为t =2.5, 乙的速度:150÷(2.5−1)=100, 乙的时间:300÷100=3,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故B 正确;甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故C 正确;乙在甲后面40km 时,y 甲−y 乙=40,可得60t −100t +100=40,解得t =32,乙车在甲车前面40km 时,100t −100−60t =40或60t =300−40,解得t =72或t =133.即在一车追上另一车之前,当两车相距40千米时,t =32或t =72或t =133,故D 错误.故选:D .由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为40,可求得t ,可得出答案. 本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.3.【答案】D【解析】解:由图象可知A 村、B 村相离10km ,故①正确,当1.25ℎ时,甲、乙相距为0km ,故在此时相遇,故②正确,当0≤t ≤1.25时,易得一次函数的解析式为s =−8t +10,故甲的速度比乙的速度快8km/ℎ.故③正确当1.25≤t ≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s =kt +b 代入得{0=1.25k +b 6=2k +b ,解得{k =8b =−10∴s =8t +10当s =2时.得2=8t −10,解得t =1.5ℎ由1.5−1.25=0.25ℎ=15min同理当2≤t ≤2.5时,设函数解析式为s =kt +b 将点(2,6)(2.5,0)代入得 {0=2.5k +b 6=2k +b ,解得{k =−12b =30∴s =−12t +30当s =2时,得2=−12t +30,解得t =73 由73−1.25=1312ℎ=65min故相遇后,乙又骑行了15min 或65min 时两人相距2km ,④正确. 故选:D .根据图象与纵轴的交点可得出A 、B 两地的距离,而s =0时,即为甲、乙相遇的时候,同理根据图象的拐点情况解答即可.此题为一次函数的应用,渗透了函数与方程的思想,重点是读懂图象,根据图象的数据进行解题.4.【答案】D【解析】解:观察图象,可知轮船出发4小时后被快艇追上,所以错误的是第四个结论. 故选:D .观察图象,该函数图象表示的是路程与之间的函数关系,可知轮船出发4小时后被快艇追上,在4小时时快艇和轮船行驶的路程相等.本题考查了一次函数的图象的运用,行程问题的数量关系的运用,解答时分析清楚函数图象提供的信息是关键.5.【答案】D【解析】解:由图象可得,甲园的门票为60元,故选项A 正确;乙园草莓优惠前的销售价格是:200÷5=40(元/千克),故选项B 正确;400−20015−5÷40=0.5,即乙园超过5kg 后,超过的部分价格优惠是打5折,故选项C 正确;若顾客采摘12kg 草莓,甲园花费为:60+12×40×0.6=344(元),乙园的花费为:40×5+(12−5)×40×0.5=340(元),∵344>340,∴若顾客采摘12kg 草莓,那么到甲园比到乙园的总费用高,故选项D 错误; 故选:D .根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.6.【答案】B【解析】 【分析】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t 是甲车所用的时间.观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t ,可判断④,可得出答案. 【解答】解:由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时, ∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y 甲=kt , 把(5,300)代入可求得k =60, ∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt +n , 把(1,0)和(4,300)代入可得{m +n =04m +n =300,解得{m =100n =−100,∴y 乙=100t −100,令y 甲=y 乙可得:60t =100t −100,解得t =2.5, 即甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车, ∴③不正确;令|y 甲−y 乙|=50,可得|60t −100t +100|=50,即|100−40t|=50, 当100−40t =50时,可解得t =54, 当100−40t =−50时,可解得t =154,又当t =56时,y 甲=50,此时乙还没出发,当t =256时,乙到达B 城,y 甲=250;综上可知当t 的值为54或154或56或256时,两车相距50千米, ∴④不正确;综上可知正确的有①②共两个, 故选:B .7.【答案】D【解析】解:由图象知: A .甲车的平均速度为30010−5=60km/ℎ,故A 选项不合题意;B .乙车的平均速度为3009−6=100km/ℎ,故B 选项不合题意;C .甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故C 选项不合题意;D .甲5时出发,乙6时出发,所以乙比甲晚出发1h ,故此选项错误, 故选:D .根据图象逐项分析判断即可.本题考查了一次函数的应用,函数的图象,正确识别图象并能提取相关信息是解答的关键.8.【答案】B【解析】解:①甲的速度为1203=40,故正确;②t ≤1时,已的速度为501=50,t >1后,乙的速度为120−503−1=35,故错误;③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确; ④由①②③得:甲的函数表达式为:y =40x ,已的函数表达为:0≤t ≤1时,y =50x ,t >1时,y =35x +15, t =0.5时,甲、乙两名运动员相距=50×12−40×12=5,t=2时,甲、乙两名运动员相距=(35×2+15)−2×40=5,同理t=4时,甲、乙两名运动员相距为5,故错误.故选:B.①甲的速度为1203,即可求解;②t≤1时,乙的速度为501=50,t>1后,乙的速度为120−503−1=35,即可求解;③行驶1小时时,甲走了40千米,乙走了50千米,即可求解;④甲的函数表达式为:y=40x,乙的函数表达为:0≤t≤1时,y=50x,t>1时,y=35x+15,即可求解.本题为一次函数应用题,此类问题主要通过图象计算速度,即为一次函数的k值,进而求解.9.【答案】A【解析】解:设把所有的货物集中存放在x号仓库里,需要的总运费为w元,当x≤2时,w=10×(x−1)×100×0.5+20×(2−x)×100×0.5+40×(5−x)×100×0.5=−2500x+11500,∵−2500<0,∴w随x的增大而减小,∴当x=2时,w取得最小值,最小值=−2500×2+11500=6500;当2<x≤5时,w=10×(x−1)×100×0.5+20×(x−2)×100×0.5+40×(5−x)×100×0.5=−500x+7500,∵−500<0,∴w随x的增大而减小,∴当x=5时,w取得最小值,最小值=−500×5+7500=5000.∵6500>5000,∴最少要花5000元运费才行.故选:A.设把所有的货物集中存放在x号仓库里,需要的总运费为w元,分x≤2及2<x≤5两种情况,根据总运费=1号仓库货物转运需要的费用+2号仓库货物转运需要的费用+5号仓库货物转运需要的费用,即可得出w关于x的函数关系式,再利用一次函数的性质可求出每段的最小值,比较后即可得出结论.本题考查了一次函数的应用,分x≤2及2<x≤5两种情况,利用各数量之间的关系找出w关于x的函数关系式.10.【答案】C【解析】解:由图象可得,当0<x≤2时,每千克苹果的单价是20÷2=10(元),当x>2时,每千克苹果的单价是(36−20)÷(4−2)=8(元),故一次购买3千克这种苹果需要花费:10×2+8×(3−2)=28(元),分三次每次购买1千克这种苹果需要花费:10×3=30(元),30−28=2(元),即一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元,故选:C.根据函数图象中的数据,可以得到0<x≤2和x>2时的苹果单价,然后即可算出一次购买3千克这种苹果的花费和分三次每次购买1千克这种苹果的花费,再作差即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】C【解析】解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5−(35−20)÷(16−4)=3.75(L/min),第24分钟时的水量为:20+(5−3.75)×(24−4)=45(L),a=24+45÷3.75=36.故选:C.根据图象可知进水的速度为5(L/min),再根据第16分钟时容器内水量为35L可得出水的速度,进而得出第24分钟时的水量,从而得出a的值.此题考查了一次函数的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题.12.【答案】427【解析】解:∵最终两车相距400千米,∴A、C两地相距400千米.小李的速度为(200+400)÷(8−2)=100(千米/小时),小李从B 到达A 地的时间为200÷100=2(小时), 小明的速度为(200−120)÷3=40(千米/小时),小李从A 地返回时,两车的间距为200−40×4=40(千米), 两车相遇的时间为4+40100+40=427(小时) 故答案为:427.观察函数图象可知A 、C 两地的间距,由速度=路程÷时间可求出小李的速度,结合小明、小李速度间的关系可求出小明的速度,再求出小李从A 地返回时,两车的间距,依据相遇时间=4+两车间的间距÷两车速度和,即可求出小明、小李相遇的时间. 本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.13.【答案】65【解析】解:设轮船的速度为x 千米/小时,快艇的速度为y 千米/小时,依题意得: {2.5(x +y)=1505(y −x)=150, 解得{x =15y =45,150−15×(300÷45−1)=65(千米).答:当快艇返回到乙港时,轮船距乙港还有65千米. 故答案为:65根据题意可知甲、乙两个港口相距150千米,轮船和快艇第一次相遇用了2.5小时,第二次相遇用了5小时,根据“路程、速度与时间的关系”列方程组即可分别求出轮船和快艇的速度,再根据题意列式计算即可求出当快艇返回到乙港时,轮船距乙港的路程. 本题考查的是用一次函数解决实际问题,以及待定系数法求函数的解析式,注意利用数形结合可以加深对题目的理解.14.【答案】1500【解析】解:由图可得,小宁跑步的速度为:(4500−3500)÷5=200m/min ,则步行速度为:200×12=100m/min ,设小宁由跑步变为步行的时刻为a 分钟, 200a +(35−a)×100=4500, 解得,a =10,设小强骑车速度为xm/min,200(10−5)+(10−5)x=3500−1000,解得,x=300,即小强骑车速度为300m/min,小强到家用的时间为:4500÷300=15min,则当弟弟小强到家时,小宁离图书馆的距离为:4500−10×200−(5+15−10)×100=1500m,故答案为:1500.根据题意和函数图象可以求得小宁的跑步速度和步行速度,从而可以求得小宁由跑步变为步行的时刻,进而求得小强骑车速度,再根据题意即可得到则当弟弟到家时,小宁离图书馆的距离.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】30【解析】解:由图象可得V甲=9030=3m/s,V追=90120−30=1m/s,故V乙=1+3=4m/s,则乙走完全程所用的时间为:12004=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200−990=210m则最后相遇的时间为:2103+4=30s故答案为:30由图象可以V甲=9030=3m/s,V追=90120−30=1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:12004=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.16.【答案】解:(1)直线l:y=−43x+4与x轴、y轴分别相交于B、A两点,则点A、B的坐标分别为:(0,4)、(3,0);tan∠ABO=OAOB =43=tanα;(2)DE 与FM 的位置关系为相互垂直,理由: 点C 是AB 的中点,则∠COB =∠CBO =∠EDF =α,∠ONF =∠DNM , ∴∠DMN =∠DFO , ∴O 、F 、M 、D 四点共圆, ∴∠DMF +∠DOF =180°, ∴∠DOF =90°,即:DE ⊥FM ;(3)MD =MN ,∴∠MDN =∠MND =α,而∠COB =α,∠DNM =∠ONF =α,即△OCF 为以ON 为底,底角为α的等腰三角形, 则tan∠NFO =NH NF=247=tanβ,则cosβ=725(证明见备注);设OF =m ,则DF =FB =3−m , cos∠DFO =cosβ=m3−m , 解得:m =2132,OD 2=DF 2−OF 2=(3−m)2−m 2=8116; 则OD =94, 故点D(0,94).备注:如下图,过点N 作HN ⊥OF 于点H ,tanα=43,则sinα=45,作FM ⊥ON 于点M , 设FN =OF =5a ,则FN =4a ,则ON =6a , 同理可得:NH =24a 5,tan∠NFO=NHNF =247=tanβ,则cosβ=725.【解析】(1)直线l:y=−43x+4与x轴、y轴分别相交于B、A两点,则点A、B的坐标分别为:(0,4)、(3,0),即可求解;(2)证明O、F、M、D四点共圆,即可求解;(3)MD=MN,∠MDN=∠MND=α,而∠COB=α,∠DNM=∠ONF=α,即△OCF为以ON为底,底角为α的等腰三角形,则tan∠NFO=NHNF =247=tanβ,则cosβ=725,设OF=m,则DF=FB=3−m,cos∠DFO=cosβ=m3−m ,解得:m=2132,OD2=DF2−OF2=(3−m)2−m2=8116;即可求解.本题考查的是一次函数综合运用,涉及到圆的基本知识、解直角三角形等,综合性强,难度很大.17.【答案】240 (25,0).【解析】解:(1)由图象可得,李越骑车的速度为:2400÷10=240米/分钟,2400÷96=25,所以F点的坐标为(25,0).故答案为:240;(25,0);(2)设李越从乙地骑往甲地时,s与t之间的函数表达式为s=kt,2400=10k,得k=240,即李越从乙地骑往甲地时,s与t之间的函数表达式为s=240t,故答案为:s=240t;(3)设王明从甲地到乙地时,s与t之间的函数表达式为s=kt+2400,根据题意得,25k+2400=0,解得k=−96,所以王明从甲地到乙地时,s与t之间的函数表达式为:s=−96x+2400;(4)根据题意得,240(t−2)−96t=2400,解得t=20.答:李越与王明第二次相遇时t 的值为20.(1)由函数图象中的数据可以计算出李越骑车的速度,根据王明步行的速度可得F 点的坐标;(2)运用待定系数法,即可求出李越从乙地骑往甲地时,s 与t 之间的函数表达式;(3)运用待定系数法,可得王明从甲地到乙地时,s 与t 之间的函数表达式;(4)根据题意列方程解答即可.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.【答案】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480t,(t ≥4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将t =6代入v =480t 得v =80;将t =245代入v =480t 得v =100.∴小汽车行驶速度v 的范围为:80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t 得v =9607>120千米/小时,超速了.故方方不能在当天11点30分前到达B 地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将它们分别代入v 关于t 的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为72小时,将其代入v 关于t 的函数表达式,可得速度大于120千米/时,从而得答案.本题是反比例函数在行程问题中的应用,根据时间、速度和路程的关系可以求解,本题属于中档题. 19.【答案】解:(1)设y 与x 之间的函数解析式为y =kx +b ,{b =60010k +b =0,得{k =−60b =600, 即y 与x 之间的函数解析式为y =−60x +600;(2)小明的速度为:600÷10=60米/分钟,则小军的速度为:60×1.5=90米/分钟,设小军用了a分钟追上小明,90a=60(a+3),解得,a=6,当a=6时,他们距离体育中心的距离是600−90×6=60米,答:小军用了6分钟追上小明,此时他们距离体育中心60米.【解析】(1)根据函数图象中的数据可以求得y与x之间的函数解析式;(2)根据图象中的数据可以分别得甲乙的速度,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.。

初中数学北师大版(2024)八年级上册 第四章 一次函数单元测试(含简单答案)

初中数学北师大版(2024)八年级上册  第四章 一次函数单元测试(含简单答案)

第四章一次函数一、单选题1.下列曲线中,表示y是x的函数的是()A.B.C.D.2.关于一次函数y=−2x+3,下列结论正确的是( )A.图象过点(1,−1)B.其图象可由y=−2x的图象向上平移3个单位长度得到C.y随x的增大而增大D.图象经过一、二、三象限3.设半径为r的圆的周长为C,则C=2πr,下列说法错误的是()A.常量是π和2B.常量是2C.用C表示r为CD.变量是C和r2π4.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是( )A.B.C.D.5.如果M(−1,y1),N(2,y2)是正比例函数y=kx的图象上的两点,且y1>y2.那么符合题意的k的值可能是()A.1B.1C.3D.−236.如图所示,已知点C(1,0),直线y=−x+7与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A.42B.10C.42+4D.127.函数y=|kx|(k≠0)的图象可能是()A.B.C.D.8.我们把三个数的中位数记作Z{a,b,c}.例如Z{1,3,2}=2.函数y=|2x+b|的图象为C1,函数y=Z{x+1,-x+1,3}的图象为C2.图象C1在图象C2的下方点的横坐标x满足-3<x<1,则b的取值范围为()A.0<b<3B.b>3或b<0C.0≤b≤3D.1<b<39.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100km/h B.乡村公路总长为90kmC.汽车在乡村公路上的行驶速度为65km/h D.该记者在出发后5h到达采访地10.如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论:①k<0;②a>0;③b>0:④方程kx+b=x+a的解是x=3,错误的个数是()A.1个B.2个C.3个D.4个二、填空题11.函数y=−3x+6的图象与x轴.y轴围成的三角形面积为.12.如图,购买一种商品,付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次性购买50千克这种商品要付款元.13.直线y=kx+b平行于直线y=−2x,且与y轴交于点(0,3),则此函数的解析式y=.14.已知点A(2,y1),B(3,y2)在直线y=﹣3x+1上,则y1与y2的大小关系为:y1y2.(填“>”,“=”或“<”)15.若y=(m−1)x|m|+2是关于x的一次函数,则m等于.16.已知一次函数y1=kx﹣2k(k是常数)和y2=﹣x+1.若无论x取何值,总有y1>y2,则k的值是.17.杭黄高铁开通运营,已知杭州到黄山距离300千米,现有直达高铁往返两城市之间,该高铁每次到达杭州或黄山后,均需停留一小时再重新出发.暑假期间,铁路局计划在同线路上加开一列慢车直达旅游专列,在试运行期间,该旅游专列与高铁同时从杭州出发,在整个小时两车第一次相遇.两车之间的距离y千米运行过程中,两列车均保持匀速行驶,经过103与行驶时间x小时之间的部分函数关系如图所示,当两车第二次相遇时,该旅游专列共行驶了千米.18.如图,在平面直角坐标系中,点A1(1,1)在直线y=x图象上,过A1点作y轴平行线,交直线y=−x于点B1,以线段A1B1为边在右侧作正方形A1B1C1D1,C1D1所在的直线交y=x 的图象于点A2,交y=−x的图象于点B2,再以线段A2B2为边在右侧作正方形A2B2C2D2⋯依此类推,按照图中反映的规律,第2020个正方形的边长是.三、解答题19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了表格.距离地面高度(千米)12345温度(℃)201482−4−10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答;(1)如果用ℎ表示距离地面的高度,用t表示温度,写出t与ℎ的关系式;(2)你能计算出距离地面16千米的高空温度是多少吗?x+2和y=2x﹣3的图象分别交y轴与A、B两点,两个一次函数的20.已知一次函数y=﹣12图象相交于点P.(1)求△PAB的面积;(2)求证:∠APB=90°;(3)若在一次函数y=2x﹣3的图象上有一点N,且横坐标为x,连结NA,请直接写出△NAP 的面积关于x的函数关系式,并写出相应x的取值范围.21.已知直线y=-4x+4与x轴和y轴分别交于B、A两点,另一直线经过点B和点D3(11,6).(1)求A、B的坐标;(2)证明:△ABD是直角三角形;(3)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标.22.如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?23.如图1,某地铁车站在出入口设有上、下行自动扶梯和步行楼梯,甲、乙两人从车站入口同时下行去乘坐地铁,甲乘自动扶梯,乙走步行楼梯,乙离地铁进站入口地面的高度ℎ(单位:m)与下行时间x(单位:s)之间具有函数关系ℎ=−15x+6,甲离地铁进站入口地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达地铁进站入口地面.24.已知直线y=kx+b可变形为:kx−y+b=0,则点P(x0, y0)到直线kx−y+b=0的距离d可用公式d=|kx0−y0+b|1+k2计算.例如:求点P(-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x−y+1=0,其中k=1,b=1.所以点P(-2,1)到直线y=x+1的距离为d=|kx0−y0+b|1+k2=|1×(−2)−1+1|1+12=22=2.根据以上材料求:(1)点P(2,-1)到直线y=2x−1的距离;(2)已知M为直线y=−x+2上的点,且M到直线y=2x−1的距离为35,求M的坐标;(3)已知线段y=kx+3(−1≤x≤2)上的点到直线y=x+1的最小距离为1,求k的值.25.如图,一次函数y=x+1的图象分别与x轴,y轴交于点B与点A,直线AC与x轴正半轴交于点C,且∠BAO=45°,OC=2OB.(1)求直线AC的函数表达式;(2)点D在直线AB上且不与点B重合,点E在直线AC上.若以A,D,E为顶点的三角形与△ABC全等,请直接写出点D的坐标(不必写解答过程);(3)已知平面内一点P(m,n),作点P关于直线AB的对称点P1,作P1关于y轴的对称点P2,若P2恰好落在直线AC上,则m,n应满足怎样的等量关系?说明理由.26.某企业准备为员工采购20000袋医用口罩.经市场调研,准备购买A,B,C三种型号的口罩,这三种型号口罩的价格如下表所示:型号A B C价格/(元/袋)303540已知购买B型号口罩的数量是A型号口罩的2倍,设购买A型号口罩x袋,该企业购买口罩的总费用为y元.(1)请求出y与x之间的函数表达式;(2)因为A型号口罩的数量严重不足,口罩生产厂家能提供的A型号口罩的数量不大于C型号口罩的数量,怎样购买能使该企业购买口罩的总费用最少?请求出费用最少的购买方案,并求出总费用的最小值.参考答案:1.D 2.B 3.B 4.B 5.D 6.B 7.C 8.C 9.D 10.A 11.612.42013.−2x +314.>15.−116.−117.25018.2×3201919.(1)t =20−6ℎ(ℎ≥0)(2)距离地面16千米的高空温度是−76℃20.(1)5;(3)当x >2时,△NAP 的面积S=52(x ﹣2);当x <2时,△NAP 的面积S=52(2﹣x ).21.(1)A (0,4),B (3,0);(3)C (14122,0).22.(1)5海里;(2)走私船:1海里/分;公安快艇:1.5海里/分(3)y 1=t+5 ;y 2=32t ;(4)2海里;23.(1)y =−310x +6;(2)甲先到地铁进站入口地面.24.(1)455;(2)M (6,-4)或M (-4,6);(3)k =−2+3或22x+125.(1)y=−12(2)点D的坐标为(−102,1−102)或(1,2)或(102,1+102);(3)2m+1=n,26.(1)y=−20x+800000(2)当购买A型号口罩5000袋,B型号口罩10000袋,C型号口罩5000袋时,该企业购买口罩的总费用最少,总费用的最小值为700000元。

(完整版)北师大版初二(八年级上册)数学一次函数练习题

(完整版)北师大版初二(八年级上册)数学一次函数练习题

北师版初二一次函数专题一、选择题1.一次函数y=kx+2经过点(1,1),那么这个一次函数( ). A 、y 随x 的增大而增大 B 、y 随x 的增大而减小 C 、图像经过原点 D 、图像不经过第二象限2.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( ) A 、 P(2,0) B 、 P(-2,0) C 、 P(0,2) D 、 P(0,-2)3.直线 y=43x +4与 x 轴交于 A,与y 轴交于B, O 为原点,则△AOB 的面积4.直线y =-43x +4和x 轴、y 轴分别相交于点A 、B ,在平面直角坐标系内,A 、B 两点到直线a 的距离均为2,则满足条件的直线a 的条数为( ) A .1 B .2 C. 3 D .45.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )6.已知x 满足-5≤x ≤5,y1=x+1,y2=-2x+4对任意一个x ,m 都取y1,y2中的较小值,则m 的最大值是( ) A 、1 B 、2 C 、24 D 、-97.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A.0k >,0b > B.0k >,0b < C.0k <,0b > D.0k <xyO32y x a =+1y kx b =+8.一次函数y1=kx+b 与y2=x+a 的图象如图,则下列结论 ①0k <;②0a >;③当3x <时,12y y <中,正确的个数 是( )A .0B .1C .2D .39.甲、乙两辆摩托车分别从A 、B 两地出发相向而行,右图中12l l 、分别表示甲、乙两辆摩 托车与A 地的距离s(千米)与行驶时间t(小时)之 间的函数关系.则下列说法: ①A 、B 两地相距24千米;②甲车比乙车行完全程多用了0.1小时; ③甲车的速度比乙车慢8千米/小时; ④两车出发后,经过311小时两车相遇.其中正确的有( ) A .1个 B . 2个 C . 3个 D .4个 二、填空题10. 一次函数y=-2x+4的图象经过的象限是____,它与x 轴的交点坐标是____,与y 轴的交点坐标是____.11.直线b kx y +=与15+-=x y 平行,且经过(2,1),则k= ,b= .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图10中的折线分别表示S 1、S 2与t 之间的函数关系. (1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ;
(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?
(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.
2、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离
为y 1(km ),出租车离甲地的距离为y 2(km ),客车行驶时间为x (h ),y 1,y 2与x 的函数关系图象如图12所示:
(1)根据图象,直接写出....y 1,y 2关于x 的函数关系式。

(2)分别求出当x=3,x=5,x=8时,两车之间的距离。

(3)若设两车间的距离为S (km ),请写出S 关于x 的函数关系式。

(4)甲、乙两地间有A 、B 两个加油站,相距200km ,若客车进入
A 站加油时,出租车恰好进入
B 站加油。

求A 加油站到甲地的距离。

3、在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....
分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.
(1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义; (3)若两船的距离不超过10 km 时能够相互望见, 求甲、乙两船可以相互望见时x 的取值范围.
(第3题)
4、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),
两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图像进行以下探究: 信息读取
(1)甲、乙两地之间的距离为 km;
(2)请解释图中点B的实际意义;
(3)求慢车和快车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;
5 、若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?
第4题
5.A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小时)之间的函数图象.
(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围;
(2)当它们行驶了7小时时,两车相遇,求乙车速度.
6. 甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:
⑴分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量的取值范围)
⑵当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离;
⑶在⑵的条件下,设乙同学从A 点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙同学相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?
126
2
3
S(千米)
t(小时)
C
D E
F B


3.小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀
速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示.
(1)小李到达甲地后,再经过___小时小张到达乙地;小张骑自行车的速度是___千米/小时.
(2)小张出发几小时与小李相距15千米?
(3)若小李想在小张休息期间与他相遇,则他出发的时间x 应在什么范围?(直接写出答案)
7周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。

接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小名离家的路程y (干米) 与x (小时)之间的函致图象如图所示,
(1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的平均速度应是________千米/小时; (2)求线段CD 所表示的函敛关系式;
(3)问小明能否在12:0 0前回到家?若能,请说明理由:若不能,请算出12:00时他离家的路程,
(第23题图)
x (小时)
8一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车
之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系. (1)根据图中信息,求线段AB 所在直线的函数解析式和甲乙两地之间的距离;
(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,求t 的值; (3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y 关于x 的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)
9 在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.
(1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.
10某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离
(千米)与乙车出发(时)的函数的部分图像
(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地; (2)求乙车出发2小时后直至到达A 地的过程中,与
的函数关系式及的取值范围,并在图16中补全函
数图像;
(3)乙车出发多长时间,两车相距150千米
11.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行
车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。

(2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系; (3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
1题
12小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.
(1) 小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少
米?
(2) 下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处
与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问: ① 小刚到家的时间是下午几时?
② 小刚回家过程中,离家的路程s (米)与时间t (分)之间的函数关系如图,请写出点B 的坐标,并求出
线段CD 所在直线的函数解析式.
13.甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题: (1)求乙车所行路程y 与时间x 的函数关系式;
)
(2)求两车在途中第二次相遇时,它们距出发地的路程;
(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)。

相关文档
最新文档